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Abstract. Generative artificial intelligence (AI) models are advancing
rapidly, and their ability to generate code has significant implications
for software development. Their use in code generation raises concerns
about plagiarism, malware generation and dataset contamination. Previ-
ous work proposed methods to address these issues, using developments
from the field of natural language detection. However, due to the infancy
of the field, there is a deficit in established benchmarks and datasets,
making a comprehensive comparison between detection methods diffi-
cult.
In this work, we investigated the efficacy of five existing zero-shot detec-
tion methods on AI-generated code. To do so, we used 17 large language
models to generate and analyse 113 776 code samples from six common
datasets and sources. By collecting new, previously unseen data with
their respective time-stamps, we address the issue of data leakage, i.e.,
the exposure of LLMs to testing data during pre-training. Our proposed
framework enables easy integration of new LLMs and datasets, facilitat-
ing the generation, detection and analysis of AI-generated code. Follow-
ing this, we examined the impact of different hyperparameters used dur-
ing code generation (such as the temperature) on detection performance.
Our code is available under https://github.com/ Progyo/Codetector.
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1 Introduction

Development in AI has made significant strides within the last ten years, and
AI techniques are now being integrated into many systems we interact with,
ranging from search engines to weather pattern prediction and more. Addition-
ally, in recent years, an increasing number of AI systems have been developed
to not only process data but to also generate content. Large language mod-
els (LLMs), in particular, have shown a rapid rate of improvement in a multitude
of tasks including several related to coding. Despite their popularity and suc-
cess, LLMs come with risks: From malicious actors creating backdoors through
dataset contamination [25], to careless users generating plagiarised or dangerous
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code [13,16,24]. Moreover, if left unchecked, such AI-generated content (AIGC)
will bleed into the training sets of future models, possibly leading to phenom-
ena such as model collapse, where models degrade due to training on their own
synthetic outputs, causing them to converge into narrower modes and decrease
in diversity [2]. These challenges underscore the urgent need for AI detection
systems. However, AIGC detection, particularly for code, remains relatively im-
mature, with the earliest work we found dating to 2023, allowing little time for
the development of benchmarks or datasets [31,32].

Frequently, code detection performance is benchmarked using output from a
single LLM [13,24,31], which can be problematic, especially for zero-shot meth-
ods that perform best when detecting text generated by the same base model [19].
This is also a common pitfall for fine-tuned detection methods that tend to spe-
cialise in the corpus or domain they were trained on, leading to weakened cross-
domain performance [32]. Thus, focusing on the detection performance of code
generated by a single model cannot accurately represent the performance of a
given detection method. In addition to the models used to generate AIGC, the
underlying data sources may also impact detection performance. All in all, we
aimed to answer the following research questions in this work:

1. RQ1: Can zero-shot detection methods from other domains be effectively
applied to code detection?

2. RQ2: What is the impact of data leakage on detection performance?
3. RQ3: How do generation parameters of LLMs, such as temperature, affect

detection performance?

To answer these questions, we evaluated five existing zero-shot detection meth-
ods on AI-generated code from 17 LLMs. This code was generated based on
samples scraped from different sources, such as LeetCode3 and Stack Overflow.4
After running the generated samples through our detection pipeline, individual
detection values were assigned based on specific method-model combinations
and stored as “detection samples”. We also analysed the impact of these different
data sources on detection performance and propose an end-to-end framework for
generating and detecting AIGC. Overall, our contributions can be summarised
as follows:

– We developed a framework called “Codetector” that enables the modular in-
tegration of new data sources and LLMs for generating and detecting AIGC.

– We evaluated the effectiveness of five existing zero-shot methods for detecting
AI-generated code on 113 776 code samples, generated by 17 LLMs, and
analysed 12 294 388 detection samples.

– We empirically demonstrate that the performance of existing zero-shot detec-
tion methods can be improved by using new, unseen samples for generation
and detection.

3 https://leetcode.com/.
4 https://stackoverflow.com/.

https://leetcode.com/
https://stackoverflow.com/
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– On our processed dataset, newer detection methods achieved AUROC scores
of up to 97% with an average of around 83%, showing that some detectors
can be directly applied to code detection.

The remainder of this paper is structured as follows: In Section 2, we introduce
key concepts and existing work in AI-generated code detection. Following this,
in Section 3, we briefly present the framework that we developed. In Section 4,
we present the generated and detection datasets and the necessary steps we
took to produce them. We then analyse the results in Section 5 and determine
possible impact factors on detection scores. Finally, we summarise our findings
in Section 6.

