
Nominality Score Conditioned Time Series Anomaly
Detection by Point/Sequential Reconstruction

Chih-Yu Lai∗
Department of EECS, MIT

Cambridge, MA 02139
chihyul@mit.edu

Fan-Keng Sun
Department of EECS, MIT

Cambridge, MA 02139
fankeng@mit.edu

Zhengqi Gao
Department of EECS, MIT

Cambridge, MA 02139
zhengqi@mit.edu

Jeffrey H. Lang
Department of EECS, MIT

Cambridge, MA 02139
lang@mit.edu

Duane S. Boning
Department of EECS, MIT

Cambridge, MA 02139
boning@mtl.mit.edu

Abstract

Time series anomaly detection is challenging due to the complexity and variety of
patterns that can occur. One major difficulty arises from modeling time-dependent
relationships to find contextual anomalies while maintaining detection accuracy for
point anomalies. In this paper, we propose a framework for unsupervised time series
anomaly detection that utilizes point-based and sequence-based reconstruction
models. The point-based model attempts to quantify point anomalies, and the
sequence-based model attempts to quantify both point and contextual anomalies.
Under the formulation that the observed time point is a two-stage deviated value
from a nominal time point, we introduce a nominality score calculated from the
ratio of a combined value of the reconstruction errors. We derive an induced
anomaly score by further integrating the nominality score and anomaly score, then
theoretically prove the superiority of the induced anomaly score over the original
anomaly score under certain conditions. Extensive studies conducted on several
public datasets show that the proposed framework outperforms most state-of-the-art
baselines for time series anomaly detection.

1 Introduction

Time series anomaly detection involves identifying unusual patterns or events in a sequence of
data collected over time [1]. This technique is crucial in fields such as finance [2], healthcare
[3], manufacturing [4], transportation [5], and more [6]. A comprehensive evaluation of different
techniques can be found in [7]. Time series anomaly detection using unsupervised learning approaches
is favored by recent studies due to the fact that they don’t require labeled data and have better detection
of unseen anomalies [8], which is also the approach used in this work. Most unsupervised time
series anomaly detection methods involve calculating an anomaly score at each time point and then
comparing this score to some threshold. For calculating this score, we can categorize different
methods into three main groups: Reconstruction-based methods involve reconstructing the original
time series data and comparing the reconstructed data with the actual data [9, 10, 11]. Prediction-
based methods involve predicting the next value in the time series and comparing it with the actual
value [12, 13, 14]. Dissimilarity-based methods measure the distance between the value obtained
from the model and the distribution or cluster of the aggregated data [15, 16, 17, 18, 19, 20]. There
can also be hybrid techniques where multiple methods are applied.

∗Code available at https://github.com/andrewlai61616/NPSR

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/andrewlai61616/NPSR

While the classification approaches for the types of anomalies differ in the literature [6, 7], we will
focus on two classes: point anomalies and contextual anomalies. Point anomalies refer to individual
data points that significantly deviate from the expected behavior of the time series and can be detected
by observing the data at a single time point. Contextual anomalies, on the other hand, refer to data
points that deviate from the expected behavior of the time series in a specific context or condition.
These anomalies cannot be detected by observing the data at a single time point and can only be
detected by observing the contextual information. As a result, point anomalies can be detected using
any general anomaly detection technique that does not require temporal information. Such models are
called point-based models in this work. However, detecting contextual anomalies requires a model
that can learn temporal information. Such models require a sequence of input, hence they are termed
sequence-based models in this work. A time point may contain both point and contextual anomalies.
Obviously, contextual anomalies are harder to detect. An important trade-off arises when a model
tries to learn time-dependent relationships for detecting contextual anomalies but loses precision or
accuracy in finding point anomalies. This trade-off becomes more significant in high-dimensional
data, where modeling the temporal relationship is difficult [21].

Our intuition comes from the observation that state-of-the-art methods using sequence-based recon-
struction models encounter the point-contextual detection trade-off, resulting in noisy reconstruction
results and suboptimal performance. As an alternative, we start by experimenting with point-based
reconstruction methods, which exhibit a lower variance as they do not require the modeling of time-
dependent relationships. Despite the absence of temporal information, we find that the corresponding
anomaly score for a point-based reconstruction model can already yield a competitive performance.
To further bridge the gap between point-based and sequence-based models, we introduce a nominality
score that can be calculated from their outputs and derive an induced anomaly score based on the
nominality score and the original anomaly score. We find that the induced anomaly score can be
superior to the original anomaly score. To provide theoretical proof of our findings, we frame
the reconstruction process as a means to fix the anomalies and identify underlying nominal time
points and prove that the induced anomaly score can always perform better or just as well as the
original anomaly score under certain conditions. We also conduct experiments on several single and
multi-entity datasets and demonstrate that our proposed method surpasses the performance of recent
state-of-the-art techniques. We coin our method Nominality score conditioned time series anomaly
detection by Point/Sequential Reconstruction (NPSR).

2 Related Works
Reconstruction-based techniques have seen a diversity of approaches over the years. The simplest
reconstruction technique involves training a separate model sequentially for each channel using UAE
[11]. One type of improvement focuses on network architecture, with notable examples like LSTM-
VAE [22], MAD-GAN [23], MSCRED [24], OmniAnomaly [9], and TranAD [25]. Additionally,
hybrid architectures like DAGMM [26] and MTAD-GAT [27] have been proposed. Another type
aims to improve the anomaly score instead of using the original reconstruction error. Designing
this anomaly score involves a considerable amount of art, given the high diversity of methods for
calculating it across studies. For instance, USAD uses two weighted reconstruction errors [28],
OmniAnomaly employs the "reconstruction probability" as an alternative anomaly score [9], MTAD-
GAT combines forecasting error and reconstruction probability [27], and TranAD uses an integrated
reconstruction error and discriminator loss as the anomaly score [25]. In the context of network
architecture, our method utilizes a straightforward performer-based structure without incorporating
any specialized components. Based on our insights into the point-sequential detection tradeoff,
our approach stands out by integration of point-based and sequence-based reconstruction errors for
competitive performance.

3 Methods
3.1 Problem Formulation

Let X = {x1, ..., xT } denote a multivariate time series with xt ∈ RD, where T is the time length
and D is the dimensionality or number of channels. There exists a corresponding set of labels y =
{y1, ..., yT }, yt ∈ {0, 1} indicating whether the time point is normal (yt = 0) or anomalous (yt = 1).
For a given X, the goal is to yield anomaly scores for all time points a = {a1, ..., aT }, at ∈ R and a
corresponding threshold θa such that the predicted labels ŷ = {ŷ1, ..., ŷT }, where ŷt ≜ 1at≥θa , match

2

y as much as possible. To quantify how matched ŷ and y is, or how good a is for potentially yielding a
good ŷ, there are several performance metrics that takes either a or ŷ into account [11, 12, 29, 30, 31].
This work mainly focuses on the best F1 score (F1∗) without point-adjust, also known as the point-
wise F1 score, which is defined as the maximum possible F1 score considering all thresholds. (A
complete derivation for F1∗ is covered in Appendix A.)

3.2 Nominal Time Series and Two-stage Deviation

We denote the observed data as X0 = {x0
1, ..., x0T }, where x0t ∈ RD. Assume that for each X0, there

exists a corresponding underlying nominal time series data X∗ = {x∗1, ..., x∗T } that comes from a
nominal time-dependent process x∗

t = f∗(t) : N → RD. The corresponding total deviation at t (∆x0t)
is defined as ∆x0t ≜ x0

t − x∗t . We denote X∗ as the set of all possible x∗
t for all t ∈ {1, ..., T}. ∆x0

t
can be separated into two additive factors ∆xc

t and ∆xpt , such that, by definition, xct = x∗
t + ∆xct

and x0t = xc
t + ∆xpt . We define ∆xct as the in-distribution deviation, where xct ∈ X∗; and ∆xpt as

the out-of-distribution deviation, which is non-zero if and only if x0
t /∈ X∗. ∆xpt can be a means

for quantifying the point anomaly, and ∆xct can be a means for quantifying the contextual anomaly.
This is reasonable, since no matter how large ∆xct is, we still have xct ∈ X∗, i.e., the in-distribution
deviated value xct is still in the set of all possible nominal time point data, and cannot be detected
using a point-based model. On the other hand, it is possible that having learned X∗, a point-based
model can negate the deviated value caused by ∆xpt . Fig. 1(a) gives an illustration of the relationships
between the variables at time t. We clarify this using the example below.

