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ABSTRACT

Despite multi-view clustering has achieved great progress in past decades, it is still
a challenge to balance the effectiveness, efficiency, completeness and consistency
of nonlinearly separable clustering for the data from different views. To address
this challenge, we show that multi-view clustering can be regarded as a three-level
optimization problem. To be specific, we divide the multi-view clustering into
three sub-problems based on K-means or kernel K-means, i.e., linear clustering
on the original multi-view dataset, nonlinear clustering on the set of obtained lin-
ear clusters and multi-view clustering by integrating partition matrices from dif-
ferent views obtained by linear and nonlinear clustering based on reconstruction.
We propose Explainable K-means Neural Networks (EKNN) and present how to
unify these three sub-problems into a framework based on EKNN. It is able to si-
multaneously consider the effectiveness, efficiency, completeness and consistency
for the nonlinearly multi-view clustering and can be optimized by an iterative al-
gorithm. EKNN is explainable since the effect of each layer is known. To the best
of our knowledge, this is the first attempt to balance the effectiveness, efficiency,
completeness and consistency by dividing the multi-view clustering into three dif-
ferent sub-problems. Extensive experimental results demonstrate the effectiveness
and efficiency of EKNN compared with other methods for multi-view clustering
on different datasets in terms of different metrics.

1 INTRODUCTION

As an important problem in machine learning and data mining, clustering aims to group a set of
data points into clusters Jain (2008); Bai & Liang (2020); Bai et al. (2017); Qin et al. (2022a).
The data points in different clusters are highly dissimilar but remarkably similar with data points
in the same cluster. It has different applications in many fields including image processing Sandler
& Lindenbaum (2011), bioinformatics Perner (2002) and signal processing Gupta & Xiao (2011).
Various clustering algorithms have been presented Veldt et al. (2019); Gebru et al. (2016), which
can be divided into four categories including hierachical, partitional, grid-based and density-based
clustering Camastra & Verri (2005); Ng et al. (2001). However, some representive methods Fuku-
naga & Hostetler (1975); Mehmood et al. (2015) belonging to these categories need to calculate the
distances between all data points in the dataset. Consequently, it needs an extremely high computa-
tional cost when dealing with large-scale datasets.

Many methods have been developed to improve the efficiency of clustering algorithms by reducing
unnecessary calculations of distances between data points Bentley (1975); Viswanath & Pinkesh
(2006); He et al. (2011), e.g., spatial index structure Bentley (1975), hybrid clustering Viswanath
& Pinkesh (2006), grid-based clustering and parallel clustering He et al. (2011). However, most
existing methods pay more attention to the effectiveness and the improvements in efficiency is not
so significant as effectiveness. Recently, some methods have been proposed to directly improve the
clustering speed of the existing work Mehmood et al. (2015) without considering extra conditions
Wu & Wilamowski (2017); Zhang et al. (2016). These methods fail to fully explore how to reduce
the calculations of distances between data points. As a well-known algorithm, K-means Queen
(1966) belongs to the linearly separable clustering algorithm and has a low computational cost. It is
not able to well recognize clusters which are nonlinearly separable, leading to unsatisfied clustering
performance.
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Nonlinear clustering is a widely exploited problem due to the complex structure of the data in the real
world. Recently, various types of nonlinear clustering methods have been proposed Ng et al. (2001);
Schölkopf et al. (1998); Cheng (1995) to better handle clusters with arbitrary shapes. Methods based
on kernel extract nonlinear separable clusters by adopting a proper nonlinear mapping between the
input space to a feature space with high dimensions. This nonlinear mapping is called the kernel
function and the representive methods are spectral clustering Ng et al. (2001), kernel K-means
Schölkopf et al. (1998) and mean-shift Cheng (1995). To determine the relation of each data point
to the clusters, these methods need to compute the pairwise similarities of data points. The reason
why they are able to recognize nonlinear clusters is that these approaches employ all data points to
represent a cluster without choosing a center. However, their space or time costs are high, resulting in
unsatisfied results for large-scale datasets. To effectively denote a nonlinear cluster, methods based
on multi-clusters have been proposed Liu et al. (2009); Liang et al. (2012); Wang et al. (2013).
These methods are able to reduce the computation complexity results by replacing data points with
different centers. Therefore, their clustering performances are easily influenced by the chosen center
and they also need high computational costs to obtain centers with high quality.

Information is usually presented in different forms simultaneously in the real world, including mul-
tiple types of features and multiple modalities Sui et al. (2018); Li & Tang (2017). We consider
different types of information as multiple views describing objects. Given web pages, we can ex-
tract different types of features based on hyperlinks, text and possible visual information. Multiple
types of features can be extracted based on text, edge and color for images. Various existing methods
Zhang et al. (2020b;a) have demonstrated that obvious performance improvement can be achieved
since different views complete each other. In multi-view learning, consistency and completeness
are two well-known principles. To achieve the consistency of different views, the existing work
assume that correlations among different views should be maximized Wang et al. (2015). The com-
plete information is important to obtain comprehensive representations. However, existing work
fails to balance the effectiveness, efficiency, consistency and completeness of multi-view clustering.
Accordingly, a challenging problem appears - how to effectively and efficiently perform nonlinear
clustering for multi-view datasets.

Motivated by the fact that different clusters in a complex dataset are nonlinearly separable in the
global geometric space but linearly separable in the local geometric space, we assume that some
small linearly separable clusters make up a nonlinearly separable cluster. Different from existing
studies, we show that multi-view clustering can be treated as a three-level optimization problem
based on this assumption, which is presented in Fig. 1. Our method is expected to have the fol-
lowing merits: effectiveness - the quality of multi-view clustering results is guaranteed, efficiency -
the computational cost is able to be lowered, completeness and consistency - the clustering results
incorporate information from different views and multiple views are consistent, where the symbol
“-” is used for explanation. We divide the multi-view clustering into three different sub-problems:
1) the linear clustering on the set of original data points for every view, 2) the nonlinear clustering of
each view on the set of linear clusters obtained by 1), and 3) multi-view clustering by incorporating
partition matrices from different views obtained by linear and nonlinear clustering based on recon-
struction. Here, the linear clustering makes data points similar with each other in the local geometric
space into the same clusters, which reduces the size of the data for nonlinear clustering. Then, the
efficiency is considered in this manner. Next, we perform nonlinear clustering to partition the linear
clusters into different nonlinear clusters. In detail, we aim to project a given multi-view dataset into a
feature space where the effectiveness, efficiency, completeness and consistency are guaranteed using
three jointly learning objective functions. These three objective functions consist of linear cluster-
ing, nonlinear clustering and multi-view clustering, which are all defined based on the K-means or
kernel K-means objective. As convolutional operation in Convolutional Neural Networks (CNN),
K-means plays the same role in K-means Neural networks. The connections of different K-means
components in Fig. 1 have the same usage as neural network in CNN. Therefore, we propose Ex-
plainable K-means Neural Networks (EKNN) based on K-means for multi-view clustering and use
the iterative method in K-means to optimize the networks. Besides, it is explainable since the effect
of each layer in EKNN is knowable, i.e., the layer of kernel K-means is adopted to obtain nonlinear
clusters. We can also observe that K-means and kernel K-means are special cases of EKNN. We
also extend EKNN for multi-view clustering to the case of multi-view subspace learning, which is
able to learn a desired latent representation shared by different views. The shared subspace represen-
tation can be obtained by the latent representation based on self-expressiveness Elhamifar & Vidal
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Figure 1: Framework of EKNN. Given the multi-view data as input, subspace representations from
different views can be obtained based on self-representative coefficient matrix. The layer of linear
clustering, nonlinear clustering and multi-view clustering are used to achieve the goal of efficiency,
effectiveness, consistency and completeness, respectively. After linear and nonlinear clustering, we
can obtain clustering result for single view. With EKNN, final clustering result can be achieved for
the multi-view data.

