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Abstract

Large Language Models (LLMs) demonstrate impressive mathematical reasoning
abilities, but their solutions frequently contain errors that cannot be automatically
verified. Formal theorem proving systems such as Lean 4 offer automated ver-
ification with complete accuracy, but current prover LLMs solve substantially
fewer problems than general-purpose LLMs operating in natural language. We
introduce HILBERT, an agentic framework that bridges this gap by combining
the complementary strengths of informal reasoning and formal verification. Our
system orchestrates four components: an informal LLM that excels at mathemat-
ical reasoning, a specialized prover LLM optimized for Lean 4 tactics, a formal
verifier, and a semantic theorem retriever. Given a problem the prover cannot
solve, HILBERT employs recursive decomposition to split it into subgoals that
are solved by the prover or reasoner LLM, leveraging verifier feedback to refine
incorrect proofs. Experiments demonstrate that HILBERT substantially outper-
forms existing approaches. It achieves 99.2% on MiniF2F (6.6% points above
the best publicly available method) and the best known result on PutnamBench
with 462/660 problems solved (70.0%), outperforming proprietary approaches like
SeedProver (50.4%) and achieving a 422% improvement over the best publicly
available baseline.

1 Introduction

General-purpose Large Language Models (LLMs) have achieved dramatic improvements in mathe-
matical understanding, with reasoning LLMs like GPT-5 and Gemini 2.5 Pro attaining near-perfect
performance on olympiad exams and solving significant portions of competitive undergraduate
problems [Glazer et al., 2024} |OpenAl, 2025| |Dekoninck et al.l 2025]]. However, they frequently
hallucinate and produce flawed reasoning with logical fallacies and unjustified assumptions [Petrov
et al., 2025, |Guo et al., 2025, Mahdavi et al., 2025]].

Formal theorem proving systems like Lean 4 [Moura and Ullrich, [2021]] offer automated proof
verification with complete accuracy. This has spurred development of specialized prover LLMs
[Yang et al., 2023] Ren et al., 2025} Dong and Ma, 2025, with the best achieving over 90% on
miniF2F [Zheng et al.,|2021]] and solving 86/657 PutnamBench problems [Tsoukalas et al., 2024,
Lin et al.,[2025b]. Proprietary systems like AlphaProof [|AlphaProof and AlphaGeometryl |[2024] and
SeedProver [Chen et al., 2025]] demonstrate medal-winning IMO performances.

Despite progress, a significant gap remains: reasoning LLMs solve ~83% of PutnamBench informally
while the best prover LLMs achieve only 13% formally [Dekoninck et al.,[2025]]. General-purpose
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Figure 1: The HILBERT algorithm. Given a target theorem, HILBERT attempts formal proof
generation with the prover. Upon failure, it decomposes the problem into subgoals and tries to solve
them with the prover, followed by the reasoner (shallow solve). If both strategies fail, it resorts to
recursive decomposition until all subgoals are resolved.

LLMs excel at informal reasoning and understand formal syntax for sketches but struggle with full
formal synthesis. Conversely, prover LLMs generate syntactically correct proofs but are brittle at
leveraging existing theorems and error correction [Liang et al., 2025].

Previous approaches combining informal reasoning with formal proving [Jiang et al.,|2022, Wang
et al., 2023} |Cao et al., [2025]] use shallow, single-layer decomposition that cannot handle complex
subgoals. Recent agentic frameworks [Thakur et al.| 2024, Baba et al., 2025, [Wischermann et al.,
2025|] show promise but still lag significantly behind reasoning LLMs.

We introduce HILBERT, an agentic framework bridging informal reasoning with formal verification
(Figure[T). It orchestrates four components: a reasoning LLM, prover LLM, verifier, and semantic
retriever. Given a problem, HILBERT retrieves relevant theorems, generates informal proofs, creates
Lean 4 sketches with subgoal decomposition, and recursively proves subgoals with the prover and
reasoner. The system leverages error messages from the verifier during inference-time to refine proofs.
We summarize our contributions below:

* We design HILBERT, a multi-turn agentic framework systematically combining informal mathe-
matical reasoning with formal verification.

* We achieve state-of-the-art performance: 99.2% on miniF2F (6.6 points above best public method)
and 462/660 (70.0%) on PutnamBench, outperforming SeedProver (50.4%) with 4 X improvement
over the best open-source baseline.

* Through ablation studies, we validate our recursive decomposition and retrieval-augmented gener-
ation mechanisms.

2 HILBERT System

HILBERT orchestrates the following components as part of its system: (1) Reasoner. A general-
purpose reasoning LLM (Google Gemini 2.5 Flash/Pro) for informal proofs, proof sketches, and
formal proofs. (2) Prover. A specialized prover LLM (DeepSeek-V2-7B, Goedel-Prover-V2 32B)
for formal proof generation. (3) Verifier. Kimina Lean Server with Lean v4.15.0 and Mathlib v4.15.0
for correctness verification. (4) Retriever. Semantic search engine implemented using sentence
transformers and FAISS indexing over Mathlib theorems [Douze et al., 2024].

2.1 Algorithm

Given a formal Lean 4 statement, we first attempt direct proof using the Prover with Kisigial proof = 4
candidate attempts. If successful, we return the proof. Otherwise, we decompose the problem using
the following stages:

2.1.1 Subgoal Decomposition (Figure 2)

Step 1 (Retrieval). The Reasoner generates s = 5 search queries to retrieve top-m = 5 relevant
theorems from Mathlib for each query.

Step 2 (Proof Sketch). Using retrieved theorems, the Reasoner produces an informal proof, then
generates a Lean 4 proof sketch decomposing the problem into have statements with sorry place-
holders. We verify sketch validity and correct errors iteratively with maximum Kech atempts = 4
attempts.
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Figure 2: Subgoal Decomposition: Given a theorem statement, HILBERT: (1) retrieves relevant
theorems from Mathlib via semantic search, (2) generates a proof sketch with subgoals marked as
have statements with sorry placeholders, (3) extracts subgoals as independent theorem statements,
and (4) assembles the proof by replacing sorry placeholders with calls to the subgoal theorems.
Verifiers ensure correctness at each stage. The error correction loops are indicated by dotted lines.

Step 3 (Subgoal Extraction). The Reasoner extracts subgoals from the proof sketch, converting them
into independent theorem statements with relevant context. We verify that all subgoals have been
extratced and syntactically correct.

Step 4 (Proof Assembly). The Reasoner produces an assembled proof by replacing sorry placehold-
ers with calls to corresponding subgoal theorems. The proof is verified to ensure correctness.

2.1.2 Subgoal Verification

For each extracted subgoal:

Step 1 (Direct Proving). Attempt direct proof using the Prover with Kfomai proor = 4 candidates.
Accept if any succeeds.

Step 2 (Correctness Check). If direct proving fails, the Reasoner evaluates mathematical correctness
and provability. Flag incorrect subgoals for sketch refinement.

Step 3 (Shallow Solve). For correct but unproven subgoals, the Reasoner writes short formal proofs
using retrieved theorems with iterative Verifier feedback for up to0 Kprof correction = 6 passes and
Kinformal passes = 6 attempts. Terminate if proof exceeds Kmax shallow solve length = 30 lines.

Step 4 (Recursive Decomposition). Recursively apply subgoal decomposition to remaining unproven
subgoals until maximum depth D is reached.

Finally, we assemble the complete proof by concatenating all subgoal proofs with the assembled
proof structure. The algorithm terminates when all subgoals are proven or maximum recursion depth
is exceeded. For a more detailed description of our method, refer to Appendix

3 Main Results

MiniF2F. We evaluate on the 244-problem test split of MiniF2F [Zheng et al.,[2021]], a challenging
dataset of high-school mathematics competition problems from AMC, AIME, and IMO. Using
recursion depth D = 5, we test HILBERT with two prover models (DeepSeek-Prover-V2-7B and
Goedel-Prover-V2-32B) and two reasoner models (Gemini 2.5 Flash and Pro).