Assume we obtain a dataset from the streaming data of a 2D position sensor, where x∗t , xc
t , x0t ∈ R2,

and we have learned that the nominal time series is the circular movement of a point around the
origin with some angular velocity ω and radius r, where Rmin ≤ r ≤ Rmax. Accordingly, we can
deduce that X∗ = {[x y]

T |R2
min ≤ x2 + y2 ≤ R2

max} and x∗
t = [r cosωt r sinωt]

T . One possible
cause (among many others) of contextual anomalies might be due to an unexpected change in angular
velocity. For instance, failures in the system might lead to a slowdown of the circular movement
between t1 and t2, i.e., ∆xct = [r(cosω′t− cosωt) r(sinω′t− sinωt)]

T for t ∈ {t1, ..., t2} and
∆xc

t = 0 elsewhere. Moreover, noisy measurements of individual time points may induce point
anomalies in the observed time series, i.e., ∆xp

t = [wx,t wy,t]
T where wx,t or wy,t is nonzero such

that x0
t /∈ X∗ for some t. Fig. 1(b)(c) gives an illustration of the above example. The black dots are

time points where x0t = x∗
t (no anomalies). The blue dots are time points exhibiting a slowdown

(contextual anomalies). The red dots are time points with noisy measurements (point anomalies).
The purple dots are time points with both slowdown and noisy measurements (point and contextual
anomalies). The green dots are time points with noisy measurements but x0t ∈ X∗, so are still
contextual anomalies since their deviations cannot be detected by observing a single time point.

3.3 The Nominality Score
Now we conceptualize the Nominality Score N(·). Analogous to the anomaly score, N(·) indicates
how normal a time point is. A nominality score N(·) is appropriate if for every possible θN > 0,
P(N(t) > θN |yt = 0) > P(N(t) > θN |yt = 1) for all t ∈ {1, ..., T}, i.e., the portion of normal
points that has a nominality score larger than θN is strictly larger than the portion of anomaly points

Figure 1: (a) Relationships between variables, (b) observed time series on 2D plane, and (c) radial
and angular displacement vs time from nominal time series (x∗

t) for the 2D position sensor example.

3

that has a nominality score larger than θN . There are many ways to define N(·). In this study, we
define N(t) as the ratio of the squared L2-norm between ∆xc

t and ∆x0t .

N(t) ≜
∥∆xc

t∥22
∥∆x0t∥22

=
∥∆xct∥22

∥∆xc
t +∆xpt ∥22

=
∥xc

t − x∗t ∥22
∥x0t − x∗t ∥22

(1)

We provide an example as to when N(·) will be appropriate. In this derivation, we add an n and a in
the subscript to denote variables that are only associated with normal and anomaly points, respectively.
Consider a toy dataset, where ∆xct,n,∆xpt,n,∆xct,a, and ∆xpt,a have been defined:

∆xct,n ∼ N (0, ID), ∆xpt,n ∼ N (0, ID), ∆xct,a ∼ N (0, ID), ∆xpt,a ∼ N (0, α2ID) (2)

According to (1), we have

2Nn(t) = 2
∥∆xct,n∥22

∥∆xc
t,n +∆xpt,n∥22

∼ F(D,D) (3)

(1 + α2)Na(t) = (1 + α2)
∥∆xc

t,a∥22
∥∆xct,a +∆xpt,a∥22

∼ F(D,D) (4)

where F is the F-distribution with D and D degrees of freedom. Fig. 2 illustrates the probability
density function of Nn(·) and Na(·) for different D and α. If α > 1, then N(·) becomes an
appropriate nominality score, since

P(N(t) > θN |yt = 0) =

∫ ∞

2θN

f(x;D,D)dx >

∫ ∞

(1+α2)θN

f(x;D,D)dx = P(N(t) > θN |yt = 1)

(5)

where f(·;D,D) is the probability density function of the F-distribution with degrees of freedom D
and D. Indeed, it is reasonable to assume that ∆xpt,a has a larger variance than ∆xpt,n.

3.4 The Induced Anomaly Score
Having N(·) defined, we now propose a method for integrating any given N(·) and anomaly score
A(·) to yield an induced anomaly score Â(·), and show some instances where the performance will
improve over using A(·) or a smoothed A(·). Consider a dataset that contains subsequence anomalies.
For two near time points t and τ , it is natural to assume that the possibility of t being anomalous is
affected by τ . We quantify this effect as A(t; τ), which is the induced anomaly score at t due to τ .
By summing over a range of τ around t, we get the induced anomaly score at t:

Â(t) ≜
min(T,t+d)∑

τ=max(1,t−d)

A(t; τ) (6)

where d is the induction length. Furthermore, we define A(t; τ) as a gated value of A(τ), which is
controlled by the nominality score from τ to t:

A(t; τ) ≜ A(τ)

max(t−1t=τ ,τ−1)∏
k=min(τ+1,t)

gθN (N(k)) =


A(τ)gθN (N(τ + 1))...gθN (N(t)) t > τ

A(τ) t = τ

A(τ)gθN (N(τ − 1))...gθN (N(t)) t < τ

(7)

Figure 2: The probability density function for Nn and Na of the toy dataset at (a) D = 2 and (b)
D = 100.

4

where the gate function gθN (N) is some transformation function of N conditioned on a threshold
θN . A reasonable assumption is that gθN (N) is a non-increasing function of N , i.e., N > N ′ implies
gθN (N) ≤ gθN (N ′). Indeed, if N(k) is large, then time point k is likely a normal point, and any two
points t1, t2, where t1 < k < t2, are unlikely to be in the same anomaly subsequence, hence A(t1; t2)

and A(t2; t1) should be small. Explicitly, we can use Â(t) = Â(t; gθN) and A(t; τ) = A(t; τ, gθN)

to denote that these values are conditioned on gθN . Overall, Â(·) can be thought of as some
(unnormalized) weighted smoothed value of A(·), where the weights are the product of gθN (N(·))
across some range. We consider the following two cases:

Claim 1 Using a soft gate function,

gθN (N) ≜ max(0, 1− N

θN
) (8)

If there exists θ1 such that N(t) ≥ θ1 for all normal points (yt = 0), then F1∗(Â(·; gθ1); y) ≥
F1∗(A(·); y), i.e., the best F1 score using the induced anomaly score with gθ1 as the gate function is
greater or equal to the best F1 score using the original anomaly score.

Proof 1 For any normal time point tn, we have

Â(tn; gθ1) =

min(T,tn+d)∑
τ=max(1,tn−d)

A(tn; τ, gθ1) =

min(T,tn+d)∑
τ=max(1,tn−d)

A(τ)1tn=τ = A(tn) (9)

The equality in the middle arises from the fact that gθ1(N(tn)) = 0, according to (8) and the
assumptions. However, for any anomaly point ta, we have

Â(ta; gθ1) =

min(T,ta+d)∑
τ=max(1,ta−d)

A(ta; τ, gθ1) ≥ A(ta) (10)

This is because N(ta) might be lower than θ1, and hence gθ1(N(ta)) ≥ 0. By potentially having a
higher Â(t) than A(t) for anomaly points, we get a potentially higher F1∗.

Such a θ1 indeed exists in real applications (e.g. the minimum nominality score among all normal
points tn). However, targeting this value barely leads to any improvement for F1∗ in practice. This
is because anomaly points are generally fewer than normal points, resulting in barely any anomaly
points ta having N(ta) < θ1. Nevertheless, we have shown that the soft gate function along with the
induced anomaly score can provably yield equal or better F1∗ under some threshold.

Claim 2 Using a hard gate function,
gθN (N) ≜ 1N<θN (11)

If d = 1, and there exist two thresholds: (i) θ2 such that N(t) < θ2 for all anomaly time points
(yt = 1) (ii) θ∞ = ∞; then F1∗(Â(·; gθ2); y) ≥ F1∗(Â(·; gθ∞); y), i.e., the best F1 score using the
induced anomaly score with gθ2 as the gate function is greater or equal to the best F1 score using the
induced anomaly score with gθ∞ as the gate function.

