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ABSTRACT

Despite the increasing scale of datasets in machine learning, generalization to
unseen regions of the data distribution remains crucial. Such extrapolation is by
definition underdetermined and is dictated by a learner’s inductive biases. Machine
learning systems often do not share the same inductive biases as humans and,
as a result, extrapolate in ways that are inconsistent with our expectations. We
investigate two distinct such inductive biases: feature-level bias (differences in
which features are more readily learned) and exemplar-vs-rule bias (differences in
how these learned features are used for generalization). Exemplar- vs. rule-based
generalization has been studied extensively in cognitive psychology, and, in this
work, we present a protocol inspired by these experimental approaches for directly
probing this trade-off in learning systems. The measures we propose characterize
changes in extrapolation behavior when feature coverage is manipulated in a com-
binatorial setting. We present empirical results across a range of models and across
both expository and real-world image and language domains. We demonstrate that
measuring the exemplar-rule trade-off while controlling for feature-level bias pro-
vides a more complete picture of extrapolation behavior than existing formalisms.
We find that most standard neural network models have a propensity towards
exemplar-based extrapolation and discuss the implications of these findings for
research on data augmentation, fairness, and systematic generalization.

1 INTRODUCTION

Extrapolation or generalization—decisions on unseen datapoints—is always underdetermined by
data; which particular extrapolation behavior an algorithm exhibits is determined by the algorithm’s
inductive biases (Mitchell, 1980). For modern deep learning systems, these inductive biases often
deviate from those in humans. When the inductive biases of ML systems are opaque, and guarantees
on extrapolation are not possible—as is often the case with many modern ML systems (D’Amour
et al., 2020)—we can instead turn to empirical study of the behavior of a system to derive principles
about the system’s operation. Cognitive psychology provides a rich basis for experimental designs to
study the often-opaque human cognitive system via its external behavior. These can be leveraged to
distinguish between competing hypotheses about a machine learning system’s inductive biases in the
same manner (Ritter et al., 2017b; Lake et al., 2018; Dasgupta et al., 2019).

In this paper, we draw on methods from cognitive psychology to define a protocol that teases apart the
different inductive biases that go into informing how an opaque learning system extrapolates outside
its training distribution. We focus in particular on combinatorial generalization for classification
in the presence of spurious correlation. Our protocol goes significantly beyond existing work by
controlling for various confounds. We isolate two distinct kinds of inductive bias—feature-level
bias and exemplar-rule bias—that have different effects on model extrapolation. We examine these
inductive biases across models in an expository points-in-a-plane setting, as well as in naturalistic
image and language domains. Finally, we discuss the implications of these inductive biases and their
relation to previous work on data augmentation and spurious correlation.

Feature-level bias measures which features a system finds easier or harder to learn. This informs
which feature a system will generalize on the basis of when both features are correlated or confounded.
This kind of feature-level bias has been studied extensively in human cognition (Landau et al., 1988;
Hudson Kam & Newport, 2005). There has also been recent work—directly inspired by these
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Figure 1: Illustrative category learning experiment: Training examples from the 3 independent training conditions, the
extrapolation test, and characteristic behavior for learners with different inductive biases.

cognitive psychology studies—that examines similar biases in artificial neural networks, most notably
the “shape-bias”, the tendency to generalize image category labels according to shape rather than
according to color or texture (Ritter et al., 2017a; Hermann et al., 2019; Geirhos et al., 2018). While
there exists previous work examining specific feature biases in deep learning, we present a more
general measure of feature-level bias as well as demonstrate how it interacts with—but is distinct
from—another kind of inductive bias, viz. exemplar-vs-rule bias.

Exemplar-vs-rule bias measures how a system uses features to inform decisions by trading off
between exemplar- and rule-based generalization. A rule-based categorization decision is made on
the basis of minimal features that support the category boundary (e.g., Ashby & Townsend, 1986),
while an exemplar-based decision-maker generalizes a category on the basis of similarity to category
exemplars (e.g., Shepard & Chang, 1963), and therefore may invoke many or all features that underlie
a category. Extensive empirical work in cognitive psychology has found evidence of both kinds of
generalization in humans (Nosofsky et al., 1989; Rips, 1989; Allen & Brooks, 1991; Rips & Collins,
1993; Smith & Sloman, 1994). This trade-off can be understood intuitively as a continuum that
varies the number of features employed to discriminate between categories (Pothos, 2005).1 This
continuum also plays a role in representation learning systems such as deep neural networks (Hinton
& Salakhutdinov, 2006), where feature selection is automated.

2 AN ILLUSTRATIVE EXAMPLE

We first examine an intuitive example that highlights the distinct inductive biases we care about.
Consider the category learning paradigm in Fig. (1). The stimuli vary along two feature dimensions,
shape and color. Color determines the label of an object (i.e., green objects are “dax”; purple are
“fep”), and shape is unrelated to the underlying category structure and acts as a distractor. Participants
(either humans or artificial learning systems) are independently placed in three different conditions—
cue conflict, zero shot, and partial exposure—that vary in coverage of the feature space. After
observing the training examples, the participant is presented with an extrapolation test consisting of
an example outside the support of feature combinations observed during training (i.e., to classify the
green circle as a “dax” or a “fep,” using arbitrary names to demonstrate that which feature is relevant
to the category boundary is not given). We explain below how differences in classification behavior
on this extrapolation isolate feature-level bias as well as exemplar-vs-rule bias. We encourage the
reader to try the experiment themselves to examine their intuitions.

Cue conflict (CC, top row, Fig. (1)). The data presented in this condition confound color and shape
(i.e., color and shape are equally predictive of the category boundary). How a system generalizes
here directly measures its feature-level bias towards color or shape.

