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ABSTRACT

Shapley value-based feature attribution methods face challenges in scenarios with
complex feature interactions and causal relationships, even when a causal struc-
ture is provided. The assumption on the attribution objects of existing meth-
ods often deviates from practical scenarios as they cannot capture the exoge-
nous influence of features through each edge in the causal graph, leading to un-
reasonable interpretations. To overcome these limitations, we propose a novel
feature attribution method called DAG-SHAP, which is based on edge interven-
tion. DAG-SHAP treats the exogenous contributions in each ongoing feature
edge as an individual attribution object ensuring that both externality and ex-
ogenous contributions of features are appropriately captured. Additionally, we
introduce an approximation method for efficiently computing DAG-SHAP. Ex-
tensive experiments on both synthetic and real datasets validate the effective-
ness of DAG-SHAP. Our code can be found in the anonymous repository at
https://anonymous.4open.science/r/dag-30F2.

1 INTRODUCTION

In recent years, the field of model interpretation has gained significant attention (Scott et al.| 2017}
Ribeiro et al.| 2016; Sundararajan et al., 2017} (Chen et al.} 2024} [Machiraju et al.,[2024) due to the
increasing demands and complexity of machine learning (ML) models in real-world applications.
Shapley value-based feature attribution methods have been extensively explored in this domain since
they uniquely offer a fair allocation guarantee of cooperative contributions rooted in game theory,
with desirable properties including efficiency, symmetry, redundancy, and additivity (Winter, 2002).
Moreover, owing to their model-agnostic nature and ease of implementation, Shapley value-based
methods are highly user-friendly and versatile. For healthcare, Shapley value-based attribution can
help explain which features, such as age, blood pressure, and blood sugar levels, are important when
predicting whether a patient is likely to develop diabetes (Ter-Minassian et al. [2023)). Similarly,
they can also be applied in credit scoring to help financial institutions understand why a customer’s
predicted credit score is low or high by identifying the key factors to the predicted credit score (Chen
et al.l [2022).

However, modeling feature interactions appropriately remains a significant challenge for Shapley
value-based feature attribution methods. The off-manifold Shapley value (Scott et al.l 2017)), one of
the pioneering Shapley value-based feature attribution methods, assumes feature independence, which
is inappropriate in most practical scenarios. Meanwhile, the on-manifold Shapley value (Scott et al.,
2017} [Sundararajan & Najmil, 2020) considers the feature dependency. It fills excluded features with
conditional expected values based on their correlations with included features when measuring the
utility of feature subsets, aiming to make the interpretation more reasonable. However, filling excluded
features based solely on correlation may not align with the data generation process, particularly when
causal relationships exist among features, potentially leading to causal reversion (Jung et al.|[2022a)).
To address this, researchers consider the sequential and causal relationships in data generation,
like asymmetric Shapley value (Frye et al.l 2020) and causal Shapley value (Heskes et al.| [2020).
Furthermore, existing attribution methods that focus on feature vertices fail to adequately capture
interactions between features (Ter-Minassian et al., 2023). Shapley Flow (Wang et al. [2021)
attributes the contribution in each cut of the feature graph by treating paths as players. Recursive
Shapley value (Singal et al., [2021) attributes contributions following a top-down principle by first
attributing to “source” vertices and then flowing them down the directed acyclic graph (DAG).
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Figure 1: A toy numerical example with two features (X7, X2) and a target label Y, where arrows
indicate direct effects and lowercase letters represent exogenous variables.

Despite the aforementioned significant efforts to enhance feature interactions in the attribution process,
externality and exogeneity in existing approaches are still inadequately addressed. Attribution methods
based on feature vertices adopting asymmetry samplings, such as asymmetry Shapley value and
asymmetry causal Shapley value, fail to make attribution results satisfy externality. When using
the asymmetrical ordering of feature attribution methods (the parent vertex must appear before
the child vertex), the marginal contribution of the parent vertex cannot receive externality gains
from cooperating with the child vertex. For example in Figure [} the direct influence X; — Y
cannot receive a marginal contribution from cooperating with X» which is Xo — Y. In addition,
the attribution methods focusing on attributing contributions at each graph cut like Shapley Flow
and recursive Shapley value, fail to recognize exogenous contributions of features. Exogenous
contribution refers to the part of the contribution in each feature that is not influenced by other
features in the explained input. Shapley Flow and recursive Shapley value assume that only feature
vertices without incoming edges have exogenous contributions. Hence, the contribution of exogenous
variable x5 cannot be properly captured. Apparently, the assumption that intermediate vertices have
no endogenous contributions is misaligned with real-world feature attribution scenarios.

In this paper, we explore the potential to enhance the reasonableness of attribution methods through
an advanced investigation of feature interactions. Specifically, we incorporate fine-grained causal
relationships under the assumption that features are structured as DAG. We briefly summarize our
contributions as follows. (1) We propose an edge intervention feature attribution method DAG-SHAP
that allows for interventions on certain child vertices through their parent vertices without affecting
other child vertices of the same parent. (2) Our attribution method not only meets the requirement
of externality but also captures the exogenous contributions of each feature. (3) We present an
approximate method for the practical computation of DAG-SHAP and validate its effectiveness using
both synthetic and real datasets.

2 PRELIMINARIES

In this section, we present the problem setting for the feature attribution task, review the concept of
Shapley value, and discuss several representative Shapley value-based feature attribution methods.

2.1 PROBLEM DEFINITION AND SHAPLEY VALUE

Problem Definition. Given a trained ML model f(-) and an n-dimensional input feature vector
x € R”, our goal is to assign an attribution value ¢; to each feature ¢ (1 < ¢ < n), reflecting
its contribution to the model’s prediction f(x). Given a baseline fj, and for i € V where V =

{1,--- ,n} represents the n features, f(x) can be expressed as follows
fl@)=fo+ ) ¢ (1)
i=1

Specifically, we focus on the scenario where the causal graph of features V forms a DAG. The
attribution of each feature to the model output must capture only the exogenous contribution of the
feature, where the exogenous contribution refers to the portion of the feature’s impact on the output
that originates from itself. It ensures that the attribution reflects the intrinsic effect of the feature and
its downstream causal influence on the outcome.

Shapley Value. Consider a set of players V. = {1,...,n}. A coalition S is a subset of V that
cooperates to complete a task. A utility function U (S) (S C V) is the utility of coalition S for a task.
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The marginal contribution of player i with respect to a coalition S is U(S U {i}) — U(S). Shapley
value is the unique metric that satisfies the properties of fair reward allocation, including balance,
symmetry, additivity, and zero element (Winter|, |2002). It measures the expectation of marginal
contribution by ¢ in all possible coalitions. That is
1 USU{i}) —US
SV, = = Z ( {i}) (S) )

(@)

n—1
" SCV\{i} ( |S| )

According to Equation[2] we can find that computing the exact Shapley value requires enumerating
all utilities for all player subsets. Therefore, the computational complexity of exactly calculating the
Shapley value is exponential (Deng & Papadimitrioul [1994)).

3 EDGE INTERVENTION CAUSAL SHAPLEY VALUE

In this section, we analyze the limitations of existing methods using a simple attribution task. We
then introduce DAG-SHAP, a feature attribution method based on edge intervention that leverages the
DAG of causal relationships between input features, aiming to enhance the reasonableness of feature
attribution.

We provide definitions of several properties below, which will be discussed in detail afterward.
Causality: The contribution of a feature to the prediction outcome should be based on its true causal
impact, rather than just its statistical correlation with other features. In essence, attribution should
reflect the change in the model’s output that is directly caused by the feature, independent of any
dependencies on other features.