Proof 2 For any anomaly time point ta, we have

Â(ta; gθ2) =

min(T,ta+1)∑
τ=max(1,ta−1)

A(τ) = A(ta − 1)1ta>1 +A(ta) +A(ta + 1)1ta<T (12)

where the first equality arises from the fact that gθ2(N(ta)) = 1, according to (11) and the assump-
tions. For any normal time point tn, we have

Â(tn; gθ2) =

min(T,tn+1)∑
τ=max(1,tn−1)

A(tn; τ, gθ2) ≤ A(tn − 1)1tn>1 +A(tn) +A(tn + 1)1tn<T (13)

since N(tn) might be greater than θ2 and hence gθ2(N(tn)) ≤ 1. However, we have

Â(t; gθ∞) =

min(T,t+1)∑
τ=max(1,t−1)

A(τ) = A(t− 1)1t>1 +A(t) +A(t+ 1)1t<T (14)

5

regardless of normal or anomaly points since N(t) < θ∞ for any t. Therefore, since Â(ta; gθ2) =

Â(ta; gθ∞) and Â(tn; gθ2) ≤ Â(tn; gθ∞), we get a potentially higher F1∗ when using θ2 compared
to using θ∞.

Â(·; gθ∞) can be viewed as the smoothed value (or shifted simple moving average) over A(·) with a
period of 2d+ 1. This averaging method is common among other studies [11, 12, 32, 33]. Claim 2
implies that by conditioning on N(·) and calculating Â(t), the performance can be improved over
using a simple smoothing value of A(·). In practice, we can relax the constraint of d, and use other
gated functions to yield a more flexible architecture. Note that the appropriateness of a nominality
score is critical for this to work.

3.5 Point-based Reconstruction Models

Consider some model Mpt that reconstructs each time point t point-wise: x̂pt,t ≜ Mpt(x0t). Using
Mpt, a method for yielding the anomaly score is by using the point-based reconstruction mean-squared
error, defined as apt = {apt,1, ..., apt,T }, where apt,t ≜ ∥x̂pt,t − x0t∥22. One concern for using this
kind of anomaly score is that we are not taking into account any time-dependent relationships for
deriving apt, so simply using Mpt and apt can barely be classified as a time series anomaly detection
approach. Surprisingly, however, we find that a simple realization of Mpt can already achieve
impressive results for F1∗ (section 4.4).

Since Mpt learns to capture the distribution of all normal point data, we assume that x̂pt,t ∈ X∗ or is
very close. Moreover, since x̂pt,t can offset point-anomalies, we assume xct ≈ x̂pt,t, and implement a
point-based reconstruction model to calculate x̂pt,t in practice.

Xc = {xc
1, ..., xcT } ≈ X̂

c
= {x̂c

1, ..., x̂cT }, x̂c
t = x̂pt,t = Mpt(x0t) (15)

Mpt can be any model that has the ability to reconstruct X0 point-wise. To our surprise, the best
performance can be achieved by using a simple Performer-based autoencoder ([34]) that actually
has the potential to discover temporal information. Despite having such a possibility, it only learned
to reconstruct point-by-point during training. We demonstrated this fact by shuffling the input time
points and observing that the result will be the same after reordering the output sequence. One
possible explanation is that during training, it is a lot easier to individually reconstruct single time
points than to find complex time-dependent relationships; and since the Performer-based autoencoder
tries to optimize over a batch of time points, this reduces the effect of overfitting and allows the model
to better generalize to unseen data. However, the exact reason for this remains an open question. For
the rest of the study, we will use Mpt to refer to the Performer-based autoencoder model. Details for
the architecture of Mpt are shown in Appendix B.1.

3.6 Sequence-based Reconstruction Models

Contrary to xc
t , x∗

t should not only be in X∗ but also obey the time-dependent relationships. Therefore,
it is necessary that the model (Mseq) for approximating x∗

t takes a sequence of time points as input.

X∗ ≈ X̂
∗
= {x̂∗1, ..., x̂∗T } ≜ Mseq(X0) (16)

How close Mseq(X0) approximates X∗ depends on the amount of training data and the model capacity.
In practice, for computational reasons, only a section of X0 is input and reconstructed at a time. We
found that given a subsequence X0

ab = {x0
a, ..., x0b} as input for reconstruction, a model tends to

simply reconstruct individual points and do not take temporal information into account (as discussed
in section 3.5). Therefore, we use a Performer-based stacked encoder as Mseq, which predicts the
middle δ points from its surrounding 2γ points to force the learning of time-dependent relationships.
We concatenate all the predicted time points output by Mseq to construct X̂

∗
. For the rest of the study,

we will use Mseq to refer to the Performer-based stacked encoder model. Details for the architecture
of Mseq are shown in Appendix B.2. Fig. 3 gives an illustration of the architecture for Mpt, Mseq,
and the overall scheme. By obtaining X̂

c
and X̂

∗
, we can calculate N(·) and select some A(·) for

calculating Â(·). The algorithm for evaluating a trained Mpt and Mseq using the soft gate function is
shown in Algorithm 1.

6

Figure 3: (a) Performer-based autoencoder Mpt, (b) Performer-based stacked encoder Mseq , and (c)
main scheme for NPSR. GELUs are used as the activation function for each layer.

Algorithm 1 NPSR F1∗ Evaluation (soft gate function)
function NPSR(Mpt, Mseq , X0 = {x0

1, ..., x0
T }, y = {y1, ..., yT }, θN , d)

Construct X̂
c
= {x̂c

1, ..., x̂c
T } with x̂c

t ←Mpt(x0
t) ▷ (15)

Construct X̂
∗
= {x̂∗

1, ..., x̂∗
T } ←Mseq(X0) ▷ (16)

Construct A(·) with A(t)← ∥x̂c
t − x0

t∥22 ▷ section 3.5
Construct N(·) with N(t)← ∥x̂c

t − x̂∗
t ∥22 / ∥x0

t − x̂∗
t ∥22 ▷ (1)

Construct gθN (N(·)) with gθN (N(t))← max(0, 1−N(t)/θN) ▷ (8)
Construct A(·; ·) with A(t; τ)← A(τ)

∏max(t−1t=τ ,τ−1)

k=min(τ+1,t) gθN (N(k)) ▷ (7)

Construct Â(·) with Â(t)←
∑min(T,t+d)

τ=max(1,t−d) A(t; τ) ▷ (6)

return F1∗ ← maxθa F1(ŷ(Â(·), θa); y)

4 Experiments

4.1 Datasets

We evaluate NPSR on the following datasets:

• SWaT (Secure Water Treatment) [35]: The SWaT dataset is collected over 11 days from a scaled-
down water treatment testbed with 51 sensors. During the last 4 days, 41 anomalies were injected
using diverse attack methods, while only normal data were generated during the first 7 days.

• WADI (WAter DIstribution testbed) [36]: The WADI dataset is acquired from a reduced city water
distribution system with 123 sensors and actuators operating for 16 days. The first 14 days contain
only normal data, while the remaining two days have 15 anomaly segments.

• PSM (Pooled Server Metrics) [37]: The PSM dataset is collected internally from multiple applica-
tion server nodes at eBay. There are 13 weeks of training data and 8 weeks of testing data.

• MSL (Mars Science Laboratory) and SMAP (Soil Moisture Active Passive) [38, 13]: The MSL
and SMAP datasets are public datasets collected by NASA, containing telemetry anomaly data
derived from the Incident Surprise Anomaly (ISA) reports of spacecraft monitoring systems. The
datasets have 55 and 25 dimensions respectively. The training set contains unlabeled anomalies.

• SMD (Server Machine Dataset) [9]: The SMD is collected from a large internet company, compris-
ing 5 weeks of data from 28 server machines with 38 sensors. The first 5 days contain only normal
data, and anomalies are injected intermittently for the last 5 days.

• trimSyn (Trimmed Synthetic Dataset) [24]: The original synthetic dataset was generated using
trigonometric functions and Gaussian noises. We obtained the dataset from [39] and trimmed the
test dataset such that only one segment of anomaly is present.

The statistics for the datasets are summarized in Table 1. For multi-entity datasets, Train#/Test#
corresponds to the number of train/test time points summed over all entities, and the anomaly rate is
calculated from the ratio between the sum of all anomaly points and sum of all test points.