HILBERT achieves strong performance across all configurations (Table[T)). Our best setup (Gemini
2.5 Pro + Goedel-Prover-V2-32B) reaches 99.2% pass rate, failing only two problems. Even with
the weaker prover, Gemini 2.5 Pro achieves 98.4%. The informal reasoner’s capability proves more
critical than prover strength. The Pro variants outperform Flash by 3-4%, larger than gaps between



Method Pass Rate

STP [Dong and Ma, [2025]] (pass@3200) 65.0% + 0.5%
(pass@25600) 67.6%

Kimina-Prover-8B [Wang et al.,[2025] (pass@32) 78.3%
Kimina-Prover-72B (pass @1024) 87.7%
w/ TTRL 92.2%
Gemini 2.5 Pro (pass@16384) 49.1%
Delta Prover [Zhou et al.} 2025| (pass@16384) 95.9%
Seed Prover [[Chen et al., [2025] 99.6%
Goedel-Prover-SFT [Lin et al.,2025a]] (pass@3200) 62.7%
Goedel-Prover-V2-8B [Lin et al.,[2025b|] (pass@8192) 90.2%
w/ self-correction (pass@1024) 89.3%
Goedel-Prover-V2-32B (pass@4) 74.6% + 1.2%
(pass@8192) 92.2%

w/ self-correction (pass@1024) 92.6%
HILBERT (Gemini 2.5 Flash) + Goedel-Prover-V2-32B 94.7% [+20.1%]
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 99.2% [+24.6%]
DeepSeek-Prover-V2-7B (CoT) [Ren et al.,|2025|] (pass@8192) 82.0%
DeepSeek-Prover-V2-7B (non CoT) (pass@4) 61.3% + 0.2%
(pass@8192) 75.0%

DeepSeek-Prover-V2-671B (pass@8192) 88.9%
HILBERT (Gemini 2.5 Flash) + DS Prover-V2-7B (non-CoT) 96.7% [+35.4%]
HILBERT (Gemini 2.5 Pro) + DS Prover-V2-7B (non-CoT) 98.4% [+37.1%]

Table 1: Results on the MiniF2F-Test dataset. Improvements shown in brackets for HILBERT are
calculated relative to the pass@4 baseline for each prover family. Note: Delta Prover and Seed Prover
are proprietary methods and not publicly available to use. Gemini 2.5 Pro result obtained from Zhou
et al.| [2025]]

Model # Solved Problems % Solved Problems
Goedel-Prover-SFT [Lin et al.|[2025a] (pass@512) 7/644 1.1%
ABEL [Gloeckle et al.|[2024] (pass @596) 7/644 1.1%
Self-play Theorem Prover [Dong and Ma.[2025] (pass @3200) 8/644 1.2%
Kimina-Prover-7B-Distill [Wang et al.|[2025] (pass@192) 10/657 1.5%
DSP+ [[Cao et al.|[2025] (pass @ 128) 23/644 3.6%
Bourbaki [Zimmer et al.|[2025] (pass@512) 26/658 4.0%
DeepSeek-Prover-V2 671B [Ren et al.|[2025] (pass@1024) 47/657 7.1%
SeedProver [Chen et al.|[2025] 331/657 50.4%
Goedel-Prover-V2-32B (self-correction) [Lin et al.|[2025b] (pass@184) 86/644 13.4%
HILBERT (Gemini 2.5 Pro) + Goedel-Prover-V2-32B 462/660 70.0%

Table 2: Results on the PutnamBench dataset. We benchmark on the most recent version (as of
September 2025) containing 660 problems.

prover models. Compared to standalone base provers at pass@4, HILBERT delivers 20.1-37.1%
improvements.

PutnamBench. This benchmark contains 660 undergraduate-level problems from the Putnam
Mathematical Competition (1962-2024). Due to computational costs, we evaluate only our strongest
configuration with D = 5. The results are in Table[2]

HILBERT achieves state-of-the-art performance with 70.0% pass rate (462/660 problems), surpassing
the previous best SeedProver (50.4%) by nearly 20 percentage points and solving 4 x more problems
than the best public baseline. This success stems from HILBERT’s ability to compose long proofs
without the long-context reasoning issues that affect traditional LLMs (see Appendix [I).

3.1 Scaling Behavior with Inference-Time Compute

Unlike traditional prover LLMs that distribute compute across many independent proof attempts
from scratch, HILBERT allocates inference-time compute across multiple interconnected stages, from
subgoal decomposition to subgoal proof generation. Since this compute allocation is adaptive, it
cannot be captured by a simple count of independent attempts. To illustrate the compute-performance
tradeoff, we plot HILBERT’s pass rate against the per-sample number of calls to (1) the Reasoner and
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Figure 3: Pass rate (vs) Inference-time Budget. We plot the pass-rate for HILBERT on MiniF2F as

a function of (left) the number of Reasoner calls (right) the total number of LLM (Reasoner + Prover)
calls per sample.

(2) the Reasoner + Prover combined (Figure[3). The results reveal a clear scaling relationship where
pass rates increase with the number of calls per sample. Our best-performing configuration (Gemini
2.5 Pro with Goedel Prover) requires at most 4.5K reasoner calls and 11.3K total calls, significantly
fewer than DeltaProver’s 16,384 calls with Gemini 2.5 Pro. Interestingly, the weaker reasoner (Gemini
2.5 Flash) demands a substantially higher inference budget to achieve comparable performance with
both prover variants. While HILBERT+ DeepSeek Prover starts with lower pass rates, it demonstrates
faster improvement rates, particularly in low-budget settings, eventually matching HILBERT+Goedel-
Prover performance.

Beyond inference-time scaling with the number of Reasoner calls (Figure 3, we demonstrate how
HILBERT scales with additional metrics: the number of tokens consumed by the Reasoner and Prover
(Figure @), and the number of Prover and Verifier calls (Figure [5). Consistent with our previous
findings, we observe a continuous increase in pass rate as token usage increases. Notably, the
most challenging problems required 22.8M and 27.0M tokens for the Gemini 2.5 Pro variants with
Goedel-Prover-V2 and DeepSeek-Prover-V2, respectively. These token counts far exceed the context
length of most LLLMs, demonstrating that our agentic framework enables models to go beyond their
inherent context limitations when solving complex mathematical problems, at the cost of increased
inference-time computation.

For ablation studies related to performance with/without retrieval, and performance (vs) recursion
depth, refer to Appendix[F

4 Conclusion

We present HILBERT, a hierarchical agentic framework that bridges formal theorem proving in Lean
with the informal mathematical reasoning capabilities of general-purpose LLMs. Our approach
recursively decomposes complex problems into manageable subgoals and orchestrates informal
reasoners (Gemini 2.5 Pro/Flash) with formal provers (DeepSeek-Prover-V2-7B and Goedel-Prover-
V2-32B) to solve theorems that neither component can handle alone. HILBERT achieves state-of-the-
art performance on miniF2F with pass rates of 94.7% to 99.2%. On the challenging PutnamBench
dataset, HILBERT achieves 70.0% pass rate, nearly 20 percentage points above previous methods
and approaching the 82% informal proof rate reported in|Dekoninck et al.|[2025]. In the future, we
plan to leverage this framework to train increasingly capable models. Proofs and reasoning traces
generated by HILBERT can be used to train better Prover and Reasoner models. These improved
models should be able to solve more complex problems than before, resulting in a virtuous cycle that
has the potential to continually advance formal reasoning capabilities.
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A Related Work

Automated Theorem Provers (ATPs) are computational systems designed to automatically discover
proofs of mathematical theorems. Traditional approaches have primarily relied on symbolic reasoning
methods [Robinson, |1965, [McCune, [2003], |Schulz, 2002|] and integration tools like Sledgehammer
that connect ATPs with interactive proof assistants [Blanchette et al. [2013) |Czajka and Kaliszykl
2018]). Recently, LLMs have emerged as a promising new tool for automated theorem proving [Polu
and Sutskever} 2020, Yang et al., 2024].

Prover LLMs. The general principle is to train specialized prover LLMs on large datasets of formal
proofs, most prominently for the Lean [Moura and Ullrich,|2021]] theorem prover. Some prominent
models include GPT-f [Polu and Sutskever, 2020], ReProver [[Yang et al.| 2023]], DeepSeek Prover
family of models [Xin et al.,[2024alb, Ren et al., 2025], ABEL [Gloeckle et al., 2024]], Goedel Prover
V1 and V2 [Lin et al., [2025alb], BFS Prover [Xin et al., [2025]], STP-Prover [Dong and Ma, [2025]]
and Kimina Prover [Wang et al., [2025]]. These models are trained by curating a substantial corpus of
formal proofs and performing some combination of supervised finetuning and reinforcement learning.
Several approaches have enhanced these models by incorporating subgoal decomposition into the
training process [Zhao et al.} 2023|2024, Ren et al.| |2025]], while POETRY [Wang et al.||2024] and
ProD-RL [Dong et al., 2024] employ recursive problem decomposition. Proprietary prover LLMs
like AlphaProof [[AlphaProof and AlphaGeometry, 2024] and SeedProver [[Chen et al.,[2025]] have
pushed the frontier further, achieving a silver-medal performance on problems from the International
Mathematics Olympiad (IMO). Still, significant performance gaps remain between specialized prover
models and general-purpose LLMs in mathematical reasoning capabilities [Dekoninck et al., 2025].

Using Informal LLMs for Formal Theorem Proving. Several previous works have attempted to
incorporate informal reasoning from general-purpose LLMs to improve formal reasoning abilities.
DSP [Jiang et al.|[2022] used the Codex LLM to propose proof sketches in Isabelle, with intermediate
steps filled in by Sledgehammer. LEGO-Prover [Wang et al., 2023]] extended this framework to handle
a growing skill library of intermediate theorems for retrieval-augmented proving. |[Liang et al.|[2025]]
argue that general purpose reasoning LLMs are more effective at decomposing problems into simpler
subgoals compared to prover LLMs. Our work extends upon this observation by using informal
reasoners to recursively build proof sketches to break the problem down into simpler sub-problems
that can be handled by a prover or reasoning LLM.