Efficiency: The sum of the attribution values of all nodes equals to the difference between the
prediction outcome when all nodes are added. This can be expressed as ) _, .y, ®(i) = f(x) —E[f(x)],
where x represents the input features being explained.

Externality: The attribution value of feature vertex & should derive benefit from the cooperation of
another feature vertex k' if there exists a path to the target label that passes through k but does not
pass through &'.

Exogeneity: The attribution method should identify and measure the independent contribution of
each feature to the prediction outcome. Each feature’s effect should be attributed to its exogenous
influence, without being confounded by other input features.

3.1 MOTIVATION EXAMPLE FOR ILLUSTRATING THE LIMITATIONS OF EXISTING METHODS

Data Generation Process. We use the toy example in Figure|l|to show why existing methods can
produce unreasonable interpretations for model output. Suppose there are two input features X3
and X, and a target feature Y = X, - X5. The generation of features follows the process below.
X1 = x1, where x; is a random variable uniformly distributed on (0, 1), representing the exogenous
influence of X7; X5 = X; + X9, where x5 is another random variable uniformly distributed on (0, 1),
representing the exogenous influence of X5,. In summary, X; directly influences Y and indirectly
influences Y through X5,. X5 influences Y with its own exogenous influence xo and transfers the
indirect influence of X;. We want to attribute a value to each feature of a specific explained input
x* =[x}, 3] = [0.2,0.8] with respect to the uniform distributions of each feature.

Proposition 1. For off-manifold Shapley value, on-manifold Shapley value, and symmetry causal
Shapley value, the attribution results do not satisfy causality.

For off-manifold Shapley value, the marginal contribution cannot account for the causal interaction
between features. For example, the marginal contribution of ] = 0.2 when cooperating with the
empty set is E[f(0.2,x;1 + x2)] — E[f(x1, X1 + x2)]. However, the value of feature X is influenced
by 7 but the feature value of X5 in the utility E[f(0.2, x; + x2)] is independent from &} = 0.2. So
the marginal contribution does not incorporate the indirect effect of 7 = 0.2.

For on-manifold Shapley value, there is causal reversion in the explained results. For example, when
calculating the marginal contribution of x5 = 0.8 cooperating with the empty set, On-manifold
Shapley value yields E[f(x1,0.8)|x3 = 0.8] — E[f(x1,x1 + x2)], where x; is conditioned on x3.
However, X» cannot influence X; from a causal perspective. Therefore, calculating contribution
x5 = 0.8 with condition expectation includes the part of contribution which does not belong to 5.
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Symmetry causal Shapley value faces the same causal reversion problem as on-manifold Shapley
value. Considering the marginal contribution of x5 = 0.8 when cooperating with empty set, it
yields E[f(x1,0.8)|do(x2 = 0.8)] — E[f(x1,x1 + X2)]. However, the utility of 5 = 0.8 when
cooperating with an empty cannot be E[f(x1,0.8)| do(x2 = 0.8)] because x5 = 0.8 already has the
influence of =7 = 0.2.

Proposition 2. For asymmetry Shapley value and asymmetry causal Shapley value, the attribution
results do not satisfy externality.

Asymmetry Shapley value and asymmetry causal Shapley value calculate the marginal contributions
on the permutations where ancestor vertices before their descendants. However, these asymmetry
methods fail to guarantee the externality property in feature attribution. For example, =7 = 0.2 has
a direct influence on Y, and the influence is independent of X5. But the direct influence does not
receive a marginal contribution from X5 since ] must appear before x5 in the permutations. In
other words, the attributed value of =7 is independent of x5, which does not satisfy the externality
in cooperation game theory (Shapleyl, [1953)), where ] should benefit from the cooperation with
variable X5.

Proposition 3. For Shapley Flow and recursive Shapley value, the attribution process cannot capture
the exogenous contributions of intermediate vertices.

Shapley Flow and recursive Shapley value are unsuitable for this scenario due to their cut efficiency
property, which requires that the sum of contributions be equal for every cut. This implies that the
contribution of x] through x3 is considered equal to the direct contribution of x5, an assumption
that may not hold true in real-world situations. They do not account for the independent exogenous
contributions of each feature.

3.2 OUR PROPOSED METHOD: DAG-SHAP

We propose DAG-SHAP, an edge-based feature attribution method suitable for the scenario where
the causal relations of input features can be formulated as a DAG. DAG-SHAP enables us to gain a
deeper understanding of how features collaboratively contribute to the model output using the edge
intervention to capture the causal influence within the features.

Edge Intervention. Given a directed acyclic graph G with a set of vertices V. = {1,--- ;n} and
directed edges E = {e1, - , e, }, where n represents the number of vertices and m the number of
edges in G, each vertex corresponds to a feature, and each edge denotes a causal influence between
features. An edge e; = (p;, ¢, Xp, ) indicates that parent vertex p; € V has a direct causal influence
on child vertex ¢; € V, where the feature corresponding to p; follows distribution x,,,. For a specific
explained input &, we instantiate the edges as E = {es,- - , e,, }, where each edge e; = (p;, ¢;, Ty, )
corresponds to a specific value of x,,. The causal influence from p; is then transferred to c;. We
define an edge intervention in G as do(es = es), where S is the set of edge indices which are
intervened. Such interventions make the effects of parents transfer to childs , providing insights
into how changes in one feature directly affect another. This edge intervention isolates the causal
pathway’s impact without altering the entire network of child vertices, enabling a targeted analysis of
causality within the graph.

DAG-SHAP. Let IT denote the set of all permutations of edges F, where each permutation constitutes
a topological ordering of E. This arrangement ensures that each edge appears only after all its
prerequisite edges have been ordered, thereby allowing interventions to be applied sequentially
without violating causal relationships. We define the attribution value of an edge e; for the explained
input x as the average marginal contribution of applying the edge intervention on e;, given that
interventions have already been applied to the edges preceding it in the permutations within II.
Consequently, the edge intervention causal Shapley value of edge e; can be formulated as

1
o) = D, Bl (x)]dofes; = eg1)] — E[f ()] do(es; =es)]}, 3)
mell
where Si = {j|n(j) < n(i)}, St = {j|n(j) < (i)}, and 7 (i) is the index of i in permutation .
Computation Example. We use example Y = X; - X in Section [3.1] to illustrate the calcu-

lation process of the edge intervention causal Shapley value. We denote edge X; — X5 as ey,
edge X1 — Y as e, and edge X3 — Y as e3. For the input to be explained, * = [0.2,0.8],



Under review as a conference paper at ICLR 2025

the instantiated edges are e; = (X7, X2,0.2), e = (X1,Y,0.2), and e5 = (X5,Y,0.8). The
permutations formed by ey, es, e3 are (e1, €2, e3), (e1, €3, e2), (€2, e1,€e3), (€2, e3,€1), (€3, e1,€2),
and (es, e2,e1). Since e; must precede e3 to avoid reversing the causal effect, the valid permu-
tations are (e, e, €e3), (€1,€3,€e2), and (e2, e1,e3). When calculating the marginal contribution
in the permutation (ey, e3, e3), we first obtain the marginal contribution of adding edge e; from
the empty set, which is E[f(x)|do(e; = e1)] — E[f(x)]. When performing do(e; = e1), X»
is conditionally dependent on X; = 0.2, but the direct effect of X; on Y is absent. Therefore,
E[f(x)|do(er = e1)] = Ex,~p(xs|zr=0.2)[f(X1,X2)] where P(xz|z] = 0.2) represents the dis-
tribution of xo when it is conditioned on 7 = 0.2. Thus the marginal contribution of e; is
Estyn P(xa@:=0.2) [f (X1, %2)] — E[f(x)]. Next, we calculate the marginal contribution of e3, which
is E[f(x)|do(egq,2y = eq1,2y)] — E[f(x)| do(e1 = e1)]. Executing do(eyq 21 = ey 2}) applies the
direct effect of X; = 0.2 to Y, and the expected value is Ex, . p(x, | =0.2)[f(0.2,X2)]. Thus the
marginal contribution of e is Ex, . p(x,|ar=0.2)[f(0.2,X2)] — Ex,~ p(xy|@r=0.2) [f (X1,%2)]. When
calculating the marginal contribution of e3, X; = 0.2 and X9 = 0.8 are already fixed. The marginal
contribution of e3 is E[f(0.2,0.8)] — Ex,~ p(x,|a:=0.2)[f(0.2,X2)]. Similarly, we can compute the
marginal contributions for the other permutations (eq, e3, e2) and (es, €1, e3). The attribution values
for e1, eo, e3 are determined by averaging the marginal contributions across all valid permutations,
while the attribution values for vertices X; and X5 are calculated by summing the attribution values
of their respective outgoing edges.