7

Table 1: Datasets used in this study before preprocess.

Dataset Entities Dims Train # Test # Anomaly Rate (%)

SWaT 1 51 495000 449919 12.14
WADI 1 123 1209601 172801 5.71
PSM 1 25 132481 87841 27.76
MSL 27 55 58317 73729 10.48

SMAP 55 25 140825 444035 12.83
SMD 28 38 708405 708420 4.16

trimSyn 1 35 10000 7680 2.34

4.2 Baselines
We evaluate the performance of NPSR against several deep learning algorithms and simple heuristics
using F1∗. Due to the exhaustive nature of optimizing for all datasets and algorithms, we follow
a three-step approach to populate Table 2. Firstly, we reference values from the original paper,
and if unavailable, we search for the highest reported values among other publications. Finally,
if no reported values are found, we modify and run publicly available code. We cannot find any
reported F1∗ of the PSM dataset using THOC or any publicly available code, hence leaving the value
blank. For multi-entity datasets (MSL, SMAP, and SMD), we compare the performance using two
methods - (1) combining all entities and training them together; (2) training each entity separately and
averaging the results. Moreover, some literature attempt to find a threshold (θa) and then calculate the
performance conditioned on it [24, 40]. Since θa can simply be a one-value parameter, we assume
that other studies have already optimized this value, and regard their reported F1 as F1∗. More
information on the sources of data can be found in Appendix E.

4.3 Main Results
In Table 2, we report the results for F1∗ on several datasets. Detailed preprocessing steps and
training settings are reported in Appendix C. NPSR almost consistently outperforms other algorithms,
only being slightly inferior to TranAD on the PSM dataset. NPSR makes use of Mpt to precisely
capture point anomalies with low false-positive rates (given the best threshold). Moreover, it acquires
the ability to detect contextual anomalies by incorporating Mseq through the calculation of Â(·),
without compromising its capability of detecting point anomalies. We observe that recent studies
do not necessarily have higher F1∗ scores than older ones. Interestingly, simple heuristics can even
perform fairly well on F1∗, with NPSR being the only algorithm consistently outperforming them.

Table 2: Best F1 score (F1∗) results on several datasets, with bold text denoting the highest and
underlined text denoting the second highest value. The deep learning methods are sorted with older
methods at the top and newer ones at the bottom.

Algorithm \ Dataset SWaT WADI PSM MSL SMAP SMD trimSyn

Simple Heuristic [11, 30, 31] 0.789 0.353 0.509 0.239 0.229 0.494 0.093
DAGMM [26] 0.750 0.121 0.483 0.199 0.333 0.238 0.326

LSTM-VAE [22] 0.776 0.227 0.455 0.212 0.235 0.435 0.061
MSCRED [24] 0.757 0.046 0.556 0.250 0.170 0.382 0.340

OmniAnomaly [9] 0.782 0.223 0.452 0.207 0.227 0.474 0.314
MAD-GAN [23] 0.770 0.370 0.471 0.267 0.175 0.220 0.331
MTAD-GAT [27] 0.784 0.437 0.571 0.275 0.296 0.400 0.372

USAD [28] 0.792 0.233 0.479 0.211 0.228 0.426 0.326
THOC [18] 0.612 0.130 - 0.190 0.240 0.168 -
UAE [11] 0.453 0.354 0.427 0.451 0.390 0.435 0.094
GDN [12] 0.810 0.570 0.552 0.217 0.252 0.529 0.284
GTA [41] 0.761 0.531 0.542 0.218 0.231 0.351 0.256

Anomaly Transformer [40] 0.220 0.108 0.434 0.191 0.227 0.080 0.049
TranAD [25] 0.669 0.415 0.649 0.251 0.247 0.310 0.282

NPSR (combined) - - - 0.261 0.511 0.227 -
NPSR 0.839 0.642 0.648 0.551 0.505 0.535 0.481

8

We suggest using these simple heuristic values as a strong baseline for future studies to compare
against. In light of recent publications highlighting the limitations of using the point-adjusted F1
score ([11, 30, 31, 42]), and yet the large amount of work still using it, we also report the results
using point-adjustment in Appendix D.

For multi-entity datasets, we observe that the standard method (training one point-based and sequence-
based model per entity) outperforms the combined method for MSL and SMD datasets. This is not
surprising, given that entity-to-entity variations might be large. However, for the SMAP dataset, we
observe that the combined method performs better. We attribute such results to the fact that the SMAP
spacecraft are routine, hence the resulting telemetry between entities can have similar underlying
distributions. This contributes to additive learning from the increased training data [13].

4.4 Ablation Study

The ablation study conducted in this section sheds light on several aspects of the proposed method. In
Table 3, we compare the performance of five methods that yield different anomaly scores (either A(·)
or Â(·)). For the first two methods, the reconstruction errors of Mpt and Mseq are used, respectively.
Since Mpt mostly performs better than Mseq , we use the point-based reconstruction error as A(·) to
calculate Â(·) for the last three methods. The third method corresponds to an unnormalized simple
smoothed value of A(·) (cf. section 3.4). The fourth and fifth methods use gate functions (11) and
(8), respectively, but the same θN that corresponds to the 98.5 percentile of the nominality score
from the training data (Ntrn). This method for setting θN works well enough and can be applied
across different datasets. Illustrations of the distribution of nominality scores for the SWaT and
WADI datasets, along with the 98.5% threshold value are shown in Fig. 4. We can observe that
the distributions are close to appropriate (cf. section 3.3). The results for the last three methods
are averaged over induction lengths d = 1, 2, 4, 8, 16, 32, 64, 128, and 256. Each entity is trained
separately for multi-entity datasets and the results are pooled together.

Firstly, we observe that Mpt outperforms Mseq and achieves competitive results on its own, despite
not modeling the time-dependent relationships. Secondly, by smoothing A(·) (third row), the AUC
and F1∗ are increased for most datasets. This means smoothing is generally an effective method for
improving performance. Moreover, our experiments show that the soft gate function along with an
appropriate θN performed the best on average in terms of F1∗. This suggests that the distribution of
nominality scores is predominantly overlapped, and a soft gate function will be more appropriate to
prevent excessive accumulation of anomaly scores on normal time points, reducing false-positives
(cf. Appendix F). This method will also have a generally stable AUC and F1∗ (low σd) across a
wide range of d. This makes sense - when time point τ is farther away from time point t, more gate
function outputs are multiplied onto A(τ), hence A(t, τ) → 0. However, the results also suggest that
the best choice of gate function and θN may depend on the specific dataset at hand.

4.5 Detection Trade-off Between Point and Contextual Anomalies

We elaborate on the trade-off between detecting point and contextual anomalies and relate them
with the performance of Mpt and Mseq. It may seem intuitive that finding temporal information in

Table 3: AUC and F1∗ for different methods and datasets, with bold text denoting the highest and
underlined text denoting the second highest value. The mean (µd) and standard deviation (σd) of the
performance metrics evaluated across d = 1, 2, 4, 8, 16, 32, 64, 128, 256 are shown.

