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Figure 1: AutoPartGen can be applied, by itself or in combination with other models, to the
generation of compositional 3D objects, scenes and cities starting from 3D models, images or text.

Abstract

We introduce AutoPartGen, a model that generates objects composed of 3D parts
in an autoregressive manner. This model can take as input an image of an object, 2D
masks of the object’s parts, or an existing 3D object, and generate a corresponding
compositional 3D reconstruction. Our approach builds upon 3DShape2VecSet,
a recent latent 3D representation with powerful geometric expressiveness. We
observe that this latent space exhibits strong compositional properties, making it
particularly well-suited for part-based generation tasks. Specifically, AutoPartGen
generates object parts autoregressively, predicting one part at a time while condi-
tioning on previously generated parts and additional inputs, such as 2D images,
masks, or 3D objects. This process continues until the model decides that all
parts have been generated, thus determining automatically the type and number
of parts. The resulting parts can be seamlessly assembled into coherent objects
or scenes without requiring additional optimization. We evaluate both the overall
3D generation capabilities and the part-level generation quality of AutoPartGen,
demonstrating that it achieves state-of-the-art performance in 3D part generation.
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1 Introduction

Processing 3D objects, including generating them based on a textual description or an image, is an
important aspect of Spatial Intelligence. Current 3D generators often treat objects or even entire
scenes as monolithic shells. However, many applications require modeling their compositional
structure, decomposing them into well-defined 3D parts to enable reasoning or manipulation at a
finer granularity, such as applying textures and materials to each part separately. More specifically, a
character in a video game should be decomposable into different parts to support animation or allow
the game software to swap clothes or accessories. Windows and doors in the 3D model of a house
need to be separate entities to allow user interaction, such as opening or closing them. Similarly, the
design of a machine must consist of distinct parts to be functional (e.g., the cogs in a clock) or to
enable 3D printing or other kinds of CNC manufacturing.

In this paper, we address the problem of generating 3D objects with a compositional structure. We
introduce AutoPartGen, a new autoregressive model that can directly generate a 3D object part by
part, building on a powerful latent 3D representation. AutoPartGen is robust, flexible, and scalable.
As shown in Fig. 1, AutoPartGen can be applied, either independently or in combination with other
models, to generate compositional 3D objects, scenes, or even cities, starting from 3D models,
images, or text prompts. AutoPartGen solves three key problems to enable such applications: (i)
object-to-parts, where it decomposes an existing 3D object into meaningful parts; (ii) image-to-parts,
where the model generates 3D parts from an unstructured input image; and (iii) masks-to-parts, where
users can provide 2D part masks to guide the generation. In the first two scenarios, AutoPartGen
automatically predicts semantically meaningful 3D parts without requiring part annotations. In the
third scenario, user-provided masks offer fine-grained control over the model partitioning.

Our autoregressive approach has two key benefits. First, it models the joint distribution over the
object parts, ensuring that they fit together cohesively. Second, it enables the model to generate a
variable number of parts, which is crucial since the number of parts is not fixed or known a priori.

We build AutoPartGen on recent advances in latent 3D representations and parameterize the 3D
surface  C R? of the object using a latent vector z € RM*4 where M is the latent length and
d is the latent dimension. We use the 3DShape2VecSet representation [65, 31, 66] and observe,
for the first time, that this representation is inherently compositional. Specifically, we show that
the concatenation z = z(1) @ 2(2) € R2M*4 of two codes z(1) and z(?) decodes into the union
x = M) U @ of the corresponding surfaces (! and (2.

Based on this insight, we propose generating a sequence of latent codes 2(1) | . .., () each decoding
into a corresponding 3D part 2(¥). Crucially, the generation of each part is conditioned on an
overall latent representation of the target 3D object « as well as on all previously generated parts
x® ... (=1 This conditioning improves the consistency of the generated parts, meaning that
they better fit each other compared to the output of the methods that extract parts independently [5, 60].

As noted in [5], object decomposition is an ambiguous problem. For example, a chair might be
decomposed into few high-level parts (e.g., seat, back, legs) or a more granular set of components (e.g.,
individual leg segments, cushion, backrest slats). This choice typically depends on the application
or the preferences of the 3D artist creating the asset. We address this ambiguity by making the 3D
autoregressive model stochastic, using denoising diffusion to generate the next part vector z(*) based
on the previously generated parts z(1), ..., z(*~1) and the available evidence (i.e., the full 3D object,
an image of the object, or 2D part masks, depending on the application). Importantly, we train a
single diffusion model capable of handling all three cases.

We evaluate AutoPartGen against state-of-the-art part-aware 3D generators. Compared to the recent
PartGen [5], AutoPartGen is easier to implement and maintain (as it does not require training
several multi-view image generators) and more accurate. Compared to HoloPart [60], a method that
completes a pre-segmented outer surface of a mesh to form 3D parts, AutoPartGen is more accurate
and significantly more capable, as it can automatically discover parts and reconstruct them from either
a 2D image or a “shell” 3D object, optionally guided by 2D masks, not requiring any 3D annotation.