(2013), which is used to achieve the final results by the existing clustering algorithms, i.e., spectral
clustering algorithm.

The main contributions in this work are:

• We give a novel insight to the multi-view clustering community, i.e., the multi-view clus-
tering can be regarded as a three-level optimization problem. We propose to divide the
multi-view clustering into three sub-problems: the linear clustering on the set of original
data points based on K-means, the nonlinear clustering of each view on the set of linear
clusters based on kernel K-means, and multi-view clustering by integrating information
from different views for the set of partitions in terms of K-means.

• We propose Explainable K-means Neural Networks (EKNN) based on K-means, which
flexibly integrates the linear clustering, nonlinear clustering and multi-view clustering into
a framework. It is explainable and able to balance the clustering quality, computation
cost, completeness and consistency of multi-view clustering. The iterative method as in
K-means is used to solve the optimization problem of EKNN for multi-view clustering.

• We further extend EKNN for multi-view clustering to the case of multi-view subspace
learning, which is able to learn a desired latent representation shared by different views.
Extensive experiments performed on different datasets demonstrate the efficiency and ef-
fectiveness of EKNN for multi-view clustering in terms of different metrics compared with
the existing clustering algorithms.

The rest of this paper is organized as follows. Section 2 reviews some related work of K-means
algorithm and multi-view representation learning. Section 3 describes the details of EKNN and the
extension of EKNN. In Sections 4 and 5, we conduct experiments to validate the merits of EKNN
and show the conclusion, respectively.

2 THE PROPOSED METHOD

In this section, we present that multi-view clustering can be seen as a three-level optimization prob-
lem and propose EKNN based on K-means for multi-view clustering. For multi-view dataset, we
first explore the properties of each single view and then integrate them to realize multi-view clus-
tering. For each view of a complex dataset, different clusters are nonlinearly separable in the global
geometric space but linearly separable in the local geometric space. Therefore, for each view, we
assume that a linearly separable cluster is made up of the original data points in the dataset and sev-
eral linearly separable clusters make up a nonlinearly separable cluster. Based on this assumption,
the final shared clustering result is achieved by integrating partition matrices from different views
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obtained by linear and nonlinear clustering based on reconstruction, which is complete. The consis-
tency among multiple views can be indirectly obtained by enforcing the final clustering result to be
shared by different views. Built on these observations, we divide the multi-view clustering into three
sub-problems based on K-means or kernel K-means. The proposed EKNN unifies these three sub-
problems into a framework and we solve it by the iterative optimization. EKNN is explainable and
consists of some layers including linear clustering based on K-means, nonlinear clustering based on
kernel K-means and multi-view clustering based on K-means.

2.1 FORMULATED PROBLEM

Given the dataset X =
{
X1, X2, ..., XV

}
, where Xv ∈ Rn×m, V is the number of views, n and m

denote the number of total points and dimensions in the dataset, respectively. As abovementioned,
the proposed EKNN consists of three parts: 1) linear clustering on the set of data points in the
dataset based on K-means, 2) nonlinear clustering on the set of linear clusters obtained by 1) based
on kernel K-means, and 3) multi-view clustering by incorporating partition matrices from different
views obtained by linear and nonlinear clustering based on K-means. For each view, we first define
the part of EKNN for linear clustering based on K-means as:

f
′

Lv = ||Xv −W vV v||2F , (1)

where W v =
[
wv

ij

]
∈ Rn×p is the partition matrix of data points, wv

ij denotes the membership
of the i-th data point to the j-th linear cluster, p denotes the number of linear clusters in W and
V v ∈ Rp×m is the cluster matrix of the v-th view. Note that the value of p is required to be larger
than the number of real clusters k in the dataset. Then data points in the same linear clusters are
close to each other in the original space of X when the value of fLv is low.

Rather than integrating different views in the level of raw features as LMSC Zhang et al. (2017),
we employ the subspace representation Θv =

[
θvij

]
∈ Rn×n for the v-th view based on the

self-representative coefficient matrix, which is obtained by subspace clustering in terms of self-
representation. Since the global or local space is built on the relative relationship between data
points in the extracted feature representation of Xv for the v-th view, a linearly separable cluster
is made up of the refined data points in the dataset and several linearly separable clusters make up
a nonlinearly separable cluster. The subspace representation Θv can reveal the underlying cluster
structures of data. Then Eq. (1) is reformulated as:

fLv = ||Θv −W vV v||2F , s.t. Xv = XvΘv, (2)

where the dimensions of W and V are n × p and p × n here, respectively. The motivation that
some clustering methods need to compute pairwise similarity between points is originated from
the perspective of the final unified learning framework. The computation of the matrix Θ with
n × n dimension is the pre-processing step, which is used as the input to the final unified learning
framework. Considering the case that diag(Θv) = 0 can be removed based on the analysis in Lu
et al. (2012), we do not impose the constraint of diag(Θv) = 0 to Eq. (2). It is observed that the
part of EKNN for linear clustering consists of two layers, i.e., one layer is used for Xv = XvΘv

and the other is employed to achieve fLv = ||Θv −W vV v||2F . Eq. (2) is the first part of EKNN for
linear clustering and we then focus on another two parts. For each view, the second part of EKNN
for nonlinear clustering is defined based on kernel K-means:

fNv = ||Φ(V v)− UvZv||2F
= Tr(Kv)− Tr((Ûv)TKvÛv),

(3)

where Uv =
[
uv
ij

]
∈ Rp×k is the partition matrix of V v , Kv ∈ Rp×p denotes the kernel matrix of

V v , Ûv = Uv(Dv)−
1
2 is the normalized matrix of Uv , Dv = [dvj ] ∈ Rk×k with dvj =