2 Background and Related Work

Detecting AIGC can be defined as a binary classification task where AIGC is
typically assigned as the positive class, while human-generated content is as-
signed the negative class [32]. Therefore, the false positive rate (FPR) is the rate
of incorrectly labelled human-generated samples; conversely, the true positive
rate (TPR) is the rate of correctly labelled AIGC samples. Plotting the relation
between the TPR and FPR for varying detection thresholds gives the receiver
operating characteristic (ROC) curve of a given detector. The area under the
ROC curve (AUROC) is a value ranging between 0 and 1 that indicates how
well the detector can separate the two classes [24].

Contemporary work focuses on the task of detecting AI-generated natural
language texts, leaving out a large pool of questions specific to the detectability
of AI-generated code. A few studies have begun investigating this area, with
Wang et al. [31] being the first to compare commercial and open-source detec-
tion methods for AI-generated code. They showed poor performance across the
board, which raised the question of whether machine-generated code is more
difficult to detect than machine-generated text in natural language, and entirely
different techniques are needed. Several subsequent studies [13,28,33] have pro-
vided evidence that AIGC detection, in the context of code, may be more feasible
than initially thought.

Much of the current research for code detection occurs in the context of
education, usually with a focus on detecting submissions in beginner-level pro-
gramming courses. Beginners often write inefficient code, a trait some detection
methods inadvertently exploit [13]. It has been observed that ChatGPT [22,23]
writes code utilising practices akin to those of a professional programmer, which
stands out from the submissions of novices [13]. A lot of research focuses on
zero-shot detection methods, because they do not require any fine-tuning, mak-
ing them cheaper to iterate and develop. Ideally, a robust zero-shot method
would also perform well across different model outputs, a challenge that current
methods still face [19,32].

Some research investigated the performance of DetectGPT [19] in detecting
modified Python code submissions with accuracies between 40-54%, reflecting
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the poor performance in previous literature [24,31]. DetectGPT4Code [33] in-
vestigates the detection capabilities of code generated by GPT-3.5 and GPT-4,
reaching an AUROC of up to 86% when detecting Python samples generated by
GPT-4. Meanwhile, CodeDetectGPT [28] replaces the costly LLM perturbation
model of DetectGPT with a randomised algorithm that perturbs the sample by
inserting spaces and newlines. This method achieved AUROC scores up to 99%
in white-box settings at a temperature of 0.2, though performance dropped by
27% at 1.0 [28].5 This raises an important question: Does detection performance
consistently decrease with higher temperatures across all zero-shot detection
methods? Overall, the current literature deviates from previous expectations,
suggesting the plausibility of reliably detecting machine-generated code. For a
more extensive overview of related work, see Table 2 in Appendix B.

A common shared trait of the aforementioned studies is the near-exclusive
focus on ChatGPT-generated code.6 It is important to note that the tested ver-
sions of ChatGPT have been shown to have strong memorisation tendencies
when completing code-oriented tasks [30]. This may have had an impact on the
resulting AUROC scores reported in several studies by affecting their TPR and
highlights the importance of choosing suitable datasets to generate and select
code samples for detection from. While ChatGPT is among the most popular
services used for tasks such as code completion, it is of utmost importance to
evaluate the detection performance across a larger set of LLMs, to better gauge
the state of the art in AIGC detection. In particular, as more services begin
to build and adopt proprietary models, the need for strong cross-model detec-
tion methods will only increase. This fact, alongside the seemingly haphazard
selection of code samples, is the motivation behind the extensive analysis and
scrutiny of dataset sources and LLMs discussed in our work described in the
following.

3 Framework

To generate the datasets used for code detection, we developed a framework
called “Codetector”. Our framework consists of two pipelines: A dataset gener-
ation pipeline and a detection pipeline. The dataset generation pipeline allows
for the modular and easy integration of new data sources (Github, Stack Over-
flow, etc.) and LLMs used for code generation. The detection pipeline allows for
the modular implementation of different detection methods and the LLMs they
use. This design stands in contrast to many monolithic implementations of detec-
tion methods, where functionality is hard-coded and activated via command line
arguments. The individual use cases and repositories utilised by our pipelines
are unit-tested to ensure proper functionality. Another goal in designing both
pipelines was for the implementation to be agnostic to the underlying frameworks
5 In our dataset, we utilise the temperatures 0.2 and 0.97. The latter was intended

to be 1.0 to match the literature. This small difference was noticed too late in the
generation process but arguably does not distort our findings.

