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Abstract

In-context learning in large language models enables them to generalize to new1

tasks by prompting with a few exemplars without explicit parameter updates. In2

this work, we propose a new mechanism to probe and understand in-context learn-3

ing from the lens of decision boundaries for in-context classification. Decision4

boundaries qualitatively demonstrate the inductive biases of standard classifiers.5

Surprisingly, we find that the decision boundaries learned by current LLMs in6

simple binary classification tasks are irregular and non-smooth. We investigate7

factors influencing these boundaries and explore methods to enhance their general-8

izability. Our findings offer insights into in-context learning dynamics and practical9

improvements for enhancing its robustness and generalizability.10

1 Introduction11

A key emergent behavior of recent transformer-based language models is in-context learning, which12

allows the model to learn tasks by conditioning on a set of demonstrations without training [Wei et al.,13

2022, Brown et al., 2020]. Recent studies on understanding in-context learning explore theoretical14

links to gradient descent [Akyürek et al., Von Oswald et al., 2023, Dai et al., 2023] and practical15

factors affecting performance, such as demonstration accuracy [Min et al., 2022b, Shi et al., 2023],16

prompt structure, model size [Wei et al., 2023, Webson and Pavlick, 2022], and example order [Chen17

et al., 2024]. Garg et al. [2022], Nguyen and Grover [2022] demonstrate that even small transformers18

can learn unseen function classes in-context.19

20 40 60 80
Feature 1

20

40

60

80

Fe
at

ur
e 

2

Decision Tree

20 40 60 80
Feature 1

20

40

60

80

Fe
at

ur
e 

2

MLP

20 40 60 80
Feature 1

20

40

60

80

Fe
at

ur
e 

2

K-NN

20 40 60 80
Feature 1

20

40

60

80

Fe
at

ur
e 

2

SVM (RBF Kernel)

20 40 60 80

Feature 1
20

30

40

50

60

70

80

90

Fe
at

ur
e 

2

LLama-3-8B

20 40 60 80

Feature 1
20

30

40

50

60

70

80

90

Fe
at

ur
e 

2

GPT-4o

Class 1 (In-Context/Training Examples)
Class 2 (In-Context/Training Examples)

Class 1 (Model Prediction)
Class 2 (Model Prediction)

Figure 1: Decision boundaries of LLMs and traditional machine learning models on a linearly
separable binary classification task. The background colors represent the model’s predictions,
while the points represent the in-context or training examples. LLMs exhibit non-smooth decision
boundaries compared to the classical models. See Appendix C for model hyperparameters.

Our study offers a new perspective by viewing in-context learning in LLMs as a unique machine20

learning algorithm, leveraging decision boundary analysis in classification tasks to gain insights into21

their performance. This method probes the inductive biases and generalization capabilities of LLMs,22

providing a comprehensive assessment of their robustness. Surprisingly, recent LLMs struggle to23

provide smooth decision boundaries across classification tasks we tested, regardless of model size,24

in-context example number and order, and label semantics. This issue persists even in simple binary25
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linear classification tasks where classical methods like SVM achieve smooth boundaries with fewer26

examples as in Figure 1. To explore this, We experimented with various open-source LLMs (Llama27

series [Touvron et al., 2023, Xia et al., 2023], Mistral [Jiang et al., 2023]) and state-of-the-art closed-28

source LLMs (GPT-4o and GPT-3.5). We then investigated methods to smooth decision boundaries,29

including fine-tuning and adaptive prompting strategies. Our contributions can be summarized as30

follows: 1) Introduced a novel mechanism to probe and understand in-context learning in LLMs by31

visualizing and analyzing the decision boundaries on classification tasks. 2) Discovered that SoTA32

LLMs exhibit non-smooth, irregular decision boundaries even on simple linearly separable tasks,33

unlike classical ML models. 3) Identified several factors impacting decision boundary smoothness,34

including model size, number of in-context examples, quantization levels, label semantics, and order35

of examples. 4) Evaluated methods to improve decision boundary smoothness, such as fine-tuning36

earlier layers and active learning with uncertainty-based sample selection. 5) Demonstrated that37

fine-tuning LLMs on simple tasks can generalize to complex ones, and training transformers from38

scratch for in-context learning can lead to smoother boundaries.39

2 Methodology40

In-Context Classification & Decision Boundary Visualization. In a K-class classification task41

with data distribution pdata(x, y), where x is the input feature and y ∈ {1, . . . ,K} is the class42

label, we construct an in-context prompt by sampling n examples (xi, yi) ∼ pdata for i = 1, . . . , n.43

Given a new test point xtest, the prompt P = (x1, y1, . . . ,xn, yn,xtest) is fed to the LLM π, which44

predicts a class ŷ for xtest. The LLM predicts by choosing the most likely class in the next token45

distribution. The class prediction is ŷ = argmaxi∈{1,...,K} lc(i), where lc(i) are the logit values46

for each class label converted to unique token ids. To visualize the decision boundary of model47