∑p
i=1 u

v
ij , Zv

and Φ(V v) are cluster centers and the representations of V v by a kernel function in the nonlinearly
embedded space, respectively. The kernel used in Eq. (3) is Gaussian kernel. Based on Eq. (3),
the difference of linear clusters belonging to the same nonlinear cluster can be minimized. We then
define the last part of EKNN for multi-view clustering based on K-means as:

fMv = ||W vÛv −Ψv(H)||2F
= ||W vÛv −HGv||2F ,

(4)
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Figure 2: Framework of EKNN for multi-view subspace learning.

where W v and Ûv come from Eq. (2) and Eq. (3), respectively. H ∈ Rn×k denotes the shared par-
tition matrix of the final clustering, Ψv(.) is the mapping for the v-th view based on reconstruction,
Gv ∈ Rk×k is the relation matrix between H and W vÛv . According to the physical meaning of
different notations and their dimensions, we combine W v and Ûv together in Eq (4). Here, we just
consider the simple yet effective mapping, i.e., linear mapping with Gv . We can observe that fMv

is the classical K-means algorithm when W vÛv is fixed. Based on reconstruction, properties from
different views can be encoded into the shared partition matrix H in this manner.

Based on Eqs. (2)-(4), we define the final objective function F of EKNN as:

min
H

F =

V∑
v=1

αfLv + βfNv + γfMv , s.t. ∈ {0, 1} , 1 <

n∑
i=1

wv
ij < n, Xv = XvΘv

k∑
j=1

uv
ij = 1, 1 <

p∑
i=1

uv
ij < p, wv

ij , h
v
ij , u

v
ij ∈ {0, 1} ,

k∑
j=1

hv
ij = 1, 1 <

n∑
i=1

hv
ij < n,

(5)

where α, β, γ > 0 are parameters for balancing different terms. To alleviate the effect of noise, we
apply the Frobenius norm for reconstruction loss based on Xv = XvΘv and use the nuclear norm
as regularization term to ensure the high homogeneity within class. We then rewrite Eq. (5) as:

min
H

F =

V∑
v=1

α||Θv −W vV v||2F + βTr(Kv)− βTr((Ûv)TKvÛv) + γ||W vÛv −HGv||2F

+ η||Xv −XvΘv||2F + µ||Θv||∗, s.t. wv
ij ∈ {0, 1} ,

p∑
j=1

wv
ij = 1, 1 <

n∑
i=1

wv
ij < n,

uv
ij ∈ {0, 1} ,

k∑
j=1

uv
ij = 1, 1 <

p∑
i=1

uv
ij < p, hv

ij ∈ {0, 1} ,
k∑

j=1

hv
ij = 1, 1 <

n∑
i=1

hv
ij < n,

(6)

where η, µ > 0 are weight parameters. The solution for the above objective function, the corre-
sponding algorithm and complexity analysis are shown in Appendix.

2.2 EXPLAINABILITY OF EKNN

Despite the remarkable progress has been achieved by eXplainable Artificial Intelligence (XAI), the
explainability usually refers to the understandability of a model built on post-hoc explanations by
different methods, i.e., visual explanations, text explanations, and feature relevance explanations.
In this work, we show the explainability from the perspective of the model design, which is more
desired in real applications. We express the explainability of the model as transparency, which
consists of algorithmic transparency and model decomposability. We then show why EKNN enjoys
these two explainable properties in the following.
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EKNN owns model decomposability since the input, learned variables and the loss function are
all explainable. To be specific, the input to EKNN corresponds to the original dataset, the learned
variables have their clear physical meanings and the loss function is built on the K-means and kernel
K-means. EKNN also embraces algorithmic transparency and the dynamic behavior or error surface
can be mathematically reasoned, which can make the user better know how the model works.
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(g) NoisyMNIST

Figure 3: Clustering performance of EKNN with different p on different datasets.

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

0

50

100

150

200

250

300

350

400

450

500

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

(a) COIL20

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

100

200

300

400

500

600

700

800

900

1000

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

(b) ORL

0 5 10 15 20 25 30 35 40 45 50

Number of iterations

700

750

800

850

900

950

1000

1050

1100

O
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e
s

(c) BBCSport

Figure 4: Convergence curve of EKNN on COIL20, ORL and BBCSport dataset.

2.3 EXTENSION OF THE PROPOSED METHOD

To learn a more effective latent representation shared by different views for multi-view clustering,
we extend EKNN for multi-view clustering to the case of multi-view subspace learning, which is
shown in Fig. 2. Note that we introduce shared subspace representation ΘC based on the latent
representation H for existing clustering algorithms, i.e., spectral clustering algorithm.
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Then the final objective function F of EKNN for multi-view subspace learning is formulated as:

min
H

F =

V∑
v=1

α||Θv −W vV v||2F + βTr(Kv) + µ
′
||R

′
||∗ − βTr((Ûv)TKvÛv) + η

′
||H −HΘC ||2F

+ η||Xv −XvΘv||2F + µ||Rv||∗ + γ||W vÛv −HGv||2F ,

s.t. wv
ij ∈ {0, 1} ,

p∑
j=1

wv
ij = 1, 1 <

n∑
i=1

wv
ij < n, uv

ij ∈ {0, 1} ,
k∑

j=1

uv
ij = 1, 1 <

p∑
i=1

uv
ij < p,

hv
ij ∈ {0, 1} ,

k∑
j=1

hv
ij = 1, 1 <

n∑
i=1

hv
ij < n, Θv = Rv,

(7)

where k1 > k, k2 > k, µ
′
> 0, η

′
> 0 are parameters. Likewise, we can obtain the solution

to update Uv , W v , Θv , V v , H and Gv by employing Algorithm 1. As in Θv-sub-problem, we
also introduce the auxiliary variable R

′
and Lagrange multiplier Y

′
for solving ΘC . We define

Φ(Y
′
,ΘC − R

′
) = ρ

2 ||ΘC − R
′ ||2F +

〈
Y

′
,ΘC −R

′
〉

. For ΘC-sub-problem, ΘC , R
′

and Y
′

are
updated by:

ΘC =
[
2η

′
HTH + ρI

]−1

.
[
2η

′
HTHv + ρR

′
− Y

′
]
, (8)

R
′
= argmin

R′

µ
′

ρ
||R

′
||∗ +

1

2
||R

′
− (ΘC +

Y
′

ρ
)||2F , (9)

Y
′
= Y

′
+ ρ(ΘC −R

′
). (10)

Based on the learned shared subspace representation ΘC , we use the spectral clustering algorithm
to obtain the final clustering results.

3 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we conduct experiments to demonstrate the effectiveness of the proposed EKNN and
its extension by comparing the clustering performances of them with some representative subspace
clustering approaches on different benchmark datasets. We show the details of the used datasets and
compared methods in Appdendix. The parameter selection regarding the parameters in the proposed
EKNN is also presented in this Appdendix.