Dataset SWaT WADI PSM MSL SMAP SMD trimSyn

Method AUC F1∗ AUC F1∗ AUC F1∗ AUC F1∗ AUC F1∗ AUC F1∗ AUC F1∗

Mpt (∥x̂c
t − x0

t∥22) 0.908 0.839 0.819 0.629 0.790 0.626 0.640 0.366 0.647 0.329 0.820 0.485 0.721 0.100

Mseq (∥x̂∗
t − x0

t∥22) 0.899 0.755 0.843 0.559 0.766 0.576 0.621 0.351 0.611 0.292 0.820 0.482 0.832 0.345

Mpt + Hard (11)
(θN = ∞)

µd

σd

0.912
0.005

0.813
0.034

0.827
0.007

0.630
0.037

0.775
0.023

0.621
0.020

0.708
0.032

0.451
0.038

0.665
0.010

0.389
0.036

0.835
0.025

0.492
0.052

0.785
0.037

0.144
0.021

Mpt + Hard (11)
(θN = 98.5%Ntrn)

µd

σd

0.912
0.005

0.820
0.024

0.844
0.007

0.625
0.023

0.779
0.017

0.624
0.015

0.718
0.041

0.467
0.051

0.659
0.012

0.386
0.034

0.833
0.024

0.495
0.050

0.791
0.069

0.292
0.121

Mpt + Soft (8)
(θN = 98.5%Ntrn)

µd

σd

0.909
0.000

0.837
0.001

0.856
0.011

0.639
0.008

0.804
0.005

0.636
0.004

0.698
0.031

0.465
0.061

0.656
0.005

0.388
0.039

0.840
0.003

0.525
0.011

0.862
0.063

0.434
0.099

9

Figure 4: Histograms of the nominality scores for the SWaT and WADI dataset.

time series would lead to better performance. However, the modeling complexity increases with the
number of time points being considered. This leads to the difficulty of focusing on the reconstruction
of single time points. Fig. 5(a) shows A(·) calculated using either Mpt or Mseq , and Â(·) calculated
by NPSR using the WADI dataset. Given the fact that point t is predicted anomalous if A(t) ≥ θa,
we can see that Mseq has a higher false positive rate due to the spikes. In comparison, Mpt more
accurately detects anomalies in a point-wise fashion. This highlights the superiority of Mpt over
Mseq for this dataset. Furthermore, the induced anomaly score calculated by NPSR has very low
false positive rates, and can sometimes even learn to identify anomalies that are not detected by
Mpt or Mseq (Fig. 5(b), the anomaly subsequence at t = 15200 and the subsequence to its left,
pointed by the black arrows). This suggests that Â(·) is superior to the original A(·) for this dataset.
However, Mpt might not always perform superior to Mseq . False negatives can be visualized between
t = 14800 and t = 14900, where Mpt struggles to recognize the anomaly but Mseq effectively
detects anomalous time-dependent relationships. This suggests that the anomaly segment contains
relatively more contextual than point anomalies. Since the reconstruction error of Mpt is used as
A(·), we lose the advantage of effectively utilizing the reconstruction error of Mseq. This results in
Â(·) not high enough to reach θa within this segment. An important future direction would be to
explore how to appropriately select A(·) among multiple models (cf. Appendix F).

Figure 5: (a) Anomaly scores using Mpt, Mseq and NPSR (soft gate function, θN = 99.85%Ntrn,
and d = 16), and the true labels of the WADI dataset. (b) Magnification for t ∈ {14500, ..., 15600}.

5 Conclusion
In conclusion, we introduce an improved framework for unsupervised time series anomaly detection.
We specify the relationships between point and contextual anomalies and derive the nominality score
and induced anomaly score to provide a theory-based algorithm with provable superiority. NPSR
captures both point and contextual anomalies, resulting in a high combined precision and recall.
Our results show that NPSR exhibits high performance, is widely applicable, and has a relatively
straightforward training process. It has the potential to decrease labor needs for fault monitoring
and correspondingly accelerates decision making and can also contribute to AI sustainability by
preventing energy waste or system failure.

10

6 Acknowledgement

We thank Piyush Desai, Raphael Schutz, and Nikhil Deshmukh from Turntide Technologies for their
helpful discussions and insights.

References
[1] Ane Blázquez-García, Angel Conde, Usue Mori, and Jose A Lozano. A review on outlier/anomaly detection

in time series data. ACM Computing Surveys (CSUR), 54(3):1–33, 2021.

[2] Stéphane Crépey, Noureddine Lehdili, Nisrine Madhar, and Maud Thomas. Anomaly detection in financial
time series by principal component analysis and neural networks. Algorithms, 15(10):385, 2022.

[3] João Pereira and Margarida Silveira. Learning representations from healthcare time series data for
unsupervised anomaly detection. In 2019 IEEE International Conference on Big Data and Smart Computing
(BigComp), pages 1–7, 2019.

[4] Tiankai Chen et al. Anomaly detection in semiconductor manufacturing through time series forecasting
using neural networks. PhD thesis, Massachusetts Institute of Technology, 2018.

[5] Mohammad Bawaneh and Vilmos Simon. Anomaly detection in smart city traffic based on time series
analysis. In 2019 International Conference on Software, Telecommunications and Computer Networks
(SoftCOM), pages 1–6, 2019.

[6] Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly detection in
time-series data: Review, analysis, and guidelines. IEEE Access, 9:120043–120065, 2021.

[7] Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time series: A
comprehensive evaluation. Proc. VLDB Endow., 15(9):1779–1797, may 2022.

[8] Yan Zhao, Liwei Deng, Xuanhao Chen, Chenjuan Guo, Bin Yang, Tung Kieu, Feiteng Huang, Torben Bach
Pedersen, Kai Zheng, and Christian S Jensen. A comparative study on unsupervised anomaly detection for
time series: Experiments and analysis. arXiv preprint arXiv:2209.04635, 2022.

[9] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly detection for
multivariate time series through stochastic recurrent neural network. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery; Data Mining, KDD ’19, page 2828–2837,
New York, NY, USA, 2019. Association for Computing Machinery.

[10] Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate time
series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery; Data Mining, KDD ’21,
page 3220–3230, New York, NY, USA, 2021. Association for Computing Machinery.

[11] Astha Garg, Wenyu Zhang, Jules Samaran, Ramasamy Savitha, and Chuan-Sheng Foo. An evaluation of
anomaly detection and diagnosis in multivariate time series. IEEE Transactions on Neural Networks and
Learning Systems, 33(6):2508–2517, jun 2022.

[12] Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate time series.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(5):4027–4035, May 2021.

[13] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soderstrom. Detecting
spacecraft anomalies using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery; Data Mining, KDD ’18, page 387–395,
New York, NY, USA, 2018. Association for Computing Machinery.

[14] Nan Ding, HaoXuan Ma, Huanbo Gao, YanHua Ma, and GuoZhen Tan. Real-time anomaly detection
based on long short-term memory and gaussian mixture model. Computers & Electrical Engineering,
79:106458, 2019.

[15] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. Lof: Identifying density-based
local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’00, page 93–104, New York, NY, USA, 2000. Association for Computing Machinery.

[16] Bernhard Schölkopf, John C. Platt, John C. Shawe-Taylor, Alex J. Smola, and Robert C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computation, 13(7):1443–1471, jul
2001.

11

[17] Bo Liu, Yanshan Xiao, Longbing Cao, Zhifeng Hao, and Feiqi Deng. Svdd-based outlier detection on
uncertain data. Knowledge and information systems, 34:597–618, 2013.

[18] Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical
one-class network. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 13016–13026. Curran Associates, Inc., 2020.

[19] Haibin Cheng, Pang-Ning Tan, Christopher Potter, and Steven Klooster. A robust graph-based algorithm for
detection and characterization of anomalies in noisy multivariate time series. In 2008 IEEE International
Conference on Data Mining Workshops, pages 349–358, 2008.

[20] Fan-Keng Sun, Chris Lang, and Duane Boning. Adjusting for autocorrelated errors in neural networks for
time series. Advances in Neural Information Processing Systems, 34:29806–29819, 2021.

[21] Kashif Rasul, Abdul-Saboor Sheikh, Ingmar Schuster, Urs Bergmann, and Roland Vollgraf. Multivariate
probabilistic time series forecasting via conditioned normalizing flows. arXiv preprint arXiv:2002.06103,
2020.

[22] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for robot-assisted
feeding using an lstm-based variational autoencoder. IEEE Robotics and Automation Letters, 3(3):1544–
1551, 2018.

[23] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan: Multivariate
anomaly detection for time series data with generative adversarial networks. In Artificial Neural Networks
and Machine Learning–ICANN 2019: Text and Time Series: 28th International Conference on Artificial
Neural Networks, Munich, Germany, September 17–19, 2019, Proceedings, Part IV, pages 703–716.
Springer, 2019.

[24] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng, Jingchao
Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network for unsupervised anomaly
detection and diagnosis in multivariate time series data. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 1409–1416, 2019.

[25] Shreshth Tuli, Giuliano Casale, and Nicholas R Jennings. Tranad: Deep transformer networks for anomaly
detection in multivariate time series data. arXiv preprint arXiv:2201.07284, 2022.

[26] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In International
Conference on Learning Representations, 2018.

[27] Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bixiong Xu, Jing Bai,
Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection via graph attention network. In 2020
IEEE International Conference on Data Mining (ICDM), pages 841–850. IEEE, 2020.