6 Or, more precisely, on code produced by models such as GPT-3.5 and GPT-4.
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used, such as PyTorch and TensorFlow, as well as higher-level frameworks, such
as Huggingface Transformers.

While this model framework was initially developed for code generation and
detection, it supports natural language samples as well. The impact of the un-
derlying datasets, as well as other factors, are discussed in Section 5.

3.1 Dataset Generation Pipeline

The efficacy of various detection methods is strongly dependent on the quality
and diversity of the samples contained in the datasets. Using our framework,
new datasets and sources can easily be implemented by either extending exist-
ing dataset class formats like XML and Apache Parquet7 or by implementing
the required methods specified by the dataset abstract class. An example of
how this can be achieved is shown in Appendix C.3. Additionally, datasets can
be converted between different file formats out of the box, allowing data to be
stored in both compressed and human-readable formats. Various filters can also
be applied to datasets to prevent unwanted samples from being used for gen-
eration. Moreover, LLMs that inherit from the BaseModel class can be marked
as generators by implementing the abstract GeneratorMixin. For further imple-
mentation details or examples regarding datasets and data sources, we refer to
the IPython notebooks and the supplied source code.

3.2 Detection Pipeline

Once the dataset generation pipeline has produced a large corpus of human and
machine-generated samples, these samples can be used for detection. Our frame-
work currently supports single and two-model zero-shot detectors, allowing for
flexibility in detection approaches. New detection methods can be implemented
by extending either of the abstract classes, depending on the use case. To en-
sure compatibility within the detection pipeline, all LLMs used for detection
must implement the DetectorMixin. LLMs that are used for both generating
and detecting samples simply need to implement both mixins, reducing code
redundancy while maintaining versatility.

4 Dataset Collection and Generation

A major contribution of our work is the collection and generation of a large
corpus of human- and AI-generated code samples, using 17 models capable of
code generation, of which the majority are open-source. It is important to note
that we refrained from using more closed-source models for two reasons. Firstly,
without access to the model weights, only a black-box analysis would have been
possible, a known weakness of current zero-shot detection methods. Secondly,
by using open-source models, we were able to reduce the research costs and
7 https://parquet.apache.org/.

https://parquet.apache.org/


6 N. Adham et al.

direct them to other purposes, such as generating output from a more expensive
reasoning model (o1-mini). These models were chosen based on size, training
date, coding capabilities and prior use in research; for a detailed list of the
models used, see Table 3.

Several factors were considered during the collection of this large corpus.
Many earlier studies neglect the possible impact of data leakage in their detection
datasets [28,31]. Evaluation benchmarks are often purged before pre-training, yet
copies sometimes slip into the training data, affecting code quality scores [30];
thus, the impact of data leakage on detection performance must be considered
as well. Evaluation benchmarks, such as APPS and CodeSearchNet, are often
used as a source for generating AIGC (see Table 2). When using samples seen in
training, the chances of regurgitating fragments or entire snippets of code ver-
batim during generation increases [4,14]. This increase in false negatives would,
in turn, reduce the TPR. It therefore makes sense to keep track of the inception
dates of code samples contained in a dataset as well as the training cut-off date
of the LLMs used to generate samples.

The length of the code samples also has a significant impact on the maximum
achievable AUROC score [5]. Thus, the samples across different code detection
datasets should also be similarly distributed in length for a fair comparison
between them. How this was achieved in our work is explained in more detail in
Subsection 4.2. In addition to this, some related work sets a maximum output
length for generated code samples [28]. This induces an upper bound for the
AUROC score of the best detector and a pessimistic precedent for code detection
capabilities [5,27].

