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Abstract

Existing work has observed that current text-to-001
image systems do not accurately reflect explicit002
spatial relations between objects such as left003
of or below. We hypothesize that this is be-004
cause explicit spatial relations rarely appear in005
the image captions used to train these models.006
We propose an automatic method that, given007
existing images, generates synthetic captions008
that contain 14 explicit spatial relations. We009
introduce the Spatial Relation for Generation010
(SR4G) dataset, which contains 9.9 millions011
image-caption pairs for training, and more than012
60 thousand captions for evaluation. In or-013
der to test generalization we also provide an014
unseen split, where the set of objects in the015
train and test captions are disjoint. SR4G is016
the first dataset that can be used to spatially017
fine-tune text-to-image systems. We show that018
fine-tuning two different Stable Diffusion mod-019
els (denoted as SDSR4G) yields up to 9 points020
improvements in the VISOR metric. The im-021
provement holds in the unseen split, showing022
that SDSR4G is able to generalize to unseen023
objects. SDSR4G improves the state-of-the-art024
with fewer parameters, and avoids complex ar-025
chitectures. Our analysis shows that improve-026
ment is consistent for all relations. The dataset027
and the code are publicly available.1028

1 Introduction029

Text-to-image generators such as Midjourney, Sta-030

ble Diffusion (Rombach et al., 2022) and Dalle-3031

(Betker et al., 2023) have recently made rapid ad-032

vances and generated a lot of interest. However,033

those systems are still far from being perfect and034

show some important weaknesses. For instance, as035

observed by (Gokhale et al., 2023) and (Cho et al.,036

2023b) among others, current text-to-image gener-037

ators do not represent well explicit spatial relations038

like left of or below, which limits their capabilities039

1Url will be announced upon acceptance.

Figure 1: Fine-tuning Stable Diffusion on our SR4G
dataset improves results significantly (two versions of
SD shown), surpassing the state of the art in spatial-
aware systems (see Section 4).

for important applications like text-based image 040

editing (Kawar et al., 2023). 041

We hypothesize that the poor performance for 042

explicit spatial relations is due to the lack of such 043

relations in the datasets used to train those models. 044

To support our hypothesis we analysed the LAION- 045

2B dataset (Schuhmann et al., 2022), which has 046

been used to train the state-of-the-art open source 047

model Stable Diffusion. LAION-2B takes the cap- 048

tions from alt-text fields of images on the web. We 049

automatically searched for explicit spatial relations 050

(left, right, below and so on) and found that only 051

0.72% of cations contain the target words. Further- 052

more, 64.1% of these relations are left and right, 053

which cannot be captured by image generators, as 054

random horizontal flips are applied to images dur- 055

ing training. 056

Motivated by the lack of captions with spatial 057

relations, we focus on the training data to improve 058

current end-to-end diffusion models; this is com- 059

plementary to proposed architectural modifications 060

on the system itself (Cho et al., 2023b; Feng et al., 061

2023). More concretely, we propose an approach 062
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to automatically generate synthetic captions which063