1We leave to future work the details of mathematically formalizing the properties of statistical learners that
result in exemplar-vs-rule bias. We instead focus on the behavioral manifestations of this inductive bias and
present an empirical protocol to measure it, even in opaque systems.
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Characteristic behavior (right half of Fig. (1)). Since humans have an established shape bias (Landau
et al., 1988), we expect that humans will classify the test item according to the object that shares
its shape, not its color; in this case, as a “fep.” However, this inductive bias is not shared by rule-
and exemplar-based reasoners that have no a priori propensity for features, and are equally likely to
classify the test item as a “dax” or a “fep.”

Zero shot (ZS, middle row, Fig. (1)). This condition requires extrapolation to a new feature value
“zero-shot” (i.e., without prior exposure). This setting is often used to examine out-of-domain (OOD)
and compositional generalization in machine learning (Xian et al., 2018). Behavior in this condition
reveals whether the model has learned the discriminating features and whether it can extrapolate to
new feature values, and thus acts as a baseline.

Characteristic behavior (right half, Fig. (1)). Rule- and exemplar-based behavior in this condition is
confounded. A rule-based learner infers the minimal rule that color determines label, does not assign
any predictive value to shape, and therefore classifies the extrapolation stimulus based on color as a
“dax.” An exemplar-based learner categorizes based on the similarity along all feature dimensions of
the extrapolation stimulus to category exemplars. Both training exemplars have no overlap with the
test stimulus along the shape dimension, but the “dax” overlaps along the color dimension, and the
learner categorizes it as a “dax.”

Partial exposure (PE, bottom row, Fig. (1)). Compared to zero shot, participants in this condition
also receive “partial exposure” to a new feature value (i.e., circle) along the shape dimension. This
setting is most similar to combinatorial zero-shot generalization (e.g., Lake & Baroni, 2018a), where
the learner is exposed independently to all feature values but has to generalize to a new combination.

Characteristic behavior (right half of Fig. (1)). This setting meaningfully distinguishes rule- and
exemplar-based generalization. To understand the behavior of these two systems, we contrast this
condition to the cue-conflict condition. The addition of the purple diamond-shaped “fep” means the
learner has seen both a diamond and a circle labeled “fep”. A rule-based learner takes this as direct
evidence that shape is not predictive of category label and classifies the extrapolation stimulus on
the basis of color as a “dax.” This is typically also how humans extrapolate. This additional training
example, however, does not impact an exemplar-based system, since it does not share any features
with the extrapolation stimulus. The exemplar-based reasoner classifies on the basis of feature-overlap
with training exemplars and is therefore indifferent, exactly as in the cue-conflict condition.

From behavior to inductive bias. Feature-level bias is measured as deviation from chance perfor-
mance in the CC condition. Exemplar-vs-rule bias is measured by the difference between performance
in the PE and ZS conditions—-no difference indicates rule-based generalization, while the magnitude
of the difference measures exemplar propensity. Pure exemplar-based reasoning implies no difference
between the PE and CC conditions, while a non-zero difference indicates partial rule propensity.

Implications. A purely exemplar-based system doesn’t learn decision boundaries that operate over
minimal features. It instead favors a decision boundary that weights all features. This is undesirable
in domains where not all feature combinations will be observed, and systematic generalization
to unobserved combinations is expected (Lake et al., 2018; Marcus, 2018; Arjovsky et al., 2019).
On the other hand, a rule-based system that applies the same category decision rules across all
data regions might over-generalize, which is undesirable in some naturally occurring long-tailed
distributions (Feldman & Zhang, 2020; Feldman, 2020; Brown et al., 2020). In such cases, flexible
exemplar-based learning that generalizes based on dense similarity is preferable (Zhang et al., 2016;
Arpit et al., 2017). The protocol we present allows us to empirically measure the exemplar-vs-rule
bias of a learner and therefore navigate the exemplar-vs-rule trade-off in various scenarios.

3 A PROTOCOL FOR EXAMINING INDUCTIVE BIAS

We embed the structure of the category learning problem discussed in Section (2) into a statistical
learning problem that can be applied across domains to test black-box learners.

Problem setting. We consider a setting where inputs are a composition of categorical attributes
(oracle setting in Andreas, 2019) with two latent binary features, zdisc, zdist,∈ {0, 1} that jointly
determine the observation x via some mapping g : {0, 1}2 → X ; see Fig. (2). These features can be
derived from a richer set, e.g., the median of a continuous feature (see Appendix). We consider the
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Figure 2: Formalizing the illustrative experiment: The experiment from Fig. (1) expressed in terms of the formalism in
Section (3) with zdist = color and zdisc = shape. Background colors indicate true category boundary.

binary classification task of fitting a model f̂ : X → {0, 1} from a given model family F to predict a
binary label for each observation. One of the underlying features, the discriminant, zdisc, defines the
decision boundary; the other one, the distractor, zdist, is not independently predictive of the label.

This specifies a generative process x, zdisc, zdist ∼ p(x | zdisc, zdist) p(zdisc, zdist). p(x | zdisc, zdist)
is either generated (e.g., in Section (4)), or the empirical distribution of the subset of datapoints
x with the corresponding underlying feature values (assuming access to these annotations, e.g., in
Sections (5) and (6)). p(zdisc, zdist) is varied across training conditions, as outlined below.

Training conditions. The upper-right quadrant in all subfigures of Fig. (2), for which p(zdisc =
1, zdist = 1) = 1, acts as a hold-out set on which we can evaluate generalization to an unseen
combination of attribute values. We produce multiple training conditions with the remaining three
quadrants of data by manipulating p(zdisc, zdist). All the analyses in this paper compare model
extrapolation to the held-out test quadrant across various training conditions.

To equalize the class base rates we balance all training conditions across the discriminant; i.e., we
enforce p(zdisc = 0) = p(zdisc = 1) = 0.5. We also fix the number of datapoints across all
conditions at N ; With these constraints, we can control p(zdisc, zdist) via two degrees of freedom:
π0 = p(zdist = 1 | zdisc = 0) (this implicitly fixes p(zdist = 0 | zdisc = 0) = 1 − π0 to balance the
dataset); and π1 = p(zdist = 1 | zdisc = 1).The three conditions in Section (2), as well as the held-out
test set, correspond to particular settings of π0 and π1 (shown in Fig. (2), more in Appendix (A.2)).