Several works have also proposed using an informal LLM in an agentic framework for automated
theorem proving. COPRA [Thakur et al.||2024]] queries an informal LLM to construct proofs tactic
by tactic, incorporating execution feedback, search history, and retrieved lemmas into subsequent
prompts. Prover-Agent [Baba et al.,2025] uses a small informal reasoning model to produce proof
steps and lemmas, which are autoformalized and solved using a prover LLM. Feedback from Lean
is used to iteratively refine incorrect proofs. ProofCompass [Wischermann et al., [2025]] enhances
prover LLMs by adding informal proof steps as comments in the input. When proof attempts fail, it
analyzes these failures to extract intermediate lemmas that enable effective problem decomposition.
DeltaProver [[Zhou et al., [2025] introduces a custom Domain-Specific Language to perform subgoal
decomposition, and iteratively repair the generated proof using verifier feedback. Notably, it only uses
an informal LLM and does not rely on prover LLMs. In contrast, our work demonstrates that prover
LLMs become highly effective tools when orchestrated in an appropriately designed multi-agent
framework.

B HILBERT System

In this section, we detail HILBERT, a multi-agent system that bridges informal mathematical reasoning
and formal verification by orchestrating general-purpose reasoning LLMs with specialized prover
LLMs. Our approach uses recursive subgoal decomposition to break complex theorems into simpler
subgoals that can be proven and combined, achieving performance exceeding either approach in
isolation.

B.1 Components

Before we describe the inference algorithm, we first describe the components that HILBERT orches-
trates.



Reasoner. A general-purpose reasoning LLM to write informal proofs, proof sketches in Lean, and
in certain instances, a formal proof. In our work, we use Google Gemini 2.5 Flash and Pro [Comanici
et al.| |2025] due to their superior mathematical reasoning capabilities [Zhou et al., 2025| [Dekoninck
et al.| 2025]].

Prover. A specialized prover LLM to write formal proofs given a formal theorem statement. In our
work, we use DeepSeek-V2-7B [Ren et al}2025]] and Goedel-Prover-V2 32B [Lin et al.| |2025b].

Verifier. A formal language verifier to check the correctness of the theorem statements and proofs.
We use the Kimina Lean Server [Santos et al.,[2025]] with Lean v4.15.0 and Mathlib v4.15.0.

Retriever. A semantic search engine to retrieve relevant theorems from Mathlib [mathlib Communityl,
2020] built using sentence transformers (all-mpnet-base-v2 [Song et al., 2020]]) and FAISS
[Douze et al.| 2024] indexing. The system computes cosine similarity between query embeddings
and pre-computed embeddings of informal theorem descriptions from the mathlib_informal [Gao
et al., 2024 dataset, providing a simple yet effective alternative to custom retrieval models [Gao
et al., 2024, Lu et al., 2025]).

B.2 Algorithm

Given a formal statement in Lean 4, we first attempt direct proof using the Prover. It generates
Kinitial proof = 4 candidate proofs, which we verify using the Verifier. If any proof is valid, we return
it immediately. When direct proof attempts fail, we use the Reasoner to decompose the problem into
simpler subproblems and assemble them into a valid proof strategy. Figure [2] provides an overview of
this stage.

B.2.1 Subgoal Decomposition

Step 1 (Theorem Retrieval). Given the formal statement, we prompt the Reasoner to produce s = 5
search queries to look for theorems that might help simplify the proof strategy. For each search query,
we use the Retriever to retrieve the top m = 5 most semantically similar theorems and tactics from
Mathlib. We again query the Reasoner to select only the relevant theorems from the fetched search
results.

Step 2 (Formal Proof Sketch Generation). We prompt the Reasoner to produce a detailed informal
proof using the retrieved theorems. With this proof supplied in-context, we ask the Reasoner to
generate a Lean 4 proof sketch that decomposes the problem into simpler subproblems represented as
have statements. All subgoals are initially filled with sorry, a placeholder keyword that Lean can
temporarily treat as a proof of the subgoal. We verify that the proof sketch is valid using the Verifier
and leverage its feedback to correct any errors. We generate a maximum of Kkeich attempts = 4 sketch
attempts for each input theorem.

Step 3 (Subgoal Extraction). The Reasoner extracts subgoals from the proof sketch, converting
them into independent theorem statements with relevant context from the original problem and
preceding subgoals. As before, we use sorry for the proof. We verify completeness by counting
have statements in the proof sketch and ensuring that all of them are extracted. In case any of
them are missing, we prompt the Reasoner to extract the missing subgoals. Each extracted theorem
undergoes syntax verification using the Verifier. When errors occur, we provide error messages
in-context to the Reasoner for correction. This approach proves more reliable than parsing source
code directly or extracting subgoals from Lean 4’s proof state data structure (InfoTree) [Liang et al.|
2025].

Step 4 (Proof Assembly from Subgoals). We provide the Reasoner with the extracted subgoal theorem
statements (which contain sorry placeholders) and validated proof sketch. The Reasoner produces
an assembled proof for the target theorem by replacing each sorry placeholder in the proof sketch
with calls to the corresponding subgoal theorem. We then verify both the subgoal theorem statements
and the assembled proof together using the Verifier to ensure the overall structure is sound. We check
for errors using the Verifer and correct them through iterative feedback with the Reasoner. This
guarantees that after all subgoals are proven, we will have a complete proof of the given theorem.
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B.2.2 Subgoal Verification

At this stage, we have a valid theorem proof structure and a list of subgoals that, if proven, complete
the original proof. However, the mathematical correctness and provability of these subgoals remain
unverified. For each subgoal, we execute the following verification and proof process:

Step 1 (Prover Attempts). We first attempt to prove each subgoal directly using the Prover, generating
Kormal proof = 4 candidate proofs and verifying them with the Verifier. If any generated proof is valid,
we accept it and proceed to the next subgoal.

Step 2 (Correctness Verification). For subgoals that cannot be directly proven, we prompt the
Reasoner to evaluate whether the subgoal is mathematically correct and whether the formal statement
is formulated correctly and provable. If the Reasoner identifies the subgoal as mathematically
incorrect, unprovable, or poorly formulated, we flag it for correction and return to refine the original
proof sketch, repeating all steps from Section[B.2.Tonwards with the identified issues incorporated
as feedback. Apart from mathematical errors, some common failure modes detected by the Reasoner
at this stage include missing hypotheses or conditions in the subgoal theorem statement, and atypical
behavior due to the Lean type system, such as truncation of natural number

We prioritize direct Prover attempts over Reasoner verification because the Prover models are compu-
tationally cheaper, and a valid proof automatically confirms mathematical correctness. Empirically,
we observe that a significant proportion of generated subgoals can be successfully proven by the
Prover. Step 1 ensures that we save on the computational costs of the expensive Reasoner model for
verification on the successful subgoals.

Step 3 (Shallow Solve). After Step 1 fails and Step 2 confirms subgoal correctness, we employ a
Reasoner model for a "shallow solve" approach that writes short proofs for subgoals the Prover could
not directly solve. We retrieve relevant theorems from the Mathlib library and ask the Reasoner
to write a formal proof for the subgoal. The Reasoner iteratively refines proofs based on Verifier
feedback for up t0 Kproof correction = 6 passes. When compilation errors indicate missing or incorrect
theorem references, we retrieve additional relevant theorems. To preserve computational resources,
we terminate this step if an incorrect proof exceeds the length threshold K ax shatlow solve length = 30
lines, as excessively long proofs indicate the need for further decomposition. This entire shallow
solve process repeats for up t0 Kinformal passes = 0 attempts until we obtain a successful proof or
exhaust all attempts.

Step 4 (Recursive Decomposition and Proof Assembly). If subgoals remain unproven after Steps
1-3, we recursively apply the subgoal decomposition process (Section to break them down
further. Each subgoal is subdivided until it is either successfully proven or we reach the maximum
recursion depth D. Should all subgoals become proven, we proceed to create a complete proof for
the given theorem by stitching together the proofs for all subgoals and the assembled proof outline
from Step 4 of subgoal decomposition. This is done by concatenating the proofs of the subgoals with
the assembled proof produced in Step 4 of subgoal decomposition (Section [B.2.1). Any remaining
unsolved subgoals at this point trigger a failed proof attempt, prompting us to restart the subgoal
decomposition process for the theorem.

The complete algorithm is presented in Algorithm|[I}

C Implementation Details

We improve HILBERT’s efficiency through several runtime optimizations focused on parallelization.
The Prover LLM is served using vLLM [Kwon et al.}|2023]] and the Lean Verifier using Kimina Lean
Server [Santos et al.,|2025] to handle multiple requests in parallel.

We implement AsyncJobPool, a mechanism built around Python’s asyncio library, to orchestrate
parallel requests across our framework’s multiple steps. Submitted jobs run concurrently until specific
completion criteria are met based on the algorithm step. Concurrency is controlled using Semaphores.
We implement three completion criteria:

¢ Wait for All. The execution terminates when all jobs in the pool have finished execution. This
criterion is used to parallelize across examples, and across subgoals (Section [B.2.2).