contain explicit spatial relations with paired real im-064

ages. Leveraging the object annotations in COCO065

(Lin et al., 2014) and heuristic rules to infer the066

spatial relation between two bounding boxes, we067

build a dataset of real images paired with synthetic068

captions, called Spatial Relations for Generation069

(SR4G).070

We use SR4G to fine-tune two Stable Diffusion071

models, assuming that exposure to image-caption072

pairs with explicit spatial relations will enhance073

the capabilities of the models to represent those074

relations. To evaluate our fine-tuned models and075

compare to the unmodified base models, we use the076

recently proposed VISOR metric (Gokhale et al.,077

2023), which we extend to support more spatial078

relations.079

The contributions of this paper are the follow-080

ing: (1) We release SR4G, the first benchmark081

that allows to fine-tune, develop and evaluate the082

spatial understanding capabilities of text-to-image083

models for 14 explicit relations; (2) Our experi-084

ments show that fine-tuning Stable Diffusion on085

SR4G improves the understanding of spatial rela-086

tions and provides more accurate images; (3) The087

improvement holds even when tested on unseen088

objects, showing that the models are able to learn089

the relations, generalizing to unseen objects; (4)090

The results exceed the state-of-the-art in spatial091

understanding for image generation (Cho et al.,092

2023b; Feng et al., 2023) with fewer parameters093

and avoiding complex architectures or Large Lan-094

guage Models.095

2 Related Work096

Many text-to-image systems have been proposed097

in the last few years. In general, we can distinguish098

between those based on auto-regressive transformer099

architectures, such as the original Dall-E (Ramesh100

et al., 2021), the multi-task system OFA (Wang101

et al., 2022) or CogView2 (Ding et al., 2022);102

and those based on diffusion models, pioneered103

by GLIDE (Nichol et al., 2022), which evolved104

into current latent diffusion models such as Stable105

Diffusion (Rombach et al., 2022) and Attend-and-106

Excite (Chefer et al., 2023).107

Although the results of text-to-image systems108

keep improving, recent work has shown that their109

performance for explicit spatial relations is low110

(Gokhale et al., 2023; Cho et al., 2023b); the mod-111

els struggle to correctly draw textual descriptions112

like a cat on top of a table. To overcome these 113

limitations, VPGen (Cho et al., 2023b) and Layout- 114

GPT (Feng et al., 2023) propose pipeline systems, 115

combining Large Language Models to generate 116

layouts from textual prompts and layout-to-image 117

generators such as GLIGEN (Li et al., 2023). The 118

difference between both systems is that VPGen 119

fine-tunes Vicuna-13B (Chiang et al., 2023) to gen- 120

erate layouts from textual descriptions, whereas 121

LayoutGPT relies on Llama-2-7B (Touvron et al., 122

2023) and in-context learning for the same pur- 123

pose.2 124

To avoid the use of complex and large pipeline 125

systems, (Yang et al., 2023) propose ReCo, an end- 126

to-end system which uses layout descriptions in the 127

input. In this paper, we also focus on end-to-end 128

systems, but we avoid inserting layout information 129

into the input, as this imposes a substantial burden 130

on users compared to simple text inputs. 131

To evaluate the performance of text-to-image 132

generators for explicit spatial relations, dedicated 133

datasets have been created, since commonly used 134

datasets like COCO (Lin et al., 2014), CC12M 135

(Changpinyo et al., 2021) or LAION (Schuhmann 136

et al., 2022), contain very few examples of explicit 137

spatial relations. For example, (Gokhale et al., 138

2023) propose the SR2D dataset, composed of syn- 139

thetic captions created combining two objects in 140

the COCO object vocabulary and four explicit spa- 141

tial relations. SR2D only contains captions and it 142

is thus not amenable for training. Similarly (Feng 143

et al., 2023) published the Numerical and Spatial 144

Reasoning dataset (NSR-1K) which does include 145

caption-image pairs. The spatial part contains only 146

1021 image-caption pairs (738 for train and 283 for 147

test, no development) for 4 relations, insufficient 148

for accurate evaluation and too small for training. 149

Our paper proposes a new dataset with synthetic 150

captions and paired images which can be used 151

to train and evaluate spatial understanding of text- 152

to-image generation systems, containing 14 dif- 153

ferent spatial relations and including 9.9 million 154

image/caption pairs (Section 3). Finally, for eval- 155

uating the generated images, we follow (Gokhale 156

et al., 2023; Feng et al., 2023; Cho et al., 2023b) 157

and use an off-the-shelf object detector to extract 158

bounding boxes and compute the spatial relation 159

between detected objects. 160

2Originally they use LLMs from the OpenAI GPT family,
but they have released a publicly available Llama-2 based
variant of LayoutGPT, which we use in this work.
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3 SR4G: A new synthetic dataset for161