4.1 Data sources

To generate a diverse set of data that mimics real-life use cases, various data
sources were compiled. These sources include common datasets used by several
earlier studies on detection, such as APPS and CodeSearchNet (see Table 2), as
well as code samples that were scraped from the web to further increase diversity.
To investigate the impact of possible data leakage, two disjunct sets of data were
generated with code samples from two different periods: One prior to the release
of ChatGPT in November 2022 (the “Pre” datasets) and the other from August
2023 to April 2024 (the “Post” datasets). August 2023 was chosen as the lower
bound for the “Post” datasets by determining the most recent training date of
the 11 LLMs that were initially chosen for analysis. As a result, the samples in
the “Post” datasets should be novel to the LLMs, ensuring that they have not
been seen during training. The generated samples of the six remaining LLMs,
including o1 mini, were added later to the final dataset but excluded from the
dataset analysis. The goal was to inspect whether older code samples have a
noticeable impact on the AUROC scores of detection methods. Another factor
to consider here is the prevalence of machine-generated code in some of these
sources, which may be marked as human-generated, increasing the number of
false false positives. The chance of this occurring rises substantially with samples
collected after the release of ChatGPT.
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Stack Overflow. Stack Overflow is one of the largest repositories of publicly
available code in the world. Its strength lies in the large number of code snippets
where functionality is often explained in natural language in the accompanying
post, providing a great starting point for generating prompts. Despite this ad-
vantage, Stack Overflow is filled with non-functional code, hence why the code
is in a post on the website. It is therefore reasonable to only consider code from
accepted solutions or the most upvoted ones. This narrows down the number of
applicable code snippets but increases the average quality of the code. After the
initial parsing and filtering stage, the posts can then be labelled. For labelling,
GPT-3.5-turbo was instructed to return a JSON-formatted string describing the
functionality of the code and the programming language (see Appendix C.6).
The so-called “Stack Overflow Pre” dataset consists of 2 587 804 posts between
August 1st, 2015, and April 7th, 2016. The “Stack Overflow Post” dataset con-
sists of 791 122 posts between August 1st, 2023, and April 7th, 2024. Labelling
all of these would be costly and excessive, as the goal for each dataset is 1700
samples.8 Moreover, since the code is unknown, an issue arises: The distribution
of programming languages in the respective datasets is hidden and is only re-
vealed after labelling has been completed. To address this, code samples from
the parsed XML files were sampled to approximate a log-normal distribution
with a total of 30 000 samples each. This gives enough headroom for the tar-
get programming language distributions to be reached. Similar precautions were
taken for the following three data sources.

LeetCode. The performance of an LLM on LeetCode is often used as a metric
to gauge a model’s coding capabilities and understanding of diverse problem sets,
given that it consists of short code samples ranging from easy to hard difficul-
ties. Unlike Stack Overflow, LeetCode consists solely of functional code, making
it a favourable candidate as a source dataset. Although many web-scraped Leet-
Code datasets exist containing thousands of problem sets with solutions written
in different programming languages, they cannot be used directly for generation
for the following reasons. A key goal of this paper is to investigate the impact
of possible data leakage on detection performance. This requires each problem
to be timestamped to claim with high certainty that the problem is novel to the
LLMs being used to generate new samples. Unfortunately, LeetCode problems
are chronologically numbered but not timestamped. Using the Wayback Ma-
chine9 to access previous versions of LeetCode’s sitemap XML files and linear
regression, an estimate for the problem numbers matching the November 2022
and August 2023 cut-off could be made. Problem set 2517 is estimated to be the
upper bound for the pre-ChatGPT dataset and problem set 2883 is the lower
bound for the August 2023 dataset. For more details see Appendix C.4.

8 We chose this number based on computational estimates and budget constraints.
9 https://web.archive.org/. The Wayback Machine archives versions of accessible web-

sites on the web.

https://web.archive.org/
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APPS and CodeSearchNet. Automated Programming Progress Standard
(APPS) [12] and CodeSearchNet [15] are two popular datasets used to generate
AIGC samples for detection (see Table 2). APPS contains 10 000 Python prob-
lems at varying levels of complexity. These problems are used to test a model’s
natural language to code translation abilities [12]. In addition to the reference
code, APPS supplies over 130 000 test cases for testing the generated code. These
were not used in this paper but could be a way to filter out low-quality code.
CodeSearchNet is comprised of 2 326 976 documented functions. These functions
were sourced from non-fork GitHub repositories that were popular and had per-
missive licenses [15]. For comparison across multiple datasets, only the Python
subset containing 503 502 samples was used.