[28] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A. Zuluaga. Usad:
Unsupervised anomaly detection on multivariate time series. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery; Data Mining, KDD ’20, page 3395–3404, New York,
NY, USA, 2020. Association for Computing Machinery.

[29] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying Liu, Youjian Zhao,
Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and Honglin Qiao. Unsupervised anomaly detection via
variational auto-encoder for seasonal kpis in web applications. In Proceedings of the 2018 World Wide
Web Conference, WWW ’18, page 187–196, Republic and Canton of Geneva, CHE, 2018. International
World Wide Web Conferences Steering Committee.

[30] Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rigorous
evaluation of time-series anomaly detection, 2022.

[31] Keval Doshi, Shatha Abudalou, and Yasin Yilmaz. Reward once, penalize once: Rectifying time series
anomaly detection. In 2022 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2022.

[32] Siwei Guan, Binjie Zhao, Zhekang Dong, Mingyu Gao, and Zhiwei He. Gtad: Graph and temporal neural
network for multivariate time series anomaly detection. Entropy, 24(6), 2022.

[33] Enyan Dai and Jie Chen. Graph-augmented normalizing flows for anomaly detection of multiple time
series. arXiv preprint arXiv:2202.07857, 2022.

12

[34] Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas Sarlos,
Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

[35] Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A dataset to support research in
the design of secure water treatment systems. In Grigore Havarneanu, Roberto Setola, Hypatia Nassopoulos,
and Stephen Wolthusen, editors, Critical Information Infrastructures Security, pages 88–99, Cham, 2017.
Springer International Publishing.

[36] Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P. Mathur. Wadi: A water distribution
testbed for research in the design of secure cyber physical systems. In Proceedings of the 3rd International
Workshop on Cyber-Physical Systems for Smart Water Networks, CySWATER ’17, page 25–28, New York,
NY, USA, 2017. Association for Computing Machinery.

[37] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. Practical approach to asynchronous multivariate
time series anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery; Data Mining, KDD ’21, page 2485–2494, New York, NY, USA, 2021. Association
for Computing Machinery.

[38] Dara Entekhabi, Eni G. Njoku, Peggy E. O’Neill, Kent H. Kellogg, Wade T. Crow, Wendy N. Edelstein,
Jared K. Entin, Shawn D. Goodman, Thomas J. Jackson, Joel Johnson, John Kimball, Jeffrey R. Piepmeier,
Randal D. Koster, Neil Martin, Kyle C. McDonald, Mahta Moghaddam, Susan Moran, Rolf Reichle, J. C.
Shi, Michael W. Spencer, Samuel W. Thurman, Leung Tsang, and Jakob Van Zyl. The soil moisture active
passive (smap) mission. Proceedings of the IEEE, 98(5):704–716, 2010.

[39] Sadaf Tafazoli and Eamonn Keogh. Matrix Profile XXVIII: Discovering Multi-Dimensional Time Series
Anomalies with <italic>K</italic> of <italic>N</italic> Anomaly Detection[†], pages 685–
693.

[40] Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time series anomaly
detection with association discrepancy. arXiv preprint arXiv:2110.02642, 2021.

[41] Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning graph structures
with transformer for multivariate time-series anomaly detection in iot. IEEE Internet of Things Journal,
9(12):9179–9189, 2021.

[42] Dennis Wagner, Tobias Michels, Florian C.F. Schulz, Maja Rudolph, and Marius Kloft. TimeseAD:
Benchmarking deep time-series anomaly detection, 2023.

[43] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang,
Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient transformers. arXiv
preprint arXiv:2011.04006, 2020.

[44] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[45] TimyadNyda. Github - timyadnyda/variational-lstm-autoencoder: Lstm variational auto-encoder for time
series anomaly detection and features extraction.

[46] Jun Zhan, Siqi Wang, Xiandong Ma, Chengkun Wu, Canqun Yang, Detian Zeng, and Shilin Wang. Stgat-
mad : Spatial-temporal graph attention network for multivariate time series anomaly detection. In ICASSP
2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
3568–3572, 2022.

[47] Markus Thill, Wolfgang Konen, and Thomas Bäck. MarkusThill/MGAB: The Mackey-Glass Anomaly
Benchmark, April 2020.

13

A The Best F1 Score

This section describes the method for calculating the best F1 score (F1∗) from a set of anomaly scores
a = {a1, ..., aT } and a set of labels y = {y1, ..., yT }. Firstly, given a and some arbitrary threshold
θa, we can calculate ŷ = {ŷ1, ...ŷT }, where ŷt ≜ 1at≥θa . Secondly, ŷ is used to calculate TP,FP,
and FN, which corresponds to the sets of time points for true positives, false positives, and false
negatives.

TP ≜ {t|ŷt = 1, yt = 1}, FP ≜ {t|ŷt = 1, yt = 0}, FN ≜ {t|ŷt = 0, yt = 1} (17)

Thirdly, we calculate the precision (P) and recall (R), and then calculate the F1 score, which is the
harmonic mean between R and P.

F1 ≜
2PR

P + R
, P ≜

n(TP)

n(TP) + n(FP)
, R ≜

n(TP)

n(TP) + n(FN)
(18)

Finally, we calculate F1∗ by using the threshold that yields the highest F1.

F1∗(a; y) ≜ max
θa

F1(ŷ(a, θa); y) (19)

B Model Architecture

Performers (an improved variant of Transformers) are competitive in terms of execution speed
compared with other Transformer variants [34, 43], hence we use them as the basic building block of
our models. For both Mpt and Mseq, we use a linear layer with input and output dimensions equal
to D as the token embedding layer, a fixed positional embedding layer at the beginning, a feature
redraw interval of 1, and a tanh activation function immediately before the output. GELUs [44] are
used as the activation layer for all linear layers. We do not change any other predefined activation
layer inside Performers.

B.1 Performer-based autoencoder

For the Performer-based autoencoder Mpt, the input with the shape (batch,W,D) is passed through
a plain Performer with Nperf layers after the positional embedding step, where W represents the
input window size. This is followed by a linear encoding layer that transforms the dimensionality
from D to Dlat, resulting in the shape (batch,W,Dlat) for the latent variables. In the case of Mpt,
there is no compression along the time domain. The latent variables then pass through another
linear decoding layer that transforms the dimensionality from Dlat back to D, followed by another
Performer with Nperf layers.

B.2 Performer-based stacked encoder

For the Performer-based stacked encoder Mseq, the input with shape (batch,W0, D) is passed
through a plain Performer with one layer after the positional embedding step, followed by a linear
encoding layer that transforms the window size from W0 to W1, where W0 = 2γ (cf. section 3.6).
It should be noted that unlike Mpt, compression is done along the time domain for Mseq. The
one-layer Performer and linear layer are stacked Nenc times, where in the i-th stack, the window
size is compressed from Wi−1 to Wi. WNenc is equal to the target output window size δ. For both
Mpt and Mseq, we optimize Nperf , Dlat, W , Nenc, Wi for i ∈ {0, ..., Nenc}, and δ for the best
performance. Note that Mseq isn’t capable of reconstructing the first and last γ time points due to its
architecture, hence we discard the first and last γ points reconstructed by Mpt so that rest of the time
points have exactly two reconstructed values corresponding to using Mseq and Mpt, respectively.

14

C Data Preprocessing and Training Details

Table 4 shows the hyperparameters used for implementing NPSR on the experimented datasets. To
ensure fair comparison, the same preprocessing method is applied to all algorithms for the same
dataset. The search for hyperparameters is done manually, starting from some reasonable value (e.g.
a learning rate of 10−4). The authors believe that there is still room for improvement by fine-tuning
these hyperparameters. To speed up training, we load all training inputs and outputs, and testing
inputs onto the GPU before training. We use a local GPU, which can be either GeForce RTX 3070
(8GB), 3080 (12GB) or 3090 (24GB). For an individual experiment using a single dataset and training
method, the training time ranges from approximately 2 minutes to 12 hours. For single-entity datasets
and multi-entity datasets that use the combined training method, we run the experiments for at least 3
times and confirm that the results are stable given different random seeds. For multi-entity datasets
with entities trained individually, the results are averaged across all entities. Generally, datasets
with single entities train faster than those with multiple entities. There are some additional remarks
regarding the preprocessing of the datasets.