2 Related Work

Generating a 3D object from a single image, or even just text, faces an obvious challenge: the 3D
object contains significantly more information than the image or the text. This is similar to the
problem of generating images or videos from text, and it is solved by learning a prior, or conditional
distribution, from billions of data samples. However, data of this size is unavailable for 3D objects.
Authors address this problem by involving 2D image or video generators in the 3D generation process.
We distinguish two main camps: multi-view direct and single-view latent 3D generation.

Multi-view 3D Generation. In multi-view 3D generation, one asks the image generator to do
most of the lifting, generating several views of the 3D objects, and thus simplifying extracting a
3D object from them. First, this was done using Score Distillation Sampling (SDS) [42], an idea
explored extensively in follow-ups like GET3D [13], ProlificDreamer [54], DreamGaussian [51],
Lucid Dreamer [9] which seek to achieve multi-view consistency via iterative (and slow) optimization
of a radiance field (NeRF [44] or 3DGS [24]). A significant innovation, pioneered by UpFusion [23],
3DiM [55], Zero-1-to-3 [36] and MVDream [45], was to fine-tune the image generator to directly
produce multiple consistent views of the object. By making the image generator more 3D aware, 3D
reconstruction becomes simpler, as noted in InstantMesh [57], GRM [58], and others [56, 50].

Single-view Latent 3D Generation. The alternative approach is to start from a single image of
the object and directly reconstruct the 3D object from it. Because single-view reconstruction is
extremely ambiguous, this requires to learn a reconstruction function. This was the path taken, for
example, by LRM [19] and others [17, 48]. However, their deterministic reconstruction model cannot
cope well with this ambiguity and often produces blurry outputs. Much better results were recently
obtained by switching to stochastic 3D reconstruction based on latent diffusion. Some of the best
single-image 3D reconstructors are based on the 3DShape2VecSet [65] latent representation (also
similar to Michelangelo’s [67]). Building on it, CLAY [66], DreamCraft3D [47], CraftsMan [30],
TripoSG [3 1], and others [10, 59, 63] are able to generate highly detailed and accurate 3D shapes. We
build on this representation as well and show that it also supports compositionality very effectively.

Composable 3D Generation. Approaches to composable 3D generation typically start by decompos-
ing objects into constituent parts. One common strategy represents objects as mixtures of primitives,
often without semantic labels. For instance, SIF [16] models object occupancy using mixtures
of 3D Gaussians. LDIF [15] represents shapes as a set of local deep implicit functions (DIFs),
spatially arranged and blended using a template of Gaussian primitives. Methods such as Neural
Template [21] and SPAGHETTI [1] achieve decompositions through auto-decoding. SALAD [29]
utilizes SPAGHETTI for diffusion-based generation. PartNeRF [52] expands this concept by employ-
ing mixtures of NeRFs. NeuForm [32] and DifFacto [39] specifically target part-level controllability.
DBW [38] uses textured superquadrics to decompose scenes. In contrast, another research direction
emphasizes explicitly semantic parts. PartSLIP [35] and PartSLIP++ [7 1] segment objects into seman-
tic components from point clouds using vision-language models. Part123 [34] adapts techniques from
scene-level approaches like Contrastive Lift [2] to reconstruct object parts. PartSDF [49] learns latent
codes for parts using an auto-decoder and then uses SALAD for part prediction. Comboverse [&]
leverages single-view inpainting model and 3D generator for composable 3D generation with spatial-
aware SDS optimization. Deep Prior Assembly [69] reconstructs 3D scenes from a single image in a
zero-shot manner by assembling large models. MIDI [20] extend pre-trained image-to-3D genera-
tor to multi-instance generator through costly global attention. CAST [62] reconstructs physically
consistent 3D scenes from a single RGB image using occlusion-aware diffusion and GPT-guided
physics correction. HoloPart [60], a recent work, starts from the shell of a 3D object and a part-level
segmentation for it and performs 3D amodal part completion.

The work most related to ours is PartGen [5]. This squarely sits on the ‘multi-view direct’ camp (see
above). It uses multi-view diffusion models for segmentation and completion of compositional 3D
objects from diverse modalities.

3D Segmentation. 3D parts can be obtained by segmenting a 3D object (although the resulting
parts will generally be incomplete). Some approaches for semantic 3D segmentation such as [08, 28,

, 25, 2] used neural fields to ‘fuse’ 2D semantic features in 3D. Contrastive Lift [2] introduced
a slow-fast contrastive clustering scheme for 3D instance segmentation. Recent methods such
as [26, 64, 43, 3] integrate SAM [27] and often CLIP to model multi-scale concepts, where LangSplat
explicitly encodes scale information and N2F2 learns to bind concepts to scales automatically. Neural
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Figure 2: AutoPartGen generates parts autoregressively. At each step, a 3D latent diffusion model
generate the next part, conditioned on the previously generated parts z(1~+*) the overall object %,

and, optionally, an image I of the object and an image J(*) of the part. The latent representation uses
3DShape2VecSet and the diffusion model is a DiT.

Part Priors [4] used learned priors for test-time decomposition. Additionally, efforts to develop 3D
‘foundation’ models [70, 7] are enabling zero-shot point cloud segmentation across diverse domains.

