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Abstract

Recent breakthroughs in deep learning have rev-
olutionized protein structure and sequence mod-
eling, enabling the design of proteins with novel
functions through tools like AlphaFold, RFdiffu-
sion, BindCraft and ProteinMPNN. Successful in
silico protein engineering pipelines integrate mul-
tiple of these specialized models, incorporating
biochemical insights, and iteratively optimizing
sequences. Here, we present ProteinCrow, an
agentic LLM-based protein design assistant that
consolidates multimodal information, including
structural data, deep learning models,scientific
literature and biochemical data expressed in natu-
ral language, to automate protein design tasks by
using 36 expert-curated tools. We evaluated its
performance in designing binder libraries tailored
to specific secondary-structure motifs; redesign-
ing protein backbones to improve stability and
optimizing binders to eliminate predicted MHC
Class I epitopes.

1. Introduction

From engineering high-affinity therapeutic binders to opti-
mizing enzyme activity and stability, computational protein
design has become an essential tool for accelerating protein
design with novel function. Traditional approaches have
relied on physics-based models, such as Rosetta (Das &
Baker, 2008), to evaluate protein structure. More recently,
deep learning methods—such as AlphaFold2 (AF2) (Jumper
et al., 2021), RFDiffusion (Watson et al., 2023), and Pro-
teinMPNN (Dauparas et al., 2022) have transformed the
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field by enabling accurate structure prediction and sequence
optimization. However, no single method fully captures
the complex interplay of sequence, structure, and function.
We hypothesize that Large Language Models’ (LLM) abil-
ity to unify deep learning model outputs, biochemical data,
literature, and physics-based methods as natural language
(Jablonka et al., 2023; M. Bran et al., 2024; Boiko et al.,
2023; Ramos et al., 2025) can serve as a framework to inte-
grate multimodal information about proteins and faciliate
effective protein design.

In this work, we present ProteinCrow, an LLM agent that
integrates multiple tools to enable protein design through
natural language prompts to generate protein sequence li-
braries with specified constraints. ProteinCrow also incor-
porates literature-based insights via PaperQA (Skarlinski
et al., 2024), an agent optimized for retrieving and summa-
rizing information from scientific literature, mirroring how
experts consult existing information about a protein family
or task-specific knowledge. It can perform subtasks cur-
rently done by humans, such as trimming large proteins into
smaller regions for input to tools like BindCrat (Pacesa et al.,
2024), identifying hotspot residues for binder design, and
analyzing designed sequences using in silico metrics. By
providing the agent access to deep learning methods used by
human computational protein engineers, database querying
tools, and physics-based methods (e.g., Rosetta), the agent
can produce designs with optimized stability and generate
libraries of protein sequences for experimental validation.

Recent efforts have incorporated LLMs into protein design
pipelines, albeit with varying degrees of autonomy and
scope. Protein language models (PLMs) have demonstrated
the ability to capture structural and functional principles
for design and property prediction(Ferruz et al., 2022; Fer-
ruz & Hocker, 2022; Nijkamp et al., 2023), and LLMs have
shown promise as optimizers for biological sequences (Chen
et al., 2024; Wang et al., 2025). 310.ai (310) introduced
a chat-based interface for natural language-driven protein
design, though it does not function as an autonomous agent.
In contrast, ProteinForceGPT (Ghafarollahi & Buehler,
2024) operates as an autonomous LLM agent to predict
force—separation curves from pre-trained structures, lever-
aging methods like Chroma (Ingraham et al., 2023) and
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Figure 1. Schematic overview of ProteinCrow. (a) Diagram showing the tools available in ProteinCrow and the interaction between the
protein-design environment and the agent within the Aviary framework. (b) Example task prompt for a binder-design workflow, instructing
the agent to generate a library of five binders with specified structural constraints.

OmegaFold (Wu et al., 2022).

While most protein design agents are specialized or limited
in scope, more general LLM Agents have been explored in
other fields such as chemical synthesis (M. Bran et al., 2024;
Boiko et al., 2023), materials research (Jablonka et al., 2023;
Su et al., 2024), and experimental design (O’Donoghue
et al., 2023; Huang et al., 2024). ProteinCrow is an LLM
agent built using the Aviary Framework (Narayanan et al.,
2024) to facilitate general purpose protein design. Aviary
is a framework for building and training LLM agents on
complex tasks. An LLM agent is a decision-making entity
that can observe an environment, reason, and execute an
action. In the case of ProteinCrow, an action is a tool call
for protein structure/sequence analysis, generative design,
or library design. The agent continues in a loop based on
new observations or tool outputs until the desired goal is
reached. We evaluated ProteinCrow on three tasks:

* Task 1: Goal-Directed Protein Design - Improving
the stability of a target sequence with structural and
functional constraints.