Measuring inductive bias. For a given model family F , let f̂ ZS denote the result of selecting a
model from F by training in the zero-shot condition, and similarly f̂ PE and f̂ CC. Feature-level bias
(FLB) and exemplar-vs-rule propensity (EVR) are measured as:

FLB(F) = E[(A(y, f̂ CC(x))]− 0.5 , (1)

EVR(F) = E[A(y, f̂ ZS(x))]− E[A(y, f̂ PE(x))] (2)

where the expectation is taken with respect to the the data distribution under the extrapolation region

0 0.5 1

0

1

π1

π0

Figure 3: Spurious correlation
across data distributions (Eq. (3)).

(i.e., p(x, y | π0 = 1, π1 = 1)), A is the 0-1 accuracy. FLB takes
values between -0.5 and 0.5 (indicating bias toward zdist or zdisc, respec-
tively); 0 represents no feature bias. EVR takes values between 0 and 1
(indicating rule-based and exemplar-based extrapolation, respectively).

Related formalisms and spurious correlation. This binary formula-
tion of discriminant and distractor features has previously been studied
in the context of spurious correlation (Sagawa et al., 2020). Rather than
independently varying occupancy in the four quadrants, they directly
manipulate the (spurious) linear correlation between the distractor and
the discriminant features (pmaj). In combinatorial feature spaces, a
scalar spurious correlation insufficiently specifies the data distribution.
The linear correlation coefficient ρ between zdisc and zdist—henceforth
“spurious correlation”—can be written in terms of π0 and π1:

ρ(π0, π1) =
α√

β(1− β)
; α =

π0 − π1

2
, β =

π0 + π1

2
. (3)
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Different π0 and π1 combinations can give equal ρ (see contours in Fig. (3), dots indicate points along
the equi-correlation contour that intersects with the PE condition: (π0 = 0.5, π1 = 0.0, ρ = 0.58)).
In this paper we demonstrate that different data distributions with the same spurious correlation can
result in vastly different generalization behavior to the under-represented extrapolation quadrant.
This indicates that sensitivity to spurious correlation is an underspecified inductive bias—we risk
conflating conceptually distinct sources of inductive bias by focusing on this single metric. We
argue for a formulation like ours—based on manipulating feature combinations—that can tease apart
distinct inductive biases: at the level of what features a system finds easier to learn (FLB) as well as
how to use these features to inform a decision boundary (EVR). We discuss how these biases can be
interdependent, but capture distinct behaviors that sensitivity to spurious correlation cannot explain,
thereby providing a more comprehensive picture of how a system generalizes.

4 EXEMPLAR-VS-RULE BIAS IN A 2-D CLASSIFICATION EXAMPLE

To illustrate our framework in a simple statistical learning problem, to quantitatively confirm the
intuitions outlined in Section (2), we consider a two-dimensional classification problem. The feature
dimensions are orthogonal bases in 2D space. We specify:

p(x | zdisc, zdist) = N (µ, 1.0); µ = α× [2zdisc − 1, 2zdist − 1] (4)
where, as specified in Section (3), zdisc, zdist,∈ {0, 1}, p(zdisc, zdist) is determined by the training
condition. zdisc determines class labels, zdist is a distractor, α is fixed at 3, and N = 300 datapoints
are in each class. The group with zdist = zdisc = 1 is assigned the test set.

4.1 MODEL FAMILIES AND NOMENCLATURE.

Neural network (NN): We train feedforward ReLU classifiers with varying numbers of hidden layers
and hidden units. We use the scikit-learn implementations with default parameters, run 20 times for
confidence intervals.

Generalized linear model (GLM): Parametric models allow us to formalize the feature-sparsity that
characterizes rule-based learners. Linear logistic regression is sparse by definition (it has access to
only linear features). We generalize this model by expanding the feature space to include a nonlinear
interaction Φ and examine L1 and L2 regularization on in a GLM over this altered feature space.

Gaussian process (GP): Non-parametric kernel methods allow us to formalize exemplar-based
generalization, where generalizations are made on the basis of dense similarity to training data. A
direct implementation of exemplar-based reasoning is only possible in the synthetic setting in which
features over which to compute similarity are known. We examine the performance of GPs with
Radial Basis Function (RBF) kernels. We fit the kernel length-scale (Rasmussen, 2003) (giving 5.2)
as well as vary it (adjusting “locality” in decision boundaries); GP:8.0 denotes a lengthscale 8.0 GP.

4.2 COMPARING CUE CONFLICT, ZERO SHOT, AND PARTIAL EXPOSURE

We consider one model from each class: NN with 1 hidden layer, 2 units (NN:2h1d); linear GLM
(GLM:lin); RBF GP with fitted lengthscale (GP:fit). The decision boundaries learned by these models
are shown in Fig. (4a). zdist, zdisc are equivalent by design, and permit no FLB, CC is exactly at
chance. This lets us focus on validating our novel protocol for measuring EVR without confounds.
We generalize to cases with FLB in later sections. The GLM, sparse and therefore rule-based by
definition, can only learn a linear boundary. It is therefore unaffected by the distractor dimension,
showing no difference in extrapolation behavior between ZS and PE (zero EVR). On the other hand,
the GP is exemplar-based by definition and displays a high EVR. The NN shows an intermediate
EVR, more rule-based than the purely-exemplar-based GP but not entirely rule-based like the GLM.

4.3 THE INFLUENCE OF MODEL PROPERTIES ON THE EVR

We first examine EVR in our control model classes (GLMs and GPs) to validate that it tracks rule- vs
exemplar-based extrapolation, followed by analyses of various NNs.