The edge intervention causal Shapley value of vertex k is then defined as the sum of attribution values
of its outgoing edges, which can be formulated as follows

(k)= We), &)

ecOy,

where Oy, is the set of edges with parent vertex k.

DAG-SHAP satisfies several well-established properties that have been extensively discussed in
previous work (Sundararajan & Najmil, 2020), including Linearity, Implementation Invariance,
Sensitivity, and Dummy, all of which are defined in the appendix. These properties are already
satisfied by existing methods and serve as foundational criteria in attribution methods. For properties
related to Causality, Efficiency, Externality, and Exogeneity, different approaches vary in their ability
to satisfy these criteria. A summary of this comparison is presented in Table [I] Additionally, detailed
explanations are provided in the appendix, where we outline how and why DAG-SHAP fulfills each
of these properties.

Remark. do-Shapley and Causal Shapley both use node interventions, with the key difference being
whether the goal is to explain the impact on the data generation process of Y or on a predictive model
f. This is reflected in their utility definitions: for do-Shapley, v(S) = E[Y | do(xs = zg)], and
for Causal Shapley, v(S) = E[f(x) | do(xs = xg)]. Node interventions can be further classified
into symmetry sampling node intervention and asymmetry sampling node intervention. Shapley-ICC
uses structure-preserving interventions to measure node contributions in reducing uncertainty in
the generation of Y. In the appendix Section [D| we provide examples to illustrate the differences
between the intervention methods, specifically highlighting our proposed edge-based intervention
approach.

4 IMPLEMENTATION OF EDGE INTERVENTION CAUSAL SHAPLEY VALUE

In this section, we introduce an exact computation method for edge intervention causal Shapley value
by inferring feature distributions. Additionally, we propose an approximate algorithm for cases where
these distributions are difficult to determine in real datasets.

4.1 EXACT COMPUTATION OF EDGE INTERVENTION CAUSAL SHAPLEY VALUE

To compute the edge intervention Shapley value, the initial step involves calculating the value function
v(8) = E[f(x) | do(es = es)], which necessitates determining the distribution of x under edge
intervention. When intervening on the edges egs, for those edges where the child vertex is the target
label, the values of the parent vertices corresponding to these edges can be directly fixed by the
feature values of the input x since these edges represent the direct influence of features to the target
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Table 1: Comparison of feature attribution method in terms of having (') and missing (X) desiderata.

Method Causality Efficiency Externality Exogeneity

Off-manifold SV b 4
On-manifold SV X
Asymmetry SV
Symmetry causal SV b 4
Asymmetry causal SV
Shapley Flow b 4
Recursive SV b 4
DAG-SHAP

XX X X

label. Let Dgs denote the set of features that have a direct influence on the target label, and whose
direct influence on the target label is through the edges in es. Vs is the complement of Ds. For
the value function v(S) = E[f(x) | do(es = es)], the values of the features in Dgs are determined
by the values of the features in x, given that their direct influences are subjected to intervention.
Consequently, the edge intervention causal Shapley value for edge e; can be reformulated as follows

Wye) = 3 ABLf (0| dofes, = es:)] ~ Blf (0] dofes, = s )]}

=Y H{E[f(ngrangr” do(es: = esi )| —E[f(xv, ,2pg, )| do(es; = es:)]}-

To calculate E[f (xv 4, Zps )| do(es = es)], we should determine how to get the distribution of xy .
For a given directed acyclic graph, the distribution of the data x generated by this graph satisfies the
Markov property. Denote the distribution of the data as P(x), which can be expressed as follows

P(x) = ey P (X [Xpa(s))s

where pa(i) represents the set of parent vertices of 7 in the graph. When we intervene in the generation
of data, the conditional distribution of each feature needs to be changed accordingly. The distribution
formula of xv after the intervention is

P(xvg|do(es = es)) = Wievs P(Xi|Xpa(iyvy > Epa(iynps, )»

where DY is the set of features that have a direct influence on the value of feature  and are connected
to i by edges in es. V& is the complement of DY%. Since the permutations used to calculate the
marginal contributions follow the topological order, the distributions of all parent vertices are already
determined when calculating the distribution of a particular feature. Therefore, we can sequentially
compute the distributions of all vertices. After calculating the marginal contribution for all topological
orderings, a weighted average can be used to obtain the attribution value for each edge. Then, by
summing the attribution values of all outgoing edges of a vertex, we can obtain the attribution value
for the feature point.

4.2 APPROXIMATION OF EDGE INTERVENTION CAUSAL SHAPLEY VALUE

In Section [.1] we give the way to infer the distribution of each feature. However, we generally cannot
accurately obtain the specific distribution expressions for each feature for real datasets. Therefore, we
use approximation methods based on data sampling to estimate the value of each feature, rather than
directly solving the exact form of the distribution. The detailed process is shown in Algorithm [I]

Since the computing Shapley value is an #P-hard problem (Deng & Papadimitriou, |1994;|Zhang et al.,
2023)), the computational cost becomes very high when the number of edges increases. Therefore,
we propose an approximation method based on Monte Carlo sampling for DAG-SHAP. The detailed
process is shown in Algorithm [2| We first enumerate edge permutations that comply with the
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Algorithm 1 Sampling xv under edge intervention.

Require: Edge permutation 7, intervention edge set size s, explained input @, baseline input D.
Ensure: A sample of xv, denoted as Xy .
1: Calculate the in-degree of each vertex in the graph and store it in the array d;
2: Randomly initialize Xv4 based on D;
3: for i = 1 to length of 7 do
4: Let ¢ denote the child vertex of edge 7(7);
5: Let p denote the parent vertex of edge 7 (i);
6: if i smaller than s then
7: Assign value ¢, to edge p — ¢;
8
9

end if
: dj < dj —1;
10: if d; equals O then
11: Infer the value of X; on the values of the edges between it and its parent vertices;
12: for each child vertex k of vertex j do
13: Assign value X to edge j — k;
14: end for
15: end if
16: end for

17: return Xv;

topological sort and then intervene on each edge to compute its marginal contribution (Lines 6-
9). After obtaining the marginal contributions, we compute the weighted average to estimate the
attribution value of the edge (Lines 13-14). Finally, we sum the attribution values of the outgoing
edges of each feature to get the overall edge attribution estimation (Lines 16-19).

Algorithm 2 Approximation of DAG-SHAP.