» Task 2: Automated Binder Design Pipeline - Generat-
ing libraries of binders with constraints on library com-
position, binder structure and binder sequence proper-
ties.

e Task 3: Optimizing Binders - Generates a library of
sequences by redesigning a previously designed binder
to eliminate predicted MHC Class I epitopes.

2. Methods
2.1. LLM Framework - Aviary

ProteinCrow operates within Aviary, an extensible gymna-
sium for language agents (Narayanan et al., 2024). Aviary
frames the agent’s sequential decision-making process as a
language-grounded, partially observable Markov decision
process (POMDP), enabling the agent to refine protein se-
quences iteratively. However, the tools built for ProteinCrow
are transferable to other agent frameworks beyond Aviary.
ProteinCrow optimizes protein stability, designs libraries of
binders with specified constraints and optimizes a known
binder by calling tools and receiving observations that in-
form the next set of actions. A schematic of ProteinCrow
is shown in Figure 1. All experiments in ProteinCrow were
conducted using Claude-3.5-Sonnet-20241022 at a sampling
temperature of 0.1.

2.2. Tools

ProteinCrow has access to a variety of tools broadly grouped
into the following categories:
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* Biochemical Descriptors - Tools for biochemical anal-
ysis, including interface characterization, bond type
analysis, sequence complexity, residue hydrophobicity,
and secondary structure annotation.

* Deep Learning Models - Deep learning models for
various protein design tasks, including binder design,
inverse design, scaffold generation, and protein lan-
guage models.

* Rosetta Protocols - Tools that execute Rosetta proto-
cols, widely used for protein structure modeling and
protein-protein interface analysis.

* Task Management - Tools for managing various
prompt-related tasks, such as submission to a library
and task completion tracking, along with tools to ana-
lyze metrics for sequences submitted to the library.

* Sequence Informatics - Tools for sequence-based
analysis, including residue properties, multiple se-
quence alignment and identification of conserved sites.

* Knowledge Retrieval - Tools for querying and re-
trieving relevant information about the protein from
databases and literature.

A list of all tools available to the agent beyond ones uti-
lized for tasks mentioned in this work is provided in Ap-
pendix 1. Due to the frequent version conflicts and compat-
ibility issues between various deep learning models, most
tools within ProteinCrow operate on API endpoints through
Modal (mod), which enables sandboxed execution of multi-
ple models such as AlphaFold(Jumper et al., 2021), Protein-
MPNN(Dauparas et al., 2022), ESM2 (Lin et al., 2023) and
BindCraft (Pacesa et al., 2024).

2.3. Task 1 - Goal Directed Protein Design

2.3.1. REDESIGN PROTEIN BACKBONES FOR IMPROVED
STABILITY WITH STRUCTURAL CONSTRAINTS

Goal-directed protein engineering involves mutating the tar-
get protein to achieve desired objectives, such as improved
stability. (Jiang et al., 2024). While existing tools like
ProteinMPNN have shown success in generating more sta-
ble protein backbones (Sumida et al., 2024), they typically
require expert human intervention during generation and cu-
ration of experimental sequence libraries for more complex
objectives, such as increasing the number of salt bridges
(Kordes et al., 2022) while optimizing for improved stability.
In this task, ProteinCrow with access to ProteinMPNN as a
tool was prompted to re-design the backbone of a protein
to increase its stability while also increasing the number
of salt bridges. ProteinCrow was allowed to bias towards
specific residues by adjusting the bias weights for amino

acid types in ProteinMPNN. Salt bridges were identified
after repacking the backbone with proposed mutations by
counting all acidic (Asp,Glu)-basic (Arg, Lys, His) atom
pairs whose inter-atomic distance is less than 4.0 A.