4.2 Dataset Processing

It has been observed that some programming languages are more difficult to
detect than others. For example, various detectors have been observed to re-
port strictly higher AUROC scores on Python code samples from CodeContest
than on Java samples [33]. Other work suggests that the detectability of sam-
ples written in different programming languages varies across detection meth-
ods [31]. This discrepancy further highlights the importance of closely inspecting
the sources and distributions of the code samples. If one dataset contained more
of a difficult-to-detect language, this could skew the detection score and lead
to misleading results. Similarly, code length has an impact on the maximum
achievable AUROC score of a detector [5,27], and by having two different code
length distributions, the performance will be intrinsically different between the
two datasets leading to inconclusive results. To investigate the impact of the un-
derlying data sources on detection capabilities, the disjunct datasets must have
similar distributions in both programming language and code length to ensure
a fair comparison. The final distribution of programming languages can be seen
in Table 5.

To address this issue, we developed a utility class called the “dataset helper”
to generate a code length distribution based on the intersection of two sep-
arate data sources. This was calculated on a programming language basis to
mitigate the aforementioned issue. The distribution was then sampled to fit a
scaled log-normal distribution (see Appendix C.5). A log-normal distribution
was chosen, because it closely mirrors length distributions found in reality, and
many unfiltered distributions exhibit similar characteristics (see Appendix C.1).
Additionally, this choice increases the presence of longer samples in the tail. A
uniform distribution is infeasible, due to the large number of longer samples that
would need to be generated, which would create an overly optimistic portrayal of
code detection given its high mean code length. After limiting the distributions
to a log-normal distribution, the Python code length histograms of the Stack
Overflow, APPS, and CodeSearchNet datasets are identical (see Figure 9).

Using the final distributions, a list of code sample hashes can be generated.
These hashes, derived from the SHA256 hash of the UTF-8 string representation
of each sample, serve as compact identifiers. They can be stored in a file and used
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as a filter during dataset loading to exclude other samples, ensuring adherence
to the intended distribution. Notably, problem difficulty was not factored into
sample selection in the generation pipeline, though it is reasonable to assume
that problems requiring longer solutions tend to be more complex.

4.3 Generated Dataset
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Fig. 1: Generated Python code length distribution of APPS (Left), CodeSearch-
Net (Middle), and Stack Overflow Post (Right) with a bin size of 16. Length in
number of tokens using the cl100k base TikToken tokenizer.

In total, we generated 113 776 code samples across 6 datasets and 17 LLMs; a
list of the LLMs used is provided in Table 3. It is important to note that samples
with less than eight tokens were discarded, since they were either empty strings
or filled with white space. Discarding samples from the dataset introduces the
notion of imbalance between human and AIGC samples in the dataset. Compar-
ing the human samples to samples generated by a single LLM, we can calculate
an average human-to-generated ratio (see Table 1). To prevent class imbalance,
it is important that the ratio stays close to 1 between the samples. For a more
detailed list of the generated sample counts, see Table 4 in the Appendix. Where
possible, the parameters for temperature and top-p were set to 0.97 and 0.95, re-
spectively. Temperature is a floating point value applied to the softmax function
in the final layer of an LLM that flattens or sharpens the probability distribution
of the next token.10 Top-p sampling (or nucleus sampling) is a randomised sam-
pling strategy that samples from the smallest subset of tokens with the largest
probability whose sum exceeds the top-p value [6].
The temperature value and sampling strategy used by the LLM can have a large
impact on the detectability of a code sample [28]. A lower temperature value
sharpens the conditional probability distribution of the next token leading to a
more deterministic generated output. This makes detection easier in a white box
context because it increases the probability of a base model “recognizing” its own
samples. Increasing the temperature has the opposite effect. Similarly, decreasing

10 Specifically LLMs utilising a decoder-only transformer architecture.
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Table 1: List of the data sources, total human- and machine-generated samples,
and average human-to-generated ratio (per LLM). E.g., For APPS, we have
561 human-generated samples. Each LLM has slightly fewer than 561, resulting
in 9149 machine-generated samples and an average ratio of 1:0.96. ∗Machine-
generated total contains additional samples generated at varying temperature
and top-p values.

Data source Human Machine-Generated Avg. Ratio

Total Total

Stack Overflow (Pre + Post) 3400 25 544 + 27 243 1:0.94

APPS 561 9149 1:0.96

CodeSearchNet∗ 561 35 925 1:0.98

LeetCode (Pre + Post) 1000 8025 + 7890 1:0.94

the top-p value increases determinism and vice versa. To verify the impact of
these parameters, 26 636 additional CodeSearchNet samples were generated with
varying temperature and top-p combinations. To compare results, some values
were taken from previous work [28]. A total of four combinations of T = 0.97,
T = 0.2, p = 0.95, and p = 0.5 were tested.