explicit spatial relation generation162

Given the shortcomings of previous datasets, we163

propose to generate meaningful synthetic captions164

for real images, and use them to build the SR4G165

dataset (Spatial Relations for Generation). We in-166

crease the number of spatial relations used in previ-167

ous work (Gokhale et al., 2023; Cho et al., 2023b;168

Feng et al., 2023) including not only projective or169

scale relations, but also topological ones. The full170

list of unambiguous spatial relations we used is as171

follows:172

Projective: left of, right of, above and below.173

Topological: overlapping, separated, surrounding174

and inside.175

Scale: taller, shorter, wider, narrower, larger and176

smaller.177

Our objective is to build a dataset for training,178

development and evaluation. For training, we need179

image-caption pairs, but for evaluation, captions180

with spatial relations are enough, since, following181

previous work (Gokhale et al., 2023; Cho et al.,182

2023b), the outputs of the image generator are183

not evaluated against real images. The evaluation184

method is described in Section 3.4.185

3.1 Captions for evaluation186

We first generate a set of spatial triplets of the form187

⟨subject, relation, object⟩. We build our initial set188

of triplets using all pairwise combinations of the189

80 objects in the vocabulary of COCO (Lin et al.,190

2014), yielding 3, 160 object pairs, and combin-191

ing each pair with all of our 14 spatial relations,192

resulting in 88,480 spatial triplets.193

However, some spatial triplets in the initial set194

are not natural. For example, it is very difficult195

to find natural images for triplets like ⟨skis, above,196

toothbrush⟩ or ⟨truck, inside, cat⟩. We want to197

remove those unnatural triplets from our dataset198

to focus on triplets that appear in natural images.199

Therefore, we identify all triplets that appear at200

least once in the training split of the COCO dataset201

and use that subset to generate our evaluation cap-202

tions, which consists of 68.8% of the entire set of203

triplets (60,836 triplets).204

Using hand-designed templates to be as simple205

as possible (Appendix A.1), we generate the final206

evaluation captions from the set of spatial triplets207

(Figure 4 shows some examples). Those captions208

reflect only the spatial relations between two ob-209

jects, avoiding to include any other textual details.210

3.2 Image-caption pairs for training 211

For training, we need captions with explicit spatial 212

relations and real images in which those relations 213

are depicted. We use the COCO 2017 training 214

split to collect real images with object annotations 215

and define a methodology to generate first spatial 216

triplets from those images, and then textual cap- 217

tions derived from those triplets. 218

Given an image I and a list of n objects OI = 219

{o1, o2, . . . , on} belonging to I , the goal is to 220

generate a triplet with a valid spatial relation r 221

between two objects in OI : os and oo, where 222

s, o ∈ {1, . . . , n}. For each object oi, we know 223

its respective label li and bounding box (bbox) 224

bbi = {x0i , y0i , x1i , y1i }, that is, four coordinates 225

that define the position and size of oi in the image. 226

Therefore, tj = ⟨ls, r, lo⟩ is a triplet defined in 227

SR4G that is represented in I . We call this set of 228

valid triplets TI = {t1, . . . , tm}, where m is the 229

number of valid spatial relations in the given image 230

I . This implies that each relation r has to be linked 231

to a heuristic rule fr where, given the bboxes of 232

two objects, it determines whether a given triplet is 233

instantiated or not (see Eq. 1). We follow (Johnson 234

et al., 2018) and define fr functions, which rep- 235

resent unambiguous spatial relations between two 236

object bounding boxes (see Appendix A.2). 237

tj = ⟨ls, r, lo⟩ ∈ TI ←→ fr(bbs, bbo) (1) 238

We apply data augmentation strategies (random 239

crops and horizontal flips) to the original COCO 240

images in order to obtain an image I and its object 241

list OI . Then, we randomly select two objects 242

as os and oo, compute the list of valid relations 243

using our predefined fr functions, and randomly 244

select one of these relations, building the j-th valid 245

relation of I without computing the entire TI set: 246

tj = (ls, r, lo). Finally, we verbalize the obtained 247

triplet tj using the same hand-designed templates 248

as for the evaluation captions (Section 3.1). 249

3.3 Dataset splits 250

We build two different splits of SR4G, namely the 251

main and the unseen splits. The main split con- 252

sists of all the spatial triplets/captions of the SR4G 253

test set (see Section 3.1). The training instances 254

are generated on-the-fly without any restrictions on 255

the triplets, which means that the same triplet can 256

be in train, validation and test splits. For the un- 257

seen split, we randomly divide the COCO dataset’s 258

80 objects into training, validation and test sets of 259
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Splits Images
Unique Captions

I/C Pairs
Train Val Test

Main 103.4k 60.8k 2.5k 60.8k 9.9M
Unseen 83.6k 46.9k 2.5k 8.0k 4.8M

Table 1: SR4G dataset’s statistics. Images column
refers to the number of images used during training,
Unique triplets column represents the amount of unique
triplets, and I/C pairs refers to the number of unique
image/caption pairs that can be generated.

|Otrain| = 45, |Oval| = 5 and |Otest| = 30 objects,260

respectively. More specifically, during training we261

just take objects from Otrain into account when262

randomly selecting bboxes to dynamically build263

spatial captions. For validation, as there are few264

combinations that can be built with Oval, we se-265

lect triplets that contain one of these 5 objects at266

least once and do not contain any object that is set267

aside for the test split. For testing purposes we268

use triplets built by only using objects from Otest.269

Table 1 shows the relevant numbers of our splits270

(more details in Appendix A.3).271

3.4 Evaluation metrics272

To evaluate the performance of text-to-image sys-273

tems for spatial relations, we use three evaluation274

metrics proposed by (Gokhale et al., 2023):275

Object Accuracy: Given a generated image I ′276

and two object labels la and lb, object accuracy277

measures whether both objects appear in I ′. We ob-278

tain a list of objects for I ′, i.e., LI′ = {l1, . . . , ln},279

by using an off-the-shelf open-vocabulary object280

detector, OWL-ViT (Minderer et al., 2022). This281

metric is useful for analyzing the object generation282

capabilities of an image generator, as it does not283

take the relation r into account.284

OA(I, la, lb) =

{
1 if la, lb ∈ OI′

0 else
(2)285

VISOR: Given a generated image I ′ and a spa-286

tial triplet t = (la, r, lb), VISOR measures whether287

both objects appear and if the spatial relation r is288

valid between them. Function fr takes the bound-289

ing boxes of both objects (bba and bbb) and com-290

pares them to check if the triplet is valid. Bounding291

boxes are provided by the object detector. VISOR292

increases both when the model generates the re-293

quested objects and when the ratio of correctly294

generated relations increases, showing the ability295

of the model in visualising spatial triplets. 296

VISOR(I, t) =


1 if la, lb ∈ LI′ ∧

fr(bba, bbb)