Require: Graph G, vertices V, edges F, explained input &, sampling number 7.
Ensure: Approximate attribution values of each edges, approximate attribution values of each feature.
1: Initialize counter cnt < 0;
2: fort =1toT do
3: let 7 be a random permutation of E;
4 if 7 is a valid toposort then
5: u <+ 0,cnt < cent + 1;
6: for i = 0 to length of 7 do
7.
8

Get Xy through intervention on edges {7 (0), - - - , (i)} via Algorithm|I}

U(m (i) = U(x(i) + f(Xvs, Xng) —
: UFf(ﬁstﬁDs);
10: end for

11: end if
12: end for

13: fori = 1tomdo

14: U (i) < W(7)/ent;

15: end for

16: for: =1ton do

17: Get ®(7) by summing the attribution values of its ongoing edges;
18: end for

19: return ¥ (1), --,¥(m),®(1), - -, ®(n);

Theorem 4. Denote by T the sampling number of valid permutations, the asymptotic upper bound
of P(|®(i) — ®(i)| > €) sampling based on Algorithm2|is O(m - exp(——=3)). The proof can be
found in appendix|C}

5 EXPERIMENTS

To show the superiority of DAG-SHAP over existing methods, we conduct experiments on both
synthetic and real datasets. We present the attribution values of the benchmark, DAG-SHAP, and the
baselines using bar charts. Additionally, we calculate the mean absolute error between DAG-SHAP
and the benchmark, as well as between each baseline and the benchmark. We utilize a Mixture
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Figure 2: Attribution results of synthetic dataset. Figure 3: Mean absolute error.

Density Network to predict the distribution of child vertices after intervention on parent vertices
within the input features, consistent with the approach used in causal Shapley value (Heskes et al.,
2020). We experiment with two models for predicting the target feature from the input features: a
deep neural network (DNN) and an XGBoost model. The experimental results for the XGBoost
model are provided in the appendix [E.T|due to the limited space.

5.1 EXPERIMENTS ON SYNTHETIC DATASET

Data Generation Process. Consider a synthetic dataset consisting of four input features, X;, Xo,
X3, and X4, along with a target feature Y. The features X; and X are independently sampled
from two exogenous continuous random variables, x; and xs, respectively. Both x; and x, follow
a uniform distribution over the interval [0, 10], i.e., x3,x2 ~ U(0,10). X3 is influenced by X,
Xs, and an additional exogenous variable x3 ~ U(0,10), and given by X3 = X; + X5 + x3.
Similarly, X is influenced by X ,X5, and an another exogenous variable x4 ~ U (0, 10), and given
by X4 = X; + X5 + x4. Finally, the target feature Y is given by Y = X; - X35 + X5 - X,4. The
causal structure of this data generation process is shown in Figure @)}

o

(a) DAG of synthetic dataset. (b) DAG of splitted synthetic dataset. (c) DAG of Griliches76. (d) DAG of splitted Griliches76.

Figure 4: DAGs of used synthetic and real datasets.
Desirable Attribution. To get desirable benchmark attribution, we conduct vertex splitting for
casual structure in Figure 4(b)|such that asymmetric causal Shapley value can simulate attribution
results satisfying all desirable properties in Section B2l Specifically, we split the influence of X
and X5 on X3, X4,and Y. Denote Xl, Xl, and X3 as copies of X, while XQ, XQ, and X2 are
copies of X5. The features X5 and X, correspond to X5 and Xy, respectively. Specifically, X5 can
be expressed as X3 = X2 + X2 + %3 and X, = X? + X3 + %4, where X3 = x3 and X, = x4.
The target feature is defined as Y = X - X3 + X} - X,. The DAG is illustrated in Figure
following the data generation process. A key advantage of this new dataset is that the attributions for
edges and vertices are equal, thereby eliminating externality issues for asymmetry causal Shapley
value, as each vertex has only one outgoing edge. We train a ML model to predict labels based
on features X1, Xg, X3, and X,. This model can also predict labels when provided with values of
X!, X} X3, and X,. Attribution is conducted using the ML model on & with asymmetric causal
Shapley value, where the values of X? i X2 , X T X2 are not model inputs but serve to intervene on
X 1, )N(Ql, X5, X4. The attribution results can benchmark the input tuple x in the original dataset,
where ; = #1 = #? = %3 and &y = &} = &2 = &3. This is because the sum of attribution values
for 1, 27, 3 should be equal to the attribution value of x1, and similarly for £3, £3, 3 with .
Moreover, the attribution value of 3 must be equal to that of x3, and likewise for €4 and x4, in
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Figure 5: Attribution results of Griliches76 dataset. Figure 6: Mean absolute error.

accordance with implementation invariance (Sundararajan et al.|[2017) as they map the original input
of the model.

Experimental results. ASV represents both the asymmetric Shapley value and the asymmetric
causal Shapley value of the baseline, as they are equivalent given a DAG structure. To simplify, we
use ‘Causal’ to denote the symmetric causal Shapley value in the legend of Figure[2] The axis labels
X1, X9, X3, X4 of benchmark correspond to the sum of the split nodes. Based on the data generation
process, it is clear that the influence of X; and X5 on Y should be greater than that of X5 and Xy.
That is, the range of attribution values for features X; and X5 should be greater than X3 and X}.
However, the results from off-manifold SHAP, on-manifold SHAP, and asymmetry SHAP with a
DNN contradict this as shown in Figure 2], as they fail to identify the impact of source vertices on
their child vertices. We also conduct a statistical analysis of the attribution error for each method. The
experimental results show that the DAG-SHAP values calculated on Figure are approximately
equal to the sum of the DAG-SHAP values calculated on Figure d(b)] and are also approximately
equal to the attribution values in benchmark. The attribution error of other methods is significantly
greater than that of DAG-SHAP as shown in Figure 3]

5.2 EXPERIMENTS ON REAL DATASETS

Experiments on Griliches76 Dataset. The first real dataset we used is the Griliches76
dataset (Griliches, [1976)), consisting of 758 entries gathered from the U.S. labor market. This
dataset is widely used in research to explore the impact of features on income. We selected three
features: 1Q, education level (EUD), and years working at the current unit (YEAR). The target
variable is the logarithm of weekly income (LW). We use the same way to create the benchmark
as the synthetic dataset. The original causal graph is shown in Figure (c)| and the splitted graph is
shown in Figure @} We train a ML model with input features 1Q, YEAR, and LW. The attribution
results with a DNN of each method are shown in Figure[5] The experimental results show that the
attribution value of DAG-SHAP is the closest to the benchmark, with the mean absolute error only
23.7% of that of the second smallest method, Off-manifold SHAP which is shown in Figure@

Experiments on Census Income Dataset. The second real dataset we used is the Adult dataset (Dua
& Graff] 2017) with the causal graph shown in Figure[7} We train a binary classifier to predict whether
the income of one individual exceeds $50,000 per year. We also split the direct and indirect effects of
Country, Race, and Age to create a new dataset. We use the same way in the above experiments to get
benchmark attribution values. We show the attribution results with DNN in Figure[9]in the appendix
due to the limited space. The experimental results show that the attribution value of DAG-SHAP is
the closest to the benchmark, with the mean absolute error only 75.1% of that of the second smallest
method, causal Shapley value which is shown in Figure 8]

6 CONCLUSION

In the paper, we present an innovative approach to feature attribution by incorporating causal
relationships within a DAG structure for data generation. We introduce an edge intervention method
that strategically targets specific child vertices via their parent vertices to control the fine-grained
causal influence. Our method uniquely addresses the limitations of traditional feature attribution
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Figure 7: DAG of the Census Income dataset. Figure 8: Mean absolute error.

techniques by capturing both the exogenous contributions of edges and the requisite externality
conditions in model interpretations. Future research could expand on refining and optimizing
computational strategies for DAG-SHAP to enhance its applicability in more complex and larger
datasets. Additionally, it is interesting to explore integrating our method with models that handle
time-dependent data, potentially opening new avenues for real-time decision-making applications.
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APPENDIX

In the appendix of our paper, we provide comprehensive additional content. Section [A] reviews
the related work. In Section we discuss why DAG-SHAP satisfies all the desirable properties.
In Section[C|] we provide the proof of Theorem[d] Subsequently, Section [E]offers supplementary
material related to our experimental procedures.