Regularized GLMS: EVR reduces with rule propensity. A key property of rule propensity is
sparsity in feature space. A linear GLM (GLM:lin) is sparse by definition, we examine a GLM on an
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(b) EVR reflects exemplar-vs-rule propensity both within and
across model families. The EVR across model families, computed
across 20 runs, error bars represent 95% CIs. The GLMs are largely
rule-based and show low EVR. Even within GLMs, sparsity regulariza-
tion gives lower EVR. GPs are largely exemplar-based and show high
EVR. Even within GPs, more ‘local’ GPs with lower lengthscales have
higher EVR. NNs lie in-between, with larger NNs giving higher EVRs.

Figure 4: Simple 2-D classification (Section (4)) The specific model used in (a) are bolded in (b).

expanded feature set so we can manipulate this sparsity. The additional feature Φ ∝ zdist ∗ zdisc is
computed by taking the product of the observed features and normalizing by α. We compute EVR
for this GLM with different regularizers (regularization weight 1.0), shown in Fig. (4b).

GLM with no regularization (GLM:Φ) displays a significant EVR. L2 regularization reduces it but L1
(which directly induces feature sparsity2) brings it to zero (or perfectly rule-based). This shows that a
low EVR tracks rule propensity i.e., feature-level sparsity in a model.

Lengthscales in GPs: EVR increases with exemplar propensity. A sufficient condition for exem-
plar propensity is the locality of decision boundaries. We can directly manipulate this in a GP with its
lengthscale. We evaluate EVR in GPs with RBF kernels of different lengthscales in Fig. (4b). We
find that the EVR is lowest with high length-scales and grows as the lengthscale reduces. This shows
that a high EVR tracks exemplar propensity, i.e., having local decision boundaries.

NNs: The necessary but not sufficient role of expressivity. The results from GLMs and GPs above
indicate that some ways to reduce expressivity (L1 regularization in GLMs and high lengthscale in
RBF-GPs) encourage rule propensity over exemplar propensity (thereby a lower EVR). We manipulate
the most common variable in NN expressivity—its size.

We increase the width of an NN with fixed depth of 1 (Fig. (4b)) and find that the EVR increases.
A deep NN with the same number of units, however, shows a comparable EVR to a wide network.
Deeper networks with the same number of units are more expressive than wide ones (Raghu et al.,
2017), indicating that excess expressivity—while necessary—is not the sole driver of EVR.

4.4 EVR IS DISTINCT FROM SENSITIVITY TO SPURIOUS CORRELATION

A crucial difference between the ZS and the PE conditions is that the PE condition creates a (spurious)
correlation ρ = 0.58 between zdist and zdisc. Is sensitivity to this spurious correlation (ρ) the sole the
driver of the difference in performances between the PE and ZS conditions, i.e., of the EVR? We
show that this is not the case; the EVR is measuring something distinct. As described in Section (3),
there are multiple data-settings with the same ρ. We consider training conditions specified by other
π0, π1 that have the same ρ as the PE condition (dots along the solid contour in Fig. (3)). We find
that performance on the extrapolation quadrant after training on these new data distributions is
much higher (and closer to ZS performance) than when trained on the PE condition—even though
ρ is exactly the same. This indicates that performance on the PE condition (normalized by ZS
performance to give the EVR) is uniquely indicative of something different from sensitivity to
spurious correlations—it measures the inductive bias toward exemplar-vs-rule based extrapolation.

2Weight sparsity from L1-regularizer is equivalent to feature-sparsity only in special cases, including GLM.
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We also find that different ways to reduce ρ give different extrapolation behavior (e.g., increasing π1

is more effective than reducing π0, see Appendix for details). This has implications for data manipula-
tion methods (e.g., subsampling or augmentation) that manipulate this ρ to control extrapolation. This
also supports that spurious correlation alone cannot explain extrapolation behavior, highlighting the
importance of FLB and EVR that measure behavior under different feature combinations in training.

Conclusions. The EVR tracks exemplar-vs rule-based extrapolation, as validated by evaluating it on
interpretable models like GLMS and GPs. It decreases with reductions in expressivity mediated by
regularization and lengthscale. The EVR in NNs also decreases with (some kinds of) expressivity: it
is more sensitive to increases in width than depth. Finally, sensitivity to spurious correlation cannot
explain the EVR. These results lay groundwork for future theoretical work in formalizing the EVR.

5 CREATING COMPOSITIONALITY BY ADDING DISTRACTORS TO IMDB

In this section, we show how we can apply our approach to any classification task. We consider
sentiment analysis on Internet Movie Database Movie Reviews (IMDb) (Maas et al., 2011).

Selecting features. The sentiment label (“positive” or “negative”) is the discriminant zdisc. We
manufacture an orthogonal distractor zdist as the presence/absence of a word that a) occurs in roughly
50% of the sentences in the dataset and b) does not occur more frequently for either positive or
negative reviews. Some examples are “film” and “you”: we use the word “film,” see Figure 5.
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Figure 5: Example stimuli from
the IMDb dataset.

Models. We train a single layer LSTM (20 hidden units; default
hyperparameters) on each condition and test on the held-out quadrant.
We exclude models that do not reach 80% validation accuracy.

Feature-level bias. The distractor zdist is easier to learn than the
discriminant zdisc, as reflected in the CC condition (19.7%, FLB =
−0.3): the system preferentially classifies on the basis of the distractor.

Exemplar-rule bias. We see good performance in ZS (84%): despite
never having seen the word “film,” the system can generalize to reviews
containing it. The performance in PE drops significantly (30.1%) giv-
ing a large EVR (EVR = 0.54), indicating exemplar-based reasoning.
Note that the PE condition has access to a superset of feature coverage
compared to ZS, and contains all the same information required to
generalize well. However, the exemplar-based tendency to nonethe-
less index on additional features (e.g., the presence of the word “film”) hurts performance on the
extrapolation quadrant. Performance in PE is higher than in CC, indicating that the system can learn
to use the discriminant (i.e., it is not purely relying on FLB).