Table 1: Clustering performance (ACC%±STD%) on different datasets.

Data sets COMIC DMF MVEC BMVC DiMSC RMSL SSSL-M Ours Ours(extension)

COIL20 74.23± 0.12 72.97± 0.20 70.45±2.24 73.33± 0.0072.78± 1.4482.19±1.3984.36±0.0580.17±0.18 85.22±2.50
ORL 81.29± 1.00 74.45± 2.2971.06± 2.0272.75± 0.00 83.84±1.16 88.10±1.2791.56±0.0186.28±1.50 91.73±2.75

BBCSprot 95.32 ± 0.1876.84± 0.0096.88± 0.0080.70± 0.0095.10± 2.1797.61±0.1893.25±0.2092.00±0.19 94.21±0.32
Reuters 46.27±0.05 40.02±2.40 50.10± 0.00 44.10±0.01 43.70±1.13 54.04±0.5659.46±1.0042.17±0.35 60.55±2.10
Football 82.48±1.01 78.98±1.29 77.08± 2.55 77.42±0.00 75.40±2.26 91.57±0.9389.65±0.1085.21±0.54 91.20±1.90

ANIMAL 58.17±2.00 45.92±1.80 57.96±1.33 50.15±0.00 32.61±1.81 66.16±0.5471.84±1.2059.21±0.68 73.41±1.00
NoisyMNIST 56.90±0.05 53.42±0.31 64.27±0.50 60.43±0.25 43.21±1.20 80.50±0.3181.47±0.0573.18±0.50 82.50±2.50

3.1 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we show the clustering accuracy of EKNN and comparison approaches on different
datasets based on four metrics. Note that we list the clustering results of EKNN and its extension
(EKNN for multi-view subspace learning) on different datasets. For comparison, we show the clus-
tering performance of SSSL-M without supervisory information. According to Tables I-IV, we can
draw some interesting insights as follows:
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Table 2: Clustering performance (NMI%±STD%) on different datasets.

Data sets COMIC DMF MVEC BMVC DiMSC RMSL SSSL-M Ours Ours(extension)

COIL20 78.47± 1.00 85.80± 0.26 87.76±0.89 80.07± 0.0084.61± 1.7594.10±1.3287.43±0.0582.45±0.50 89.20±0.42
ORL 91.20± 0.05 86.27± 1.0080.23± 1.1685.20± 0.0094.02± 1.3594.96±0.4791.47±1.0088.39±0.25 95.10±0.50

BBCSprot 90.23 ± 0.2153.39± 0.0890.32± 0.0270.80± 0.0085.11± 0.1391.73±0.5294.51±0.5086.50±0.80 94.70±1.00
Reuters 36.50±2.31 22.88±1.15 30.17±0.02 25.41±0.00 23.31±0.33 37.49±0.4641.55±0.0531.50±0.47 42.90±1.28
Football 89.57±0.01 83.38±0.79 83.36± 1.11 80.22±0.00 82.16±1.45 92.29±0.4289.78±0.0580.15±2.00 90.25±0.79

ANIMAL 73.02±0.22 56.64±1.31 68.72±0.50 66.76±0.00 44.62±0.89 73.19±0.6077.49±1.0070.76±0.90 79.00±1.92
NoisyMNIST 79.42±0.01 62.48±0.35 72.41±0.31 71.23±1.20 57.36±0.05 84.28±0.5985.91±1.2172.30±0.48 86.20±0.95

Table 3: Clustering performance (F-score%±STD%) on different datasets.

Data sets COMIC DMF MVEC BMVC DiMSC RMSL SSSL-M Ours Ours(extension)

COIL20 70.05± 0.05 63.22± 1.03 64.05±2.12 67.62± 0.0071.99± 0.5081.20±1.7275.89±0.0576.39±1.50 77.10±0.50
ORL 75.98± 2.00 64.61± 2.5661.94± 2.3162.95± 0.0080.71± 1.3884.22±1.4383.26±0.5982.60±0.39 84.20±1.40

BBCSprot 85.23 ± 0.0162.46± 0.0193.72± 0.0280.81± 0.0091.02± 0.1495.35±0.4191.45±0.0590.48±0.27 92.15±0.95
Reuters 40.20±1.01 34.63±1.37 39.59±0.02 37.93±0.00 33.01±0.39 44.20±0.4546.84±0.0140.29±0.39 48.21±2.34
Football 71.90±2.00 70.35±0.87 67.08± 3.70 63.72±0.00 67.13±1.19 83.87±1.5779.14±1.4575.28±1.14 79.47±0.62

ANIMAL 54.80±1.00 32.86±2.17 49.31±2.49 41.47±0.00 20.66±1.10 57.29±1.1458.76±0.0542.16±0.33 60.27±2.84
NoisyMNIST 53.42±0.01 33.42±0.10 50.41±0.04 47.31±0.01 32.40±0.10 70.05±0.1570.16±0.0152.50±0.27 71.30±1.18

. The proposed EKNN and its extension can achieve satisfied clustering performance on
multi-view datasets. The clustering results of the proposed EKNN are not as well as its
extension (EKNN for multi-view subspace learning). It can be explained by the fact that
more complex mappings are able to result in more desired result, i.e., introducing the latent
representation and shared subspace representation in the final objective function.

. On different multi-view datasets, the proposed EKNN still obtain relatively better results
than some multi-view clustering methods, which can be explained by the effectiveness of
dividing the multi-view clustering into three sub-problems based on K-means or kernel
K-means. Besides, utilizing linear clustering as one part in the three-level optimization
problem is able to reduce the overfitting of the final clustering to some degree and indirectly
increase the clustering performance.

. The proposed EKNN and its extension consistently achieve satisfied clustering perfor-
mances on all datasets in terms of different metrics, which demonstrate their robustness
to multiple types of data and the effectiveness of dividing the multi-view clustering into
three sub-problems based on clustering or learning, i.e., 1) linear clustering or learning on
the set of data points in the dataset, 2) nonlinear clustering or learning on the set of linear
clusters obtained by 1), and 3) multi-view clustering or learning by incorporating partition
matrices from different views obtained by linear and nonlinear clustering or learning.

3.2 INFLUENCE FOR NUMBER OF LINER CLUSTERS

In order to evaluate the impact for the number of linear clusters p on different datasets, we vary
it in the range of {20, 40, 60, 80, 100, 120, 140, 160, 180, 200} for the proposed EKNN. According
to Fig. 3, we can observe that the clustering results in terms of different metrics increase with the
increasing value of p and values of these four metrics increase slowly when they reach a certain
value. However, the computing cost also increases with the increasing value of p based on the
complexity analysis of our algorithm. We then choose p = 160 for the proposed EKNN in the
experiment.