A RELATED WORK

In the related work section, we organize the content into three parts. First, we provide a detailed
introduction to the baselines and the comparative methods used in our study. Next, we review
classical feature attribution approaches. Finally, we discuss feature attribution methods related to
causal inference.

A.1 SHAPLEY VALUE-BASED FEATURE ATTRIBUTION METHODS

On-manifold Shapley value is proposed by |Scott et al.|(2017), it is defined as follows

P = z_:o n(nl—1) Z {E {f <35u{i}7xw) | xsuqiy = wwm] —E[f (xs,x5) | xs = zs]}.

i/ i¢S,|8|=j
The marginal contribution of feature 7 in the explained input  when cooperating with a coalition
S is expressed as E [f (msu{i},xm) | Xsufiy = $5u{i}] —E[f(xs,x3) | xs = xs|, where

S U {i} represents the complement of S U {i}. The values of features not in the coalitions are
determined under conditional expectations of features in the coalitions.

Off-manifold Shapley value (Scott et al., [2017), a simplified version of on-manifold Shapley
value by assuming independence of features for implementation, which is widely adopted in
practical applications. The marginal contribution in off-manifold Shapley value is defined as
E {f (msu{i},xm)} — E[f (zs,xg)]. The values of features S U {i} and S which are not
in the selected coalitions are determined by the average values in the dataset.

Asymmetry Shapley value (Frye et al., 2020) sets the weight of permutations that do not satisfy
the topological order to zero, thereby breaking the symmetry in Shapley value. This allows for
model explainability analysis to distinguish the causal order between features when considering their
contributions. It accounts for the causal relationships between features, rather than assuming that all
features affect the model’s output symmetrically and independently.

Causal Shapley value (Heskes et al.l [2020) incorporates priori causal knowledge, using
the intervention in the causal area to represent the interaction influence between features.
The marginal contribution is expressed as E [f (msu{i},xm) | do (xsu{i} = $5u{i})] -
E[f (zs,x35) | do(xs = xs)], where operator do(-) means setting a variable to a specific value.
The intervention is conducted on the feature vertex so the influence of the parent vertex will transfer
to all its child vertices simultaneously if it is intervened. Note that the causal Shapley value can adopt
both symmetric and asymmetric permutations, referred to as symmetry causal Shapley value and
asymmetry causal Shapley value, respectively. Asymmetry causal Shapley value is equivalent to the
asymmetry Shapley value when DAG is known.

Shapley Flow (Wang et al.| 2021)) is a method that attributes based on paths, ensuring path order
consistency through depth-first search. It sums the attribution values of all paths passing through an
edge as the edge’s attribution, ensuring that the sum of the attribution values of all edges in any cut in
the causal graph is the same. Formally, the Shapley value of path ¢ can be represented as follows

T o([: 7(4) <7 (@) =0l : 7(j) < 7(3)])
Gu(i)= > Ton] ,

mE€llags

where inequality 7(j) < 7(¢) denotes that path j precedes path 7 under ordering = € I¢. To obtain
the attribution of an edge e, they propose to sum the attributions of all paths I’ that contains e, i.e.,

Pu(e) = ZpEP,eEp ¢u(p)-
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Recursive Shapley value (Singal et al., [2021) conducts a top-down feature attribution process to
quantify how changes at the source vertices propagate through the graph. It assumes that only the
vertices with no incoming edges have exogenous contributions, and the relationship between interme-
diate vertices and the source vertices is deterministic, with intermediate vertices only transmitting the
effects of source vertices.

A.2 CLASS FEATURE ATTRIBUTION TECHNIQUES

LIME (Local Interpretable Model-agnostic Explanations) is a popular model explanation method
proposed by (Ribeiro et al.,2016) in 2016. Its core idea is to generate a local, interpretable model
for each prediction made by a complex model. The advantage of LIME lies in its universality
and simplicity, as it can be applied to any model and provides intuitive explanations of feature
importance. Grad-CAM (Selvaraju et al.,[2017) highlights the areas of the image that contribute
the most to the prediction of a specific class through visualization. Specifically, it uses the feature
maps of the last convolutional layer and the gradient information regarding the prediction of a
specific class to generate a Class Activation Map. DeepLIFT (Shrikumar et al.l 2017) explains the
decision-making process of deep learning models through the differences in activation functions. The
DeepLIFT method allocates contribution scores by comparing the activation of each neuron with its
"reference activation," thereby revealing the contribution of input features to the model’s prediction.
SmoothGrad [Smilkov et al.| (2017) is a method designed to improve the interpretability of deep
learning models, particularly for image classification tasks. It aims to enhance the quality of model
prediction explanations by reducing the visual noise in gradient sensitivity maps. The core idea of
this method is to add random noise to the input image to create multiple perturbed images, and then
average the gradient sensitivity maps of these perturbed images to smooth the original sensitivity map.
Integrated Gradients (IG) (Taumanl [1988)) involves integrating the gradients of a model’s output
with respect to its inputs along the path from a baseline to the actual input data. It satisfies important
interpretability axioms such as Sensitivity, Implementation Invariance, and Completeness, and is
independent of the specific implementation details of the model. Layer-wise Relevance Propagation
(LRP) (Montavon et al.l 2019) is a popular method for explaining neural networks. It explains
the predictions of neural networks by propagating relevance scores from the output layer back to
the input layer. MCI measures feature contribution based on the maximum marginal contribution a
feature can bring which cannot capture the right causal contributin. It gives some new properties like
Super-efficiency and Sub-additivity (Catav et al.l 2020).

A.3 CAUSAL FEATURE ATTRIBUTION TECHNIQUES

The Shapley Additive Global Importance (SAGE) value is a globally attributed explainability method.
d-SAGE (Luther et al., 2023)observes the conditional independence between features and the model
target, and utilizes Causal Structure Learning (CSL) to infer a graph that encodes (conditional)
independence in the data as d-separations, which is more computationally efficient for calculating
SAGE. do-Shapley value (Jung et al., |2022b), as a measure of causal contribution, provides a
theoretical justification through axiomatic foundations. Like causal Shapley value, it employs
interventions but generalizes previous approaches to measure the causal contributions of each feature
to a target effect induced by a black-box/unknown/inaccessible model. PWSHAP (Path-Wise Shapley
effects) (Ter-Minassian et al.,[2023) is a method for explaining the impact of specific binary variables,
such as treatment effects or ethnicity in policy models, within predictive models. It evaluates the
targeted effects in complex outcome models by combining a predictive model with a user-defined
Directed Acyclic Graph (DAG). Inspired by causal inference and randomized experiments, researchers
have developed an algorithm to estimate AME (Average Marginal Effect), a measure of the expected
(average) marginal effect of adding a data point to a subset of the training data sampled from a
uniform distribution. When subsets are sampled from a uniform distribution, AME simplifies to the
well-known Shapley value (Lin et al.|2022)). CF-SHAP (?) is a method that combines counterfactual
information for feature attribution. It strengthens and clarifies the link between actionable recourse
and feature attributions, playing a role in advancing the development of causal feature attribution.
Dominik et al. (Janzing et al.}2020) primarily focus on distinguishing between calculating Shapley
values based on observational versus interventional conditional distributions. They were among
the first to emphasize the role of causality in feature attribution. Besides, Dominik et al. (Janzing
et al., |2024) employs structure-preserving interventions to attribute uncertainty (e.g., variance or
Shannon entropy) in the target to its influencing features. Their approach can be seen as focusing on
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feature interventions that assess changes in uncertainty metrics. UMFI removes the dependencies
of the feature being attributed from other features before calculating its marginal contribution. As
a result, it requires a causal graph to identify these dependencies. This is because, without such a
graph, determining the dependencies would not be possible. Additionally, since UMFI relies on an
approximately optimally preprocessed feature set for its computations, it does not satisfy properties
like efficiency and additivity, which are inherent to the original Shapley value (Janssen et al.l[2023).