3 Method

Let x C R? be a 3D object given by a surface embedded in R3. We assume that the object is
compositional, meaning that it can be expressed as the union = = UkK:1 x®) of K disjoint parts
x, ... 2 each of which is also a surface. Concretely, z is usually a 3D mesh created by an
artist, and 2(*) are the components of the mesh that the artist has manually defined when creating the

mesh. These parts are thus defined to facilitate editing of the 3D object or for functional purposes, such
as animation. Generally, the same 3D object can have different and equally valid part decompositions.

Our aim is to learn to generate 3D objects & and their part decompositions (), ... (%) We
consider three different scenarios. In the first scenario (object-to-parts), we are given the 3D object x,
and the goal is to sample a possible decomposition of this object into parts. Furthermore, we may
potentially have an object & which is incomplete with respect to its constituent parts — a case that
may arise if @ is acquired by a 3D scanner that cannot look inside the object or synthesized by a
generator that is not aware of the internal structure of the object, as exemplified by [60]. In this case,
therefore, the goal is to also complete the parts, thus recovering the complete object  as a byproduct.

In the second scenario (image-to-parts), the starting point is an image I : Q — R? of the object,
where 2 C R? is the (finite) image domain. Inferring the object = from a single image is also known
as the image-to-3D problem. Here, the task is to also infer its part decomposition (1), ... &),

In the third scenario (masks-to-parts), we are given, in addition to the image I, K 2D part masks
M®) . Q — {0,1} that indicate the pixels in the image I that belong to each part 2(*). These masks
can be defined manually or, more likely, automatically, utilizing a 2D segmentation model. The
problem is the same as before, but the 3D parts must match the prescribed masks.

In all these cases, recovering the parts (or the object) is ambiguous. These problems
are thus stochastic and are solved by learning suitable conditional probability distribu-
tions: p(z™,..., %) | x) (object-to-parts), p(x™), ..., xK) | I) (image-to-parts), and
p(x® . 2P | 1, MM . M) (masks-to-parts). We develop a single model that can
handle all three cases.



3.1 Latent 3D shape space

Directly defining, modeling, and learning a distribution on 3D surfaces is difficult. We thus introduce
a latent space, providing a finite-dimensional parametrization of the surfaces.

We utilize the VecSet representation developed by [65]. This representation is based on learn-
ing an encoder-decoder pair (E, D). The encoder E takes a collection of N object points
P ={p1,...,pn} = sample, x and maps them to a latent vector z = F(P). Here sample is a
function that samples N random points from the surface of the object x, so that P C a. The decoder
takes the latent vector z and a query 3D point p € R? and evaluates the signed distance function
(SDF) at p as SDF (p|z) = D(p|z). The encoder-decoder pair is thus ‘translational’, in the sense
that it translates one type of representation of the object (the point cloud P) into another (the signed
distance function SDF(+|z)).!

In more detail, the encoder E' compresses the point cloud P into a sequence z = (z1,...,zp) of M
tokens z; € RP. The M < N tokens are obtained by first subsampling the point cloud P into a much
smaller set of points P = {p1,...,pn} = sample,, P C P and then by applying a transformer
neural network to the points in P to output z. The transformer also attends to the large number of
points in P efficiently via cross-attention. The network is designed to be permutation equivariant,
meaning that the order of the points and tokens is immaterial, explaining the moniker ‘VecSet’. The
decoder D takes a point p € R? and the tokens z and outputs the value of the signed distance function
SDF(p|x), also utilizing a transformer neural network in the form of a Perceiver [22].

The intuition behind this representation is that each

20 2@ 20 @ 2@ token vector z; encodes a local region of the surface
I N ———— centered at the point p;. However, the transformer
Decoder Decoder Decoden\  ----oo-oo--. allows tokens to communicate globally, which makes

! — | this interpretation somewhat loose. Empirically, we

T h have discovered that locality, or at least composition-
TENE | i+ ality, is well supported by the representation. As we

_____________

show in Fig. 3, the tokens can be concatenated to
form a new latent vector z = z(!) @ z(? that de-
Figure 3: Compositionality of the VecSet codes into a new surface = (") U 2 that is a
space. Concatenation of two latents will re- good approximation of the union of the two parts,
sult in a spatial combined mesh. without any retraining.

3.2 Latent 3D diffusion

Having established the latent representation z for the shapes, the next task is to learn a model that
can sample a shape given some evidence y, from a conditional probability distribution p(z | y) (for
example, y could be the image I of the object). This utilizes (latent) diffusion. In brief, we define a
sequence of progressively more noised versions of the latent vector z as z; = /a2 + /1 — e,
where € ~ N(0, I) is a Gaussian noise vector and oy, t = 0,1, ..., T is a schedule of noise levels.
Following [46, 14], we introduce the flow velocity v(t, z;, €) = (2¢ — \/ou€) /+/1 — ay. The diffusion
model ¥(t, z¢, €) is trained to predict the flow velocity ©(¢, z; | y) given only the latent vector z; and
the condition y, minimizing the loss £(9) = E(, .+ [|0(t, z¢ | y) — v(t, 2, €)||* averaged over a
training set of evidence-latent vector pairs (y, z), a random time step ¢ and noise .