*https://lean-lang.org/doc/reference/latest/Basic-Types/Natural-Numbers/
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* First-Success Termination. Execution terminates as soon as one successful job is found, and
pending jobs are terminated. This criterion is used to parallelize across proof attempts (the initial
Prover attempts, and Steps 1 and 3 in Section[B.2.2).

¢ First Failure. Execution halts upon the first job failure, immediately canceling remaining jobs.
This criterion is applied during subgoal correctness verification (Step 2 in Section[B.2.2). Since
verification failures often indicate fundamental issues with the proof sketch that affect multiple
subgoals, early termination prevents wasted computation on dependent subgoals, which may change
after correcting the problematic subgoal.

D Algorithm

The complete algorithm is presented across multiple blocks for clarity and modularity. Algorithm
[I]provides the main entry point and high-level control flow, while Algorithm 2] details the subgoal
resolution strategies. Algorithms [3] and [4] focus on sketch generation, validation, and assembly
processes. Algorithm [5] contains the core proof generation functions that interface with different
LLM components, while Algorithm [6] specifies the prompt-based functions for various reasoning
tasks. Algorithm [7lhandles error correction and refinement procedures, and Algorithm [§|provides
supporting functions for theorem retrieval and verification.

Algorithm 1 HILBERT: Hierarchical Proof Generation System

: function GENERATEPROOF(problem, header)
> Input: problem (formal statement), header (context)

1
2
3
4 > Phase 1: Direct Proof Attempt

S: proof <— ATTEMPTPROVERLLMPROOF(problem, header)
6: if proof # | then

7 return proof

8 end if

9

10: > Phase 2: Subgoal Decomposition

11: proof <— SUBGOALDECOMPOSITION(problem, header, depth=1)

12: return proof

13: end function

14:

15: function SUBGOALDECOMPOSITION(problem, header, depth)

16: > Decompose problem into subgoals and solve recursively

17: if depth > D then

18: return L > Maximum recursion depth reached

19: end if

20:

21: for attempt < 1 to Ketch attempts dO

22: relevant_theorems <— RETRIEVETHEOREMS(problem)

23: sketch <— GENERATEPROOFSKETCH(problem, relevant_theorems)

24: sketch_assembled, subgoals, proved_subgoals <

REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)

25:

26: if sketch_assembled # | then

27: final_proof — SOLVEALLSUBGOALS(subgoals, proved_subgoals,
sketch_assembled, header, depth)

28: if final_proof # L then

29: return final_proof

30: end if

31: end if

32: end for

33: return L
34: end function
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Algorithm 2 HILBERT: Subgoal Resolution

1: function SOLVEALLSUBGOALS(subgoals, proved_subgoals, sketch_assembled, header,
depth)
> Solve all remaining subgoals and assemble final proof
subgoal_proofs < 1]

proof <— SOLVESUBGOAL(subgoal, header, depth)
if proof = | then

2

3

4:

5: for all subgoal € subgoals \ proved_subgoals do
6.

7

8 return | > Failed to prove required subgoal
9

end if
10: subgoal_proofs[subgoal] < proof
11: end for
12:
13: final_proof <— CONCATENATE(header, subgoal_proofs, sketch)
14: return final_proof
15: end function
16:
17: function SOLVESUBGOAL(subgoal, header, depth)
18: > Solve individual subgoal with multiple strategies
19:
20: Strategy 1: Direct Prover Attempt
21: proof <— ATTEMPTPROVERLLMPROOF(subgoal, header)
22: if proof # | then
23: return proof
24: end if
25:
26: Strategy 2: Shallow Solve with Reasoner
27: relevant_theorems <— RETRIEVETHEOREMS(subgoal)
28: proof <~ SHALLOWSOLVE(subgoal, header, relevant_theorems)
29: if proof # L then
30: return proof
31: end if
32:
33: Strategy 3: Recursive Decomposition
34: if depth < D then
35: proof <— SUBGOALDECOMPOSITION(subgoal, header, depth+ 1)
36: if proof # | then
37: return proof
38: end if
39: end if

40: return
41: end function
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Algorithm 3 HILBERT: Sketch Validation and Refinement

1: function REFINEANDVALIDATESKETCH(sketch, header, relevant_theorems)
2: > Iteratively refine sketch until all subgoals are valid
3: for correction < 1 to Kketch corrections dO
4: sketch_syntactic < COMPILEANDCORRECTSYNTAXERRORS(sketch, header,
relevant_theorems)
5 if sketch_syntactic == L then
6: return L, (), 0
7: end if
8: subgoals <— EXTRACTSUBGOALS(sketch_syntactic, header)
9: if subgoals == | then
10: return L, (), {
11: end if
12: sketch_assembled <— ASSEMBLEPROOFFROMSUBGOALS(sketch_syntactic, subgoals,
header)
13: if sketch_assembled == | then
14: return L, 0, 0
15: end if
16: valid, verified_subgoals, proved_subgoals, error_justification <
VALIDATESUBGOALS(subgoals, header)
17: if valid then
18: return sketch_assembled, verified_subgoals, proved_subgoals
19: else
20: sketch — REFINESKETCHBASEDONERROR(sketch_syntactic,
error_justification)
21: end if
22: end for
23: return L, (), 0
24: end function
25:
26: function VALIDATESUBGOALS(subgoals, header)
27: > Validate subgoals through formal proving and correctness checking
28: verified_subgoals < ()
29: proved_subgoals + {}
30:
31: for all subgoal € subgoals do
32: proof <— ATTEMPTPROVERLLMPROOF(subgoal, header)
33: if proof # L then
34: verified_subgoals + verified_subgoals U {subgoal}
35: proved_subgoals[subgoal] < proof
36: else
37: mathematically_correct, justification < CHECKMATHEMATICALCORRECT-
NESS(subgoal)
38: if mathematically_correct then
39: verified_subgoals + verified_subgoals U {subgoal}
40: else
41: return false, 0, (), justification
42: end if
43: end if
44: end for
45: return true, verified_subgoals, proved_subgoals, L

46: end function
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Algorithm 4 HILBERT: Proof Sketch Refinement and Assembly

1:

45:
46:
47:
48:

function COMPILEANDCORRECTSYNTAXERRORS(sketch, header, relevant_theorems)
> Compile sketch with sorry statements and correct errors
verified, error_message <— VERIFYPROOF(header + sketch)
if verified then
return sketch
end if

> Error correction loop for sketch
for correction < 1 to Kihcorem corrections dO
augmented_theorems <— AUGMENTTHEOREMS(error_message, relevant_theorems)
sketch <— CORRECTSKETCHERROR(sketch, error_message, augmented_theorems)
verified, error_message <— VERIFYPROOF(header + sketch)
if verified then
return sketch
end if
end for
return |

: end function

function ASSEMBLEPROOFFROMSUBGOALS(sketch, subgoals, header)
> Assemble complete proof outline with verification

all_theorems <— CONCATENATETHEOREMS(subgoals)

sketch_assembled < REASONERLLM( s sketch,
all_theorems)

corrected_proof < VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled,
all_theorems, header)

return corrected_proof

: end function

: function VERIFYANDCORRECTPROOFWITHTHEOREMS(sketch_assembled, theorems, header)

> Verify assembled sketch and correct errors
full_proof < header + theorems + sketch_assembled
verified, error <— VERIFYPROOF(full_proof)
if verified then
return sketch_assembled
end if

for correction < 1 t0 Kiheorem corrections dO
corrected_proof <~ REASONERLLM( , error)
if sketch_assembled == 1 then
continue
end if
full_proof < header + theorems + sketch_assembled
verified, error <— VERIFYPROOF(full_proof)
if verified then
return sketch_assembled
end if
end for
return |
end function
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Algorithm 5 HILBERT: Proof Generation

1:

42:
43:

function ATTEMPTPROVERLLMPROOF(problem, header)
> Multiple attempts with formal prover LLM

for attempt <— 1 to Ktormal attempts 4O
proof <— PROVERLLM(problem)
verified, error <— VERIFYPROOF(header + proof)
if verified then

return proof

end if

end for

return |

: end function

: function GENERATEPROOFSKETCH(problem, relevant_theorems)

> Generate informal proof sketch using prompts

informal_proof — REASONERLLM( , problem,
relevant_theorems)
sketch < REASONERLLM( , problem, relevant_theorems,

informal_proof)
return sketch

: end function

function SHALLOWSOLVE(subgoal, header, relevant_theorems)
> Shallow solve with error correction loop
proof <— ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
verified, error_message <— VERIFYPROOF(header + proof)
if verified then
return proof
end if

> Error correction loop
for correction ¢— 1 to Kupgoal corrections 40
augmented_theorems <— AUGMENTTHEOREMS(error_message, relevant_theorems)
proof <— CORRECTPROOFERROR(proof, error_message, augmented_theorems)
verified, error_message <— VERIFYPROOF(header + proof)
if verified then
return proof
else
> Check proof length cutoff when verification fails
if |Pr00f| > Kmax shallow solve length then
return L > Proof too long and still incorrect, abandon
end if
end if
end for
return L
end function
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Algorithm 6 HILBERT: LLM Prompt Functions