B PROPERTIES

In this section, we introduce the definitions of several fundamental properties and then explain why
DAG-SHAP possesses properties that should be satisfied.

B.1 FUNDAMENTAL PROPERTIES

Linearity, Implementation Invariance, Sensitivity, and Dummy Feature are fundamental to feature
attribution. When edges are the objects of attribution, the definitions of these properties are as follows:

Linearity: For any two value functions f, and f,,, and their sum f = f, 4+ fy, the attributed
value of each edge in f is equal to the sum of its attributed values in f, and f,, which is
Uylei) =Wy, (e:) + Uy, (e:).

Implementation Invariance: The attribution results from an attribution method will be identical for
two models if their outputs are the same for all inputs, even though their implementations may differ
significantly.

Sensitivity: If two inputs differ in only one feature (edge) and the model’s predictions for these two
inputs are different, then the attribution for that differing feature (edge) should be non-zero. Formally,
let « and &’ be two inputs that differ only in edge e;, and the corresponding model predictions satisfy
f(x) # f(z'). Then, the attribution ¥(e;) should satisfy ¥(e;) # 0.

Dummy: The attributed value of a feature is zero if it does not have exgenous influence to the
outcome.

B.2 WHY DAG-SHAP SATISFIES THESE PROPERTIES

Proof of Linearity. For any edge e;, its edge intervention causal Shapley value is given by

Upe) =Y ﬁ{wx)\ dofes: = eg: )] — E[f(x)| dofes: = es: )]} 5)

mell

Substituting f = f, + f., we can get

Uylei) = Z;T|r1”{E[fu(X)+fw(X)|d0(es; = esi)] —E[fu(x) + fu(x)| do(es; = esi)]}. (6)

This can be split into two parts:

Wy(ei) = X;I IllT\{]E[fu(w)l do(eg: = esi )] — E[fu(e)|do(es; = esi)]} @
+ Yl Elu @) doles, = egy)] ~Elfu(@)|dofes; =es)l}.  ®)
mell

According to the definition of edge intervention causal Shapley values, the two summations corre-
spondto ¥y, (e;) and Wy, (e;), respectively. Thus, Us(e;) = Uy, (e;) + Uy, (e;). This proves that
edge intervention causal Shapley satisfies the Linearity property. O

Proof of Implementation Invariance. If f(x) = g() for all inputs x,the marginal contributions of
edge e; in f and g with any edge subsets es: are equal:E[f(x)|do(eg: = es: )| —E[f(x)|do(es: =
esi)] = Elg(z)|do(eg: = esi )| —E[g(z)|do(es: = es:)]. This follows directly from the fact that

15



Under review as a conference paper at ICLR 2025

f and g produce identical outputs for any subset of features. The edge intervention causal Shapley
value for an edge 7 is a weighted sum of the marginal contributions across all permutations within II:

1
Us(e) =) ﬁ{E[f(X)I do(es: = esi )] — E[f(x)[do(es; = es:)]}- ©
mell
Substituting the equivalence of marginal contributions:
1
Wy(ei) = 3 1 (Blo0ol doles, = es,)] ~ Elg(x)|dofes; = esy)]}- (10)
well

Thus, the edge intervention causal Shapley for f and g are identical for all edges e; when f(x) = g(x)
for all . This proves that edge intervention causal Shapley satisfies the Implementation Invariance
property. O

Proof of Sensitivity. In each permutation 7, the marginal contribution of edge e; is:
Al = E[f(x) | do(es: = egsi )] —E[f(x) | do(es: = es:)]-

Since x and «’ differ only in ¢;, and f(x) # f(«'), it means that changing e; while keeping other
edges fixed leads to a change in the prediction. Therefore, there exists at least one context (set of
preceding edges St) such that the marginal contribution A% # 0. Since at least one A% # 0, and
DAG-SHAP averages these marginal contributions over all permutations, the overall attribution ¥ (e; )
will be non-zero:

¥e) = i AL A0,

mell
Thus, DAG-SHAP assigns a non-zero attribution to edge e; when it is the only differing edge between
inputs that have different predictions, satisfying the Sensitivity property. [

Proof of Dummy. Since feature k has no exogenous influence on the outcome, intervening on its
outgoing edges does not affect the expected model output. Therefore, for any subset S C E \ {e;}
where i € Oy:

E [f(x) | do (esufe,} = €suge,y)] = E[f(x) | do(es = es)].
This implies that the marginal contribution of any outgoing edge e; is zero:

AL =E[f() | do(es; =es: )| ~E[f(x) | do (es; =es:)] =0.

Since the marginal contributions A® are zero for all permutations 7 and all outgoing edges e;, the
DAG-SHAP attribution for each edge is:

@(k):ﬁZA;:o.

The total attribution for feature is the sum of the attributions of its outgoing edges:

(k)= Ule)= Y 0=0.

1€0), €0y

Since all outgoing edges of feature k have zero attributions and the feature’s attribution is the sum of
these, the feature’s total attribution is zero. Therefore, DAG-SHAP satisfies the Dummy property. [

Proof of Causality. In any valid topological order m € II, all edges respect the causal constraint:
if e; — ey, then e; appears before e, (7(j) < w(k)). Thus, when calculating ¥(e;), all edges
in S¢ have already been intervened upon, ensuring that the causal effects of ancestor nodes are
incorporated correctly, avoiding any reversal of causality. The intervention do(e si = €si ) ensures
that the model output depends only on the current edge e; and the previously intervened edges in
St. -By computing the difference in expected model output, the calculation isolates the direct causal
effect of e;, excluding any indirect effects through other paths. Let the edge e; = (p;, ¢;, @, ), and its
attribution value is defined as: 1
) €;) = — A;.,
() I >

mell

16



Under review as a conference paper at ICLR 2025

where AL = E[f(x)| do(esi = es: )] —E[f(x)|do(es: = esi)]. AL depends solely on the effect of
the edge e; under the current intervention, ensuring that it measures only the direct causal contribution
of e;. DAG-SHAP’s attribution process strictly respects causal ordering and isolates the effects of
individual edges through edge interventions. The resulting attribution values reflect the direct causal
impact of features on the output, thus satisfying the causality property. [

Proof of Efficiency. The sum of attribution values over all edges is:

Y Ule) = ZZ|H|[ x) | do(es: = es: )] —E[f(x) | do(es; = esy)]] -

e, €F e, €FE well

Switching the order of summation over e; and 7:

> we) = Y i 2 [BIG0) | dofes, = egy)] ~BI/(x) | dofes; = es,)]]

e;,eFE well e, €FE

For a given permutation 7, summing over all edges e; € E creates a telescoping series:

3 [Elf(x) | do(es: = es)] —E[f(x) | do(es: = es: )] = E[f(x) | do(er = ex)]—E[f(x)],

e, €E

where E[f(x) | do(eg = eg)] is the model output when all edges are intervened, and E[f(x)] is the
baseline output when no edges are intervened. Averaging over all permutations m € II does not affect
the telescoping result because the final and initial terms are the same for every permutation:

Y |H‘ x) | do(ep = ep)] — E[f(¥)]] = E[f(x) | do(er = ep)] — E[f(x)].

well

Thus, the sum of the attribution values for all edges satisfies:

D Ve = fla) - E[f(x)].

e, €EFE

This proves that DAG-SHAP satisfies the Efficiency property. O

Proof of Externality. Consider two vertices k and k’: k" has a path to y, forming a path ¥’ — y, k
has a path k — g independent of k’. When computing the marginal contribution of edges associated
with k, the effects of k' — y are considered before intervening on k — y. If ¥’ — y is included
in the intervention set St before k — v, then the baseline for k — v is conditioned on the effects
of ¥ — y. In DAG-SHAP, all valid permutations 7 € II are considered. For permutations where
k' — y precedes k — y, the cooperative effect is explicitly reflected in the marginal contribution.
This summation ensures that the attribution value for % includes benefits from k' — y in all cases
where k' precedes k. Therefore, DAG-SHAP satisfies the Externality property. O

Proof of Exogeneity. In DAG-SHAP, the independent contribution of feature k is derived by inter-
vening on the edges e; = (k, ¢;, &) ) where e; € Oy, while respecting the causal order defined by the
directed acyclic graph (DAG). The attribution value ¥(e;) is calculated as:

¥e) = Y o [BI/60) | doleg, = es. )]~ ELf(0)| dofes, = es,)].

well

where S = S% U {e;} includes all preceding edges in the permutation 7 and the current edge e,
St includes only the preceding edges, The expectation [E[-] measures the contribution of e; under
specific interventions, ensuring no confounding from subsequent edges. DAG-SHAP adheres to
the topological order 7 € II, ensuring that for any edge e¢; € Oy, the influences of all ancestor
nodes of k (those connected via paths to py) are already fully propagated before e; is intervened
upon. This means ¥(e;) reflects only the influence of k. By summing over all valid permutations
m € 11, the attribution value for e; accounts for its independent contribution across all possible causal
configurations. Nodes not causally connected to k do not influence ¥(e;) because they are excluded
from the intervention sets S and S ’; Ancestor nodes’ effects are already fully propagated by the
time e; is intervened upon. Thus, DAG-SHAP satisfies the Exogeneity property.
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C PROOF

In this section, we give the proof of Theorem [ Denote 1,--- ,m the ongoing edges of feature
vertex ¢. We have

3

1

P(|®(i) — B(i)| > €) <P(>_ [¥(j) — ¥(4)| > ¢)
j=1
<> BTG - v() = 5)
j=1
2(5)? 2(5)?
<2m exp(— e ) < 2mexp(——2 ),
> k=1 (bj —a)? r?
where (a;, b;) denotes the range of marginal contribution of edge j, and ris max(by —ay, - - - ,b;—a;).
Equation (6) is derived from Hoeffding’s inequality. Then, we have
2(£)? 2¢2 1
O(2mexp(— - )) = O(2m exp(—w)) =0(m- exp(—m)).

Thus, we complete the proof.

D A COMPARATIVE STUDY OF DIFFERENT INTERVENTION METHODS

D.1 A COMPARISON OF EDGE INTERVENTION AND ASYMMETRIC SAMPLING NODE
INTERVENTION

For asymmetric sampling node intervention, we use the following example to explain why it may
fail. Let X; = x;, where x; is a random variable uniformly distributed on [0, 1], representing the
exogenous influence of X;; Xo = X - X5, where x5 is another random variable uniformly distributed
on [0, 1], representing the exogenous influence of X5. The generation of Y follows Y = X3 - X5. In
summary, X directly influences Y and indirectly influences Y through X5. X5 influences Y with
its own exogenous influence x, and transfers the indirect influence of X;. We aim to attribute values
to each feature of a specific explained input 2* = [z}, 23] = [1, 1] with respect to the baseline [0, 0].

For asymmetric sampling node interventions, the only valid sample permutation is (x7,x3). The
marginal contributions of 7 and x3 in the permutation (x7, x3) are shown in the table below:

2% in (z7, 23) E[Y |do(xqy = 2fyy)| —E[Y | do (0)]=1/2-0=1/2
wyin (2, 23) E[Y |do(xp =27, ,,)] —E[Y |do(xpy = 2fyy )] =1-12=172

Thus, the attribution value assigned to 7 by the asymmetric sampling node intervention is 1/2, and
the attribution value assigned to 3 is also 1/2.

For edge intervention, we denote the edge X; — X ase;, X1 — Y aseq, and Xo — Y as e3.
We denote the edges of the instance z* as e], e5, e5. According to the definition of DAG-SHAP
. there are three valid edge permutations: (g’{, e5.eh), (e7,e3,e5), and (e5, e, e5). The marginal
contributions of each edge in these permutations are as follows:

E

—E[Y | do (0)]=0-0=0
E 0-0=0

—E[Y | do (0)]=0-
E[Y | do ez = e3)] =1/2-0=172

Y | do €1} = 6’{
Y | do(ef1y = e}
E[Y |do(eq o =efi,)] -
E Y | do(eq2) =€}y )] —E[Y |do(eqry = e})]=1/2-0=1/2

)
)
)
)
; E[Y [do(eq23) =€}ios)] —E[Y | do(eqsy =ej, )] =1-0=1
)
)
)

E[Y | do (e2; = €5)] —E[Y | do (0)] =0-0=0
E[Y [do(epos) =€j105)] —E[Y]do(eqny = e}, )]=1-1/2=12
E[Y | do(eq5 =€}y 4)] —E[Y |do(eqy = e})] =0-0=0
E[Y |do(eq123) = €}105)] —E[Y [ do(eqay =ef )] =1-12=112
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Thus, the attribution value assigned to z by DAG-SHAPis (0 +0+1/2)/3+(1/24+140)/3 =
2/3,and the attribution value assigned to z3 is (1/2 4+ 0+ 1/2)/3 = 1/3. As ] = 1 directly
influences Y through X5 and the interaction Y = X - Xy, itis evident that 7 = 1 is more important
than z5. Therefore, the asymmetric sampling node intervention provides incorrect attribution, as it
fails to account for the external contribution of 7 = 1.

D.2 A COMPARISON OF EDGE INTERVENTION AND SYMMETRIC SAMPLING NODE
INTERVENTION

For symmetric intervention on the sampling nodes, we use this example to explain why it fails.
X1 = x1, where x; is a random variable uniformly distributed on [0, 1], representing the exogenous
influence of X1; Xo = X + X2, where x5 is another random variable uniformly distributed on [0, 1],
representing the exogenous influence of X5. The generation of Y follows Y = max (X1, X3). We
want to attribute a value to each feature of a specific explained input z* = |27, 23] = [1,2] with
respect to the baseline set as [0,0].

For symmetric node intervention, both the sampling permutations (x7, z3) and (x5, z7) are valid,

and the marginal contributions of ¥, 23 in the permutations (z7,z3) and (x3, 27) are shown in the

following table:

z%in (a7, 23) E[Y | do (x(1y = 27y,)] —E[Y | do (9))=3/2-0=3/2

2% in (23, 2}) E[Y [ do(x(12) =2f;,)] - [Y | do (x{2) = 23)]=2-2=0

23 in (a3, 27) E[Y | do (xz) = x{Q})] E[Y | do (0)]=2-0=2

x5 in (z7,25) E [Y | do (X{m} = x{u})] [ | do (x{l} = x{l}ﬂ =2-3/2=1/2

Thus, the attribution value for =7 is (3/2 + 0)/2 = 3/4, while the attribution value for z3 is
(2+1/2)/2=5/4.