3.3 Autoregressive 3D part generation

The model described in Section 3.1 generates the entire 3D object o (or, more precisely, its latent
representation z) as a whole. Here, we consider the problem of generating the object parts instead.
Our goal is to learn a single model that can handle all three part generation scenarios: object-to-part,

"For this to work, a few technical assumptions are required. We assume  to be the finite disjoint union of
closed regular surfaces smoothly embedded in R?® without self-intersections. This makes the surfaces orientable;
then, the surfaces split R? into disjoint regions alternating between the outside and inside of the object. In this
way, the signed distance function is well defined. The parts *) are defined in the same way, and in fact, they
are formed by the union of one or more of the closed surfaces that comprise «, so that a signed distance function
is defined for each part too.



Table 1: 3D part completion. Reconstruction quality of the parts and whole object. *reproduced.

Method 3D Mask Parts Whole Object
IoUT F-Scoret CDJ] IoU?T F-Scoret CDJ
HoloPart* [60] v 0.658 0.836 0.065 0.821 0.945 0.018
PartGen [5] X 0.614 0.812 0.121  0.779 0.921 0.033
AutoPartGen X 0.665 0.861 0.047 0.832 0.967 0.012

image-to-part, and masks-to-part, depending on the inputs y provided. An overview of the pipeline is
shown in Figure 2.

To generate an undetermined number of parts K, we consider an autoregressive approach, where
a single part (*) is generated each time, based on what was generated before. The model can
thus be described as a conditional distribution p(z(®) | y, 2, ... (5= where z(*) is the latent
representation of the k-th part and the input y collects the additional evidence available to the model.

The nature of this evidence depends on the reconstruction scenario. In the object-to-part scenario,
y is simply the 3D object x. In the image-to-part scenario, ¥ is the image I of the object. In the
masks-to-part scenario, y is the image I as well as the masked image J*) = M(¥) © I, denoting
which parts should be generated next.

Knowledge of the previously generated parts z(1), ... z(*~1) is essential as this allows the model to
ensure that the next part fits together well with the previously generated ones. Furthermore, in all
cases we consider, the evidence y also provides some evidence on the overall shape of the object.
As suggested in Fig. 3, we can represent the union of parts by simply concatenating their latent
representations. However, for compactness, we found it useful to fuse their codes into one, which we
obtain as: z(1+#~1) = E (U'Z{ sampley D(- | ")), where sampleyy is a function that samples
N points from the surface of the object defined by the zero level set of the SDF function D(-|z(*)),
we call this strategy re-encoding.

We found it optional but useful to pin down the overall object by adding to the evidence y a code 2
for the object as a whole, which is either given outright (object-to-part, Z = F(sample &)) or can
be obtained by the model itself (image-to-part and masks-to-part, Z ~ p(z | I)) by directly providing
an unmasked image to our mode.

With all this, we learn a conditional generator model
20~ p(z Wz, 20D ), (M

where y = ¢ for the object-to-part scenario, y = I for the image-to-part scenario, and y = (I, M (k))
for the masks-to-part scenario. The generation process stops when all the input masks have been
processed, if available, or when the model outputs a predefined special [EoT] token, representing
empty shape. In practice, we represent the [EoT] token using latents whose values are all zeros.

Based on Section 3.2, learning the distribution Eq. (1) amounts to learning a velocity field v (¢, z; |
%, z(L*=1 ) During inference, we use classifier-free guidance (CFG) [18] to modulate the
strength of the conditioning. In the most general case, the model is conditioned by the overall (partial)
object z, the previously generated parts z(*~+#~1)and a masked image pair y = (I, J*)). We
modulate the importance of the geometric and visual conditioning as follows:

vere(t, 2t | i,z(l """ k=1)

+ Wgeom (f;(t7zt ‘ 27'2(1 AAAAA k_l)) - ﬁ(t> zt,w)) + f)(t> zt»®)7 (2)

where wimg and wgeom modulate, respectively, image and geometry conditioning. The different inputs
are implemented by first encoding into tokens, which are then cross-attended by a transformer neural
network computing the flow velocity. Hence, to suppress an input we simply replace it with dummy
tokens. In the same way, we randomly drop some input at training time to allow the model to learn to
use any required subset of the inputs.

Discussion Here, we contrast our model to prior works and justify its design. The most straight-
forward approach to part generation is to sample each part (%) independently from a ‘marginal’
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Figure 4: Image-to-parts scenario. Given an input image, AutoPartGen recovers a compositional
3D object made up of several meaningful and complete parts.

distribution p(2(*)). However, this model lacks a mechanism to tie the parts together and would
result in a soup of random, uncoordinated parts. The simplest such mechanism is to provide evidence
y for the overall shape of the 3D object. For instance, in the image-to-3D case, y = I could be a 2D
image of the object, and we may sample parts from the conditional distribution p(2*) | I). While T
constrains the shape and position of the possible parts, these are still quite ambiguous. This explains
why PartGen [5] conditions part generation on a multi-view image y = Iy of the 3D object x, and
HoloPart [60] starts from a (partial) 3D reconstruction y = & of the object itself.