6 A COMPOSITIONAL DATASET DERIVED FROM MULTI-LABEL CELEBA

We now test our protocol on a standard classification task on a large-scale image dataset, CelebFaces
Attributes (CelebA) (Liu et al., 2015). Each image in this dataset is labelled with 40 binary attributes,
each of which can be leveraged as discriminant or distractor. We examine FLB and EVR for standard
models across different feature pairs, and discuss the practical implications of our findings.

Selecting features. We select feature pairs that split the data roughly evenly and thus maximizing the
number of training datapoints in each quadrant. We carry out our analyses across a range of feature
pairs; an example is depicted in Fig. (6a), and further details are in the Appendix.

Models. We train ResNets of various depths ({10, 18, 34}) and widths ({2, 4, 8, 16, 32, 64}) on 6
different choices for feature pairs, with standard hyperparameters. We limit our analyses to networks
that achieve at least 75% validation accuracy to ensure that, despite differences in data variability
across training conditions, all models learn a meaningful decision boundary.

Feature-level bias. There is a wide range of FLB in the feature pairs; e.g., “male” is easier to learn
than “high cheekbones” giving high FLB, “mouth open” and “wearing lipstick” are equally difficult
and give an FLB of close to 0. These FLBs were consistent across ResNet widths and depths.
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Exemplar-rule bias. We observe good ZS performance: the models can generalize to new feature
values outside the training support. We see a wide range of EVR across feature pairs, Fig. (6b).
Across all feature pairs, the EVR is non-negative: generalization in the PE condition is always worse
(or not significantly better) than in the ZS condition. Further, we see a linear correlation between EVR
and FLB in logit space across feature pairs. EVR therefore depends on how easy or hard the features
are to learn. The key, however, is that this regression of the EVR onto FLB has a positive intercept:
there is a positive EVR even for feature pairs with no FLB. There is a tendency for lower performance
in PE compared to ZS (a nonzero EVR, exemplar propensity) even when FLB is controlled for.

We find no differences in EVR across ResNet widths and depths: Fig. (6b) plots EVR and FLB
averaged over ResNet sizes (model-specific results in Appendix). One explanation is that the features
in CelebA are complex; to learn these, we need reasonably high model expressivity, and differences
in parameter count do not further modulate EVR. This is consistent with findings in Section (4) where
expressivity is necessary but not sufficient for increases in EVR: we see a jump in EVR going from
NN:2h1d to NN:16h1d, but no further change going to the even more expressive NN:4h4d.

Controlling spurious correlation. We replicate the findings in Section (4): the EVR cannot be
explained by sensitivity to spurious correlation ρ. This is shown in Fig. (6c), where we substitute
performance in the PE condition with performance in a different data-setting (π0 = 0.825, π0 = 0.25)
with the same ρ = 0.58 as in the PE condition. We find none of the effects discussed above, indicating
that the PE condition is measuring something unique—exemplar-vs-rule propensity—which is not
accounted for by sensitivity to spurious correlation. Further, EVR does not increase with model
expressivity, unlike sensitivity to spurious correlation (Sagawa et al., 2020).

Practical implications of the EVR. The nonzero EVR, i.e., exemplar-basedness reveals that our
models are better at extrapolating zero-shot to a new feature value than when they have partial
exposure to that feature value, even though the additional data need not change the learned decision
boundary. The training examples added in PE can be classified with the decision function from
ZS without incurring additional training loss. A rule-based system recognizes this and bases its
generalization on the minimal features that support the category boundary, i.e., the ones also learned
in the zero-shot case. However, an exemplar-based model changes its decision boundary in response
to this additional data. This has implications for fairness, as we outline with example features below.

PE-approximating data distributions (π0 ≈ 0.5, π1 ≈ 0.0) occur naturally. For example, as Sagawa
et al. (2020) observe, “blond” “male”s are under-represented in CelebA. Consistent with the rest of
our results, we find better classification for the extrapolation quadrant (blond males) if we discard
data from an adjacent quadrant (blond non-males, or non-blond males) simulating the zero-shot
condition, as opposed to the PE condition if such data is included: ResNet10, width 2, gives
ZS = 75.12± 3.09%; PE = 60.22± 7.27% for zdisc =“male” (discard blond non-males to get ZS)
and ZS = 68.16± 3.34%; PE = 49.78± 3.76% for zdisc =“blond” (discard non-blond males to get
ZS). Previous sub-sampling approaches (Sagawa et al., 2020; Haixiang et al., 2017) that manipulate
spurious correlation underspecify feature distributions (in the sense that there are many ways to
alter feature distributions to change spurious correlation (Fig. (3))), and the aforementioned results
demonstrate that these distinctions are important in determining extrapolation behavior to held-out
feature combinations. Moreoever, differences in extrapolation behavior between the PE and ZS
conditions, in particular, give insight into a system’s exemplar-vs-rule bias.

7 RELATED WORK AND FUTURE DIRECTIONS

Model design for systematic generalization. Rule-based generalization permits systematic extrap-
olation in combinatorial domains. This systematicity has been found lacking in neural networks (Lake
& Baroni, 2018b; Barrett et al., 2018), leading to renewed interest in hybrid symbolic–connectionist
architectures (Garnelo & Shanahan, 2019). However, works evaluating, or proposing, new algo-
rithms for systematic generalization have not performed a thorough investigation of how feature
co-occurrences modulate extrapolation behaviors. Evaluating the exemplar-rule trade-off in these
models by evaluating their EVR is a promising future direction.

Learning causal features. Feature sparsity, as exemplified by rule-based generalization, is equivalent
to learning causal features under the assumption that the causal model is the simplest model that
explains the data. Recent work has investigated data settings that permit the separation of causal
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(a) Example CelebA stim-
uli; we test 6 discriminant-
distractor pairs (with suffi-
cient coverage of quadrants
in Fig. (2)) of 6 features.
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(b) Main effect, logit scale: Exemplar-vs-rule
propensity (EVR) trends linear with non-zero in-
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(c) Control, logit scale: Performance deviation
from ZS under equi-correlation interpolation is
close to zero; linear fit (red) has intercept at zero.