To evaluate ProteinCrow’s performance, we randomly se-
lected 30 proteins (all with PDB IDs) from the Ther-
moMPNN training split of the Megascale stability dataset
(Dieckhaus et al., 2024; Tsuboyama et al., 2023), which
comprises of protein domains with 40-72 amino acids.
Changes in free energy (AAG)) due to mutations were
computed using the Rosetta cartddG protocol (Frenz et al.,
2020), which is frequently used to evaluate protein folding
stability in-silico (Sora et al., 2023). In addition, the follow-
ing metrics were calculated for a comprehensive assessment
of the proposed mutations:

¢ Percent of Rosetta AAG) less than 0: Indicates the
proportion of mutations that resulted in a stabilizing
change in the protein.

* Amino acid usage: Analyzes the frequency of different
amino acids in the proposed mutations.

* Sequence diversity: Measures the diversity of the
mutations proposed by ProteinCrow.

« ESM2 pseudo log-likelihood: A measure of log-
likelihood of the proposed mutations computed using
ESM2. (Lin et al., 2023).

e AlphaFold Confidence: pIDDT scores from Al-
phaFold2 (Jumper et al., 2021).

2.3.2. REDESIGN ENZYME BACKBONES WHILE
PRESERVING FUNCTIONAL RESIDUES

To test the ability of ProteinCrow to propose mutations that
enhance protein stability without compromising function,
we used two proteins studied in a prior work (Dauparas
et al., 2022): Myoglobin, where oxygen-storage function
should be preserved, and TEV protease, where catalytic
activity must be maintained. We compared the mutation
sites selected by ProteinCrow to those chosen by human de-
signers in the original work, assessing whether ProteinCrow
could avoid proposing mutations at the same functional
sites. In addition to the metrics described in Section 2.3.1,
we included the following metric to evaluate the proposed
mutations.

* Functional site preservation: Number of times a mu-
tation site in (Dauparas et al., 2022) was chosen by
ProteinCrow.

3. Task 2 - Automated Binder Design Pipeline

BindCraft is a highly efficient deep learning model for de
novo protein binder design, with reported experimental suc-
cess rates ranging from 10 to 100% (Pacesa et al., 2024).
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The pipeline includes several target-specific settings that
may require optimization depending on the protein target,
such as the number of iterations, design weights, and filter-
ing criteria, which are typically chosen by a human expert.
Our results demonstrate that ProteinCrow can automate and
execute the BindCraft design pipeline without manual in-
tervention for a diverse set of protein targets and library
constraints by choosing appropriate inputs for BindCraft.

3.1. Designing Binders for Epidermal Growth Factor
Receptor (EGFR)

To evaluate ProteinCrow on a challenging real-world tar-
get, we tested it on the EGFR protein using the structure
from PDB entry 6ARU. This target was previously featured
in a community-wide binder design competition hosted by
AdaptyvBio (Cotet et al., 2025). We used the same evalua-
tion metrics reported by AdaptyvBio to assess the quality
of ProteinCrow’s designs and to compare them to the top-
performing entries that were experimentally verified.

ProteinCrow was evaluated on its ability to automate binder
design process under various constraints, which included
the following experiments:

¢ Automated end-to-end binder generation: Protein-
Crow was prompted to generate a binder to EGFR with
10 replicates.

e Targeted structural motif design: The top-
performing binder from the competition featured
prominent (3-sheet elements. To test if ProteinCrow
could optimize design parameters in bindcraft to design
a binder with a specific structural motif, we prompted
ProteinCrow to add a binder with a 5-sheet element to
the sequence library.

* Constraint-aware binder library design: In this ex-
periment, ProteinCrow was prompted to generate a li-
brary of 5 binders with three constraints on the binders
added to the library (1) each binder must be at least
10 mutations away from known binders and (2) the
resulting library should exhibit diversity in the com-
position of secondary structures (3) Target different
hotspot residues on the protein.

3.2. Generalizing ProteinCrow to Distinct Protein
Targets

To assess ProteinCrow’s generalizability to automate the
binder design workflow for other targets, we applied
the agent to two additional structurally- and functionally-
distinct protein targets: the SARS-CoV-2 receptor-binding
domain (RBD) (PDB ID: 6M0J) and the beta barrel fold
BBF-14 (PDB ID: 9HAG). For each target, we prompted
ProteinCrow to design a library of 5 sequences, using 3

replicate trajectories per target with the same constraints as
in the constraint-aware binder library design experiment.