For SWaT, we use SWaT_Dataset_Attack_v0.csv and SWaT_Dataset_Normal_v1.csv from the
folder SWaT.A1 & A2_Dec 2015 (manually converted from *.xlsx). We corrected some original
flaws in the dataset (e.g. redundant blank spaces in some labels), and set the 5th and 10th columns to
all 0. For WADI, we use the 2017 year dataset. Columns with excessive NaNs (more than half of
the entire length) are deleted. Other NaNs are forward-filled. After deleting all the columns with
excessive NaNs, the 86th column is further set to all 0. For PSM, we forward-fill all NaNs. For MSL
and SMD, two additional blank channels are added to make the number of channels divisible by the
number of heads. For trimSyn, we separated the dataset into training (t ∈ {0, ..., 9999}) and testing
(t ∈ {10000, ..., 19999}) data (cf. [24]). For the testing data, we extracted segments within the time
intervals t ∈ {10000, ..., 11719}∪{11900, ..., 12849}∪{14630, ..., 17699}∪{17880, ..., 18529}∪
{18710, ..., 19999} and concatenated them to form a single-entity test dataset. We also inserted
additional segment IDs using one-hot encoding to enable segment identification. This process
resulted in a test dataset with a single anomaly segment (t ∈ {12670, ..., 12849}) and a corresponding
anomaly rate of 2.34%. In the case of the training data, we duplicated the original segment five times,
concatenated them, and added the necessary segment IDs.

Table 4: Implementation details. (c) stands for the combined training method (cf. section 4.2)

Parameter \ Dataset SWaT WADI PSM MSL MSL (c) SMAP SMAP (c) SMD SMD (c) trimSyn

—————————— Preprocess ——————————
Downsample 10 10 10 1 1 1 1 2 2 1

Normalization Minmax Minmax Minmax Minmax Minmax Minmax Minmax Minmax Minmax Minmax
Stride 10 10 10 10 10 10 10 10 10 10

W (for Mpt) 100 100 100 100 100 50 50 50 50 50
W0 (for Mseq) 100 100 100 50 50 50 50 50 50 50

δ 20 20 20 6 6 6 6 6 6 6

—————————— Model architecture ——————————
of heads 9 14 5 11 12 5 10 8 11 5

Dlat 10 10 10 10 10 10 10 10 10 4
ff_mult 4 4 4 4 4 4 4 4 4 4
Nperf 4 4 4 4 4 4 4 4 4 4
Nenc 8 8 8 8 8 8 8 8 8 4

—————————— Induced anomaly score ——————————
Gate function soft soft soft soft soft soft soft soft soft soft

d 16 16 64 128 32 64 32 16 256 256
Ratio of Ntrn for θN 99.85% 99.85% 99.85% 99.85% 97.5% 99.85% 99.85% 99.85% 99.85% 99.85%

—————————— Training ——————————
Learn rate 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4 10−4

Optimizer Adam Adam Adam Adam Adam Adam Adam Adam Adam Adam
Batch size 64 64 64 64 64 64 64 64 64 64

Training epochs 100 100 100 100 100 100 100 100 100 25

15

D The Point-adjusted Best F1 Score

Analogous to F1∗, the point-adjusted best F1 score (F1∗PA) corresponds to F1∗ calculated after point-
adjustment. Table 5 shows the F1∗ and F1∗PA of different algorithms, including NPSR, applied to
several datasets. We did not show the results for the trimSyn dataset with point-adjustment. However,
by applying NPSR and the same setting as without using point-adjust, we can achieve F1∗PA = 1
within the first few epochs. This indicates the point with the highest anomaly score lies within the
single anomaly segment.

The results suggest that F1∗PA may not be reliable - on the SWaT, WADI, PSM, and MSL datasets,
simple heuristic approaches (e.g. using the mean squared value of an input time point as the anomaly
score) outperform all deep learning methods when evaluated using F1∗PA. Moreover, optimizing
on F1∗PA does not necessarily guarantee a higher F1∗. NPSR is optimized on F1∗ by tuning the
algorithm-specific parameters (e.g. d) and general parameters. To additionally optimize on F1∗PA, we
simply added spikes to the induced anomaly score (Âspike(·)) with value ∞ for some fixed interval s.
The results show that Âspike(·) can also achieve competitive F1∗PA values.

Table 5: Point-adjusted best F1 score (F1∗PA) and best F1 score (F1∗) results on several datasets,
with bold text denoting the highest and underlined text denoting the second highest value. The deep
learning methods are sorted with older methods at the top and newer ones at the bottom.

Dataset SWaT WADI PSM MSL SMAP SMD

Metric F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗

Simple Heuristics
[11, 30, 31] 0.969 0.789 0.965 0.353 0.985 0.509 0.965 0.239 0.961 0.229 0.934 0.494

DAGMM [26] 0.853 0.750 0.209 0.121 0.761 0.483 0.701 0.199 0.712 0.333 0.723 0.238
LSTM-VAE [22] 0.805 0.776 0.380 0.227 0.809 0.455 0.854 0.212 0.756 0.235 0.808 0.435
MSCRED [24] 0.807 0.757 0.374 0.046 0.626 0.556 0.936 0.250 0.866 0.170 0.841 0.382

OmniAnomaly [9] 0.866 0.782 0.417 0.223 0.664 0.452 0.901 0.207 0.854 0.227 0.962 0.474
MAD-GAN [23] 0.815 0.770 0.556 0.370 0.658 0.471 0.917 0.267 0.865 0.175 0.915 0.220
MTAD-GAT [27] 0.860 0.784 0.602 0.437 0.780 0.571 0.908 0.275 0.901 0.296 0.908 0.400

USAD [28] 0.846 0.792 0.430 0.233 0.725 0.479 0.911 0.211 0.819 0.228 0.946 0.426
THOC [18] 0.881 0.612 0.506 0.130 0.895 - 0.937 0.190 0.952 0.240 0.541 0.168
UAE [11] 0.869 0.453 0.957 0.354 0.936 0.427 0.920 0.451 0.896 0.390 0.972 0.435
GDN [12] 0.935 0.810 0.855 0.570 0.923 0.552 0.903 0.217 0.708 0.252 0.716 0.529
GTA [41] 0.910 0.761 0.84 0.531 0.855 0.542 0.911 0.218 0.904 0.231 0.919 0.351

Anomaly Transformer
[40] 0.941 0.019 0.714 0.015 0.979 0.022 0.936 0.021 0.967 0.019 0.923 0.021

TranAD [25] 0.815 0.669 0.495 0.415 0.882 0.649 0.949 0.251 0.892 0.247 0.961 0.310

NPSR (combined) - - - - - - 0.960 0.261 0.978 0.511 0.850 0.252
NPSR 0.953 0.839 0.938 0.642 0.957 0.648 - 0.551 - 0.437 - 0.535

16

E Source of Data

Table 6 shows the data sources used to produce Table 5, as well as the sources for section 4.3. The
reference number is followed by a number between 1 and 3, where 1 indicates that the data comes
from the original work, 2 indicates that the data comes from reproduced values of another literature,
and 3 indicates that we have reproduced the values using public repositories..

Table 6: Data sources for algorithms and datasets. **Reproduced by using the squared value of
channel 1 as A(·). †Reproduced by using the squared value of channel 9 as A(·).