Figure 6: CelebA results. Stimuli and results on various feature pairings from the CelebA domain (Section (6)). Error bars
represent 95% confidence intervals across ResNets of various sizes. See figure sub-captions and main text for details.

features from spurious correlations (Arjovsky et al., 2019; Bengio et al., 2019; Hill et al., 2019).
Here, we demonstrate that a model with an exemplar propensity makes more rule-based (“causal”)
extrapolation for certain training feature combinations (i.e., zero shot as opposed to partial exposure).
Investigating how feature coverage impacts causal generalization is a fruitful future direction.

Similarity-based generalization and kernels. We use similarity-based kernels such as the RBF to
exemplify exemplar-based extrapolation. Recent work has interpreted neural networks as kernel
regression (Jacot et al., 2018). Theoretically formalizing what NN properties, under a kernel framing,
lead to being exemplar-based (as behaviorally tracked by the EVR) is an exciting future direction.

Data augmentation. The EVR demonstrates that increased data variation in the form of feature
coverage worsens systematic generalization. The negative effect of data variation on generalization
has been documented for adversarial augmentations (Raghunathan et al., 2020). Our results show
that this phenomena persists even when augmentation is not adversarial (not maximizing a loss),
rendering it generally relevant for the design of data augmentations (Perez & Wang, 2017).

8 CONCLUSIONS

Taking inspiration from—and going beyond—psychological studies, we design a behavioral protocol
to distinguish the effects of two inductive biases (FLB and EvR) that is easily applicable to any
classification domain. This follows in a promising line of recent work that analyses and interprets
deep learning systems based on their external behavior (Ritter et al., 2017b; Dasgupta et al., 2019).
It complements other approaches that follow in the neuroscience tradition of analyzing internal
representations (Zeiler & Fergus, 2014; Karpathy et al., 2015), or make approximations of these
internal workings to support theoretical results (Jacot et al., 2018; Li & Liang, 2018; Allen-Zhu et al.,
2019; Du et al., 2018). The behavioral approach has the advantage that it makes no assumptions
about the model, allowing comparisons across models that differ in complexity and architecture.

Both rule- and exemplar-based extrapolation are valuable depending on domain, underscoring the
importance of diagnosing this bias in systems. We show that this inductive bias is distinct from
sensitivity to spurious correlation (Sections (4) and (6)), highlighting the impact of imbalanced
feature combinations on extrapolation in neural networks (as captured by FLB and EVR).

Finally, the EVR is also a novel empirical phenomenon. As demonstrated in two real-world domains,
we find that more feature coverage (as in PE compared to ZS) hurts generalization for exemplar-based
models. This has implications for methods that manipulate data distributions to improve performance;
e.g., data subsampling (Haixiang et al., 2017), data augmentation (Perez & Wang, 2017; Antoniou
et al., 2017), and contrastive learning (Chen et al., 2020). Since an exemplar-based model is easily
biased by the inclusion of a distractor feature, EVR is potentially useful as a diagnostic in application
settings (e.g., fairness) in which the goal is to control algorithmic behavior on non-representative
factors of a dataset (i.e., algorithmic bias Mitchell et al. (2019)).

A limitation of the present work is that we do not provide a conclusive answer as to what properties of
a model family influence the EVR. A broader study on these controlling factors (e.g., hyperparameters,
optimizers), and theoretical work formalizing this effect, are exciting avenues for future work.
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REPRODUCIBILITY STATEMENT

We evaluate reproducibility according to the criteria from Pineau et al. (2020) in Appendix (D). We
additionally provide source code in a zip file as supplementary material.
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Figure 7: We expand on Fig. (2) from the main text by including a realization of the abstract training conditions in the simple
2D points-in-a-plane setting. (Top) Formalizing the illustrative experiment: The experiment from Fig. (1) expressed in
terms of the formalism in Section (3) with zdist = color and zdisc = shape. Background colors indicate true category boundary.
(Bottom) The conditions realized via a binarization of continuous feature values. Here, the discriminant is binarized as x1 > 0
and the distractor as x2 > 0; this setting is further investigated in Section (4). Color here depicts the label but is not part of the
input.

A ADDITIONAL FORMALIZATIONS

A.1 GENERALIZING THE FRAMEWORK FROM TWO BINARY ATTRIBUTES TO MANY
CATEGORICAL ATTRIBUTES

In the most general terms, we consider a setting in which each observation x ∈ X is underlied
by n categorical variables z1, . . . , zn ∈ {0, . . . , C} with C ∈ Z+, henceforth attributes whose
concatenation z = (z1, . . . , zn) determines the observable input x via some mapping g : Zn0+ → X .
We consider the binary classification task of fitting a model f̂ : X → {0, 1} from a given model
family F to predict a binary label for each input. A subset of the attributes in z, without loss of
generality (z0, . . . , zi), is taken to define the decision boundary, while the remaining attributes,
zi+1, . . . , zn, are assumed to not be independently predictive of the true classification y ∈ {0, 1}.
We therefore denote the discriminant, zdisc = (z0, . . . , zi), and the distractor zdist = (zi+1, . . . , zn).
For simplicity, we assume that the attributes are binary (i.e., C = 2 and zi ∈ {0, 1},∀i), and that the
discriminant attributes must be jointly active for the classification to change from the null class y = 0
(i.e., y = 1 ⇐⇒ zdisc = 1); the latter simplification allows us to redefine zdisc = z0 ∧ · · · ∧ zi and
zdist = zi+1 ∧ · · · ∧ zn, which is equivalent to the earlier discussion of the illustrative two-attribute
case.

A.2 TRAINING CONDITIONS EXPRESSED IN TERMS OF THE JOINT DISTRIBUTION

We express the training conditions displayed in Fig. (2) and realized in Figure 6 in terms of the joint
distribution instead of the parameters π0, π1.