0 else

(3) 297

VISORCond: This is the proportion of correctly 298

generated spatial triplets, taking into account only 299

images in which both objects are generated. 300

Given that our contribution focuses on spatial 301

understanding, we focus on VISORCond, as it quan- 302

tifies the ability of the model to represent spatial 303

relations correctly without considering its object 304

generation capability. It is the most informative 305

measure, specially when comparing between sys- 306

tems which might have different object generation 307

abilities, as it isolates the understanding of spatial 308

relations. We thus use it as our main performance 309

metric in the experiments, although we also report 310

the other two metrics, while extending the number 311

of spatial relations from 4 to 14, 312

4 Experiments and Results 313

In this section we show that end-to-end models im- 314

prove their capability of depicting spatial relations 315

when they are fine-tuned with synthetic training 316

examples. Furthermore, we find that our fine-tuned 317

models SDSR4G generalize to unseen objects dur- 318

ing fine-tuning. 319

4.1 Experimental set-up 320

Models. We use Stable Diffusion (SD) as the base 321

model, as it shows the best performance on spatial 322

relation generation among publicly available end- 323

to-end models (Gokhale et al., 2023). We use two 324

different versions of Stable Diffusion: SD v1.4 and 325

SD v2.1, which generate images of 512x512 and 326

768x768 pixels, respectively. 327

Training. To fine-tune SD models on SR4G, we 328

use the original loss function proposed by (Rom- 329

bach et al., 2022), i.e., the mean square error over 330

latent noise representations. We fine-tune SD mod- 331

els for 100k training steps with an effective batch- 332

size of 64 instances, evaluating on the validation 333

split every 5k steps. After training is complete, we 334

select the checkpoint with the highest VISORCond 335

value on the validation split. Following (Gokhale 336

et al., 2023), we generate four images per spatial 337

relation in all of our evaluations for consistency. 338

More details can be found in Appendixes B and C. 339
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Model VISORCond ↑ VISOR ↑ OA ↑

Main split

SD v1.4 60.9 17.6 29.0
SD v2.1 64.0 27.4 42.8
SDSR4G v1.4 69.0 26.8 38.9
SDSR4G v2.1 69.5 31.7 45.6

Unseen split

SD v1.4 60.1 17.3 28.7
SD v2.1 64.0 28.4 44.4
SDSR4G v1.4 68.9 23.7 34.4
SDSR4G v2.1 69.4 29.4 42.4

Table 2: Results obtained for the main and unseen splits
of SR4G. Base models SD v1.4 and v2.1 are shown
alongside with fine-tuned SDSR4G models.

4.2 Main results340

Table 2 shows the results for our base and fine-341

tuned models for both SR4G splits, with the best342

results according to the main comparison metric in343

bold.344

Main split: We observe that the SDSR4G mod-345

els improve all metrics respect to the base SD mod-346

els, increasing both object and spatial relation gen-347

eration capabilities considerably. These results are348

in line with our initial hypothesis, proving that the349

exposure to image-caption pairs with explicit spa-350

tial relations improves spatial relation generation.351

Our results show that SDSR4G v1.4 and v2.1 have352

almost the same spatial capabilities, but v2.1 excels353

for object rendering. Notice that the differences of354

the base SD models are much bigger.355

Unseen split: To analyse whether the improve-356

ments of SDSR4G on the main split come from357

learning specific correlations between pairs of ob-358

jects, or between objects and spatial relations, we359

check the results on the unseen split. The unseen360

split uses different objects in train and test, and it361

is thus designed to decouple objects from spatial362

relations, allowing us to focus on the performance363

for spatial relations in isolation. In Table 2, we364

see that both versions of SDSR4G consistently im-365

prove the VISORCond and VISOR metrics over the366

base SD systems, also for the unseen split. It is367

specially interesting that VISORCond, which is not368

influenced by object accuracy, is almost the same369

as for the main split. That means that our models370

are generalizing to unseen objects during the fine-371

tuning step. The behaviour of both versions is very372

similar to the main split.373

Model Par. VISORCond ↑ VISOR ↑ OA ↑

Main split

LayoutGPT 8.1B 64.7 24.7 38.1
VPGen 14.1B 67.7 34.5 51.0
SD v2.1 1.3B 64.0 27.4 42.8
SDSR4G v2.1 1.3B 69.5 31.7 45.6

Unseen split

LayoutGPT 8.1B 64.7 24.7 38.1
VPGen † 14.1B 68.4 37.0 54.1
SD v2.1 1.3B 64.0 28.4 44.4
SDSR4G v2.1 1.3B 69.4 29.4 42.4

Table 3: Comparison to the state of the art, including
model size for both splits. † VPGen is contaminated, as
it was trained on layouts containing spatial triplets that
appear in our test split.

Image quality: As we are using synthetic cap- 374

tions to train, we make sure that the image gener- 375

ation capabilities of these models do not worsen 376

over training. Therefore, we monitor the Fréchet 377

Inception Distance (FID) (Heusel et al., 2017) be- 378

tween the model’s generated images from human 379

annotated captions (retrieved from the COCO 2017 380

validation split) and their respective real images. 381

During all of our experiments FID values have been 382

constant and have not worsen after training. A ran- 383

dom set of examples can be seen in Figure 4. 384

4.3 Comparison with the state of the art 385

We also compare against two recent state-of-the- 386

art pipeline models: LayoutGPT and VPGen. The 387

backbone Large Language Model (LLM) of VP- 388

Gen has already been fine-tuned for layout genera- 389

tion,3 so we use VPGen with no further adaptation. 390

Note that the layout generation module of VPGen 391

has been trained on COCO, and thus contains the 392

objects underlaying our test sets. In the case of Lay- 393

outGPT, adaptation is performed with in-context 394

learning. We thus define a set of instances that 395

will be used as in-context examples to condition 396

the 7B parameter Llama-2 LLM. For this purpose, 397

we randomly extract 400 caption-layout pairs per 398

different relation from our SR4G dataset, and build 399

a set of 5.6k instances of caption-layout pairs. For 400

inference, k = 8 examples are chosen by com- 401

puting the CLIP-based similarity (Radford et al., 402

2021) between the input caption and the set of in- 403

3They use three different datasets to obtain caption-layout
pairs to fine-tune the LLM: Flickr30K entities (Plummer et al.,
2015), COCO instances 2014 (Lin et al., 2014), and PaintSkills
(Cho et al., 2023a).
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Type Relation Main Split Unseen Split