Even then, the reconstruction context y is likely insufficient because there is no indication of which
part should be reconstructed next. We could sample the parts in a random order, but this would not
be very efficient. Furthermore, because the part decomposition is not unique, we would still need to
extract a coherent subset of parts from the ‘part soup’ so obtained.

Prior works address this issue by explicitly telling the 3D reconstruction model which part to extract
next. PartGen does so by providing a multi-view image Jyy of the part, and HoloPart by providing
a 3D mask Msp of the part, defining distributions p(x®) | Iy, Juv) and p(z® | &, Msp),
respectively. Hence, the problem of generating a coherent collection of parts is offloaded to a
mechanism external to the 3D reconstructor. On the contrary, our 3D generator/reconstructor makes
this determination by itself, operating autoregressively, one part at a time, without additional models.

4 Experiments

We first give the implementation details of AutoPartGen, including network architectures, training
procedures, and datasets. We then demonstrate its performance under various conditions, highlighting
its versatility for different applications. Next, we compare our approach with state-of-the-art 3D
completion methods and provide ablation studies to analyze key design choices. Finally, we showcase
several applications of AutoPartGen.

4.1 Implementation Details

Architecture. Our architecture builds upon the 3DShape2VecSet [65] framework, with some mod-
ifications. Specifically, we increase the input points of the VAE encoder to 32K, and utilize both
point coordinates and normals as input features to better capture fine-grained geometric details.
The diffusion model is implemented as a DiT [4 1] with a width of 2048 and 24 layers. For image-
conditioned generation, we use DINOv2 [40] to encode the input image [ and part-masked images
J®) = I® M*) independently. The resulting features are concatenated along the channel dimension
and passed through a small MLP to match the diffusion transformer input. We provide more details
in the supplementary material.

Training. We use the AdamW optimizer with a learning rate of 1e-4 and train the model for 500K
iterations on 256 NVIDIA H100 GPUs. Training the full model takes approximately 4 days. More
details on hyperparameters and data preprocessing are provided in the supplementary material. During
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Figure 5: Object-to-parts scenario. Given an input 3D object, AutoPartGen regenerates it as a
composition of meaningful and complete 3D parts.
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Figure 6: Masks-to-parts scenario. AutoPartGen reconstructs a compositional 3D object guided by
user-provided 2D part masks. Varying these masks yields different decompositions, potentially at
different levels of granularity.

training, we randomly drop the image condition, the geometry condition, or both with probabilities
of 0.05 each. For CFG, we use wimg = 7 and Weeom = 4 as the default setting.

Training Data. Our training data pipeline draws inspiration from PartGen [5], but is substantially
scaled to encompass approximately 300K assets and 2M individual parts. We start with a collection of
1.8M 3D assets, all licensed that permit Al training. Each asset is stored in gITF/GLB formats, which
contains multiple meshes in it and embeds a hierarchical structure. To manage complexity, if an
asset contains more than a predefined maximum of 15 meshes, we iteratively merge meshes from the
bottom up, until the mesh count is within this limit. To prepare for training VAE and diffusion models,
we compute a truncated signed distance for each part in a normalized space and also render different
views for image-conditioned cases. More details are included in the supplementary materials.

4.2 Object, Image and Masks to 3D Parts Generation

We test AutoPartGen with different types of inputs to demonstrate its versatility. Specifically, we
consider: (1) image-to-parts generation from a single input image, where the images are generated by
text-to-image (2D) generators; (2) object-to-parts decomposition from a full 3D mesh, with meshes
sourced from Google Scanned Objects [ |]; and (3) masks-to-parts generation with user-provided
2D part masks, where the masks are taken from PartObjaverse-Tiny [61]. Figures 4 to 6 qualitatively
demonstrates that AutoPartGen produces accurate and consistent 3D parts across all these input types.

4.3 Comparison to the State-of-the-Art

Evaluation Protocol. We use PartObjaverse-Tiny [0 1] for evaluation, filtering out very small parts
following the protocol of [60]. This dataset comprises objects from diverse categories with manually
annotated 3D part segmentations. We use standard metrics to assess the quality of the reconstructed
geometry: Intersection-over-Union (IoU), Chamfer Distance (CD), and F-score. IoU is calculated
on 642 voxel grids, and the F-score adopts a distance threshold of 0.02. We report the quality of the
reconstruction of individual parts and of the overall object after merging them.

Results. We compare AutoPartGen to two recent methods: PartGen [5] and HoloPart [60]. We focus
on mask-controlled part generation. Recall that HoloPart takes as input the overall partial 3D object
and 3D part segmentations and outputs the complete parts. We adapt both PartGen and AutoPartGen
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Figure 7: Visual comparison of different completion methods. Our approach achieves better
geometric coherence by considering previously generated parts in context.
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Figure 8: Ablation Study. (a) Without autoregressive generation, parts overlap and intersect. (b)
Increasing image guidance wing encourages the model to follow image mask, while a larger geometry
guidance wgeom biases the generation towards a generic part distribution and order in the data.

to solve the same problem. For AutoPartGen, we provide the overall partial 3D mesh and 2D part
masks (a variant of masks-to-parts). For PartGen, we supply four masked views of each part, which
are compatible with its input requirements.