π, we generate a grid of points covering the feature space defined by the in-context examples48

set S = {(x1, y1), (x2, y2), . . . , (xk, yk)}. We create a uniform grid with G points along each49

dimension. The grid points are denoted as Xgrid = {xquery | xquery ∈ [xmin,xmax]
d,xquery =50

xmin + i∆x, i ∈ {0, 1, . . . , G− 1}} where ∆x = 1
G−1 (xmax − xmin) is the grid spacing along each51

dimension. Each point xquery ∈ Xgrid is a query input, and model π is prompted with the sequence52

(x1, y1, . . . ,xk, yk,xquery) to predict the class label ŷ. The decision boundary is visualized by plotting53

the predicted labels ŷ over the grid Xgrid.54

3 Experiments55

We examine existing LLMs through the lens of decision boundaries by conducting a series of binary56

classification tasks under varying conditions. Our experiments aim to address the following key57

questions: (1) How do existing pretrained LLMs perform on binary classification tasks? §3.1 (2)58

How do different factors influence the decision boundaries of these models? §3.2 (3) How can we59

improve the smoothness of decision boundaries through finetuning or prompting? §3.360
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Figure 2: Visualizations of decision boundaries for various LLMs on a linearly seperable binary
classification task. The 128 in-context data points are shown as scatter points and the colors indicate
the label determined by each model.

Figure 3: Decision boundaries of Llama-3-8b on six NLP tasks, ranging from binary to multi-class
classification. Since text embeddings are natively high-dimensional, we projected text embeddings
onto a 2D space using t-SNE. The irregular, non-smooth behaviors are also seen in these tasks.
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Experiment Setup. We investigate the decision boundary of LLMs by prompting them with n61

in-context examples of binary classification tasks, with an equal number of examples for each class.62

We generate synthetic classification datasets with three types of linear and non-linear classification63

tasks: linear, circle, and moon, each describing different shapes of ground-truth decision boundaries.64

Detailed information on the dataset generation can be found in Appendix D. In addition to the65

in-context examples, we calculate the in-context learning accuracy on a held-out test set of size66

100. We sample in-context examples and test points from classification task and convert them into67

prompt, with an example shown in Appendix K. We study an extensive range of models, with sizes68

ranging from 1.3B to 13B parameters, including open-source models such as Llama2-7B, Llama3-8B,69

Llama2-13B, Mistral-7B-v0.1, and sheared-Llama-1.3B as well as closed-source LLMs, including70

GPT-4o and GPT-3.5-turbo. We generate decision boundaries using 8-bit quantization for open-source71

models, with a 50x50 grid (2500 queries per boundary). Open-source model predictions use the72

method in 2, while closed-source models use next token generation.73

3.1 Non-Smooth Decision Boundaries of LLMs in synthetic and NLP classification tasks.74

Figure 2 compares the decision boundaries of 6 LLMs when provided with 128 in-context examples75

on synthetic binary classification task. All of them exhibit non-smooth decision boundaries. The76

decision boundaries vary significantly across models, indicating that these models have different77

reasoning abilities to interpret the same in-context data. All models show fragmented decision78

regions, which means small changes in the input features can result in different classifications. The79

non-smoothness are also observed with experiments on multi-class NLP classification tasks as shown80

in Figure 3, raising concerns about the reliability of LLMs and their practical deployment, as even81

when test accuracy for classification is high (shown in Figure 8), the underlying decision boundary82

lacks generalization.83
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Figure 4: The decision boundaries of LLama-2-7B and LLama-3-8B, across various class labels.
Each row corresponds to a model, and each column represents a different class label, shown in quotes.

3.2 How Do Different Factors Influence the Decision Boundaries?84

Impact of Model Size on Decision Boundary and Accuracy From Figure 2, model sizes increase85

from left to right, yet there is no clear correlation between model size and the smoothness of the86

decision boundary. Even GPT-4o, demonstrates fragmented decision regions. Increasing In-Context87

Examples Does Not Guarantee Smoother Decision Boundaries While classification accuracies tend88

to improve with more in-context examples, Figure 10 reveals that this does not translate to smoother89

decision boundaries even as the number of examples increase from 23 to 26. How Quantization90

Affects the Decision Boundary? Figure 9(a) illustrates the decision boundaries of the LLaMA-2-7B91

model under different quantization levels Dettmers et al. [2022]. This indicates that the reduced92

precision from 4-bit quantization significantly affects points near the decision boundary or areas93

where the model is most uncertain. We plotted the probability prediction for class 1 (Figure 9(b)).94

This suggests varying quantization levels can flip the LLM’s decisions in the regions of highest95

uncertainty. Are Decision Boundaries Sensitive to the Prompt Format? Yes, decision boundaries96

are sensitive to the labels’ names, as shown in Figure 4. Using semantically unrelated labels, such97

as “Foo” and “Bar” as suggested in [Wei et al., 2023], results in flipped predictions compared to98

using reversed class names like "Bar" and "Foo". Are Decision Boundaries Sensitive to the Order99

of In-Context Learning Examples? Yes. In Figure 11, we demonstrate that the model’s decision100

boundaries vary with different shuffles of the in-context examples.101

3.3 How to Improve the Decision Boundary Smoothness?102

Can We Finetune LLMs on the In-Context Examples to Achieve Smoother Decision Boundaries?103