1: function ATTEMPTREASONERPROOF(subgoal, relevant_theorems)
2: > Shallow solve using informal reasoning
3: proof <— REASONERLLM( , subgoal, relevant_theorems)
4: return proof
5: end function
6:
7: function CHECKMATHEMATICALCORRECTNESS(subgoal)
8: > Verify mathematical correctness of subgoal
9: correct, justification < REASONERLLM(
subgoal)
10: return correct, justification
11: end function
12:
13: function EXTRACTSUBGOALS(sketch, header)
14: > Extract have statements as independent subgoals
15: subgoals <— REASONERLLM( , sketch)
16:
17: > Syntax check and correction for each subgoal
18: corrected_subgoals <+ ()
19: for all subgoal € subgoals do
20: verified, error <— VERIFYPROOF(header + subgoal)
21: if verified then
22: corrected_subgoals ¢ corrected_subgoals U {subgoal}
23: else
24: > Error correction loop
25: corrected < false
26: for attempt < 1to Ksubgoal error corrections A0
27: subgoal <— CORRECTTHEOREMERROR(subgoal, error)
28: verified, error <— VERIFYPROOF(header + subgoal)
29: if verified then
30: corrected_subgoals ¢ corrected_subgoals U {subgoal}
31: corrected < true
32: break > Successfully corrected
33: end if
34: end for
35: if ~corrected then
36: return | > Failed to correct subgoal, return failure
37: end if
38: end if
39: end for
40:
41: return corrected_subgoals

42: end function
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Algorithm 7 HILBERT: Error Correction

: function REFINESKETCHBASEDONERROR(sketch, error_justification)

> Refine proof sketch based on subgoal validation errors
refined < REASONERLLM( N
sketch, error_justification)
return refined
end function

function CORRECTSKETCHERROR(sketch, error_message, relevant_theorems)
> Correct syntax and compilation errors
corrected <~ REASONERLLM( , error_message, sketch,
relevant_theorems)
return corrected

: end function

: function CORRECTPROOFERROR(proof, error_message, augmented_theorems)

> Correct proof errors using error feedback
corrected < REASONERLLM( , error_message, proof,
augmented_theorems)
return corrected

: end function

: function CORRECTTHEOREMERROR(subgoal, error_message)

> Correct syntax errors in extracted subgoals
corrected < REASONERLLM( , error_message,
subgoal)
return corrected

: end function
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Algorithm 8 HILBERT: Retrieval and Helper Functions

function RETRIEVETHEOREMS(problem, error_message = None)
> Theorem retrieval from Mathlib with optional parameter for error message

if retrieval_enabled then
search_queries <— GENERATESEARCHQUERIES(problem, error_message)
candidate_theorems — SEMANTICSEARCHENGINE(search_queries)
relevant_theorems <— SELECTRELEVANTTHEOREMS(candidate_theorems, problem)
return relevant_theorems

else
return ()

end if

: end function

: function GENERATESEARCHQUERIES(problem)

> Generate search queries for theorem retrieval
queries <— REASONERLLM( , problem)
return queries

: end function

: function SELECTRELEVANTTHEOREMS(candidate_theorems, problem)

> Select most relevant theorems from candidates
selected < REASONERLLM( , problem, candidate_theorems)
return selected

: end function

: function VERIFYPROOF(full_proof)

> Verify proof using Lean verifier
result, error_message <— LEANVERIFIER(full_proof)
return result, error_message

: end function

: function AUGMENTTHEOREMS(error_message, existing_theorems)

> Add theorems for missing identifiers
missing_ids <— EXTRACTMISSINGIDENTIFIERS(error_message)
ifmissing_ids # () then
additional_theorems <— RETRIEVETHEOREMS(problem, error_message)
return existing_theorems + additional_theorems
end if
return existing_theorems

: end function
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E Prompts

Search Query Generation (SEARCH_QUERY_PROMPT)

You are helping solve a Lean theorem proving problem using the mathlib library.
Before attempting to write the proof, you must first search for relevant theorems and tactics.

Search Process:

1. Identify key concepts: Break down the problem into mathematical concepts, operations, and
< structures involved.

2. Generate search queries: For each concept, create informal search strings that describe:

- Relevant theorems or results (e.g., "associativity of addition", "existence of inverse
— elements")

- Useful tactics (e.g., "simplify arithmetic expressions", "split conjunctions")

- Properties (e.g., "group structure on integers", "metric space properties")

- Relevant definitions useful for the proof or any used theorem (e.g. "definition of a group",
< "definition of a metric space")

Search Query Format:
Enclose each search query in <search> tags with your informal description. Limit yourself to a
<— maximum of 5 search queries. Make the search queries simple, concise, and clear.

Guidelines:
- You can either search by theorem name or natural language description
- Search for theorems that might automate parts of the proof

- Consider edge cases and special conditions mentioned in the problem

Problem to Solve:
{problem}

Theorem Selection (SEARCH_ANSWER_PROMPT)

You are helping to solve a Lean theorem proving problem using the mathlib library. The problem is:
{problem}

Here are some potentially relevant theorems and definitionms:

{theorems}

Instructions:

1. Select important theorems and definitions necessary to solve the problem.

2. IMPORTANT: ONLY SELECT theorems from the GIVEN list.

3. Enclose each of them in separate <theorem> tags.

4. Only state the full names of the theorems. Do NOT include the module name.

5. Select all theorems that could be useful in the intermediate steps of the proof.

Informal Proof Generation (INFORMAL_PROOF_PROMPT)

You are a mathematical expert whose goal is to solve problems with rigorous
mathematical reasoning.

{useful_theorems_section}

Instructions:

1. Provide a natural language, step-by-step proof for the given problem.

Start from the given premises and reason step-by-step to reach the conclusion.
Number each step of the proof as 1, 2, and so on.

Be as pedantic and thorough as possible.

Keep each step precise, increase the number of steps if needed.

Do NOT gloss over any step. Make sure to be as thorough as possible.

Show the explicit calculations/simplifications, theorem applications and case
analysis.

8. Enclose the informal proof in <informal_proof> tags.

~NOoO O WN

Problem Statement: {problem}

20



Lean Sketch Creation (CREATE_LEAN_SKETCH_PROMPT)

You are a Lean 4 expert who is trying to help write a proof in Lean 4.
Problem Statement: {problem}

{useful_theorems_section}
Informal Proof:
{informal_proof}

Instructions:

Use the informal proof to write a proof sketch for the problem in Lean 4 following

these guidelines:

- Break complex reasoning into logical sub-goals using "have” statements.

- The subgoals should build up to prove the main theorem.

- Make sure to include all the steps and calculations from the given proof in the

proof sketch.

Each subgoal should ideally require applying just one key theorem or lemma, or a

few tactic applications.

Base subgoals around:

- Useful theorems mentioned in the problem context

- Standard library theorems (like arithmetic properties, set operations, etc.)

- The supplied premises in the theorem statement

- Do NOT create subgoals identical to any of the given hypotheses

- Do NOT create subgoals that are more complex than the original problems. The
subgoals should be SIMPLER than the given problem.

- Do NOT skip over any steps. Do NOT make any mathematical leaps.

**Subgoal Structure Requirements:**

- **Simplicity**: Each subgoal proof should be achievable with 1-3 basic tactics

- *xAtomic reasoning#**: Avoid combining multiple logical steps in one subgoal

- **Clear progression**: Show logical flow: “premises — intermediate steps — final result”
- *xTheorem-focused**: Design each subgoal to directly apply a specific theorem when possible

NOTE: Only add sub-goals that simplify the proof of the main goal.
When writing Lean proofs, maintain consistent indentation levels.

Rules:

1. Same proof level = same indentation: All tactics at the same logical level must
use identical indentation

2. Consistent characters: Use either tabs OR spaces consistently (don't mix)

Proper nesting: Indent sub-proofs one level deeper than their parent

4. Do NOT nest “have ™ statements in each other. Use distinct sub-goals as much as
possible. Ensure all sub goals are named. Do NOT create anonymous have statements.

5. Do NOT include any imports or open statements in your code.

6. One line = One “have” subgoal. Do NOT split subgoals across different lines.

7. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in
triple backticks "~ “lean” "

8. Use “sorry” for all subgoal proofs - focus on structure, not implementation

9. *xDo NOT use “sorry” for the main goal proof** - use your subgoals to prove it

10. NEVER use “sorry” IN the theorem statement itself

11. Ensure subgoals collectively provide everything needed for the main proof

12. Make the logical dependencies between subgoals explicit. Ensure that the subgoals

are valid and provable in Lean 4.
13. Do NOT change anything in the original theorem statement.

w

Lean Hints:
{lean_hints}

Lean Sketch Creation (CREATE_LEAN_SKETCH_PROMPT) (continued)

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like “1 / 3~
or "2 / 5 or 1 - 3" ANYWHERE in ANY of the subgoals. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type

(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.
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Subgoal Extraction (EXTRACT_SUBGOALS_FROM_SKETCH_PROMPT)

From this proof sketch, extract any missing proofs (specified with “sorry’) as

independent subgoals (theorems).

Instructions:

1. Use the same name as the have statements for the theorems.

2. Each subgoal should have the relevant context from the previous subgoals needed
to simplify the proof as much as possible.