The results in Table 1 show that HoloPart outperforms PartGen, likely due to its access to more com-
prehensive input information (the partial 3D object and 3D part masks). Nevertheless, AutoPartGen
surpasses both baselines across all key metrics: IoU, F-score, and Chamfer Distance. This advantage
holds true for both part completion and overall object reconstruction, indicating that AutoPartGen
generates geometrically precise parts that form a well-formed and coherent whole.

5 Ablation Study

We ablate three factors in AutoPartGen: the autoregressive design, the guidance scale, and the
re-encoding strategy. We provide qualitative evidence for the first two factors and report quantitative
results for all three.

Autoregressive modeling. We evaluate the contribution of the autoregressive design by removing
the autoregressive condition z(1+¥=1) in the masks-to-part setting. This is the only setting where
removal is possible, since external part guidance specifies which part to generate next and when
to stop. As shown in Figure 8(a), removing this conditioning causes parts to overlap and intersect.
Quantitatively, Table 2 shows that enabling autoregression improves IoU and F-score, and reduces
Chamfer Distance (CD), indicating better geometric fidelity and coherence.

Effectiveness of guidance. We analyze the impact of image guidance wing and geometry guidance
Wgeom 1N Masks-to-parts generation. Because image and geometry conditions are randomly dropped
during training, the model learns a data-driven prior for part partitioning and ordering when no
image condition is present. As shown in Figure 8(b), increasing win, aligns parts more closely with
input image masks, while a higher wgeom biases generation toward the learned prior of plausible part
structures. Quantitatively, Table 3 shows that moderate guidance values (for example, wgeom=4 and
Wimg="7) strike the best balance, achieving peak performance in IoU, F-score, and Chamfer Distance.

Effect of re-encoding. We further compare three ways to aggregate the VecSet tokens of different
parts: (i) Re-encoding, which first decodes different parts into meshes, concatenates them, and
re-encodes the concatenated mesh into a fixed-length latent; (ii) Concat, which directly feeds the
concatenated latents into the cross-attention layer of the diffusion model; and (iii) Latent fuser, use a
6-layer Perceiver-style module that fuses the tokens into a fix length of 512 latent tokens. All models



Table 2: Ablation study on autoregressive. Autoregressive generation clearly show better results
in terms of the part completion and overall object coherence. The models are only trained for 200
epochs. Here CD denotes Chamfer Distance.

Autoresressive Part Completion Overall
g IoUt F-Scoret CDJ | IoUT F-Scoret CDJ
X 0.574 0.795 0.067 | 0.783 0.917 0.031
v 0.633 0.825 0.052 | 0.811 0.934 0.022

Table 3: Effects of different guidance scales. We report the three metrics on the part completion
task, where CD denotes the Chamfer Distance.

G | 5 7 9
eometry/Image
| IoU F-score CD | IoU F-score CD | IoU F-score CD
2.5 0.650 0.847 0.051 | 0.639 0.839 0.053 | 0.632 0.833 0.052
4 0.657 0.854  0.050 | 0.665 0.861 0.047 | 0.648 0.852  0.052
5 0.635 0.841 0.062 | 0.662  0.857 0.049 | 0.647 0.851 0.051

Table 4: Effect of re-encoding. All models are trained for 150 epochs with 512 tokens per part under
the same setup.

Method IoU?T F-Scoret Chamfer Distance |
Re-encoding  0.627 0.815 0.055
Concat 0.611 0.804 0.059
Latent Fuser  0.608 0.802 0.061

are trained for 150 epochs with 512 tokens per part under the same setup. As summarized in Table 4,
all three methods perform similarly, with re-encoding slightly outperforms the two other strategies in
terms of IoU, F-score, and CD.

5.1 Applications

3D Scene Generation. Our method’s capability for decomposable object generation naturally extends
to entire 3D scenes. As illustrated in Figure 1 (middle row), given an isometric view of a small scene,
our approach automatically generates individual scene objects such as chairs, clocks, plants, and
tables in a decomposable manner. This decomposable nature facilitates flexible manipulation and
editing of individual scene components.

City Generation. Figure 1 (bottom row) further showcases our method’s potential for large-scale
outdoor scene generation. Drawing inspiration from SynCity [ 2], we employ a text-to-image genera-
tor to produce diverse tile images from text prompts. These tiles are subsequently assembled to form
coherent cityscapes, enabling scalable and controllable generation of complex urban environments.
Further examples and qualitative demonstrations are provided in the supplementary material.