3.3. Evaluating Binders

The performance of the sequences in each binder library was
evaluated via the following widely used in-silico metrics:

¢ AlphaFold Scores - PLDDT, iPAE, and iPTM scores
from the AlphaFold-Multimer model were used to eval-
uate the structural quality, alignment accuracy, and pre-
dicted transformation matrix of the designed binder
sequences.

* ESM Pseudo-Log-Likelihood Score - ESM2 pseudo
log likelihood score was used to assess the likelihood
of the generated sequences using the protein language
model ESM2 (Lin et al., 2023).

* Secondary Structure Composition - The secondary
structure annotation of the binders was analyzed to
ensure that they contain structural elements required
by the design constraints in the prompt.

4. Task 3 - Optimizing a Binder to Reduce
MHC Class I Epitopes

A critical step in therapeutic binder design is optimization of
properties such as stability, aggregation propensity, and im-
munogenicity, while maintaining target affinity (Ebrahimi &
Samanta, 2023). To assess ProteinCrow’s ability to perform
such optimization, we began with an EGFR-binding pro-
tein experimentally validated from the Adaptivbio Commu-
nity Binder Design Competition and prompted ProteinCrow
with generating libraries of 10 variant sequences across 5
replicates, to eliminate predicted MHC Class I epitopes.
We employed netMHCpan 4.1 (Reynisson et al., 2020) to
predict binding affinities of all 8—14 mer peptides to the
HLA-A*02:01 allele. Finally, we ranked and compared the
designed sequences by their ESM2 pseudo-log-likelihood
scores and by the total numbers of predicted MHC Class I
binders, including both strong and weak binders.

5. Results

ProteinCrow trajectories follow a nonlinear and adaptable
path, showcasing its ability to integrate diverse sources of
information and analyze sequence, structure, and literature
context based on the task prompt. This is consistent across
all tasks, highlighting ProteinCrow’s flexibility in adapting
to different protein design tasks and targets.
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Figure 2. ProteinCrow performance on optimizing stability for increased salt bridges (a,b) and while maintaining function (c.d,e) (a) Bar
plot showing the improvement of salt bridge formation and folding stability (measured using Rosetta AAG) of mutations by ProteinCrow
compared to ProteinMPNN random baseline. (b) Scatter plot illustrating the relationship between Rosetta AAG scores of ProteinCrow
generated mutations and their corresponding salt bridge counts. (c) Comparison of percentage of important sites mutated with and without
literature along with percentage of total functionally important positions significantly less likely to be mutated by ProteinCrow compared
to a random baseline, when optimizing stability while preserving function. (d) Frequency of important sites mutated across 12 replicates
of ProteinCrow in Myogoblin (PDB: 3RGK). (e) Frequency of important sites mutated across 12 replicates of ProteinCrow in Myogoblin

(PDB: ILVM).

5.1. Optimizing Protein Stability while improving
number of salt bridges

To evaluate ProteinCrow’s ability to perform goal directed
protein design, we tasked it with proposing mutations that
both increased folding stability (as measured by Rosetta
AAG < 0) and introduce more salt bridges relative to
the wild-type (WT) structure. ProteinCrow leveraged a
combination of structure-based, sequence-based, literature-
informed, deep learning, and Rosetta-based tools to analyze
each target protein and generate design proposals.

As shown in Figure 2a,b, on 30 benchmark proteins, Pro-
teinCrow successfully identified mutations that meet both
criteria in many cases. In contrast, baseline ProteinMPNN
with mutated residues sampled at randomly chosen residue
positions of varying lengths in each replicate, while effective
at generating low G variants, does not inherently increase
number of salt bridges. These results demonstrate the po-
tential of ProteinCrow to handle nuanced design goals that
typically require expert-guided iteration, highlighting its po-
tential as a general-purpose agent for goal-directed protein
engineering.

5.2. Designing stable mutations while preserving
function

To assess ProteinCrow’s ability to identify functional
residues as compared to residues chosen by human pro-
tein designers to be held constant during design to preserve
function, we compared its selected mutation positions to
those chosen by human protein designers in a previously
published study. Compared to a random baseline for myo-
goblin and TEV Protease, ProteinCrow proposed signifi-
cantly fewer mutations at > 45% of the important sites. An
ablation done with and without literature showed a decrease
in the number of functionally important sites chosen by Pro-
teinCrow while redesigning the backbone (2¢). These results
suggest that, while the agent successfully captures some as-
pects of expert knowledge, it may overlook other critical
residues, potentially due to limitations in how it interprets
functional and structural information. However, Protein-
Crow’s modular framework offers a path for improvement
through training or incorporation of more tools.