Pr
oj

ec
tiv

e Left of 70.3 (+7.0) 69.8 (+8.8)
Right of 72.4 (+8.0) 67.9 (+3.9)
Above 72.0 (+4.5) 70.4 (+2.2)
Below 71.4 (+4.5) 70.3 (+2.8)

To
po

lo
gi

ca
l Overlapping 86.9 (-4.9) 84.0 (-5.2)

Separated 79.5 (+17.0) 84.8 (+18.5)
Surrounding 29.8 (+2.3) 21.7 (-2.1)
Inside 43.4 (-7.4) 39.2 (-6.4)

Sc
al

e

Taller 71.2 (+1.6) 75.6 (+5.0)
Shorter 67.5 (+8.5) 69.0 (+11.9)
Wider 71.6 (+4.3) 73.0 (+6.9)
Narrower 69.3 (+9.3) 67.1 (+5.0)
Larger 71.5 (+0.5) 74.7 (+1.9)
Smaller 65.2 (+12.7) 63.3 (+13.5)

Table 4: VISORCond values per relation obtained by
SDSR4G v2.1. The difference in VISORCond between
SD v2.1 and fine-tuned SDSR4G is given in brackets.

context examples, retrieving the top-k most similar404

examples and using them to condition the model to405

generate the proper layout.406

Table 3 shows the obtained results for both407

SR4G splits. The same trend is observed, i.e.408

SDSR4G v2.1 clearly outperforms both state-of-409

the-art pipeline systems in terms of VISORCond,410

which measures the correctness of the spatial re-411

lation when both objects are generated. The im-412

provement is especially important considering that413

both pipeline systems are significantly larger in414

terms of parameters, with a more complex architec-415

ture involving LLMs, and that both are specifically416

designed to generate scene layouts.417

The table also shows the two auxiliary metrics,418

with VPGen obtaining the best results for object ac-419

curacy and VISOR. That is expected, since VPGen420

has been trained specifically for object generation,421

and VISOR is calculated over all the recognised422

objects. In fact, the better VISOR results are only423

due to better object accuracy, as our method pro-424

duces better spatial configurations after factoring425

out object accuracy from VISOR (VISORCond).426

Also note the contamination issue for the unseen427

split, as the text-to-layout step of VPGen has been428

fine-tuned on COCO. This implies that VPGen has429

seen text-layout pairs using the entire set of objects,430

having been trained on all the objects in our test431

set.432

5 Analysis433

We show an extensive analysis of the consequences434

of fine-tuning on SR4G, covering performance per435

Figure 2: The horizontal axis depicts the difference of
VISORCond values between relation pairs with oppos-
ing meanings defined on each side of the vertical axis.
Results for SD and SDSR4G v2.1 on the unseen split.

relation, biases for opposite relations, performance 436

by frequency of triplets and qualitative examples. 437

5.1 Analysing performance per relation 438

In Table 4 we show VISORCond values per spatial 439

relation for SDSR4G v2.1 (our best model), both in 440

the main and unseen splits. 441

First, we observe that all projective relations 442

significantly improve for both splits. The improve- 443

ment is bigger for left of and right of. That might be 444

due to random horizontal flips applied only to the 445

images during the training of SD models, which are 446

expected to damage the model’s ability to correctly 447

learn those relations. 448

Topological relations show a more variable be- 449

haviour. In the case of separated, our unique 450

topological relation that does not involve gener- 451

ating overlapping objects, SDSR4G is capable of 452

improving its performance by up to 18.5 points 453

VISORCond. However, for overlapping, fine- 454

tuning is not helpful. SD v2.1 already knows how 455

to generate images with the overlapping relation, 456

achieving VISORCond values of 91.8 and 89.2 in 457

both test splits. On the other hand, surrounding and 458

inside seem to be especially hard. The VISORCond 459

values are low for the SD model and fine-tuning 460

even makes them worse (especially for inside). 461

This is a limitation of our current approach, and dif- 462

ferent training strategies must be explored to tackle 463

this issue. 464

Finally, SDSR4G improves for all scale relations. 465

It is curious to observe that taller, wider and larger 466

perform better than their opposites, even though the 467

improvements over the base SD model are more 468

modest. That suggests that the base SD model 469

might have a bias towards those spatial relations. 470
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(a) Results using main splits. (b) Results using unseen splits.

Figure 3: Correlation between the frequency of SR4G triplets in COCO training instances (shown in the logarithmic
horizontal axis) and their respective VISORCond results for SD v2.1 and SDSR4G v2.1. Triplets are grouped by
frequency for visibility.