6 Conclusion

We introduced AutoPartGen, an autoregressive model for compositional 3D part generation. By
leveraging latent 3D representations, our method generates coherent object parts sequentially. The
same model can handle different input types, including images, 2D masks, and 3D meshes. Au-
toPartGen outperforms existing methods in part completion and coherence while simplifying the
overall pipeline. Our experiments demonstrate its effectiveness across various tasks and applications,
highlighting its potential for scalable and controllable 3D content creation.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As mentioned in the abstract and introduction, we propose a model Au-
toPartGen that can generate objects composed of 3D parts in an autoregressive manner.
Quantitative and qualitative results indicate that AutoPartGen is efficient and accurate.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the Limitations in detail in the Supplementary Materials.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate “Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: Our work does not include any theoretical claims or results that require formal
proofs.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide enough information to reproduce our results. We provide more
details in the Supplementary Material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We will strive to release the code and model weights as open source. However,
our data license does not allow us to release the data for training the model. Other authors
should be able to obtain a similar dataset using resources like Objaverse.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide such implementation details in the Experiment section and the
Supplementary Material.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We are unable to randomize experiments due to the cost of retraining the
models for each run.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer “Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

17


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide these details in the Experiment section and the Supplementary
Material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We strictly follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide a discussion of Broader impacts in the Supplementary Material.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] Our model is unlikely to present any significant direct risk of misuse.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use a dataset comprising artist-created 3D meshes and commercially
licensed from them.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing experiments or research with human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material

This supplementary material provides additional details and results to complement the main paper. It
includes the following sections:

* Implementation Details: Detailed descriptions of model architectures, training and infer-
ence procedures, and evaluation protocols.

Additional Comparisons with PartGen: Extended evaluation against PartGen.

* 3D Scene Generation: Additional qualitative examples for scene generation.

» City Generation: Details of the city generation pipeline and additional visual results.
* Failure Case: Visualization of failure cases in AutoPartGen.

* Limitations and Broader Impact: Discussion of limitations and potential societal implica-
tions of AutoPartGen.

A Implementation Details

A.1 Training

Our model consists of two primary components: a 3D Variational Autoencoder (VAE) and a diffusion
model.

3D Variational Autoencoder. We adopt the 3D representation from 3DShape2VecSet, extending it
to a larger model capacity compared to the original VAE [65]. Our VAE architecture comprises an
8-layer encoder with a dimension of 768 and a 16-layer decoder with a dimension of 1024. The model
is trained on approximately 1.7M 3D assets, with data augmentation techniques including point cloud
rotations, as suggested by Dora [6]. We employ a signed distance function (SDF) representation
for smoother isosurface extraction. During training, we supervise the VAE using a combination
of surface normal loss, Eikonal loss, and KL divergence regularization, weighted by 10, 0.1, and
0.001, respectively, following TripoSG [31]. To learn a single signed distance field, we calculate
a combination of L.1 and MSE loss on a total of 24,576 points per shape: 8192 each from surface
points, near-surface points, and randomly in the volume. We randomly vary the number of input
tokens between {512, 2048} during training. The model is optimized using AdamW with a learning
rate of 1le—4, linearly warmed up from 1e—5 over the first 3 epochs. We use a batch size of 1536 and
set the weight decay to 0.01. Training is conducted on 128 NVIDIA H100 GPUs for 150 epochs.

Pretraining and fine-tuning. For diffusion training, we first pretrain a general image-to-3D model
on the same 1.7M assets. The diffusion backbone follows DiT [4 1], with 24 transformer layers and
hidden dimension 2048. We train with a fixed token length of 512 for 300 epochs, learning rate le—4,
and batch size 10 per GPU on 128 GPUs. We then fine-tune the model to additionally condition on
masked image and geometry tokens on the part dataset in an autoregressive manner for approximately
300k steps. The image condition is encoded with DINO-v2 [40], and the geometry token is encoded
with our trained 3D VAE. To reduce computation, geometry tokens are used only in the first 12
transformer layers. We apply condition dropping with probability 0.05 independently for the different
combination of inputs simultaneously. Fine-tuning uses AdamW with weight decay 0.01 and batch
size 6 per GPU on 128 GPUs. Subsequently, we increase the token length to 2048 and continue
training for an additional 100k steps on 256 GPUs with batch size 1 per GPU. We adopt the DDIM
scheduler [46] with 1000 steps, use v-prediction, and a zero signal-to-noise ratio [33].

Ordering of parts. In the masks-to-parts setting, the order of the input masks specifies the order in
which parts are generated. Both unmasked and masked images are provided so the model can learn
spatial relationships between each part and the whole object in 3D space. In practice, the model can
accurately infer very small parts (less than 0.1% of the object volume) from very small masks, and
at inference time, users can interactively adjust the image guidance scale to control how strongly
masks and images influence generation. In the automatic setting, a predefined order is used during
training and followed at inference. Training assets are defined in a canonical space, and parts are
sorted lexicographically by their axis-aligned bounding boxes: bottom to top (Z), then left to right
(X), then front to back (Y), following Blender’s ZXY axis convention. Concretely, the minimum Z
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values are compared first; if they are similar, the minimum X values are compared, and if still similar,
the minimum Y values are used..

A.2 Inference

In all scenarios, we use 50 denoising steps during inference. For the object-to-parts setting, geometry
guidance is set to 10, while image guidance is disabled (set to 0). For both the image-to-parts and
masks-to-parts settings, we first perform image-to-3D reconstruction to obtain the overall object
shape. When user-provided masks are available, we apply the default guidance setting, with image
guidance set to 7 and geometry guidance set to 4.