Dataset SWaT WADI PSM MSL SMAP SMD trimSyn

Metric F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗PA F1∗ F1∗

Simple Heuristic [30] - 1 [30] - 1 [30] - 1 [30] - 1 [31] - 1 ** [31] - 1 [30] - 1 [31] - 1 [30] - 1 [31] - 1 [30] - 1 †
DAGMM [30] - 2 [25] - 3 [30] - 2 [30] - 2 [25] - 3 [25] - 3 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [25] - 3

LSTM-VAE [28] - 2 [28] - 2 [28] - 2 [28] - 2 [40] - 2 [45] - 3 [28] - 2 [30] - 2 [28] - 2 [30] - 2 [28] - 2 [30] - 2 [45] - 3
MSCRED [25] - 2 [25] - 3 [25] - 2 [25] - 3 [25] - 3 [25] - 3 [25] - 2 [25] - 3 [25] - 2 [25] - 3 [25] - 2 [25] - 3 [25] - 3

OmniAnomaly [30] - 2 [30] - 2 [30] - 2 [30] - 2 [25] - 3 [25] - 3 [9] - 1 [30] - 2 [9] - 1 [30] - 2 [9] - 1 [30] - 2 [25] - 3
MAD-GAN [25] - 3 [23] - 1 [25] - 3 [23] - 1 [25] - 3 [25] - 3 [25] - 2 [25] - 3 [25] - 2 [25] - 3 [25] - 2 [25] - 3 [25] - 3
MTAD-GAT [46] - 2 [27] - 3 [46] - 2 [27] - 3 [27] - 3 [27] - 3 [27] - 1 [27] - 3 [27] - 1 [27] - 3 [46] - 2 [27] - 3 [25] - 3

USAD [28] - 1 [28] - 1 [28] - 1 [28] - 1 [25] - 3 [25] - 3 [28] - 1 [30] - 2 [28] - 1 [30] - 2 [28] - 1 [30] - 2 [25] - 3
THOC [18] - 1 [30] - 2 [30] - 2 [30] - 2 [40] - 2 - [18] - 1 [30] - 2 [18] - 1 [30] - 2 [30] - 2 [30] - 2 -
UAE [11] - 1 [11] - 1 [11] - 1 [11] - 1 [11] - 3 [11] - 3 [11] - 1 [11] - 1 [11] - 1 [11] - 1 [11] - 1 [11] - 1 [11] - 3
GDN [30] - 2 [12] - 1 [30] - 2 [12] - 1 [12] - 3 [12] - 3 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [30] - 2 [25] - 3
GTA [41] - 1 [41] - 3 [41] - 1 [41] - 3 [41] - 3 [41] - 3 [41] - 1 [41] - 3 [41] - 1 [41] - 3 [41] - 3 [41] - 3 [41] - 3

AnomalyTransformer [40] - 1 [40] - 3 [40] - 3 [40] - 3 [40] - 1 [40] - 3 [40] - 1 [40] - 3 [40] - 1 [40] - 3 [40] - 1 [40] - 3 [40] - 3
TranAD [25] - 1 [25] - 3 [25] - 1 [25] - 3 [25] - 3 [25] - 3 [25] - 1 [25] - 3 [25] - 1 [25] - 3 [25] - 1 [25] - 3 [25] - 3

F Model and Parameter Selection Heuristics

We believe that the most important idea in model selection is to achieve a balance between effectively
utilizing both point and sequence-based models and carefully selecting the appropriate parameters. As
an extreme example, we optimize our algorithm on the Mackey-Glass anomaly benchmark (MGAB)
[47], which is a univariate time series dataset, and find that sequence-based models can significantly
outperform point-based models when using their reconstruction errors as A(·). As in Fig. 6, we see
that Mseq can correctly identify the anomalies, whereas Mpt did not learn at all. This is reasonable,
as point-based models only consider a single time point. In general, the lower the dimensionality of
the dataset, the harder it gets for a point-based model to learn statistically meaningful representations.
Moreover, looking at the high-dimensional datasets reported in Table 3, the induced anomaly score
remains important for some datasets: For the MSL dataset, F1∗ improves 0.1 compared to only
using point-based reconstruction. In Fig. 7b, when using a soft gate function, F1∗ improves 0.047
compared to using the point-based anomaly score. Since the amount of improvement depends on the
statistical structure of the test data, it is still useful to consider using both Mseq and Mpt in general.

The difficulty in choosing the parameters for unsupervised time series anomaly detection stems from
the absence of anomalies in the training dataset. The selection of soft or hard gate functions, the
value for d, and the ratio for θN largely depend on how we presume the anomaly will occur based
on domain knowledge. For instance, d controls the distance that anomaly scores may propagate.
This value should be higher if we presume the average anomaly length is long and vice versa. If

Figure 6: (a) best F1 scores and (b) AUCs using point and sequence-based models as the anomaly
score on the Mackey-Glass anomaly benchmark.

17

the anomaly is expected to occur abruptly and significantly, there would be a clear gap between the
distribution of nominality scores for normal and anomaly data (Fig. 8a). In this case, a hard gate
function should be chosen as it allows anomaly scores to propagate through time points without
reduction, as long as an anomaly time point has a nominality score lower than θN . Conversely, if the
anomaly occurs progressively, the distribution of nominality scores is likely to overlap (Fig. 8b). Here,
a soft gate function will be more appropriate to prevent excessive accumulation of anomaly scores on
normal time points, reducing false-positives. A dataset could contain both abrupt and progressive
anomalies. However, based on Table 3, it is evident that using a soft gate function generally yields
better performance compared to a hard gate function. This suggests that the distribution of nominality
scores is predominantly overlapped, which is also evident in Fig. 4 and Fig. 7a.

Figure 7: Training results on the WADI dataset. Nominality score vs (a) anomaly score from point-
based reconstruction, (b) best F1 score (d = 16), (c) false positive rate (d = 16), and (d) best F1
score (d = 1) using different θN .

Figure 8: Illustration of different distributional relationships between the nominality scores of normal
and anomaly data. (a) No overlap with a paired threshold and hard gate function. (b) Overlapped
with threshold and soft gate function.

G Broader Impacts

The detection of anomalies in time series data can minimize downtime and avert financial losses.
Utilizing real-time monitoring of system conditions, anomaly detection techniques for time series data
can automatically detect deviations from the expected system behavior, thereby avoiding potential
risks and financial harm. This has the potential to reduce the need for manual monitoring of faults
and to expedite decision-making processes. Additionally, it can promote the sustainability of AI by
preventing energy wastage and system malfunction.

18

H Limitations

Despite exhibiting competitive performance against other models, the proposed NPSR algorithm has
a few limitations. The point-based model used in training does not incorporate temporal informa-
tion, which makes it challenging to effectively reconstruct low-dimensional datasets. This issue is
particularly challenging for univariate time series since raw inputs would not work for point-based
models. One possible solution to this problem is to increase dimensionality by aggregating multiple
time points. However, the effectiveness of this approach is yet to be confirmed.

Another limitation of NPSR is the absence of an automatic threshold (θa)-finding method, which
makes it difficult to determine a suitable threshold when deploying the model. To address this issue,
one can define a target false positive rate and estimate the threshold that achieves this target rate using
the validation set since only normal data is needed. Similarly, estimating the optimal values for θN ,
d, and selecting the model used for calculating A(·) will be an important future work.

Within Fig. 5b of the main text, a false negative instance was identified in the temporal range between
t = 14800 and t = 14900 when employing the induced anomaly score. According to the WADI
dataset, this anomaly spans approximately 14.26 minutes and is characterized as "Damage 1 MV
001 and raw water pump to drain Elevated Reservoir tank." Notably, our analysis suggests that when
assessing individual time points, the model Mpt encounters difficulty in recognizing this anomaly.
Conversely, the model Mseq excels in identifying time-dependent relationships, making it more
effective in capturing such contextual anomalies. The observed disparity in anomaly detection implies
that this section comprises a relatively higher proportion of contextual anomalies than point anomalies.
Consequently, when using Mseq , we achieve a higher anomaly score. However, our current approach
utilizes the reconstruction error of Mpt as the basis for the anomaly score calculation, thus neglecting
the effectiveness of the reconstruction error generated by Mseq . Consequently, the induced anomaly
score fails to surpass the predefined threshold. In light of these findings, an essential avenue for future
research is to investigate methods for selecting the model to be used in the computation of A(·). This
undertaking holds promise for enhancing the overall performance and accuracy of anomaly detection
in time series data.

19

	Introduction
	Related Works
	Methods
	Problem Formulation
	Nominal Time Series and Two-stage Deviation
	The Nominality Score
	The Induced Anomaly Score
	Point-based Reconstruction Models
	Sequence-based Reconstruction Models

	Experiments
	Datasets
	Baselines
	Main Results
	Ablation Study
	Detection Trade-off Between Point and Contextual Anomalies

	Conclusion
	Acknowledgement
	The Best F1 Score
	Model Architecture
	Performer-based autoencoder
	Performer-based stacked encoder

	Data Preprocessing and Training Details
	The Point-adjusted Best F1 Score
	Source of Data
	Model and Parameter Selection Heuristics
	Broader Impacts
	Limitations