5.2 Analysing biases for opposite relations471

Most of our relations have an opposite relation, i.e.,472

right of is the opposite of left of. There are a total473

of six pairs of opposites in our relation set, which474

are listed in Figure 2 along with the difference in475

performance for these pairs before and after fine-476

tuning using the unseen split.477

We want to see whether performance biases be-478

tween opposites are reduced by fine-tuning. Figure479

2 shows strong preferences of our base model SD480

v2.1 (in Appendix D, we show that those differ-481

ences are correlated with the rate of appearance of482

each relation in the pretraining dataset of the SD483

models). We can also observe that SDSR4G v2.1484

significantly reduces the difference in VISORCond485

between all relation pairs (except for wider and486

narrower), showing that fine-tuning reduces the487

inherent biases of the base model.488

5.3 Performance by frequency of triplets489

As SR4G is derived from natural images, some490

triplets are more frequent than others. To mea-491

sure how the frequency of training triplets affects492

the results of our fine-tuned models, in Figure 3,493

we depict the VISORCond values of SD v2.1 and494

SDSR4G v2.1 depending on the frequency of each495

triplet in the COCO training set.496

Figure 3a shows the results for the main split. In497

this case, the image generator has seen test triplets498

during training and, as expected, the more frequent499

these triplets, the greater the improvement after the500

fine-tuning. We can also observe that, even though501

SD models have not seen COCO images before,502

its performance is correlated with our computed 503

frequencies. 504

On the other hand, Figure 3b shows a similar plot 505

when training and evaluating on the unseen split. 506

We observe similar correlations as in Figure 3a with 507

both models. However, now we are evaluating on 508

images generated from unseen triplets composed by 509

objects that have not been seen during fine-tuning. 510

Therefore, these results show that it is easier to 511

transfer what is learnt to the most common triplets, 512

even though we have not trained on them. 513

5.4 Qualitative Analysis 514

In order to visualize and qualitatively evaluate the 515

generated images, we take SD v2.1 and SDSR4G 516

v2.1 fine-tuned on the main split. We discard the 517

most common and uncommon spatial triplets. The 518

rationale is that the most common triplets often con- 519

tain easy-to-generate relations (e.g., ⟨truck, larger, 520

dog⟩) as generating both objects is enough to in- 521

stantiate the relation itself, whereas the least fre- 522

quent ones do not seem natural and would not be 523

used in a prompt (e.g., ⟨bus, shorter, traffic light⟩). 524

Therefore, we randomly pick triplets that occur be- 525

tween 100 and 1,000 times in COCO annotations 526

(we obtain that range from the frequency analysis 527

in Figure 3). We start generating images using ran- 528

dom captions. We keep the first nine image pairs 529

where both objects are generated correctly. Those 530

nine pairs can be found in Figure 4, where we also 531

indicate whether the spatial relation in the caption 532

is depicted correctly or not. 533

Some of the captions of Figure 4 describe easy 534

spatial relations, such as number 2, 3, 6, 7 and 9, 535
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4) A person overlapping a sheep.

7) A laptop shorter than a dining table.

1) A bowl right of a sandwich

5) A dog and a chair separated. 6) A motorcycle smaller than a bus.

3) A cup smaller than a hot dog.

8) A teddy bear right of a book.

SD SDSR4G SD SDSR4G

SD SDSR4G SD SDSR4G SD SDSR4G

SD SDSR4G

SD SDSR4G SD SDSR4G

2) A traffic light taller than a bicycle.

9) A refrigerator and a book separated.

SD SDSR4G

Figure 4: Image generation examples by SD v2.1 and SDSR4G v2.1 fine-tuned on the main split. Following our
relation-specific heuristics, if the relation in the caption is correctly depicted, we indicate this with a green tick.
Otherwise, there is a red cross in the top-right corner of the image.

where usually, if the correct objects are generated,536

the relation is also correct. SDSR4G generates those537

relations correctly, except for 3, which we denoted538

as a failure because the cup is not fully visible (the539

decision is arguable). SD fails for 2, rendering540

the traffic light very oddly. Captions 1, 4, 5 and541

8 are more demanding: SDSR4G correctly depicts542

all the relations (right of twice, overlapping and543

separated), but SD fails for 1, 5 and 8. The failures544

are interesting: for 1 and 8, the spatial relations of545

the captions might not be the most typical ones in546

natural images, and SD struggles. However, for 5 it547

should be very common to see dogs and chairs sep-548

arated, but SD does not follow the caption, which549

suggests that the relation separated is not known550

to SD.551

6 Conclusions552

In this work we define a dataset generation pipeline553

to build synthetic captions containing explicit spa-554

tial relations from COCO images and annotations.555

Fine-tuning diffusion models with these image-556

caption pairs outperforms the original diffusion557

models and also surpasses state-of-the-art pipeline558

models for spatial relation generation. We find559

that SDSR4G generalizes to unseen objects during560

fine-tuning. Further analysis shows that SDSR4G 561

learns to better depict projective and scale relations, 562

reduces the bias that the original model has for op- 563

posite relations, and generalizes better to spatial 564

triplets that are more frequent in real images. 565

As future work, we plan to expand our relation 566

set to include depth information with relations such 567

as in front of and behind. We would also like to 568

explore new ways to collect and annotate natural 569

captions with spatial relations and evaluate state- 570

of-the-art models with them. 571

7 Limitations 572

SR4G only contains captions in English, which lim- 573

its its usage for non-English languages. To make it 574

multi-lingual, caption generation scripts should be 575

modified. On the other hand, SR4G is focused on 576

unambiguous spatial relations defined over bound- 577

ing box information, since they can be generated 578

and evaluated automatically using off-the-shelf ob- 579

ject detectors and heuristic rules. In that sense, 580

orientation relations are discarded, even though 581

their analysis is very interesting. Finally, we focus 582

on 2D spatial relations. To introduce 3D relations 583

should also be possible, using off-the-shelf depth 584

estimation systems for images. 585
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A Details on SR4G Dataset739