No. Our experiments indicate that finetuning LLMs on in-context examples does not result in smoother104

decision boundaries in Appendix J.105
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How to Finetuning LLMs for Smoother Decision Boundaries in Classification Tasks? We explore106

two finetuning approaches: (1) Using LoRA [Hu et al., 2021] to finetune the pretrained LLM’s107

attention layers, token embedding layer, or linear head layer; (2) Modifying the LLM architecture108

(we term as CustomLLM) by freezing the transformer backbone and attaching new embedding layers109

and prediction head, trained using objective (2). This approach leverages task-specific layers to110

utilize the backbone’s pattern-matching capabilities. Experimental details are in Appendix H. Results111

in Figures 5 and 13 indicate that finetuning intermediate and earlier embedding layers produces112

smoother decision boundaries than finetuning the top prediction head.113
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Figure 5: LLM finetuning ablations. Decision
boundary after finetuning the linear head, embed-
ding layer and the attention layers.

Can LLMs finetuned on one in-context learning task generalize to more complex in-context114

learning tasks? Yes, as shown in Figure 14, we found it generalizes to unseen non-linear tasks as115

well as 3-class and 4-class classification tasks, despite only being trained on a binary linear task.116

Can we train a transformer from scratch to learn smooth decision boundaries in-context?117

We investigate whether pretraining affects decision boundaries by training Transformer Neural118

Processes (TNPs) [Nguyen and Grover, 2022] from scratch. TNPs are designed for in-context119

learning, predicting query labels yi>m given query inputs xi>m and context pairs {(xi, yi)}mi=1. We120

trained four TNP models of different sizes (Table 1). Figure 15 shows how decision boundaries change121

as more in-context examples are added. Results indicate that TNPs learn smooth decision boundaries122

for non-linear tasks. Interestingly, we didn’t observe a clear scaling law relating transformer size to123

decision boundary smoothness; smaller models often generalized better than larger ones.124

Using Uncertainty-aware Active Learning to Smooth Decision Boundaries. We explore smoothing125

LLM decision boundaries using uncertainty-aware active learning. After an initial decision boundary126

is obtained, we query the LLM to identify uncertain points based on the entropy of class probabilities.127

We select the top-k most uncertain points, ensuring spatial diversity via greedy sampling, and add128

these as new in-context examples. As in Figure 16, this method yields smoother decision boundaries129

and higher test accuracies compared to random sampling.130
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(a) Decision boundaries before SFT on linear
data of Llama3-8b across 4 tasks.
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(b) Decision boundaries after SFT on linear data
of Llama3-8b across 4 unseen tasks.

Figure 6: Generalization of Llama-3-8B after fine-tuning on a single binary linear classification task.
After training, it generalizes to non-linear classification and 3-class and 4-class classification tasks.

4 Conclusion131

We propose a novel approach to understanding in-context learning in LLMs by probing their decision132

boundaries in in-context learning in binary classification tasks. Despite achieving high test accuracy,133

we observe that the decision boundaries of LLMs are often irregularly non-smooth. Through extensive134

experiments, we identify factors that affect this decision boundary. We also explore fine-tuning and135

adaptive sampling methods, finding them effective in improving boundary smoothness. Our findings136

provide new insights into the mechanics of in-context learning and suggest pathways for further137

research and optimization.138

4



References139

R. Agarwal, A. Singh, L. M. Zhang, B. Bohnet, S. Chan, A. Anand, Z. Abbas, A. Nova, J. D.140

Co-Reyes, E. Chu, et al. Many-shot in-context learning. arXiv preprint arXiv:2404.11018, 2024.141

K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transformers learn to implement preconditioned142

gradient descent for in-context learning. Advances in Neural Information Processing Systems, 36,143

2024.144

E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou. What learning algorithm is in-context145

learning? investigations with linear models. In The Eleventh International Conference on Learning146

Representations.147

Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei. Transformers as statisticians: Provable in-context148

learning with in-context algorithm selection. Advances in neural information processing systems,149

36, 2024.150

A. Bertsch, M. Ivgi, U. Alon, J. Berant, M. R. Gormley, and G. Neubig. In-context learning with151

long-context models: An in-depth exploration. arXiv preprint arXiv:2405.00200, 2024.152

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam,153

G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information154

processing systems, 33:1877–1901, 2020.155

X. Chen, R. A. Chi, X. Wang, and D. Zhou. Premise order matters in reasoning with large language156

models. arXiv preprint arXiv:2402.08939, 2024.157

A. Conneau and D. Kiela. Senteval: An evaluation toolkit for universal sentence representations.158

arXiv preprint arXiv:1803.05449, 2018.159

D. Dai, Y. Sun, L. Dong, Y. Hao, S. Ma, Z. Sui, and F. Wei. Why can gpt learn in-context? language160

models secretly perform gradient descent as meta-optimizers. In Findings of the Association for161