3.3 RUNNING TIME

We also present the running time of the proposed EKNN and its extension on Table V, which is
conducted on different datasets. Some conclusions can be obtained as follows:

. The proposed EKNN and its extension are able to own satisfied time costs on with different
number of liner clusters, which validates their efficiencies in the experiment on different
datasets. Due to the efficiency, EKNN uses much less time cost compared with RMSL and
SSSL-M.
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Table 4: Clustering performance (RI%±STD%) on different datasets.

Data sets COMIC DMF MVEC BMVC DiMSC RMSL SSSL-M Ours Ours(extension)

COIL20 96.20± 0.21 95.44± 0.19 95.35±0.49 96.66± 0.0097.14± 0.1197.90±0.4197.18±0.1597.28±0.50 97.92±1.20
ORL 97.84± 0.01 98.31± 0.1497.16± 0.6598.23± 0.0098.97± 0.0599.15±0.0798.42±0.2098.30±0.37 98.70±0.90

BBCSprot 95.14 ± 0.0182.45± 0.0097.02± 0.0190.23± 0.0095.72± 0.1097.81±0.1994.56±1.5295.10±0.59 97.90±1.20
Reuters 68.99±0.17 58.71±1.29 74.17±0.62 69.15±0.00 67.49±0.28 71.37±0.3573.81±0.1769.48±1.35 74.12±0.85
Football 97.00±0.01 96.51±0.44 96.22± 0.54 96.69±0.00 96.74±0.59 98.40±0.1697.68±0.5096.25±0.47 97.95±0.72

ANIMAL 97.25±0.35 97.09±0.22 97.12±0.25 96.98±0.00 96.30±0.23 98.12±0.0598.87±1.0097.10±0.91 98.95±1.82
NoisyMNIST 84.00±0.27 84.05±0.01 84.20±0.05 83.76±0.10 83.52±1.05 83.16±0.3584.20±0.1583.45±1.20 85.10±0.17

Table 5: Clustering speed (s) of EKNN and its extension on all dataset with different p.

Method COIL20 ORL BBCSport Reuters Football ANIMAL NoisyMNIST
RMSL 5210.0 3200.0 3670.5 3001.5 4200.0 1640.6 32000.0

SSSL-M 5560.6 3590.0 3700.5 3130.5 4250.0 1720.5 32406.7
Ours[p=120] 435.2 256.3 359.7 292.5 407.1 1432.2 3125.4

Ours(extension)[p=120] 672.4 432.8 589.2 789.0 639.0 2345.1 7639.0
Ours[p=140] 528.9 423.2 638.2 390.5 542.1 1934.2 4210.5

Ours(extension)[p=140] 830.4 672.9 723.8 920.5 798.2 3410.5 8219.8
Ours[p=160] 634.6 590.3 792.8 414.9 720.5 2319.5 4720.7

Ours(extension)[p=160] 926.6 825.9 904.2 690.3 1025.2 4021.6 8935.0
Ours[p=180] 890.4 746.2 880.5 530.2 843.1 2789.0 5290.5

Ours(extension)[p=180] 1204.3 1190.4 1068.0 725.6 1205.6 4529.0 9534.1

. The proposed EKNN needs less time costs than its extension on all datasets. It can be
explained by the fact that its extension introduces more regularization terms for the effec-
tiveness. Therefore, we can observe that the proposed EKNN and its extension can well
balance the efficiency and effectiveness of multi-view clustering on different datasets.

3.4 CONVERGENCE ANALYSIS

We also show the convergence analysis of the proposed EKNN on COIL20, ORL and BBCSport
dataset in Fig. 4. It can be observed that EKNN can achieve convergence in some iterations, which
further demonstrates the feasibility of EKNN.

4 CONCLUSIONS

In this work, we have shown that multi-view clustering can be regarded as a three-level optimization
problem. We flexibly divide the multi-view clustering into three sub-problems based on K-means
or kernel K-means, i.e., the linear clustering on the set of original data points, the nonlinear clus-
tering of each view on the set of linear clusters, and multi-view clustering by incorporating partition
matrices from different views obtained by linear and nonlinear clustering. The proposed EKNN
unifies three different sub-problems into a framework and we use the iterative algorithm to optimize
the formulated problem. EKNN is able to effectively and rapidly cluster data points from different
views. We also extend EKNN for multi-view clustering to the case of multi-view subspace learning,
which is able to learn a satisfied latent representation shared by different views. Experiments on
different datasets also demonstrate the effectiveness and efficiency of EKNN in terms of different
metrics.
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Nikhil Rasiwasia, José Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert R. G. Lanckriet,
Roger Levy, and Nuno Vasconcelos. A new approach to cross-modal multimedia retrieval. In
International Conference on Multimedia (ACM MM), pp. 251–260. ACM, 2010. doi: 10.1145/
1873951.1873987.

F. S. Samaria and A. C. Harter. Parameterisation of a stochastic model for human face identification.
In 1994 IEEE Workshop on Applications of Computer Vision, pp. 138–142, 1994.

Roman Sandler and Michael Lindenbaum. Nonnegative matrix factorization with earth mover’s
distance metric for image analysis. IEEE Trans. Pattern Anal. Mach. Intell., 33(8):1590–1602,
2011.

Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. Nonlinear component analysis
as a kernel eigenvalue problem. Neural Comput., 10(5):1299–1319, 1998.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv, September 2014.

Jing Sui, Shile Qi, Theo van Erp, Juan Bustillo, Rongtao Jiang, Dongdong Lin, Jessica Turner, Eswar
Damaraju, Andrew Mayer, Yue Cui, Zening Fu, Yuhui Du, Jiayu Chen, Steven Potkin, A. Preda,
Daniel Mathalon, Judith Ford, James Voyvodic, Bryon Mueller, and Vince Calhoun. Multimodal
neuromarkers in schizophrenia via cognition-guided mri fusion. Nature Communications, 9, 2018.
doi: 10.1038/s41467-018-05432-w.

Zhiqiang Tao, Hongfu Liu, Sheng Li, Zhengming Ding, and Yun Fu. From ensemble clustering to
multi-view clustering. In 2017 International Joint Conference on Artificial Intelligence (IJCAI),
pp. 2843–2849, 2017.

Nate Veldt, David F. Gleich, Anthony Wirth, and James Saunderson. Metric-constrained opti-
mization for graph clustering algorithms. SIAM J. Math. Data Sci., 1(2):333–355, 2019. doi:
10.1137/18M1217152.

P. Viswanath and Rajwala Pinkesh. l-dbscan : A fast hybrid density based clustering method. In
International Conference on Pattern Recognition (ICPR), pp. 912–915, 2006.