In this appendix, we give more details about our740

main and unseen splits, as well as defining our741

hand designed templates and heuristics used to de-742

termine whether an image contains a given spatial743

relation between two objects.744

A.1 Hand designed templates745

The templates we use to generate captions from746

spatial triplets are shown in Table 5. As can be seen,747

those templates are designed to be as simple as748

possible, omitting attributes and verbs and focusing749

Type Relation Template

Pr
oj

ec
tiv

e Left of ⟨A⟩ to the left of ⟨B⟩.
Right of ⟨A⟩ to the right of ⟨B⟩.
Above ⟨A⟩ above ⟨B⟩.
Below ⟨A⟩ below ⟨B⟩.

To
po

lo
gi

ca
l Overlapping ⟨A⟩ overlapping ⟨B⟩.

Separated ⟨A⟩ and ⟨B⟩ separated.
Surrounding ⟨A⟩ surrounding ⟨B⟩.

Inside ⟨A⟩ inside of ⟨B⟩.

Sc
al

e

Taller ⟨A⟩ taller than ⟨B⟩.
Shorter ⟨A⟩ shorter than ⟨B⟩.
Wider ⟨A⟩ wider than ⟨B⟩.

Narrower ⟨A⟩ narrower than ⟨B⟩.
Larger ⟨A⟩ larger than ⟨B⟩.
Smaller ⟨A⟩ smaller than ⟨B⟩.

Table 5: Templates used to generate synthetic captions.

only on the objects and their spatial relation. This 750

is very important to analyse spatial understanding 751

in isolation. 752

A.2 Heuristic rules 753

We use heuristic rules to both build the dataset and 754

evaluate the generated images. Assuming the spa- 755

tial triplet ⟨ls, r, lo⟩ and the bounding boxes of its 756

objects bbs and bbo that appear in an image, we 757

define the heuristic rule fr of relation r to deter- 758

mine whether the triplet is fulfilled in the image 759

or not. We set bbi = {x0i , y0i , x1i , y1i } by defining 760

the top-left {x0i , y0i } and bottom-right coordinates 761

{x1i , y1i } of the bounding-box (bbox). 762

For left of, right of, above and below, we fol- 763

low the heuristic rules defined in (Gokhale et al., 764

2023), by computing the centroid of each bbox 765

ci = {xci , yci } and comparing their corresponding 766

coordinates. 767

As we expand to 10 more relations, we follow 768

the rules described in (Johnson et al., 2018). In 769

our scale relations we compare either the height 770

(taller and shorter), width (wider and narrower) 771

or area (larger, smaller) difference between both 772

bboxes. In the cases of surrounding and inside, we 773

check whether bbo is contained in bbs or vice versa. 774

Finally, using the Intersection over Union (IoU) of 775

both bboxes, we say that both objects are separated 776

if their IoU is 0, and overlapping if their IoU is 777

positive. 778
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OTrain

person, car, motorcycle, airplane, train, boat,
fire hydrant, bench, bird, elephant, bear, giraffe,
handbag, tie, snowboard, baseball bat, baseball
glove, surfboard, cup, knife, spoon, apple, sand-
wich, orange, broccoli, carrot, pizza, donut, chair,
couch, potted plant, bed, dining table, toilet, laptop,
mouse, remote, keyboard, oven, sink, book, clock,
teddy bear, hair drier, toothbrush

OVal

umbrella, cake, tv, refrigerator, vase

OTest

bicycle, bus, truck, traffic light, stop sign, parking
meter, cat, dog, horse, sheep, cow, zebra, backpack,
suitcase, frisbee, skis, sports ball, kite, skateboard,
tennis racket, bottle, wine glass, fork, bowl, banana,
hot dog, cell phone, microwave, toaster, scissors

Table 6: Objects used in train, val and test sets of our
Unseen split.

A.3 Main and Unseen Splits779

Table 6 shows the sets of objects used for training,780

validation and test in the unseen split, which we781

refer to as Otrain, Oval and Otest, respectively.782

There are few combinations that can be built783

with Oval for validation in the unseen split, so we784

select triplets that contain one object from Oval785

at least once and do not contain any object that is786

set aside for the test split. In other words, there787

are up to (2 · |Otrain| · |Oval| +
(|Oval|

2

)
) · 14 =788

6, 580 triplets that fulfil this rule (around 5,326 that789

naturally occur in the COCO dataset).790

Validation is computationally costly in both791

splits, as several images have to be generated to792

compute the evaluation metrics defined in Section793

3.4. Preliminary experiments showed that gener-794

ating just 10k images is enough to get consistent795

results. Thus, we randomly selected 2.5k spatial796

captions for the validation splits for both main and797

unseen splits (as we generate 4 images per caption).798

B Training settings799

Hyperparameters: In Table 7 we define the hy-800

perparameters used for training. Learning rate and801

optimizer parameters are the ones used during the802

pretraining of SD models, the other listed hyperpa-803

rameters have been adapted to our available infras-804

Hyperparameter Value

Training steps 100k
Batch size 64
Learning Rate 10−5

Optimizer AdamW
Adam β1 0.9
Adam β2 0.999
Adam ϵ 10−8

Weight decay 0.01
Mixed-precision bf16

Table 7: Fine-tuning hyperparameters of the diffusion
models.