Computational Linguistics: ACL 2023, pages 4005–4019, 2023.162

T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. Llm.int8(): 8-bit matrix multiplication for163

transformers at scale, 2022.164

S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What can transformers learn in-context? a case study165

of simple function classes. Advances in Neural Information Processing Systems, 35:30583–30598,166

2022.167

E. J. Hu, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, W. Chen, et al. Lora: Low-rank adaptation168

of large language models. In International Conference on Learning Representations, 2021.169

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,170

G. Lengyel, G. Lample, L. Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.171

A. Lampinen, I. Dasgupta, S. Chan, K. Mathewson, M. Tessler, A. Creswell, J. McClelland, J. Wang,172

and F. Hill. Can language models learn from explanations in context? In Findings of the Association173

for Computational Linguistics: EMNLP 2022, pages 537–563, 2022.174

M. Li, S. Gong, J. Feng, Y. Xu, J. Zhang, Z. Wu, and L. Kong. In-context learning with many175

demonstration examples. arXiv preprint arXiv:2302.04931, 2023a.176

Y. Li, M. E. Ildiz, D. Papailiopoulos, and S. Oymak. Transformers as algorithms: Generalization177

and stability in in-context learning. In International Conference on Machine Learning, pages178

19565–19594. PMLR, 2023b.179

P. Malo, A. Sinha, P. Korhonen, J. Wallenius, and P. Takala. Good debt or bad debt: Detecting180

semantic orientations in economic texts. Journal of the Association for Information Science and181

Technology, 65(4):782–796, 2014.182

S. Min, M. Lewis, L. Zettlemoyer, and H. Hajishirzi. Metaicl: Learning to learn in context. In Proceed-183

ings of the 2022 Conference of the North American Chapter of the Association for Computational184

Linguistics: Human Language Technologies, pages 2791–2809, 2022a.185

5



S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer. Rethinking186

the role of demonstrations: What makes in-context learning work? In Proceedings of the 2022187

Conference on Empirical Methods in Natural Language Processing, pages 11048–11064, 2022b.188

I. Mollas, Z. Chrysopoulou, S. Karlos, and G. Tsoumakas. Ethos: an online hate speech detection189

dataset. arXiv preprint arXiv:2006.08328, 2020.190

S. Müller, N. Hollmann, S. P. Arango, J. Grabocka, and F. Hutter. Transformers can do bayesian191

inference. In International Conference on Learning Representations, 2021.192

T. Nguyen and A. Grover. Transformer neural processes: Uncertainty-aware meta learning via193

sequence modeling. In International Conference on Machine Learning, pages 16569–16594.194

PMLR, 2022.195

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-196

hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and197

E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,198

12:2825–2830, 2011.199

F. Shi, X. Chen, K. Misra, N. Scales, D. Dohan, E. H. Chi, N. Schärli, and D. Zhou. Large language200

models can be easily distracted by irrelevant context. In International Conference on Machine201

Learning, pages 31210–31227. PMLR, 2023.202

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and C. Potts. Recursive deep203

models for semantic compositionality over a sentiment treebank. In Proceedings of the 2013204

conference on empirical methods in natural language processing, pages 1631–1642, 2013.205

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,206

P. Bhargava, S. Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv207

preprint arXiv:2307.09288, 2023.208

J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento, A. Mordvintsev, A. Zhmoginov, and209

M. Vladymyrov. Transformers learn in-context by gradient descent. In International Conference210

on Machine Learning, pages 35151–35174. PMLR, 2023.211

A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and S. Bowman.212

Superglue: A stickier benchmark for general-purpose language understanding systems. Advances213

in neural information processing systems, 32, 2019.214

A. Webson and E. Pavlick. Do prompt-based models really understand the meaning of their prompts?215

In Proceedings of the 2022 Conference of the North American Chapter of the Association for216

Computational Linguistics: Human Language Technologies, pages 2300–2344, 2022.217

J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma, D. Zhou,218

D. Metzler, et al. Emergent abilities of large language models. Transactions on Machine Learning219

Research, 2022.220

J. Wei, J. Wei, Y. Tay, D. Tran, A. Webson, Y. Lu, X. Chen, H. Liu, D. Huang, D. Zhou, et al. Larger221

language models do in-context learning differently. arXiv preprint arXiv:2303.03846, 2023.222

N. Wies, Y. Levine, and A. Shashua. The learnability of in-context learning. Advances in Neural223

Information Processing Systems, 36, 2024.224

J. Wu, D. Zou, Z. Chen, V. Braverman, Q. Gu, and P. Bartlett. How many pretraining tasks are needed225

for in-context learning of linear regression? In The Twelfth International Conference on Learning226

Representations, 2023.227

M. Xia, T. Gao, Z. Zeng, and D. Chen. Sheared llama: Accelerating language model pre-training via228

structured pruning. arXiv preprint arXiv:2310.06694, 2023.229

R. Zhang, S. Frei, and P. L. Bartlett. Trained transformers learn linear models in-context. arXiv230

preprint arXiv:2306.09927, 2023.231

X. Zhang, J. Zhao, and Y. LeCun. Character-level convolutional networks for text classification.232

Advances in neural information processing systems, 28, 2015.233

6



A Background234

Given the limited space in the main text, we provide background section in the Appendix here.235