Chang-Dong Wang, Jian-Huang Lai, Ching Y. Suen, and Jun-Yong Zhu. Multi-exemplar affinity
propagation. IEEE Trans. Pattern Anal. Mach. Intell., 35(9):2223–2237, 2013.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff A. Bilmes. On deep multi-view representation
learning. In International Conference on Machine Learning (ICML), volume 37, pp. 1083–1092,
2015.

Bo Wu and Bogdan M. Wilamowski. A fast density and grid based clustering method for data with
arbitrary shapes and noise. IEEE Trans. Ind. Informatics, 13(4):1620–1628, 2017.

Chang Xu, Dacheng Tao, and Chao Xu. Multi-view learning with incomplete views. IEEE Trans.
Image Process., 24(12):5812–5825, 2015. doi: 10.1109/TIP.2015.2490539.

Mouxing Yang, Yunfan Li, Zhenyu Huang, Zitao Liu, Peng Hu, and Xi Peng. Partially view-aligned
representation learning with noise-robust contrastive loss. In Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 1134–1143, 2021.

Zhiyong Yang, Qianqian Xu, Weigang Zhang, Xiaochun Cao, and Qingming Huang. Split multi-
plicative multi-view subspace clustering. IEEE Trans. Image Process., 28(10):5147–5160, 2019.
doi: 10.1109/TIP.2019.2913096.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao. Low-rank tensor constrained multiview subspace
clustering. In 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1582–1590,
2015.

Changqing Zhang, Qinghua Hu, Huazhu Fu, Pengfei Zhu, and Xiaochun Cao. Latent multi-view
subspace clustering. In Conference on Computer Vision and Pattern Recognition (CVPR), pp.
4333–4341, 2017. doi: 10.1109/CVPR.2017.461.

Changqing Zhang, Yajie Cui, Zongbo Han, Joey Tianyi Zhou, Huazhu Fu, and Qinghua Hu. Deep
partial multi-view learning. CoRR, abs/2011.06170, 2020a.

Changqing Zhang, Huazhu Fu, Jing Wang, Wen Li, Xiaochun Cao, and Qinghua Hu. Tensorized
multi-view subspace representation learning. Int. J. Comput. Vis., 128(8):2344–2361, 2020b.

Yanfeng Zhang, Shimin Chen, and Ge Yu. Efficient distributed density peaks for clustering large
data sets in mapreduce. IEEE Trans. Knowl. Data Eng., 28(12):3218–3230, 2016.

Handong Zhao, Zhengming Ding, and Yun Fu. Multi-view clustering via deep matrix factorization.
In AAAI Conference on Artificial Intelligence (AAAI), pp. 2921–2927, 2017.

Joey Tianyi Zhou, Ivor W. Tsang, Sinno Jialin Pan, and Mingkui Tan. Multi-class heterogeneous
domain adaptation. J. Mach. Learn. Res., 20:57:1–57:31, 2019.

A APPENDIX

A.1 RELATED WORK OF K-MEANS ALGORITHM AND ANALYSIS

As one of the most efficient algorithms for clustering, K-means algorithm uses an initial set of
cluster centers as the start and decreases the sum of squared errors by iteratively refining this set,
which has gained considerable attentions in the related literature. The K-means algorithm aims to
minimize the objective function P as:

P (S, V ) =

k∑
l=1

∑
xi∈Sl

d(xi, vl), (11)

where S = {S1, ...Sk} denotes a partition of the dataset X , k is the number of real clusters in X ,
Sl ⊂ X , ∪k

l=1Sl = X , Sl∩Sj = ∅ for 1 ≤ l ̸= j ≤ k, V = {vl}kl=1 and vl indicates the l-th center
of Sl. According to Eq. (11), we can observe that K-means algorithm is related to two updated
equations based on V and S. The alternative optimization method is used to seek for the optimal
minimized value of P and the updated equations are shown in the following. Given V , we update S
by

xi ∈ Sl, if l∗ = argmin
l

d(xi, vl), (12)

where 1 ≤ i ≤ n, n is the number of data points and 1 ≤ l ≤ k. Given S, we update V by

vl =

∑
xi∈Sl

xi

|Sl|
, (13)

where 1 ≤ l ≤ k. The time complexity is O(nkt) for K-means algorithm with t being the number
of total iterations.

Based on Eq. (11), we can find that the cost of K-means algorithm is much lower than that of cal-
culating the distances between all data points since it just needs to calculate the distances between
centers and data points. We also observe that the clustering performance of K-means is influenced
by some factors, i.e., the initial cluster centers. Different initial cluster centers usually result in dif-
ferent results. However, K-means algorithm often fails to achieve satisfied clustering performance
when clusters are nonlinearly separable.
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A.2 MULTI-VIEW REPRESENTATION LEARNING

Multi-view representation learning aims to effectively explore the complete and consistent infor-
mation from different views. Various multi-view learning methods Kumar et al. (2011); Kumar &
III (2011); Xu et al. (2015); Zhang et al. (2017); Yang et al. (2019) have been proposed by finding
the consistent hypotheses for clustering across different views. For example, canonical correlation
analysis (CCA) Hotelling (1935), kernelized CCA Akaho (2006), deep neural networks based CCA
Andrew et al. (2013), and deep canonically correlated autoencoder (DCCAE) Wang et al. (2015)
are representative methods in multi-view representation learning, which have achieved great suc-
cess. To be specific, CCA minimizes the correlation between two different views to find a shared
representation. CCA is formulated as:

(P 1, P 2) = argmin
P 1,P 2

tr((P 1)TX1(X2)TP 2),

s.t. (P v)TXv(Xv)TP v = I, v = 1, 2,
(14)

where Xv = [xv
1, x

v
2, ..., x

v
n] ∈ Rm×n denotes the representation of the v-th view. n and m represent

the size of dataset and the dimension of the v-th view, respectively. k indicates the dimension for the
shared representation. P v and I denote the mapping matrix and the identity matrix of the v-th view,
respectively. As one method based on CCA, Zhang et al. Cao et al. (2015) presented to exploit the
correlations among multiple views as:

(P 1, ..., PV ) = argmin
P 1,...,PV

V∑
v=1

tr(P vXvLv(Xv)T (P v)T )

+ λ
∑
̸=u

HSIC(P vXv, PuXu),

s.t. (P v)TXv(X(v))TP v = I, v = 1, 2, ..., V,

(15)

where V denotes the number of total views and Lv is the graph Laplacian matrix for the v-th view,
respectively. Li et al. Li et al. (2019) studied complex relations among multiple views and learned
the underlying latent representation. It is formulated by:

min
Θ,H

αLE({Θv
S}

V
v=1 , H; {Θv

E}
V
v=1) + γR({Θv

E}
V
v=1)

+ LS({Xv}Vv=1 , H; {Θv
S}

V
v=1 ,ΘC) + βR({Θv

S}
V
v=1 ,ΘC),

(16)

where LE(.; .) is the loss of reconstruction to update H , R(.) is adopted for representing the term
for regularization, LS(.; .) denotes the loss based on self-representation, Θ including ΘEv , ΘSv and
ΘC are parameters of the model.