5.3. Designing Binders for Epidermal Growth Factor
Receptor (EGFR)

Automated end-to-end binder generation: ProteinCrow
was prompted to generated a single binder to EGFR across
10 replicates. ProteinCrow successfully generated a binder
for EGFR for all 10 replicates. Selected binders from the
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resulting binder library are shown in Figure 7, which also
highlights some of the non-linear agent tool choice trajec-
tories and the most frequent regions selected by Protein-
Crow for trimming the protein. ProteinCrow automatically
retrieved the protein structure from PDB entry 6ARU, per-
formed structural analysis, and identified the key binding
hotspots for designing effective binders, executed the Bind-
Craft workflow and built a library of potential binder se-
quences.

Targeted structural motif design: In this experiment, Pro-
teinCrow was tasked with designing binders that incorpo-
rated a B-sheet element, a structural motif present in some
of the top-performing binders from the competition. Protein-
Crow was able to design and add a binder with prominent
[3-sheet region to the library by adjusting the design weights
in the BindCraft pipeline (binder and prompt shown in Fig-
ure 8). This result demonstrates ProteinCrow’s ability to
generate binders with specific structural features when re-
quired.

Figure 3. ProteinCrow can generate binder libraries with specified
constraints. (a) Task prompt (b) Selected binders from designed
binder library for EGFR. (c) AlphaFold iPAE score for Protein-
Crow designed binders compared to those of the top 10 binders
from AdaptyvBio’s EGFR binder design competition (d) ESM2
PLL score for ProteinCrow designed binders compared to those
of the top 10 binders from AdaptyvBio’s EGFR binder design
competition.

Constraint-aware binder library design: ProteinCrow
successfully generated a binder library of 5 binders to EGFR
while meeting the three specified constraints. First, each
binder was at least 10 mutations away from known binders,
ensuring diversity from existing binder sequences. Sec-
ond, the library exhibited diversity in secondary structure
composition, which is measured as the percent of H,E,L.

Figure 4. ProteinCrow executes the binder design workflow by
choosing appropriate tools depending upon the target. Binder
library and target hotspot residues for (a) the beta barrel fold BBF-
14 (PDB : 9HAG) and (b) the SARS-CoV-2 RBD domain (PDB :
6MOJ)

elements across the protein. Third, utilize diverse target
hotspot residues. ProteinCrow successfully managed the
these complex constraints, showing its ability to tailor the
binder libraries to specific requirements. The results of this
experiment are shown in Figure 3.

5.4. Generalizing ProteinCrow to Distinct Protein
Targets

ProteinCrow successfully generated libraries of 5 binder
sequences for both the SARS-CoV-2 receptor-binding do-
main (PDB ID: 6M0J) and the beta barrel fold BBF-14(PDB
ID: 9HAG), and followed the required binder library con-
straints for each target. The resulting binder libraries were
evaluated based on commonly used in-silico metrics for
protein binders. Figure 9 presents the performance of the
binder libraries generated for both SARS-CoV-2 RBD and
beta barrel fold BBF-14, examples of the binders and their
secondary structure annotations are shown in 4. These re-
sults demonstrate that ProteinCrow can generalize its design
pipeline to a diverse range of protein targets.

5.5. Reducing MHC Class I Epitopes in a Binder

As an additional experiment, we provided ProteinCrow with
access to netMHCpan (Reynisson et al., 2020), which can
predict MHC class I binding epitopes within a known EGFR
(PDB 6ARU) binder. We then prompted ProteinCrow to de-
sign libraries of 10 sequences across 5 replicates to eliminate
the binding epitopes for HLA-A*02:01 allele (See Figure 5).
Of the 50 total designs, 74% of the proposed mutations low-
ered number of predicted MHC I binding epitopes. We also
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measured each variant’s ESM2 pseudo-log-likelihood score
and found that all 50 epitope sequences exhibited improved
log-likelihood scores than the original binder.