3. There should be as many extracted theorems as “sorry’s in the given theorem.

4. Do NOT include any imports or open statements. Do NOT add any definitions. ONLY
include the theorem statement.

5. Use a separate Lean 4 "~“lean” "~ block for each subgoal.

6. Use sorry for the proof. Do NOT prove any theorem.

7. Do NOT change the conclusion of the theorems from the extracted subgoals. Keep
them AS IT IS.

8. Do NOT change the conclusions of the preceding theorems when presenting them as
hypotheses for the next subgoals. Keep them AS IT IS.

9. Do NOT duplicate theorem names. Use distinct theorem names for the different theorems.

10. Make sure the names and types of the premises/arguments in the extracted theorems
MATCH the subgoals from which they are extracted.

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like “1 / 3~
or 2 / 5”7 or "1 - 3° ANYWHERE in the theorem statement. ALWAYS specify the types.
AVOID natural number arithmetic UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3)

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Lean Hints:
{lean_hints}

Proof Sketch:
" "leand
{proof_sketch}

Subgoal Solving (SOLVE_SUBGOAL_PROMPT)

Think step-by-step to complete the following Lean 4 proof.
{problem}

Lean Hints:
{lean_hints}

Tactic Hints:
{tactic_hints}

Rules:

1. Same proof level = same indentation: All tactics at the same logical level must
use identical indentation

2. Consistent characters: Use either tabs OR spaces consistently (don't mix)

3. Proper nesting: Indent sub-proofs one level deeper than their parent

4. Do NOT include any imports or open statements.

5. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed in
triple backticks ~““lean” "

Only include a single Lean 4 code block, corresponding to the proof along with

the theorem statement.

7. When dealing with large numerical quantities, avoid explicit computation as much
as possible. Use tactics like rw to perform symbolic manipulation rather than
numerical computation.

8. Do NOT use sorry.

9. Do NOT change anything in the original theorem statement.

{useful_theorems_section}

(o]
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Mathematical Correctness Check (DETERMINE_IF_CORRECT_SUBGOAL_PROMPT)

You are an expert in mathematics.

Your task is to evaluate whether the given mathematical theorem statement is
mathematically correct. You do NOT have to provide a proof for the theorem in Lean.

Evaluation criteria:

1. Mathematical validity: Check for logical errors, incorrect assumptions, or
calculation mistakes.

2. Do NOT flag general results or helper lemmas that are true independent of the
given premises. ONLY flag inaccuracies or mistakes.

5. Provability: Determine if the statement can be proven given the provided premises,
or otherwise.

Assumptions:
1. The given premises are mathematically correct. Do NOT check this.
2. The syntax is guaranteed to be correct (do not assess syntax)

Theorem Statement:
{problem}

Report your answer as either:
® YES - if the statement is mathematically correct
® NO - if the statement has mathematical errors that prevent proof

Also provide a brief justification for your decision in <justification></justification>
tags, adding details about why the statement is correct or incorrect.

If it is incorrect, also provide a description of how the error can be corrected.

If there are missing arguments, make sure to add the relevant missing proof steps.

Sketch Assembly (USE_SKETCH_AND_THEOREMS_PROMPT)

You are a Lean 4 expert. Your goal is to write a proof in Lean 4, according to the
given proof sketch, using the supplied theorems.

Proof sketch:
{proof_sketch}

Theorems:
{theorems_string}

Instructions:

1. You can assume that the theorems are correct and use them directly in your proof.

2. Do NOT modify the given theorems.

3. Do NOT prove the given theorems.

4. Do NOT modify the given proof sketch steps. Simply apply the given theorems to
complete the missing “sorry” steps.
Do NOT use “sorry” in your proof.
Do NOT include any imports or definitions or open statements.

NOT re-define the given theorems in your response.

Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied theorems.

0 ~No O,
o
o

IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on natural number literals with UNDEFINED types, unless
REQUIRED by the theorem statement. For example, do NOT allow literals like "1 / 3~
or "2 / 57 or 1 - 3. ALWAYS specify the types. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

ALWAYS specify types when describing fractions. For example, ((2 : R) / 3) or

((2 : Q) / 3) instead of (2 / 3). Do this everywhere EXCEPT the given theorem statement.
IMPORTANT INSTRUCTION: Do NOT, under ANY circumstances, allow division and
subtraction operations on variables of type natural numbers (Nat or N), unless
REQUIRED by the theorem statement. For example, do NOT allow expressions like (a-b)
or (a/b) where a, b are of type N. ALWAYS cast the variables to a suitable type
(Z, Q or R) when performing arithmetic operations. AVOID natural number arithmetic
UNLESS NEEDED by the theorem statement.

Your answer should be a single Lean 4 block containing the completed proof for the
given theorem.
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Assembly Correction (ASSEMBLY_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Lean Hints:
{lean_hints}

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

3. You should ONLY correct the main theorem that appears at the end. Do NOT
change any of the helper theorems.

3. Do NOT include any other Lean code blocks except for the proof. Do NOT
include any imports or open statements.

4. Do NOT use “sorry” in any part of the proof.

5. Do NOT change anything in the original theorem statement.

6. Do NOT include the helper theorem definitions in your response.

7. Do NOT write a proof for any subgoal from scratch. ALWAYS use the supplied

theorems.

Sketch Refinement Based on Incorrect Subgoal
(CORRECT_SKETCH_BASED_ON_INCORRECT_SUBGOAL_PROMPT)

You are an expert in writing Lean 4 proofs. You are given a Lean 4 proof sketch
where one of the subgoals has some issues.
Your task is to fix the issues and write a new proof sketch.

Proof Sketch:
{proof_sketch}

Issues:
{issues}

Lean Hints:
{lean_hints}

Rules:
1. Same proof level = same indentation: All tactics at the same logical level
must use identical indentation
2. Consistent characters: Use either tabs OR spaces consistently (don't mix)
3. Proper nesting: Indent sub-proofs one level deeper than their parent
4. Do NOT nest “have™ statements in each other. Write different have statements
for different sub goals.
5. Ensure all sub goals are named. Do NOT create anonymous have statements.
6. Do NOT include any imports or open statements.
7. One line = One “have” subgoal. Do NOT split subgoals across different lines.
8. Use proper Lean 4 syntax and conventions. Ensure the proof sketch is enclosed
in triple backticks ~"“lean” "
9. Use “sorry” for all subgoal proofs - focus on structure, not implementation
10. *xDo NOT use “sorry” for the main goal proof** - use your subgoals to prove it
11. NEVER use “sorry~ IN the theorem statement itself
12. Ensure subgoals collectively provide everything needed for the main proof
13. Make the logical dependencies between subgoals explicit. Ensure that the
subgoals are valid and provable in Lean 4.
14. Modify only the incorrect subgoal and everything that follows it in the proof
sketch. Leave all preceding portions unchanged.
15. Either modify the problematic subgoals to fix the errors, or add additional
subgoals to fill in the missing mathematical arguments.
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Proof Sketch Correction (PROOF_SKETCH_CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

Original statement: {informal_statement}
{error_message}

Lean Hints:
{lean_hints}

Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

3. Do NOT include any other Lean code blocks except for the proof. Do NOT
include any imports or open statements.

4. Use sorry for the proof of all “have  statements.

5. Ensure there are no use of “sorry” statements outside of “have® statements.
Do NOT use “sorry” while proving the main theorem.

6. Do NOT change anything in the original theorem statement.

7. Do NOT nest “have  statements in each other. Use distinct sub-goals as much
as possible. Ensure all sub goals are named. Do NOT create anonymous have
statements.

{useful_theorems_section}

Proof Correction (PROOF _CORRECTION_PROMPT)

The following Lean 4 code has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}
Instructions:

1. Analyze what the theorem is trying to prove. Then, analyze why the error is
happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

3. Do NOT include any other Lean code blocks except for the proof.

4. Do NOT use sorry.

5. Do NOT include any imports or open statements.

6. Do NOT change anything in the original theorem statement.

{useful_theorems_section}

Subgoal Syntax Correction (SUBGOAL_SYNTAX_CORRECTION_PROMPT)

The following Lean 4 theorem has compilation errors. Please fix the errors while
maintaining the mathematical meaning.

{error_message}

Instructions:

1. Analyze why the error is happening, step-by-step. Add a brief explanation.

2. Then, provide a corrected version of the Lean 4 code that addresses these
specific errors.

. Do NOT include any other Lean code blocks except for the theorem.

. Use sorry for the proof.

. Do NOT include any imports or open statements.