A.1 Training Large Language Models236

Large Language Models (LLMs) are trained on vast corpora of text using unsupervised learning.237

During training, these models learn to predict the next token in a sequence. Given a sequence238

of tokens (x1, x2, . . . , xt−1), the model predicts the next token xt by maximizing the likelihood239

P (xt|x1, x2, . . . , xt−1). The training objective typically involves minimizing the cross-entropy loss:240

L = −
N∑
i=1

Ti∑
t=1

logP (xt|x1, x2, . . . , xt−1) (1)

where Ti is the number of tokens in the i-th sequence and N is the total number of sequences in the241

corpus. During training, teacher forcing is often employed, where the model receives the ground242

truth token xt as input at each time step instead of its own prediction, enabling parallel training.243

A.2 In-Context Learning in LLMs244

After training, LLMs can generalize to new tasks through a mechanism known as in-context learning.245

Let S = {(x1, y1), (x2, y2), . . . , (xn, yn)} represent the set of n input-output pairs provided as246

examples in the prompt, where xi is an input and yi is the corresponding output. Given a new input247

xnew, the LLM is turned into a task-specific model that predicts the output ŷnew by conditioning on248

the given examples: P (ŷnew|xnew, {(x1, y1), (x2, y2), . . . , (xn, yn)}). In-context learning allows the249

LLM to perform tasks by leveraging the context provided by these examples, thereby inferring the250

task and generating appropriate responses for new inputs. This approach utilizes the model’s ability251

to recognize patterns and apply learned knowledge without additional training or fine-tuning.252

B Related Works253

Understanding in-context learning in transformers and LLMs is an active area of research, with254

existing works approaching this problem from both theoretical and practical perspectives.255

Theoretical understanding of in-context learning Recent works aim to establish a theoretical256

connection between in-context learning and gradient descent (GD). The pioneering work by Akyürek257

et al. proves transformers can implement learning algorithms for linear models based on GD and258

closed-form ridge regression by construction. Von Oswald et al. [2023] proves the equivalence259

between linear self-attention and GD on linear regression by construction. Similarly, Dai et al.260

[2023] shows that attention in transformers has a dual form of GD and views transformers as meta-261

optimizers. Subsequent works extend these ideas to characterize the global optimum of single-layer262

linear transformers. Ahn et al. [2024] observe that with the optimal parameters, the transformer263

implements a single step of preconditioned gradient descent, while Zhang et al. [2023] shows that264

at the global optimum, the transformer achieves competitive prediction error with the best linear265

predictor on a new prediction task. In addition to theoretical connections to GD, a complementary266

direction aims to establish statistical complexity and generalization bounds of in-context learning267

in transformers [Bai et al., 2024, Li et al., 2023b, Wies et al., 2024, Wu et al., 2023]. The common268

limitation of these existing theoretical frameworks is the reliance on strong assumptions about the269

transformer architecture or the functional form of the in-context learning tasks which may not reflect270

real-world practices.271

Practical understanding of in-context learning More relevant to our paper is a line of works272

focusing on understanding the practical aspects of in-context learning in LLMs. Many existing works273

investigate the roles of in-context examples and prompts. Min et al. [2022b] show a surprising result274

that ground-truth demonstrations are not required for in-context learning, while other factors such as275

the label space, input text distribution, and overall sequence format play an important role. Shi et al.276

[2023] investigate the distractibility of LLMs and shows that their performance dramatically drops277

when irrelevant context is included. Subsequently, Wei et al. [2023] characterize these behaviors of278

LLMs with respect to model size, and show that larger language models perform in-context learning279
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differently in the presence of flipped or semantically unrelated labels. Webson and Pavlick [2022]280

argue against the current practice of prompt engineering, showing that intentionally irrelevant or even281

pathologically misleading prompts achieve similar downstream performance to instructively good282

prompts. Orthogonally, Lampinen et al. [2022] find that including explanations in the in-context283

examples significantly improves the few-shot performance of LLMs. Finally, given the expanded284

context windows of modern LLMs, recent works have explored in-context learning in the many-shot285

setting with hundreds or thousands of examples [Agarwal et al., 2024, Li et al., 2023a, Bertsch et al.,286

2024].287

Learning to learn in-context In contrast to the emergent in-context capabilities of LLMs, existing288

works have also studied methods that learn to perform in-context learning explicitly. Min et al. [2022a]289

propose MetaICL, a meta-training framework for finetuning pretrained LLMs to perform in-context290

learning on a large and diverse collection of tasks. MetaICL outperforms several baselines including291

emergent in-context learning and multi-task learning followed by zero-shot transfer. Going beyond292

the text domain, TNP [Nguyen and Grover, 2022] and PFNs [Müller et al., 2021] are two concurrent293

works that propose to train transformer models to perform in-context prediction for a family of294

functions, which allows in-context generalization to unseen functions after training. Similarly, [Garg295

et al., 2022] show that autoregressive transformers can be trained from scratch to learn function296

classes such as linear functions and 2-layer ReLU networks. These works present an interesting set297