Different from multi-view representation learning, cross-view representation learning targets at
searching for mappings between two different views. Numerous methods based on cross-view rep-
resentation learning have been proposed Rasiwasia et al. (2010); Chung et al. (2018); Castrejón et al.
(2016); Zhou et al. (2019). The embedding spaces of two different views are simultaneously learned
and aligned by adversarial training Chung et al. (2018). To solve partially view-aligned problem,
the literature in Yang et al. (2021) simultaneously learns the representation and aligns the data by a
contrastive loss which is robust to noise. The major difference between the above methods and our
work is that they do not take the efficiency for multi-view clustering into consideration while our
method is able to achieve final clustering results with desired efficiency.
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A.3 SOLUTION FOR THE FORMULATED PROBLEM

To make the objective function of EKNN in Eq. (6) separable, we introduce the auxiliary variable
Rv to replace Θv and obtain the equivalent objective function as follows:

min
H

F =

V∑
v=1

α||Θv −W vV v||2F + βTr(Kv)

− βTr((Ûv)TKvÛv) + γ||W vÛv −HGv||2F
+ η||Xv −XvΘv||2F + µ||Rv||∗,

s.t. wv
ij ∈ {0, 1} ,

p∑
j=1

wv
ij = 1, 1 <

n∑
i=1

wv
ij < n,

uv
ij ∈ {0, 1} ,

k∑
j=1

uv
ij = 1, 1 <

p∑
i=1

uv
ij < p,

hv
ij ∈ {0, 1} ,

k∑
j=1

hv
ij = 1, 1 <

n∑
i=1

hv
ij < n,

Θv = Rv.

(17)

We then divide the problem in Eq. (17) into different sub-problems to minimize:

• minWv,V v F with fixed Uv , Rv , Θv , H and Gv .
• minUv F with fixed W v , Rv , V v , H , Θv and Gv .
• minH,Gv F with fixed W v , Rv , Θv , V v and Uv .
• minΘv F with fixed Uv , Rv , W v , V v , H and Gv .
• minRv F with fixed Uv , Θv , W v , V v , H and Gv .

These optimization sub-problems are solved in the following.

(1) W v, V v-sub-problem:

Given Uv , Rv , Θv , H and Gv , minWv,V v F is formulated as:

min
Wv,V v

α||Θv −W vV v||2F + γ||W vÛv −HGv||2F . (18)

We then simplify Eq. (18) as:

min
Wv,Ṽ v

||Θ̃v −W vṼ v||2F , (19)

where Θ̃v = [α
1
2Θv, γ

1
2HGv] is obtained by concatenating Θv and HGv , and Ṽ v =

[α
1
2V v, γ

1
2 Ûv]. Therefore, we can regard Θ̃v and Ṽ v as the new representation of Θv and the

corresponding cluster center matrix, respectively. Then the optimization problem in Eq. (18) is
transformed into a K-means clustering problem regarding Θ̃v and we solve it by the update rules of
W v and Ṽ v . The details are shown in the following.

Given Ṽ v , we update W v by

wv
ij =

{
1, for j = argmin ||θ̃vi − ṽvl ||2, (20)
0, otherwise, (21)

where l ∈ [1, p], ṽvl is the l-th row of Ṽ v and θ̃vi denotes the i-th row of Θ̃v . Given W v , we update
Ṽ v as

ṽvj =

∑n
i=1 w

v
ij θ̃

v
i∑n

i=1 w
v
ij

. (22)
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Then the update rules of W v and Ṽ v can be obtained in this manner.

(2) Uv-sub-problem:

Given Θv , Rv , W v , V v , H and Gv , minUv F is formulated by

min
Uv

β(Tr(Kv)− Tr(ÛvKvÛv)) + γ||W vÛv −HGv||2F . (23)

We further rewrite Eq. (23) by

min
Uv

βTr(Kv)− Tr((Ûv)TLvÛv), (24)

where Lv = βKv + γ(W v)T (In − Ĥv(Ĥv)T )W v and In ∈ Rn×n is the identity matrix. It has
been proved that the equivalence between kernel K-means and spectral clustering algorithm Dhillon
et al. (2007). Thus, Eq. (24) is equivalent to the problem as follows:

max
Ûv

Tr((Ûv)TLvÛv), s.t. (Ûv)T Ûv = Ik, (25)

Therefore, the spectral clustering method can be used to solve this problem.

(3) H,Gv-sub-problem:

Given Θv , Rv , W v , V v and Uv , minH,Gv F is formulated as:

min
H,Gv

V∑
v=1

||W vÛv −HGv||2F . (26)

Likewise, we can solve this problem as the paradigm of K-means. Given Θv , W v , Rv , V v , H and
Uv , we update Gv as

gvl =

∑n
i=1 hilq

v
i∑n

i=1 hil
, (27)

where qvi denotes the i-th row of W vÛv . Given Θv , Rv , W v , V v , Gv and Uv , we update H as

hil =

{
1, for l = argmin

∑V
v=1 ||qvi − gve ||2 (28)

0, otherwise, (29)

where e ∈ [1, k], l ∈ [1, k] and i ∈ [1, n].

(4) Θv-sub-problem:

Given Uv , W v , Rv , V v , H and Uv , minH,Gv F is formulated by:

min
Θv

F =

V∑
v=1

α||Θv −W vV v||2F + η||Xv −XvΘv||2F ,

s.t. Θv = Rv.

(30)

We then adopt the Augmented Lagrange Multiplier (ALM) Lin et al. (2011) to tackle this problem
as follows:

min
Θv

F =

V∑
v=1

α||Θv −W vV v||2F + η||Xv −XvΘv||2F

+Φ(Y v,Θv −Rv),

(31)

where Φ(Y v,Θv − Rv) = ρ
2 ||Θ

v − Rv||2F + ⟨Y v,Θv −Rv⟩, ⟨., .⟩ denotes the Frobenius inner
product, ρ > 0 and Y v is the Lagrange multiplier. We take the derivative with respect to Θv and
then set it to be zero. Then the closed-form solution can be obtained as:

Θv =
[
2η(Xv)TXv + (2α+ ρ)I

]−1

.
[
2η(Xv)TXv + ρRv − Y v + 2αW vV v

]
,

(32)

where I denotes the identity matrix.
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(5) Rv-sub-problem:

Given Θv , W v , H , V v , H and Uv , minRv F is formulated by:

min
Θv

F =

V∑
v=1

µ||Rv||∗, s.t. Θv = Rv. (33)

Then we can obtain

Rv = argmin
Rv

µ

ρ
||Rv||∗ +

1

2
||Rv − (Θv +

Y v

ρ
)||2F . (34)

The Lagrange multiplier Y v is updated by:

Y v = Y v + ρ(Θv −Rv). (35)

Since subproblems for Θv , Rv and Y v are adopted to obtain effective subspace representation of
Xv , we can regard them as the same subproblem for learning W v and V v based on linear clustering.
Then the objective function F of EKNN can be approximately minimized by iteratively solving these
sub-problems. The whole algorithm is presented in Algorithm 1.