1. The cue-conflict condition the upper left and lower right quadrants in Figure 6 and defines the
distribution of attributes as

pcc(zdisc = 0, zdist = 1) = 0.5 pcc(zdisc = 1, zdist = 1) = 0

pcc(zdisc = 0, zdist = 0) = 0 pcc(zdisc = 1, zdist = 0) = 0.5 .

2. The zero-shot condition populates the bottom left and right quadrants in Figure 6 and defines
the distribution of attributes as
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pzs(zdisc = 0, zdist = 1) = 0 pzs(zdisc = 1, zdist = 1) = 0

pzs(zdisc = 0, zdist = 0) = 0.5 pzs(zdisc = 1, zdist = 0) = 0.5 .

3. The partial-exposure condition populates all quadrants but the upper right in Figure 6 and defines
the distribution of attributes as

ppe(zdisc = 0, zdist = 1) = 0.25 ppe(zdisc = 1, zdist = 1) = 0

ppe(zdisc = 0, zdist = 0) = 0.25 ppe(zdisc = 1, zdist = 0) = 0.5 .

B MORE CELEBA RESULTS

We include model-specific results, split by ResNet depth and width, in Fig. (8). We find no systematic
relationship between exemplar- vs. rule-based generalization and depth or width.
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Figure 8: CelebA EVR and FLB across feature pairs, averaged across 30 runs, split by depth and width of ResNet.

C SPURIOUS CORRELATION UNDERDETERMINES FEATURE DISTRIBUTIONS

The partial-exposure condition (π0 = 0.5, π1 = 0.0) in Section (2) results in a spurious correlation
between the discriminant zdisc and the distractor zdist (ρ = 0.58). To examine behavior in a wider
range of data settings, we vary π0 and π1 as described in Section (3), thereby also changing the
degree of spurious correlation.

I. Interpolation towards zero shot. We interpolate π0 from 0.5 towards 0.0, keeping π1 = 0.0.
This moves us closer to π0 = π1 = 0.0, where we have no exposure to zdisc = 1 in training.
Intuitively, we are reducing the exposure to the new distractor feature value from the partial-exposure
condition.

II. Interpolation to full exposure. We interpolate π1 from 0.0 towards 0.5, keeping π0 = 0.5. This
moves us closer to π0 = π1 = 0.5, where we have equal exposure to all quadrants in training. Here,
rather than reducing the exposure to the new distractor feature value, we are equalizing the exposure
to it across the discriminant dimension.

III. Interpolation with matched correlation. We report results on this in Sections (4) and (6). As
also depicted in Fig. (3), we generate training conditions by changing π0 and π1 such that we follow
a ρ-contour away from the partial-exposure condition (π0 = 0.5, π1 = 0.0, ρ = 0.58): solid contour
in Fig. (3). We also match the spurious correlation across the two interpolations in Appendix (C)A
and B: Fig. (10) shows these additional ρ-contours as dashed lines.

These different interpolations are depicted in Fig. (10a) with different shape/colors.

C.1 GENERATING INTERPOLATION POINTS

We generate points along all three interpolation lines: from partial exposure towards zero shot ((C)I);
from partial exposure towards full exposure ((C)II); and the equi-correlation line originating from
partial exposure ((C)III). The interpolating points along each line are selected to balance spurious
correlation and feature exposure. In particular, we follow the following procedure:

1. We choose a point that interpolates towards full exposure. We do this by choosing a value of
π1 between 0.0 and 0.5, π FE. This gives a data setting, along with a corresponding spurious
correlation, ρ, computed via Eq. (3):

π0 = 0.5 ; π1 = π FE ; ρ = ρ
(
0.5, π FE) .

14



Under review as a conference paper at ICLR 2022

partial exposure interpolant #1 interpolant #2

π0 = 0.5, π1 = 0.0,
ρ = 0.58

π0 = 0.32, π1 = 0.0,
ρ = 0.436

π0 = 0.125, π1 = 0.0,
ρ = 0.258

zero-shot
interp. (C)I

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

−5

0

5

π0 = 0.5, π1 = 0.0,
ρ = 0.58

π0 = 0.5, π1 = 0.1,
ρ = 0.436

π0 = 0.5, π1 = 0.25,
ρ = 0.258

full-exposure
interp. (C)II

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

−5

0

5

π0 = 0.5, π1 = 0.0,
ρ = 0.58

π0 = 0.66, π1 = 0.1,
ρ = 0.58

π0 = 0.825, π1 = 0.25,
ρ = 0.58

equi-correlation
interp. (C)III

−5 0 5

−5

0

5

−5 0 5

−5

0

5

−5 0 5

−5

0

5

Figure 9: We visualize several of the interpolants used for the interpolation analyses.

2. We generate a corresponding point that interpolates towards zero shot. Given the data setting
above, we set π1 = 0.0 and compute the π0 to produce the same ρ as the full-exposure
interpolations in Step 1. This gives the data setting:

π0 = π ZS (π FE) ; π1 = 0.0 ; ρ = ρ
(
π ZS (π FE) , 0.0) = ρ

(
0.5, π FE) .

3. Finally, we also derive the equi-correlation interpolation from the full-exposure interpolation
as follows. We retain π1 from the full-exposure condition, but recompute the π0 such that the
correlation ρ matches the spurious correlation of the pure
glspec (ρ = 0.58). This gives an additional data setting:

π0 = π EQ (π FE) ; π1 = π FE; ρ = ρ (0.5, 0.0) = 0.58 .

Note that, despite there being three different interpolation lines, the specific interpolants we use are
constrained along a single degree of freedom—choosing π FE (Step 1). The data settings for zero shot
(Step 2) and equi-correlation (Step 3) are derived from this value.

C.2 SPECIFIC INTERPOLATION VALUES USED

For all data settings, we generate points along the interpolation lines using the procedure in Ap-
pendix (C.1).