of baselines for our work to examine the in-context learning ability of LLMs.298

C Traditional Classifiers Model Details299

In our experiments, we used several classical machine learning models with the following hyperpa-300

rameters:301

• Decision Tree Classifier: We set the maximum depth of the tree to 3.302

• Multi-Layer Perceptron: The neural network consists of two hidden layers, each with 256303

neurons, and the maximum number of iterations is set to 1000.304

• K-Nearest Neighbors: The number of neighbors is set to 5.305

• Support Vector Machine (SVM): We used a radial basis function (RBF) kernel with a306

gamma value of 0.2.307

D Classification Datasets Creation Details308

We use three types of classification tasks from scikit-learn [Pedregosa et al., 2011] to probe the309

decision boundary of LLMs and transformers: linear, circle, and moon classification problems. For310

linear classification tasks, we utilize the make_classification function, which generates random311

classification problems by creating clusters of points normally distributed around the vertices of a312

hypercube with sides of length 2 × class_sep. Circle classification tasks are generated using the313

make_circles function, creating a binary classification problem with a large circle containing a314

smaller circle. The factor parameter controls the scale of the inner circle relative to the outer315

circle. Moon classification tasks are generated using the make_moons function, creating a binary316

classification problem with two interleaving half circles. The noise parameter controls the standard317

deviation of Gaussian noise added to the data points.318

For training tasks, the class_sep parameter is randomly sampled from the range [1.5, 2], and the319

factor parameter for circular tasks is sampled from [0.1, 0.4]. For testing tasks, the class_sep320

parameter is sampled from [1, 1.4], and the factor parameter from [0.5, 0.9], ensuring that testing321

tasks differ from training tasks. The noise parameter for moon-shaped tasks is sampled from322

[0.05, 0.1] for training and [0.1, 0.2] for testing, introducing varying levels of complexity in the323

classification problems.324

E Classification Results on Multi-Class NLP Classification Tasks325

We extend our analysis to multi-class NLP classification tasks using high-dimensional real-world326

datasets. To address the challenge of visualizing high-dimensional text embeddings, we project them327
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onto a 2D space using t-SNE. While any dimensionality reduction technique inevitably introduces328

confounding factors, this approach allows us to extend our analysis to more complex, real-world329

scenarios. Our experiments encompass six widely-used NLP classification tasks, covering both binary330

and multi-class settings. These include Subjective/Obejective sentence classification (SUBJ) [Con-331

neau and Kiela, 2018], financial sentiment analysis (FP) [Malo et al., 2014], textual entailment332

recognition (RTE) [Wang et al., 2019], hate speech detection (ETHOS) [Mollas et al., 2020], sen-333

timent analysis (SST-2) [Socher et al., 2013] and news topic classification (AG_NEWS) [Zhang334

et al., 2015]. We provide a broader perspective on the applicability of our approach. The results,335

presented in Figure 7, demonstrate that the non-smooth decision boundary characteristics observed in336

our synthetic datasets persist in these more complex NLP tasks.337

Figure 7: Decision boundaries of Llama-3-8b on six NLP tasks, ranging from binary to multi-class
classification. Since text embeddings are natively high-dimensional, we projected text embeddings
onto a 2D space using t-SNE. The irregular, non-smooth behaviors are also seen in these tasks.

F Factors affecting the decision boundary338

F.1 How number of in-context examples affect the classification accuracy?339
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Figure 8: In-context test accuracy for LLMs and baselines across three classification tasks (linear,
circle, and moon), with each subplot illustrating the test accuracy as the number of in-context
examples increases. The baselines are the SVM with a polynomial kernel and the MLP with two
hidden layers. Shaded regions represent the standard error of the mean accuracy across 5 seeds.

F.2 How Quantization Affects the Decision Boundary?340
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(a) Decision boundaries of Llama-2-7b with different
quantization choices on a linearly separable task.
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Figure 9: Impact of quantization on Llama2-7b’s decision boundaries and probability predictions.
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F.3 How decision boundary scale with more in-context learning examples?341
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Figure 10: Decision boundary of Llama2-7b with increasing in-context examples from 8 to 256.

F.4 Are Decision Boundaries Sensitive to the Order of In-Context Learning Examples?342

25 30 35 40 45 50 55 60

Feature 1
10

20

30

40

50

60

70

Fe
at

ur
e 

2

Order 0

25 30 35 40 45 50 55 60

Feature 1
10

20

30

40

50

60

70

Fe
at

ur
e 

2

Order 1

25 30 35 40 45 50 55 60

Feature 1
10

20

30

40

50

60

70

Fe
at

ur
e 

2

Order 2

25 30 35 40 45 50 55 60

Feature 1
10

20

30

40

50

60

70

Fe
at

ur
e 

2

Order 3

25 30 35 40 45 50 55 60

Feature 1
10

20

30

40

50

60

70

Fe
at

ur
e 

2

Order 4

Figure 11: The sensitivity of the Llama3-8b model’s decision boundary to the order of in-context
examples. Each subplot (Order 0 to Order 4) shows the model’s decision boundary with the same 32
examples shuffled differently.