Algorithm 1: Algorithm of the proposed method
Input: Multi-view dataset X , number of real clusters k and max iteration s
Output: Clustering result H
Initialize: Randomly initialize Θ, W , U , V , R, Y , H , ρ = 10−6 and G, i = 0
repeat

Update W,V with the fixed Θ, R, U , H and G;
Update U with the fixed Θ, R, W , V , H and G;
Update H,G with the fixed Θ, W , R, V and U ;
Update Θ with the fixed U , W , R, V , H and G;
Update R, Y with the fixed U , W , V , Θ H and G;
i = i+ 1;

until i>s;

It can be observed that the efficiency, effectiveness, completeness and consistency of EKNN are
determined by α, β and γ. The following two cases can be obtained according to the choices of
these three parameters. (1) We can regard the clustering result as linear multi-view clustering based
on K-means if V > 1, α ̸= 0, β = 0 and γ ̸= 0. (2) The clustering result can be seen as multi-view
clustering based on kernel K-means if V > 1, β ̸= 0 and γ ̸= 0.

A.4 COMPLEXITY ANALYSIS

The time complexity of EKNN consists of different parts according to the objective function in Eq.
(6). To be specific, the complexity of solving W v, V v-sub-problem is O(npsV (m+ k)), where s is
the number of total iterations for this clustering. It needs O((k+m)p2V ) to find the solution of Uv-
sub-problem. The complexity to solve H,Gv-sub-problem is O(nk2sV ). Therefore, the total time
complexity of solving these three subproblems is O(npsV (m+ k) + (k +m)p2V + nk2sV ). The
complexities to update Θv , Y v and Rv are O(n3). In general, the total computational complexity
including employing subspace representation Θv is O(n3).

A.5 DATASETS

We adopt seven different datasets in the experiment for comprehensive evaluation, i.e., ORL face
images Samaria & Harter (1994), COIL20 object images Nene et al. (1996), Reuters multilingual
dataset Amini et al. (2009), Football Li et al. (2019), BBCSport documentsGreene & Cunningham
(2006), ANIMAL Lampert et al. (2014) and NoisyMNIST Lin et al. (2021).

. ORL consists of 40 diverse subjects and each subject has ten face images. It has total three
views, which are obtained by different types of features.
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. COIL20 contains over 20 objects and it has 1440 images obtained by the camera with
multiple angles. This dataset is characterized by three views.

. Reuters has six classes and it is a textual dataset with 1000 different newswire, which are
expressed in five languages, i.e., French, Spanish, German, Italian and English.

. Football has 20 clubs from English Premier League in BBC website and there are total 248
football players in the league. This dataset has total nine different views.

. BBCSport is taken from sports articles and it has 544 documents, which consists of two
different views in five topical areas.

. ANIMAL consists of 50 different animal classes and it has total 30475 images. We use
VGG19 Simonyan & Zisserman (2014) and DECAF Krizhevsky et al. (2012) to extract
two types of deep features, which are used as two different views.

. NoisyMNIST has two views with selected MNIST images containing Gaussian noise in
one view and 70k images from MNIST dataset in the second view. We use 10k validation
images and 10k testing image in NoisyMNIST for the experiment as in Lin et al. (2021).

A.6 COMPARED METHODS

We conduct experiments to demonstrate the effectiveness of EKNN for multi-view clustering by
comparing ours with some existing representive methods in the following.

. DiMSC Cao et al. (2015) incorporates complementary information from multiple views by
making use of the diversity among different subspace representations.

. LT-MSC Zhang et al. (2015) employs the low-rank tensor for exploring high-order rela-
tionships among different views.

. DMF Zhao et al. (2017) enforces the nonnegative representation of each view in the last
layer to be consistent by maximizing the mutual information from different views.

. MVEC Tao et al. (2017) produces the basic clustering result for each view and then learns
a shared one based on the obtained basic clustering results.

. RSML Li et al. (2019) comprehensively describes the data and flexibly encodes comple-
mentary information from multiple views. It utilizes backward encoding networks to en-
code specific subspace representations from different views into the latent representation.

. COMIC Peng et al. (2019) maps the data into a space, where cluster assignment consis-
tency and geometric consistency are simultaneously considered.

. SSSL-M Qin et al. (2022b) builds an indicator matrix which is anti-block-diagonal for
pursuing the block-diagonal structure of the shared affinity matrix with small amount of
supervisory information.

We adopt four commonly used metrics for comprehensive investigations, i.e., Accuracy (ACC), F-
score, Normalized Mutual Information (NMI), and Rand Index (RI), which are adopted to reflect
the clustering performance of the proposed method. The higher values of these metrics indicate
more satisfied clustering performance. We conduct experiments on AMD Ryzen5 2600 with 16G
RAM. To reduce the randomness, we run each experiment for 30 times and list the mean as well
as the standard deviation (STD) as the final result. We adopt Gaussian kernel in the experiment for
comparison and analysis.

A.7 PARAMETER SELECTION

The proposed EKNN consists of some parameters, i.e., balance weights α, β, γ, η and µ. The grid
search strategy is employed to find the optimal parameters in this work. To study the influences of
balance weights α, β, γ, η and µ, we change their values in {0.2, 0.4, 0.6, 0.8, 1}. Based on Figs.
5-9, it is observed that our method is relatively robust to the choices of α, β, γ, η and µ when their
values are in {0.6, 0.8, 1}. Moreover, we can remarkably improve the final clustering performance
of the proposed method with good choices of α, β, γ, η and µ. The optimal clustering performance
can be obtained when α = 0.8, β = 0.8, γ = 0.8, η = 0.8 and µ = 0.6. Likewise, the values of
parameters in the extension of EKNN can also be obtained in the same manner and we omit here for
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simplicity. For parameters in the extension version, we set α = 0.8, β = 0.8, γ = 0.8, η = 0.8 ,
η

′
= 0.8, µ = 0.6 and µ = 0.6.
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Figure 5: Clustering performance of EKNN with different α on different datasets.
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Figure 6: Clustering performance of EKNN with different β on different datasets.
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Figure 7: Clustering performance of EKNN with different γ on different datasets.
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Figure 8: Clustering performance of EKNN with different η on different datasets..
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Figure 9: Clustering performance of EKNN with different µ on different datasets.
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