Figure 5. Reduced MHC Class I Binders for HLA-A*02:01 allele.
(a) Agent prompt to generate library of binders (b) Bar plot of total
reduced MHC Class I binders along with the percentage reduction
in strong binders and weak binders (c¢) ESM2 log likelihood scores
of the sequence mutations compared to the starting binder sequence
(d) Number of mutations between the original binder sequence and
the mutated sequences.

6. Discussion

Deep learning methods for structure prediction, inverse de-
sign and protein language models have transformed protein
engineering enabling rapid generation of novel proteins.
Human protein engineers typically combine foundational
models of protein structure and sequence to engineer effec-
tive pipelines for design using expert knowledge. Protein-
Crow contains tools commonly used by the protein design
community to engineer these pipelines. ProteinCrow is an
autonomous LLM Agent for protein design, applied in this
work to three common protein engineering tasks: protein sta-
bility optimization, binder design and binder optimization.
We show that ProteinCrow is able to follow complex, non-
linear workflows. This is crucial for building a generalized
agent, as protein design is highly target and task-specific
and desired outcomes can be achieved with a wide range
of tools. The modular nature of ProteinCrow environment
enables integration of new tools with ease.

We limit this study to the demonstration of an LLM Agent’s
ability to accomplish diverse protein engineering tasks using
only in-silico evaluation criteria. In future work, we expect
to evaluate ProteinCrow’s success rates in the lab - trans-
lating in-silico predictions into experimental validation and
exploring ways to integrate feedback to train and enhance
the agent.

Impact Statement

This paper presents work whose goal is to advance appli-
cation of agents for biomolecular design. There are many
beneficial uses for LLM agents which can integrate multi-
modal knowledge through tools provided here. However,
there are many risks associated with giving LLM agents
access to more tools. We encourage further research by the
community to mitigate such risks.
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Figure 6. System Prompt Template

Table 1: Comprehensive list of all Proteincrow tools

Biochemical Descriptors

Tool Name Summary Inputs

analyze_binder_complex_interface_with_fostaided Rosetta interface analysis for all | binder_fasta_file
sequences in a FASTA.

analyze_binder_complex_interface Combined AF2, Rosetta, DSSP interface | binder_fasta_file
metrics for a FASTA.

get_bond_types_between Finds specified bond types between given | residues, bond_type
residues.

compute_sequence_complexity Computes Shannon-entropy sequence com- | binder_fasta_file
plexity.
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get_dssp_for_binder

Computes DSSP secondary structure for a
predicted PDB.

predicted_structure_path, chain_id

analyze_binder_complex_interface_witl

1SS P-based secondary-structure analysis
for sequences in FASTA.

binder_fasta_file

compute_sap_scores

Computes Rosetta Spatial Aggregation
Propensity (SAP) scores.

compute_pesto_likelihood

Ranks residues by Pesto binding likelihood.

get_secondary _structure

Annotates per-residue secondary structure
(DSSP) for a PDB.

get_biochemistry_of_mutations Analyzes structural features (bonds, stack- | mutations
ing) for a mutant.
get_biochemistry_of_wild_type Analyzes structural features for the wild- | —
type protein.
Deep Learning Models
Tool Name Summary Inputs
design_a_binder_with_rfdiffusion De novo binder backbone binder_max, binder_min,
num_backbones, bind-
ing_pocket_residues
scaffold_a_known_binder Scaffold peptide from known binder peptide_length, segment_length,

num_backbones

scaffold_a_hallucinated_binder

Hallucinate peptide and scaffold into binder

peptide_length,
num_backbones

segment_length,

generate_a_binder_with_bindcraft

Binder design with BindCraft (AF2 +
Rosetta)

target_hotspot_residues,
binder_length_min,
binder_length_max, helicity,
fold_condition, weights_plddt,
weights_pae_intra, weights_pae_inter,
weights_con_intra, weights_con_inter,