G Pretrained LLMs decision boundary on linear and non-linear classification343
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Figure 12: Visualizations of decision boundaries for various LLMs, ranging in size from 1.3B to 13B,
on three classification tasks. The tasks are, from top to bottom, circle, linear, and moon classifications.
Note that the circle and moon tasks are not linearly separable. The in-context data points are shown as
scatter points and the colors indicate the label determined by each model. These decision boundaries
are obtained using 128 in-context examples. The visualization highlights that the decision boundaries
of these language models are not smooth.
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H Fintuening Experiment Details345

H.1 Can We Finetune LLMs on a Dataset of Classification Tasks to Achieve Smoother346

Decision Boundaries?347

Previous works have shown that finetuning a pretrained LLM on a large collection of tasks improves348

its in-context learning performance on unseen tasks [Min et al., 2022a]. In this section, we investigate349

if the same paradigm helps improve the decision boundary smoothness of LLMs. To do this, we350

finetune a pretrained Llama model [Touvron et al., 2023] on a set of 1000 binary classification tasks351

generated from scikit-learn [Pedregosa et al., 2011], where the ground-truth decision boundary352

is either linear, circle-shaped, or moon-shaped, with equal probabilities. For each task, we sample353

randomly N = 256 data points x ∼ Xgrid and their corresponding label y′s. We then sample the354

number of context points m ∼ U [8, 128], and finetune the LLM to predict yi>m given xi>m and the355

preceding examples:356

L(π) = E

[
N∑

i=m+1

log p(yi | xi, x1:i−1, y1:i−1)

]
, (2)

where the expectation is with respect to task, data points {(xi, yi)}Ni=1, and the number of context357

points m. After training, we evaluate the same finetuned model on various binary classification tasks358

with varying numbers of context points. To ensure the test tasks are unseen during training, we use359

different parameters in creating the datasets, such as the separateness between two classes and the360

scale between the inner and outer circles in the circle task. See Appendix D for more details.361

We consider several finetuning settings for ablation studies. 1) In the first setting, we finetune the362

pretrained LLM using LoRA [Hu et al., 2021] and finetune the attention layers. 2) We finetune363

only the token embedding layer of LLM. 3) We finetune only the linear head layer of LLM. Then364

we consider modifying the architecture of the LLM: In this setting, we keep the core transformer365

backbone of the LLM frozen, attach randomly initialized embedding layers and prediction head to the366

model, and train the entire model using objective (2). This stems from the intuition that task-specific367

embedding and prediction layers allow the model to maximally utlize the general pattern-matching368

capabilities of the transformer backbone for the new task. We refer to this model as CustomLLM,369

and consider its three variants, which add 1) a new embedding layer for x, 2) a new prediction head370

for y, and 3) new embedding layers for x, y, and a new prediction head for y. The embedding layers371

and prediction head are MLPs with one hidden layer. We embed the raw numerical values instead372

of the text representation of x whenever a new embeddding layer for x is used (same for y), and373

predict directly the binary class values instead of text labels whenever the new prediction head is374

used. Results of Finetuning LLM and CustomLLM in Figure 5 and Figure 13 show that finetuning375

the intermediate and earlier embedding layers leads to smoother decision boundary compared to376

finetuning the top prediction head.377
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Figure 13: CustomLLM finetuning ablations. Decision boundary after finetuning the prediction head,
input embedding layer, and both layers for the CustomLLM.
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(a) Decision boundaries before SFT on linear data
of Llama3-8b across 4 tasks.
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(b) Decision boundaries after SFT on linear data
of Llama3-8b across 4 unseen tasks.

Figure 14: Generalization ability of Llama-3-8B after supervised fine-tuning on a single binary linear
classification task. The first two columns show the model’s performance on non-linear classification
tasks before and after fine-tuning, while the last two columns demonstrate its ability to generalize to
3-class and 4-class classification tasks.

H.2 Can LLMs finetuned on one in-context learning task generalize to more complex378

in-context learning tasks?379

We demonstrated that SFT on the dataset can smooth the decision boundary on that dataset. In this380

section, we further explore whether a LLM fine-tuned only on a linear task can achiever smoother381

decision boundaries on unseen and more complex tasks. As shown in Figure 14, we compare the382

decision boundaries of Llama3-8b before and after SFT on the linear task only. Unexpectedly, we383

found it generalizes to unseen non-linear tasks as well as 3-class and 4-class classification tasks,384

despite only being trained on a binary linear task. The smoother decision boundaries observed in these385

unseen tasks suggest that fine-tuning on a synthetic in-context learning task can have downstream386

benefits for other tasks, enabling the model to be more robust in in-context learning.387

H.3 Can we train a transformer from scratch to learn smooth decision boundary in-context?388

One may wonder whether a small transformer trained from scratch can provide smooth decision389

boundaries. To answer this, we train TNPs [Nguyen and Grover, 2022] , a transformer-based model390

specifically designed for in-context learning. For each sequence of data points {(xi, yi)}Ni=1 from391

a task C, TNPs learn to predict the query labels yi>m given the query inputs xi>m and the context392

pairs, assuming conditional independence among the queries given the context:393

L(θ) = E

[
N∑

i=m+1

log p(yi | xi, x1:m, y1:m)