3
4
5
{potentially_useful_theorems}
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Pass Rate vs Depth Comparison
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Figure 6: Pass rate (vs) recursive depth D on MiniF2F for HILBERT (Gemini 2.5 Pro) + Goedel-
Prover-V2-32B
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Figure 4: Pass rate (vs) Reasoner and Total Tokens. We plot the pass-rate for HILBERT on MiniF2F

as a function of (left) the number of tokens used by the Reasoner (right) the total number of tokens
used (Reasoner + Prover), per sample.
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Figure 5: Pass rate (vs) Prover and Verifier Calls. We plot the pass-rate for HILBERT on MiniF2F

as a function of (left) the number of calls to the Prover (right) the number of calls to the Verifier, per
sample.
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Method Retrieval Pass Rate # Reasoner Calls # Prover Calls # Reasoner Tokens # Prover Tokens

HILBERT+ DeepSeek-Prover-V2-7B v 98.4% 420 205 1.9M 0.3M
HILBERT+ DeepSeek-Prover-V2-7B X 97.1% 426 290 2.1IM 0.4M
HILBERT+ Goedel-Prover-V2-32B v 99.2% 548 391 2.3M 1.3M
HILBERT+ Goedel-Prover-V2-32B X 97.9% 862 449 4.0M 1.2M

Table 3: Ablation with/without retrieval. HILBERT with retrieval achieves a higher pass rate while
using less inference-time compute than without retrieval. Numbers show average calls and tokens per
sample, computed over samples requiring subgoal decomposition.

F Ablation Studies

Performance (vs) depth. To evaluate the effectiveness of subgoal decomposition, we analyze
the pass rate of HILBERT using Gemini 2.5 Pro + Goedel-Prover-V2-32B on the MiniF2F dataset
across different recursive depths D. The baseline (D = 0) corresponds to no decomposition, where
we report the standalone Prover (pass@4) performance. We compare two configurations: the full
HILBERT system, and a variant with shallow solving disabled (Kinformal passes = 0). This variant relies
solely on using the Prover for resolving subgoals. Figure [6]shows performance across different values
of D, and demonstrates substantial gains from subgoal decomposition. Both configurations show
monotonically increasing performance with depth, but exhibit different convergence patterns. The full
HILBERT system achieves rapid performance gains, reaching 98.36% at D = 2 and 98.7% by D = 3.
In contrast, the no-shallow-solve variant requires greater depth to achieve comparable performance,
highlighting the importance of the shallow solving mechanism. The consistent improvement over the
D = 0 baseline (75% pass rate) validates the efficacy of hierarchical subgoal decomposition, with
the full system achieving near-optimal performance at relatively shallow depths.

Retrieval Ablation. To assess the impact of the Retriever on both performance and computational
efficiency, we compare HILBERT to a variant that omits the retrieval step. We experiment on
MiniF2F across two Prover configurations: DeepSeek-Prover-V2-7B and Goedel-Prover-V2-32B.
Table [3| presents the results. With retrieval enabled, HILBERT achieves higher pass rates across both
configurations: 98.4% vs 97.1% for DeepSeek Prover and 99.2% vs 97.9% for Goedel Prover. More
importantly, retrieval significantly reduces inference-time compute utilitzation. For the DeepSeek
model, retrieval decreases reasoner calls from 426 to 420, average prover calls from 290 to 205,
and average reasoner tokens from 2.1M to 1.9M. The efficiency gains are even more pronounced
with the Goedel Prover, where retrieval reduces average reasoner calls from 862 to 548 and average
reasoner tokens from 4.0M to 2.3M. These results show that retrieval improves both performance and
efficiency by surfacing useful theorems that simplify proofs and preventing failures from incorrect
theorem names.
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G Subgoal Decomposition Example

e
. . Reasoner th t_ten_irrational: Irrational (Real.sart .
theorem sqrt_ten_irrational : 3 (1;°fe;>;qf='b;"'wu e Verifier
Irrational (Real.sqrt (10 : R)) (Q/ have hi: Irrational (Real.sqrt (10 : B)) » -IsSquare
(10: N) := by sorry THEOEY FROVER
have h2 : -IsSquare (10 : N) := by sorry
i have h3 : Trrational (Real.sqrt (10 : R)) i= by sorry 0
(1) — el Proof Sketch Y
S o—
D Useful Theorems Reasoner
_——_x——__————--—- (@’
-— - -

(10 : N) := by sorry

have h2 : -IsSquare (10 : N) := h2_sqrt_ten_irrational
have h3 : Irrational (Real.sgrt (10 : R)) :=
h3_sgrt_ten_irrational hl h2

exact h3

- -
theorem hl_sqrt_ten_irrational: Irrational (3)
Verifier « theorem sqrt_ten_irrational: Irrational (Real.sqrt 2| (Real.sqrt (10 : R)) » -IsSquare (10 : N) :=
\—:,v’\l (10 : R)) := by =| by sorry
T have hl: Irrational (Real.sqrt (10 : R)) « -IsSquare -
o (10: N) := hl_sqrt_ten_irrational = | theorem h2_sqrt_ten_irrational: -IsSquare
.
.
.

«f, 3 5 N
. theorem h3_sqrt_ten_irrational: (hl : Irrational
=] (Real.sgrt (10 : R)) « -IsSquare (10 : N))

Assembled Proof : (h2 : -IsSquare (10 : N)) :
. LIr‘rat:ianal (Real.sgrt (10 : R)) := by sorry

—— """ "Extracted Subgoals

Figure 7: Subgoal Decomposition Example. We illustrate the subgoal decomposition process using
the input theorem sqrt_ten_irrational. The process consists of four main steps: (1) We retrieve
relevant theorems from Mathlib to inform the proof strategy. (2) The Reasoner generates a proof
sketch, which is verified by the Lean Verifier for validity. If verification fails, error messages guide
the Reasoner to make corrections. (3) The Reasoner extracts subgoals from the validated sketch and
verifies their correctness, refining them as needed. (4) The Reasoner assembles a complete proof by
incorporating the extracted subgoals into the original sketch. Since the subgoals lack proofs at this
stage, they are denoted by sorry. This assembled proof undergoes final verification. The process
outputs both the complete assembled proof and the verified subgoals (without their proofs). Note
that while Steps (3) and (4) are shown together in this figure for simplicity, they represent distinct
operations as detailed in Figure @

H MiniF2F Proof Example

We include an example to demonstrate how our hierarchical algorithm can help discover proofs that
are too complex for either the Prover or informal Reasoner alone. We present the proof for Problem 4
from AMC 12B 2002, a problem which was unsolved even by DeepSeek Prover V2-671B after 8196
passes. We find that HILBERT is able to solve the problem with one layer of decomposition using
Goedel Prover V2-32B model as the Prover.

import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
theorem k_one_amc12b_2002_p4 (n : N) (ho : 0 <n) (k : N) (hk : 41 * n + 42 = k * (42 * n)) (h_k_is_one :
V (k:N), 41 xn+42 =k % (42 *n) - k=1) : k =1 := by
have h_main : k =1 := by
have hy : k =1 := h_k
exact hy

is_one k hk

exact h_main

theorem h_sum_is_frac_amc12b_2002_p4 (n : N) (ho : 0 <mn) : (1 /2+1/3+1/7+1/1n:Q = (141
* n + 42)) / 1(42 * n) := by
have hy : (1 /2+1/3+1/7+1/Tn: Q) = (1(41 x n + 42)) / 1(42 * n) := by
have hy : (n : Q) # 0 := by
norm_cast
<;> linarith
-- Use field_simp to find a common denominator and simplify the expression
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field_simp [ho]

-- Normalize the expression by ezpanding and simplifying it
<;> ring_nf

<;> norm_cast

<;> field_simp [hs]

<;> ring_nf

<;> norm_cast

<;> simp [mul_assoc]

<3;> norm_num

<;> linarith

apply hy

theorem h_k_is_one_amc12b_2002_p4 (n : N) (hp : 0 <n) : V (k : N), 41 * n + 42 =k % (42 * n) — k =1
:= by
intro k hk
have hy : k # 0 := by
by_contra h
-- Assume k = 0 and derive a contradiction.
have h : k = 0 := by simpa using h
rw [hpy] at hk
have hz : 41 * n + 42 = 0 := by
ring_nf at hk F
<;> nlinarith
have hy : 41 * n + 42 > 0 := by
nlinarith
linarith

have hy : k < 2 := by

by_contra h
-- Assume k > 2 and derive a contradiction.
have hy : k > 2 := by

omega

have hy : k * (42 * n) > 2 % (42 * n) := by
have hs : k * (42 * n) > 2 % (42 % n) :=
have hg : k > 2 := h3
have hy : (42 : N) % n > 0 := by positivity
nlinarith
exact hs
have hs : 2 x (42 * n) = 84 % n := by
ring
have hg : k % (42 * n) > 84 % n := by
linarith
have hy : 41 * n + 42 < 84 * n := by
have hg : n > 1 := by linarith
have hg : 43 * n > 43 := by
nlinarith
have hjo : 43 * n - 42 > 1 := by
have hy; : 43 * n > 43 := by nlinarith
omega
have hy; : 84 * n > 41 x n + 42 := by
cases n with
zero => contradiction
succ n =>
simp [Nat.mul_add, Nat.add_mul, Nat.add_assoc] at hg
<;> ring_nf at hg F <;>
(try omega) <;>
(try nlinarith)

by

omega

have hg : 41 * n + 42 < k * (42 % n) := by
linarith

linarith

have hz : k =1 := by
1.