intra_contact_distance, in-
ter_contact_distance, in-
tra_contact_number, in-

ter_contact_number

diversify_a_binder_backbone

Noise/denoise backbone + sample se-
quences with MPNN

binder_backbone_path

get_more_sequences_for_binder

Sample additional sequences for an MPNN
backbone

binder_backbone_path

predict_protein_structure_from_sequeng

eAF2 prediction of a protein sequence

sequence

compute_esm_pll

ESM-2 pseudo log-likelihood for sequences
in FASTA

binder_fasta_file

get_af2_metrics_for_binder

AF2 metrics (pLDDT, pTM, PAE) for
binder vs. target

target_sequence, binder_sequence

analyze_binder_complex_interface_with

_&PF?2 multimer metrics for a binder FASTA

binder_fasta_file

compute_lIr

Pseudo-log-likelihood ratio WT vs. mutant

mutated_fasta_file

redesign_backbone_of_protein

MPNN:-based sampling with optional bias

num_seqs, fix_pos, inverse, add_bias

redesign_backbone_of_protein_no_bias

MPNN-based sampling without bias

num-seqs, fix_pos, inverse

Rosetta Protocols

Tool Name

Summary

Inputs

compute_rosetta_ddg

Rosetta G calculation for point mutations

mutations

get_rosetta_interface_for_binder

Computes Rosetta interface scores for a
binder—target complex.

predicted_structure_path

Task Management

Tool Name |

Summary

Inputs
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submit_binder_to_library

Add a designed binder to the library with
reasoning

binder_fasta_file, binder_pdb_file, rea-
soning

submit_sequence_to_library

Add a redesigned sequence to the library
with reasoning

fasta_file, reasoning

provide_response_to_user_query Record and return an answer to the user response
complete_task Mark task complete when criteria met answer
Sequence Informatics

Tool Name Summary Inputs
get_sequences_in_fasta_file List record IDs and sequences in a FASTA | fasta_file

get_length_of_binder_sequence
binder_fasta_file

Return ID, sequence

length for first record in FASTA

get_sequence_properties_of_binder

Biochemical analysis of mutant vs. WT

fasta_filepath, mutations, return_wt

get_sequence_properties_of _target_prot

cilProperties of mutated target sequence

mutated_fasta_file, return_wt

get_residue_at_position
residues

Residue identity

properties at given positions

find_conserved_residues BLAST+alignment to find conserved sites | residues
get_distance_between_residues Pairwise C distances between residues residues
check _for_diversity Edit-distance vs. library sequences fasta_file

check_diversity_against_known_binders

Diversity vs. known binder sequences

binder_fasta_file

Knowledge Retrieval

Tool Name Summary Inputs
query_uniprot_id_with_pdb_id Lookup UniProt ID from PDB pdb_id, chain_id
query_get_interacting_proteins Fetch interacting proteins from UniProt uniprot_id
query_get_gene_names Fetch gene names for a UniProt ID uniprot_id
query_get_sites_by_type Retrieve annotated sites by type uniprot_id
query_search_uniprot_by_text Search UniProt by a text query query
get_information_about_the_protein Literature-based functional site retrieval —
search_scientific_literature One-off literature Q A

question

get_chains_in_pdb

Identify chain types

| contacts in a PDB

write_sequence_to_fasta

Save provided sequence to FASTA file

\ sequence, sequence_id
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Figure 7. ProteinCrow follows non-linear path while designing binders using BindCraft (a) Most frequent domains trimmed from the
larger structure of EGFR to be used as input target structure for BindCraft. (b) Agent tool trajectories of ProteinCrow during the design
process
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Figure 8. ProteinCrow can optimize desired secondary structure elements in the binder by tuning BindCraft’s input parameters. (a) Prompt
to ProteinCrow to design a binder with a betasheet to EGFR (b) Resulting binder design (c) Agent Response while adding binder to the
library
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Figure 9. a) ESM2 PLL score for ProteinCrow generated binder library for beta barrel fold BBF-14 (PDB: 9HAG) b) AlphaFold PAE
score for ProteinCrow generated binder library for beta barrel fold BBF-14 (PDB: 9HAG) c) ESM2 PLL score for ProteinCrow generated

binder library for SARS-CoV-2 receptor-binding domain (PDB: 6M0J) d) AlphaFold PAE score for ProteinCrow generated binder library
for SARS-CoV-2 receptor-binding domain (PDB: 6M0J)
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Figure 10. ProteinCrow agentically follows non-linear trajectories when (a) optimizing stability while increasing salt bridges (b) and
while maintaining function.

Figure 11. (a) Distribution of mutated residues in the sequence library generated by ProteinCrow (b) Average pairwise residue distance
between sequences in the library (c) ESM2 PLL Score of the mutated sequences in the library vs wild type sequences
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