For the simple 2D classification setting, we examine two interpolants. In this simple domain, we keep
the interpolation distances small, since we expect changes in extrapolation behavior even from small
changes.
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(a) A heatmap of the spurious correlation (Eq. (3)), showing different
interpolations. The partial-exposure condition is identified with a
star outline; points along the three interpolation line are identified
with filled shapes.
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(b) Interpolations for
NN:16h1d on 2D classification
of points-in-a-plane.
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Figure 10: Interpolations away from the PE: changes in extrapolation behavior under data distribution with the same spurious
correlation as in PE, as well as different ways to change spurious correlation.

interpolant 1 interpolant 2

π0 π1 ρ π0 π1 ρ

interpolation to zero shot ((C)I) 0.481 0.0 0.563 0.32 0.0 0.436
interpolation to full exposure ((C)II) 0.5 0.01 0.563 0.5 0.1 0.436
equi-correlation interpolation ((C)III) 0.519 0.01 0.58 0.661 0.1 0.58

For CelebA, we increase the interpolation distance to reflect the wider range of natural data distribu-
tions among feature pairs. The data these interpolation values generate is visualized as the equivalent
points-in-a-plane setting in Figure 7.

interpolant 1 interpolant 2

π0 π1 ρ π0 π1 ρ

interpolation to zero shot ((C)I) 0.32 0.0 0.436 0.125 0.0 0.258
interpolation to full exposure ((C)II) 0.5 0.1 0.436 0.5 0.25 0.258
equi-correlation interpolation ((C)III) 0.66 0.1 0.58 0.825 0.25 0.58

C.3 INTERPOLATION ANALYSES

C.3.1 IN THE 2-D CLASSIFICATION EXAMPLE

In the simple setting from Section (4), we vary π0, π1 for an NN model (NN:16h1d, the NN with
lowest ER level overall). Results are in Fig. (10b) and discussed below.

EVR 6= sensitivity to spurious correlation. As also discussed in the main text, along the equi-
correlation interpolation, the “effective EVR” drops drastically (i.e., the learner generalizes in more
rule-based manner) despite no change in spurious correlation.

Implications for controlling extrapolation. Despite both having the same ρ, interpolating towards
full-exposure increases the EVR more than towards zero-shot. This further supports that spurious
correlation cannot fully characterize extrapolation behavior. This shows that different ways to reduce
ρ have different effects on extrapolation, and has important implications for data manipulation
methods (e.g., subsampling or augmentation) that aim to directly control this ρ.

C.3.2 IN CELEBA

We see the same effects as in the linear setting: as also discussed in the main text, we see a much
smaller gap to the ZS condition despite no change in spurious correlation. We don’t find clear effects
distinguishing different ways to reduce spurious correlation (interpolation to zero shot ((C)I) and
interpolation to full exposure ((C)II)).
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D REPRODUCIBILITY DETAILS

We use the criteria from Pineau et al. (2020) omitting the non-applicable theory component.

D.1 MODELS & ALGORITHMS

An analysis of the complexity (time, space, sample size) of any algorithm. The algorithms we
employ (LBFGS and stochastic gradient descent on convex and nonconvex problems) are standard,
and so we refer the reader to other references to determine their complexities.

D.2 DATASETS

The relevant statistics, such as number of examples.

2D IMDb CelebA3

dataset size (train) 75 21,215 4,000 to 40,000
dataset size (valid) 75 21,027 8,000
dataset size (test) 75 13,995 20,000
input space R2 R400 R178×218×3

The details of train / validation / test splits. We do not use a validation set for the simple 2D
classification setting and IMDb datasets, but hold out examples for a test set. For CelebA, we follow
the authors’ division of images in train, validation and test splits.

An explanation of any data that were excluded, and all pre-processing step. As described in
the main text, we subsample data to balance attributes within each training condition. For the CelebA
domain, we use the following feature pairs to produce the results in Section (6):

discriminant distractor

mouth open male
wearing lipstick mouth open
male mouth open
male high cheekbones
male blond hair
male arched eyebrows

A link to a downloadable version of the dataset or simulation environment. We use publicly
available datasets whose links can be found online.

For new data collected, a complete description of the data collection process, such as instruc-
tions to annotators and methods for quality control. We do not collect any new data.

D.3 CODE

We provide code in a folder of the supplementary entitled code.

Specification of dependencies. See requirements.txt.

Training and evaluation code. See main.py, which imports the module
exposure bias.train.

3The numbers for CelebA are approximate because there are deviations in the availability of images across
attribute combinations.
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(Pre-)trained model(s). We do not provide pre-trained models because of the large number of
models evaluated to compute average performances across models.

README file includes table of results accompanied by precise commands to run to produce
those results. We will clean up and provide Jupyter notebooks to generate all plots in the publicly
available code repository after publication.

D.3.1 EXPERIMENTAL RESULTS

The range of hyper-parameters considered, method to select the best hyper-parameter config-
uration, and specification of all hyper-parameters used to generate results. We use default
hyperparameter settings whenever possible; all hyperparameter settings can be found in the accompa-
nying code submission in the files in the folder exposure-bias/configs/static.

The exact number of training and evaluation runs. For the points-in-a-plane and IMDb settings,
we use 20 random seeds, which randomize the model weight initialization. For the CelebA domain,
we run 30 seeds for each model configuration, and discard runs that achieve below 75% accuracy on
validation set images that belong to the data conditions (quadrants) observed during training.

A clear definition of the specific measure or statistics used to report results. We report accuracy
as a performance metric on each of the four quadrants depicted in Fig. (2) as well interpolating data
settings. We additionally report measures that are a the performance difference between data settings.

A description of results with central tendency (e.g., mean) & variation (e.g., error bars). See
the main text for a description of results. We include a 95% confidence interval on all reported
measures.

The average runtime for each result, or estimated energy cost. For the points-in-a-plane, IMDb
and CelebA datasets, the average runtime (time to train and evaluate a single model) is 5, 10 and 30
minutes, respectively.

A description of the computing infrastructure used. We run experiments serially on an NVIDIA
P100 GPU.
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