]
, (3)

where the expectation is with respect to task C, data points {(xi, yi)}Ni=1, and the number of context394

points m. TNPs employ a specialized mask to ensure the conditional independence assumption.395

We trained TNP models of four different sizes as shown in the Table 1 below. We plot how does396

the TNP models decision boudnary changes as more in-context examples are added in Figure 15.397

TNP models learn smooth deicision boundary for this moon-shaped non-linear task. And we did not398

observe a scaling law of transformer sizes versus the decision boundary smoothness. In contrast the399

smaller model generalize better than the larger model.400

Table 1: TNP transformers model sizes and architectures.
Model Parameters (M) Input embed dim feedforward dim num heads num layers
Small 0.1 64 64 2 3
Medium 0.6 128 128 4 6
Large 1.6 128 256 8 12
Larger 9.7 256 512 16 18
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Figure 15: Decision boundary of TNP models of different model sizes.

H.4 How to Use Uncertainty-aware Active Learning to Learn Decision Boundaries401

We investigate whether the decision boundary can be smoothed by providing the LLM with labels of402

the most uncertain points on the grid as additional in-context examples. Uncertainty is measured as403

the entropy of the probability distribution of the two classes after softmax normalization of the logits.404

Our study focuses on an active learning scheme where new in-context examples are incrementally405

added based on the LLM’s current uncertainty. Initially, we obtain the decision boundary conditioned406

on the existing in-context examples. To refine this boundary, we query the LLM over a grid and407

select the top-k most uncertain points, ensuring they are spatially distant from each other using a408

greedy sampling approach. For labeling these uncertain points, we use a logistic regression model409

well-trained on a larger dataset with perfect accuracy as the ground truth decision boundary. As410

shown in Figure 16, this uncertainty-aware active sampling method results in a smoother decision411

boundary over iterations compared to random sampling. The iterative refinement enhances the412

model’s generalization capabilities, leading to higher test set accuracies and greater sample efficiency,413

requiring fewer additional in-context examples to achieve performance gains. These findings indicate414

that leveraging the LLM’s uncertainty measurements is valuable for selecting new in-context examples415

in resource-constrained settings where labeled data is scarce. We show more examples in below:416

I SFT LLMs for in-context classification417

We used LoRA [Hu et al., 2021] to supervise fine-tune the Llama series models on both non-linear418

and linear classification tasks, including circle, linear, and moon datasets. The models fine-tuned419

are Sheared-Llama-1.3B, Llama2-7B, Llama2-13B, and Llama3-8B. Visualization in Figure 19420

demonstrates that these language models produce smoother decision boundaries after training on the421

classification datasets using SFT.422
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(a) Decision boundaries with different numbers of context examples when using active sampling.
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(b) Decision boundaries with different numbers of context examples when using random sampling.

Figure 16: Comparison of active and random sampling methods. We plot the decision boundaries and
uncertainty plot across different number of in-context examples from 32 to 256, where the in-context
examples are gradually added to the prompt using active or random methods. Active sampling gives
smoother decision boundary and the uncertain points lie on it. The test set accuracies is plotted in the
titles.

J Finetune on in-context examples only423
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Figure 20: Two examples of Llama2-7B finetuned on the in-context examples points, which are
scattered points in the plot.

K Prompt Format for binary classification424

The prompt format we used in our experiments to query the classification result is shown in Figure 21.425

426
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Figure 17: (a) Active sampling
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(b) Random sampling

Comparison of decision boundaries of uncertainty-based actively sampling and randomly sampling
in-context examples. Example 1.

L Limitation427

One limitation of our study is the focus on demonstrating mainly binary classification tasks. Limited428

by the available compute, we chose binary tasks and also for better qualitative reasoning. However,429

we also extended our experiments to tasks with four classes and found that our methods generalize430

to multi-class classification and other more complex tasks. Additionally, the exploration of fine-431

tuning and adaptive sampling methods, although effective in our experiments, may not be universally432

applicable across closed-source LLMs that do not allow access to logits. Future work should consider433

a broader range of tasks and datasets, as well as a more diverse set of LLM models, to validate and434

extend our findings.435
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Figure 18: (a) Active sampling
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(b) Random sampling

Comparison of decision boundaries of uncertainty-based actively sampling and randomly sampling
in-context examples. Example 2.
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Figure 19: Decision boundary of in-context learning on 128 examples across Llama series models
after supervised finetuning with LoRA.
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Given pairs of numbers and their labels, predict the label for a new
input pair of numbers based on the provided data.
Answer with only one of the labels ‘Foo’ and ‘Bar’:

Input: 64 24
Label: Bar
Input: 34 41
Label: Bar
Input: 71 66
Label: Bar
...
Input: 96 49
Label: Foo
Input: 21 56
Label: Foo

What is the label for this input?
Input: 2 3
Label:

Figure 21: Few-shot in-context prompt with n context questions.
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