tructure. We also take advantage of Exponential 805

Moving Average (Kingma and Ba, 2015) to update 806

the parameters of the models with an AdamW op- 807

timizer (Loshchilov and Hutter, 2019) and we do 808

not use any learning-rate scheduler. We do valida- 809

tion runs every 5k steps and do not set any early- 810

stopping mechanism. 811

GPU usage: Due to different memory needs, 812

we use 2 and 4 NVIDIA A100 GPUs to fine-tune 813

SD v1.4 and SD v2.1 models, respectively. In both 814

cases we use an effective batch size of 64 by chang- 815

ing the amount of instances assigned to each GPU. 816

Each of our fine-tunings need 3 days to be com- 817

pleted. 818

Data augmentation: During training we apply 819

random horizontal flips and random crops to our 820

images as a data augmentation strategy (resulting 821

in I∗ and Oj). Note that, random horizontal flips 822

are common during the training of text-to-image 823

models. This implies that spatial relations, such 824

as left of and right of, can not be learnt correctly 825

(as captions are not transformed according to those 826

flips). Nevertheless, in our case we apply the same 827

transformations to bboxes, which are used to gen- 828

erate captions synthetically, keeping this data aug- 829

mentation strategy while maintaining the generated 830

caption’s spatial correctness. 831

Random crops might reduce the number of ob- 832

jects in OI∗ . If there are less than two objects after 833

a given crop, we redo it up to max_iter times until 834

there are at least two objects in the image. 835

We also define the hyperparameter k as the num- 836

ber of captions that can be concatenated to build 837

the image-caption pairs built during training. Ta- 838

ble 8 shows the results obtained by concatenating 839

k ∈ {1, . . . , 5} captions. We observe that k = 2 840

obtains the best results, and we use this value of k 841

11



Nº Captions VISORCond ↑ VISOR ↑ OA ↑

1 68.1 26.5 38.9
2 69.4 27.4 39.5
3 67.7 27.1 40.0
4 63.7 21.9 34.3
5 63.0 22.9 36.3

Table 8: We fine-tune SD v1.4 in the main split concate-
nating different amounts of captions in the input. These
results correspond to the validation set of our main split.

during our entire work.842

C Evaluation settings843

The evaluation metrics used in this paper use an844

object detector to determine whether objects are845

generated correctly and where are located in the846

image. Following (Gokhale et al., 2023), we use847

OWL-ViT, an open-vocabulary object detector that848

uses a CLIP (Radford et al., 2021) backbone with849

a ViT-B/32 transformer architecture (Zhai et al.,850

2022). We also set 0.1 as the confidence threshold851

of OWL-ViT, which determines how sure the model852

must be for a given region of the image to contain853

a specific object.854

As an open-vocabulary object detector, OWL-855

ViT takes as input the objects we want to detect856

and, in order to do so, we use their recommended857

template ("a photo of a ⟨OBJ⟩.") instead of the858

object label alone.859

Due to the variability of images generated by Sta-860

ble Diffusion, we generate 4 images per evaluation861

caption. Therefore, we generate 10k images per862

validation and a total of 243.3k and 32.1k images863

to test each model in the main and unseen splits,864

respectively.865

D LAION Dataset and Spatial Relations866

Figure 2 shows that Stable Diffusion models have867

a strong bias towards some spatial relations, pre-868

ferring taller to shorter, for instance. To complete869

those results, we also show the same graphic but870

in the main split, which exhibits a very similar be-871

haviour (Figure 5). To understand the origin of872

those biases, we checked the frequency of each873

spatial relation in the LAION-2B dataset (English874

subset), used to train SD models. Table 9 shows the875

appearances of 12 relations, divided in 6 relation876

pairs with opposite meanings. Every relation has877

its number of appearances in LAION into brackets.878

For each opposite relation pair, the first column con-879

Figure 5: The horizontal axis depicts the difference of
VISORCond values between relation pairs with oppos-
ing meanings defined on each side of the vertical axis.
These results correspond to SD and SpaD v2.1 trained
and evaluated using main splits.

Preferred Rel. Opposite Rel. Ratio of Appearance

Right (5M) Left (5.6M) 0.91
Above (1.6M) Below (0.7M) 2.47
Inside (2M) Surrounding (0.3M) 7.61

Taller (49.3K) Shorter (29.4K) 1.86
Wider (54.6K) Narrower (5.7K) 9.62
Larger (0.8M) Smaller (0.2M) 3.17

Table 9: Ratio in which the first relation appears more
than the other. The relation in the first column is the
preferred one by SD.

tains the relation that best works with SD. The third 880

column shows the ratio of appearance between the 881

preferred relation and its opposite (>1 indicates 882

that the preferred relation appears more times in 883

LAION than its opposite relation). The results in- 884

dicate that there is a clear correlation between the 885

ratio of appearance of a relation and the bias of 886

SD models. The only exception is the right and 887

left pair, but both appear similar times and the bias 888

towards right is very small. 889
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