A.3 Evaluation

The most relevant baseline to AutoPartGen is PartGen. We compare the two methods under the
object-to-parts setting, without incorporating any user inputs. For this comparison, we use objects
from the Google Scanned Objects (GSO) dataset [11].

When users provide masks to guide part partitioning, we compare our method with recent approaches,
including HoloPart and PartGen. For evaluation, we use the PartObjaverse-Tiny dataset [61]. To
exclude negligible parts, we filter out objects containing segments that occupy only a small fraction
of the total object volume as in [60].

B Additional Comparison with PartGen

To further highlight the improvements over PartGen, we provide a qualitative comparison in Figure 9.
As shown in the figure, AutoPartGen produces sharper and more detailed meshes, as highlighted by
the red circle. Additionally, the autoregressive generation in AutoPartGen avoids over-generation
issues seen in PartGen, which arise from its lack of explicit modeling of the joint distribution of
different parts. This is a key capability addressed by AutoPartGen.

C 3D Scene Generation

Small scene generation is a natural extension of our method. Specifically, we begin by providing
prompts such as “an isometric view of an office” or “an isometric view of a small bedroom” to an
off-the-shelf 2D text-to-image generator to produce corresponding images. We first generate the
overall shape of the small scene. Subsequently, we apply AutoPartGen again to decompose the scene
into distinct components such as “chair”, “table” and so on. More qualitative examples are provided
in Figure 10.

D City Generation

As shown in Figure 1 of the main paper, we demonstrate the ability of AutoPartGen to generate 3D
cities by integrating it into the SynCity [37] pipeline, replacing its original 3D generator. Specifically,
the pipeline begins with text prompts generated by a large language model, which are then used to
guide a 2D image generator in creating isometric views of individual tiles, taking into account the
context of neighboring tiles. These generated images are then passed to AutoPartGen to produce
compositional 3D tiles.

We present additional examples in Figure 11. As illustrated, AutoPartGen can be seamlessly integrated
into the city generation pipeline, generating different cities, such as a “'medieval town* or a “solarpunk
city”. For further details on prompt generation and 2D image synthesis, please refer to the SynCity

paper.
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Figure 9: Comparison between AutoPartGen and PartGen. AutoPartGen produces more accurate
geometry, as highlighted in the red circle. Additionally, its autoregressive generation prevents the
overlapping parts observed in PartGen, as shown in the yellow circle.

E Failure Cases

We present a failure case in Figure 12. As shown

Input Masked Image  Part Object in the figure, when the object contains identical

parts, the model attempts to predict multiple

parts together, even when only one is masked.

= We conjecture that this behavior comes from

® 5~ the bias in the training data, where some artists

» may have grouped identical parts into a single

mesh. Additionally, as discussed in the ablation

Figure 12: Failure Case. When there are identical study, users may adjust the guidance scale to

parts, the model sometimes will try to predict the enforce stronger adherence to the image, which

parts together even if masks are given. can amplify this effect. Due to the model’s au-

toregressive nature, each prediction depends on

previously generated parts. In the example shown in Figure 12, where both window instances are

generated together, when the mask for the second window is given as input, the model’s prediction

will be (nearly) empty, since the model has already generated that content. Hence, despite this

potential failure mode, the model produces coherent results, maintaining consistency in the overall
shape.

R
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Figure 10: 3D scene generation. AutoPartGen generates 3D scenes while decomposing them into
their constituent elements. The input images are generated by a 2D text-to-image generator.
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Figure 11: City Generation. We showcase AutoPartGen on larger scenes by integrating it within
Syncity [12]. From top to bottom, the images depict a medieval town, a cozy town, and a solarpunk
city.

F Limitations and Boarder Impact

Limitations. While AutoPartGen demonstrates strong performance across all three scenarios, it also
has some limitations that point to potential directions for future improvement. First, the current model
can only generate bounded scenes, as it inherits the spatial constraints from the underlying VAE latent
space. Extending the framework to support unbounded world generation, where scenes can grow or
evolve without a predefined spatial limit, would be both an interesting challenge and a promising
research direction. Second, the method currently lacks explicit control over the granularity of part
partitioning, except in the masks-to-parts setting, where masks can be provided as a way of control.
In the image-to-parts and object-to-parts settings, the decomposition of parts can vary. In future
iterations, one may incorporate high-level controls for granularity levels, such as ‘simple‘, ‘medium®,
and ‘complicated’, to make the system more flexible and interactive. Finally, the model learns part
distributions directly from the training data, which introduces the risk of bias being inherited from
the dataset.

Broader Impact. Although our model is trained on a large amount of data, it may still exhibit
biases that reflect imbalances in the underlying distribution. These biases can influence downstream
tasks and should be carefully evaluated before practical deployment. To mitigate potential misuse
or harmful applications, we recommend implementing safeguards and conducting thorough audits
to ensure responsible usage. Additionally, the training process requires substantial computational
resources, particularly in terms of GPU usage. This raises concerns about energy consumption and
the associated environmental impact, which should be taken into account when scaling or deploying
the model in real-world settings.
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