For DAG-SHAP edge interventions, the edges for the instance z* are denoted as e7, €3, e3, and the
marginal contributions of each edge in each arrangement are as follows:

el in (ef, e}, el) E[Y | do ée{l} = e{ﬂ —E[Y | do (0)]=3/2-0=3/2

ei in (e}, e}, eb) E Y | do(eq1}; =e7)] —E[Y | do(0)]=3/2-0=3/2

et in (e}, el el) E[Y [do(eq2 =€}y 4)] —E[Y|do(epy = e5)] =3/2-5/4=1/4

e3 in (e, e5, e3) E[Y [ do(eq2 =€}y ,)] —E[Y | do (e = e})]=3/2-32=0
eyin (ef,e5,e5)  E[Y [do(eqro3) =€fiag)| —E[Y | do(eqs =€} 4)] =2-2=0
ehin (e5, e}, e}) E[Y | do (ea; = e5)] — E[Y | do ()] =5/4-0=5/4

eyin (e}, e5,e5) E[Y [do(eq oz = €05 )] —E[Y [do(eq o) =ej,,)|=2-32=112
ek in (ef, e}, e3) E[Y | do(eq5 = e}y q)] —E[Y|do(eqy =ef)] =2-32=172
esin (e3,ef,e5) E [Y | do (e{172,3} = 6?17273}” —-E [Y | do (9{172} = 6?172}”:2-3/2:1/2

Therefore, the attribution value for x1 in DAG-SHAP is (3/2+3/2+1/4)/3+(0+0+5/4)/3 = 3/2,
and the attribution value for zo is (1/2 + 1/2 + 1/2)/3 = 1/2. Similarly, because x} = 1 directly
influences X, and in turn directly influences Y = max(X7, X5) through X1, it is clear that z7 = 1
is more important than z5. Therefore, the attribution value provided by symmetric sampling node
interventions is misleading, because it includes the contribution of x] in the marginal contribution of
X based on an empty set, i.e., E[Y |do(Xs = z3)] — E[Y'|do(0)] = 2.

D.3 A COMPARISON OF EDGE INTERVENTION AND STRUCTURE-PRESERVING
INTERVENTIONS

Structure-preserving interventions are based on the assumption that the distribution of exogenous
variables for each feature is known, and then intervene on the exogenous variable of each feature
accordingly. However, in reality, the distribution of exogenous variables is unknown. The authors use
an additive structural causal model to fit the data generation process. By subtracting the distribution of
the parent node from the distribution of the child node, they obtain the exogenous variable distribution
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for the child node. However, most real-world data cannot be represented by an additive structural
causal model. For example, in this case X7 = x1, where x; is a random variable uniformly distributed
on [0, 1], representing the exogenous influence of X and X5 = X; - xo, where x5 is another random
variable uniformly distributed on [0, 1]. In the generation of the X feature, the exogenous variable
X9 acts multiplicatively. Thus, fit the data using an additive causal model, we cannot determine the
right causal structure, so the attribution values calculated using this method would not be accurate.
Consider a special case where when ] = 1 and =35 = 1, the resulting exogenous variable for x5 is
0. This implies that x5 has no effect on the data generation process, which clearly contradicts the
true data generation process. DAG-SHAP does not require calculating the distribution of exogenous
variables, nor does it assume the influence of exogenous variables in the data generation process is
linear. It only need the causal direction between features. We think this is a significant distinction.

E EXPERIMENT SUPPLEMENT

E.1 ATTRIBUTION RESULTS AND ERRORS

In this section, we supplement the attribution results on the census dataset using deep neural networks
(DNN), as well as the attribution results and error analysis using the XGBoost model across the
synthetic and real datasets. The attribution result distribution using the DNN model on the Census
dataset is shown in Figure [0]where X7, --- , X represent the following features: Race, Country,
Age, Occupation, Marital Status, and Capital Gain.. The attribution results using the XGBoost model
on the synthetic dataset and the mean absolute error between the results and the benchmark are shown
in Figures [T0]and [IT] respectively.
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Figure 9: Attribution results of Census dataset(DNN).
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Figure 10: Results of synthetic dataset(XGBoost). Figure 11: MAE(XGBoost).

The attribution results using the XGBoost model on the Griliches dataset and the mean absolute error
between the results and the benchmark are shown in Figures [12)and [T3] respectively. The attribution
results using the XGBoost model on the census dataset and the mean absolute error between the
results and the benchmark are shown in Figures [T4]and [T5] respectively.
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Figure 12: Results of Griliches76 dataset(XGBoost).  Figure 13: MAE(XGBoost).
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Figure 14: Attribution results of Census dataset(XGBoost). Figure 15: MAE(XGBoost).

E.2 APPROXIMATION ERROR EVALUATION

Table 2: MAE of the SHAP values estimation.

Datasets DAG-SHAP Causal ASV  On-SHAP Off-SHAP
Synthetic(DNN) 3.717 1.921 2.935 3.322 2.988
Griliches76(DNN) 0.032 0.025  0.017 0.021 0.016
Census(DNN) 0.082 0.064  0.075 0.056 0.088
Synthetic(XGBoost) 3913 2.897  3.564 3.341 2.926
Griliches76(XGBoost) 0.035 0.020  0.035 0.029 0.018
Census(XGBoost) 0.133 0.089 0.122 0.071 0.098

The attribution values in our experiments are obtained using approximate sampling methods. Since
sampling estimates can introduce errors, this aspect is incorporated into the comparison between
each attribution method and the benchmark. Therefore, we conducte a separate experiment to
estimate the errors arising from the approximation. In the above experiments, 200 permutations are
used for sampling during the attribution of each data point. We repeat the attribution process twice
independently for each expalined data point, with each attribution method still using 200 permutations.
The average error between the results of these two attributions is shown in Table [2} From the results,
it can be observed that the errors introduced by sampling are much smaller than the discrepancies
between each method and the benchmark. This indicates that the attribution errors compared to the
benchmark are primarily due to inherent differences in the methods rather than sampling errors.

E.3 SCALABILITY EVALUATION
When dealing with large datasets, parallel computing can effectively accelerating the feature attribu-

tion calculations. Feature attribution for different data points can be executed in parallel. Additionally,
within the feature attribution process for a single data point, sampling different permutations can
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also be executed in parallel. We extende synthetic dataset (a) such that each data point had 100
features, and the DAG contained 200 edges. Specifically, we replicate X7, Xs, X3, and X4 from
the synthetic dataset (a) 25 times, resulting in 100 features in total. Each replicated feature main-
tains its causal relationship with Y, ensuring that the collective contribution of all features to ¥’
remains consistent with the contribution in the original structure. We use the same neural network
structure as in the experiments in Section 5.1 and use a server equipped with two AMD EPYC
9754 128-Core Processors, providing a total of 512 logical processors. For each data point, we
conduct two independent rounds of sampling and compare the mean absolute error (MAE) between
the sampling results. The experimental results show that with 128 sampling permutations per data
point, the MAE is 5.17%, which is significantly smaller than the errors caused by the different feature
attribution algorithms. For instance, the absolute error between off-SHAP which has the smallest
MAE in baseline and the benchmark was 17.24%. Using 128 threads for parallel sampling of 128
permutations, the computation time was only 57.5 seconds. Additionally, we conducted experiments
with 256 and 384 permutations, resulting in mean absolute errors of 4.23% and 3.71%, respectively.
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