have hy : k < = by
omega

have hg : k > 1 := by
by_contra hg

-- If k is not > 1, then k = 0, which contradicts h;.
have hy : k = 0 := by
omega
contradiction
omega

exact hs

theorem h_divides_amc12b_2002_p4 (n : N) (hg : 0<mn) (hy : 1 /2+1/3+1/7+1/Tn: Q).den = 1)
(h_sum_is_frac : (1 /2+1/3+1/7+1/Tn: Q) = (1(41 xn +42)) / 1(42 * n)) : 42 % n | 41
* n + 42 := by
have hy : ((1(41 * n + 42) : Q) / 1(42 * n)).den = 1 := by
have hy; : ((1(41 *n +42) : Q) / T(42*mn)) =@ /2+1/3+1/7+1/TT: Q) :=by
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rw [h_sum_is_frac]
<;> field_simp <;> ring_nf <;> norm_cast
<;> field_simp <;> ring_nf <;> norm_cast
rw [hy]
exact hy

have hz : (42 * n : Z) | (41 * n + 42 : 7Z) := by
have hg; : (((41 * n + 42 : Z) : Q) / (42 x n : Z)).den = 1 := by
norm_cast at hy, F
<;> simpa [div_eq_mul_inv] using h,
have hzy : 3 (k : Z), ((41 * n +42 : Z) : Q) / (42 xn : Z) = (k : Q) := by
have hzz : (((41 * n + 42 : Z) : Q) / (42 x n : Z)).den = 1 := hg
have hgy : 3 (k : Z), ((41 * n + 42 : Z) : Q) / (42 *xn : Z) = (k : Q) := by
-- Use the fact that the denominator is 1 to find an integer k
have hgs : 3 (k : Z), ((41 x n+ 42 : Z) : Q) / (42 xn : Z) = (k : Q) := by
-- Use the property of rational numbers with denominator 1
have hzg : (((41 * n + 42 : Z) : Q) / (42 x n : Z)).den = 1 := hgy
have hg; : 3 (k : Z), ((41 * n + 42 : Z) : Q) / (42 *xn : Z) = (k : Q) := by
-- Use the fact that the denominator is 1 to find an integer k

refine' ((((41 = n + 42 : Z) : Q) / (42 *x n : Z)).num, _)

have hzg : (((41 * n + 42 : Z) : Q) / (42 xn : Z)) = ((((41 * n + 42 : Z) : Q) / (42 * n :

Z)) .num : Q) := by
have hzg : (((41 * n + 42 : Z) : Q) / (42 x n : Z)).den = 1 := hzy

have hgo : (((41 * n + 42 : Z) : Q) / (42 xn : Z)) = ((((41 *n + 42 : Z) : Q) / (42 x n :

Z)).num : Q) := by
rw [< Rat.num_div_den (((41 * n + 42 : Z) : Q) / (42 * n : Z))]
<;> field_simp [hso]
<;> norm_cast
<;> simp_all [Rat.den_nz]
exact hgo
exact hsg
exact hsz7
exact hss
exact hgs
obtain (k, hs3) := hs,
have hgs : (42 * n : Z) | (41 * n + 42 : Z) := by
have hzs : ((41 * n + 42 : Z) : Q) / (42 xn : Z) = (k : Q)
have hzg : (42 * n : Z) # 0 := by
have hz7 : (n : N) > 0 :=
have hzg : (42 * n : Z) >
norm_cast
<;> nlinarith
linarith
have hz7 : ((41 * n + 42 : Z) : Q) = (k : Q) * (42 x n : Z) := by
field_simp [hzs] at hzs +
<;> ring_nf at hss F <;> norm_cast at hzs - <;>
(try norm_num at hss F) <;>
(try linarith) <;>
(try simp_all [mul_comm]) <;>
(try ring_nf at hss F <;> norm_cast at hzs ~ <;> linarith)
<;>
(try
{

il
=

&

&

ho
0 := by

nlinarith
1))
<;>
(try
{
field_simp at hzs F <;>
ring_nf at hzs F <;>
norm_cast at hzs F <;>
linarith
b
have hzg : (41 * n + 42 : Z) =k % (42 * n : Z) := by
norm_cast at hzy; k
<;>
(try ring_nf at hsz; F) <;>
(try norm_num at hs7 F) <;>
(try linarith)

<;>
(try
{
field_simp at hs7 - <;>
ring_nf at hs7 F <;>
norm_cast at hz; F <;>
linarith
b
have hgg : (42 * n : Z) | (41 % n + 42 : Z) := by
use k
<;>
linarith

30



exact hsg
exact hga

have hy : 42 * n | 41 x n + 42 := by
have hgy : (42 * n : Z) | (41 % n + 42 : Z) := hs
have hgy : (42 * n : N) | (41 x n + 42 : N) := by
-- Convert the divisibility from integers to natural numbers
norm_cast at hgy
<;>
(try omega) <;>
(try
{
-- Use the fact that the integers are positive to convert to natural numbers
cases' hgy with k hk
use k
<;>
(try ring_nf at hk F) <;>
(try norm_cast at hk F) <;>
(try omega)
b
<>
(try
{

-- Handle any remaining cases or simplifications

simp_all [mul_comm]

<;>

ring_nf at *

<;>

norm_cast at *

<;>

omega

b

-- Use the natural number divisibility to conclude the proof
simpa [mul_comm] using ha,

exact hg

theorem amc12b_2002_p4 (m : N) (ho : 0<mn) (hy : 1 /2+1/3+1/7+1/Tn: Q).den=1) : n=42
:= by

-- Step 1: Combine the rational numbers into a single fraction.

have h_sum_is_frac : (1 / 2+ 1/3+1/7+1/1Tn: Q) = (1(41 x n + 42)) / 1(42 * n) := by
exact h_sum_is_frac_amc12b_2002_p4 n hg

-- Step 2: Use the denominator condition (h;) to establish a divisibility relation.

-- According to "Rat.den_div_natCast_eq_one_iff , for "m, d : N with “d # 0,

-~ ((m : Q) / d).den = 1" iff “d| m.

have h_divides : 42 x n | 41 % n + 42 := by
exact h_divides_amc12b_2002_p4 n hy h; h_sum_is_frac

-- Step 3: By the definition of divisibility, “h_divides  implies there ezists a natural number 'k’

-- such that 41 % n + 42 = k * (42 = n) . This step proves that 'k’ must be 1.

have h_k_is_one : V k : N, 41 x n + 42 = k * (42 x n) — k =1 := by
exact h_k_is_one_amc12b_2002_p4 n hg

-- From h_divides, we obtain the ezistence of such a "k’ and its corresponding equation.

rcases h_divides with (k, hk)

-- We use commutativity of multiplication to match the form expected by the helper theorem.
rw [mul_comm (42 * n)] at hk

-- We use our proof from h_k_is_one to show that this specific 'k’ must be 1.
have k_one : k = 1 := by
exact k_one_amc12b_2002_p4 n hy k hk h_k_is_one
-- Substituting k = 1 back into the equation.
rw [k_one, one_mul] at hk

-- The equation is mow “41 * n + 42 = 42 * n". We solve for 'n’
-- We can rewrite “42 x n’ as 41 x n + n .
rw [show 42 * n = 41 * n + n by ring] at hk

-- By cancelling “41 * n° from both sides, we get 42 = n’.
exact (Nat.add_left_cancel hk) . symm

I Proof Lengths

Figures [8and[9]show the distribution of proof lengths generated by HILBERT on the MiniF2F and
PutnamBench datasets, respectively. For comparison, Figure [§] also includes proof lengths from
DeepSeek-Prover-V2-671B on MiniF2F problems.
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On MiniF2F, HILBERT generates substantially longer proofs than DeepSeek-Prover-V2-671B, with
an average length of 247 lines compared to 86.7 lines. Notably, HILBERT produces one proof
spanning 8,313 lines, demonstrating its capacity for tackling hard problems.

This trend toward longer proofs is even more pronounced on PutnamBench, where HILBERT achieves
an average proof length of 1,454 lines. The longest proof on this dataset exceeds 15,000 lines of code.
The ability to consistently generate such extensive proofs likely contributes to HILBERT’s superior
performance on PutnamBench compared to baseline methods, as longer proofs may reflect more
thorough exploration of intermediate steps necessary for a complete Lean proof.

Number of Proofs

MiniF2F Proof Lengths (Hilbert) MiniF2F Proof Lengths (DeepSeek-Prover-V2-671B)
(242 proofs) (217 proofs)

Avg. proof length = 247.0 lines
Max. proof length = 8313 lines

Avg. proof length = 86.7 lines
Max. proof length = 1922 lines

Number of Proofs

2

10 10° 10°
Proof Length (Lines of Code) Proof Length (Lines of Code)

Figure 8: Lengths of proofs generated by (left) HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2)
(right) DeepSeek-Prover-V2 671B for problems from MiniF2F.
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PutnamBench Proof Lengths
(462 proofs)

Avg. proof length = 1454.5 lines
Max. proof length = 15306 lines

10°
Proof Length (Lines of Code)

Figure 9: Lengths of proofs generated by HILBERT (Gemini 2.5 Pro + Goedel-Prover-V2) for
problems from PutnamBench.
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