After generation, it is to be expected that some variance between the dataset
distributions is introduced. Since models behave differently from one another and
the code may be semantically similar but structurally different, the code lengths
will vary as well. Although the distributions are not identical, the mean did not
deviate significantly (see Figure 1). The generated output was then analysed
using various zero-shot detection methods within the framework developed in
this paper. Both the generated data and the real values assigned by various
zero-shot detection methods are published as separate datasets alongside this
paper.

4.4 Computational Requirements

Throughout the creation of the datasets and results presented in this paper,
we used a high performance cluster to run the LLMs during generation and
detection. We ran the generation and detection phases sequentially across 10
parallel instances, each with their own H100 GPU, resulting in approximately
1042 compute hours being spent overall. Around 112 hours were spent generat-
ing the samples, and another 930 running the detection methods across various
model combinations. We determined the batch size, among other optimisation
parameters, by running preliminary benchmarks to maximize token throughput.
It should be noted that our framework automatically groups samples by size
to reduce unnecessary padding added during batching that wastes memory. On
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average it took around 3.5 seconds to generate a sample and around 270 mil-
liseconds per detection sample. Although we had access to 96GB of VRAM per
instance, we used quantised models to allow for larger batch sizes to increase
inference speed. The continuous progress of LLM quantisation will allow these
models to be run on lower-end hardware, making zero-shot detection more viable
in the future. The impact of quantisation on detection performance, however, is
unknown and remains an open research question.

5 Analysis
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Fig. 2: Cross-model performance on two datasets. (a) Fast-DetectGPT on Stack
Overflow Post and (b) Binoculars detector on APPS.

It is crucial to investigate the impact of various factors pertaining to the prop-
erties of the samples themselves. Key factors include sample length, program-
ming language, and generation parameters, like temperature and top-p value.
This yielded 12 294 388 detection samples from five detection methods (see Ap-
pendix A) and 16 LLMs.11 To examine whether data leakage affects detection
performance, we analysed a subset of detection models trained before our cut-off
date, focusing on samples from 11 of the 17 LLMs. While initially working on
constructing the source datasets and theorising the impact of data leakage, we
hypothesised that introducing previously seen samples could have two opposing
effects. Hypothesis A: Detection performance increases because the underlying
LLM “recognises” its own generated samples better. Hypothesis B: Detection

11 o1-mini cannot be used as a detection model because OpenAI do not expose the
logits produced by the LLM that are required for the investigated methods.
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performance decreases because the generated samples closely match the original
human samples, making differentiation more difficult. Our goal was to highlight
the importance of dataset selection and generation, urging standardisation in the
field through benchmarks and frameworks to allow for a more reliable compari-
son between detection methods and to answer to following research questions:

RQ1: Can zero-shot detection methods from other domains be
effectively applied to code detection?

Heat maps are a useful way to visualise the cross-model performance of a de-
tection method. It should be noted that, to maintain readability of the data
contained in the figures, we only present six of the LLMs in the following fig-
ures. We chose to represent only the largest model of a given family and remove
instruct versions from the figures. The full versions of the figures can be found in
Appendix D.4. After inspecting the heat maps of several detection methods and
datasets, it becomes clear that current methods still generally perform better in
a white box context compared to a black box one. This is evident from the darker
diagonal in the heat maps (see Figure 2). Alongside the code and datasets, we
provide a large collection of complete figures, including various heat maps of
detection method and dataset combinations, which can also be generated us-
ing the supplied IPython notebook files in the code repository. Overall, there is
strong evidence supporting the applicability of existing detection methods for
AI-generated code.
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Fig. 3: (a) Python-only cross-model performance comparison between Code-
SearchNet and Stack Overflow Post using rank (b) Cross-model performance
comparison between LeetCode Pre and LeetCode Post using entropy. Green in-
dicates an improvement in AUROC. Red indicates a decrease in AUROC.
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One can also see a large discrepancy in AUROC scores between detection meth-
ods. Directly comparing AUROC scores without considering the underlying ROC
curve can be misleading, as AUROC alone does not reflect key detector charac-
teristics, such as the FPR-TPR relationship at fixed thresholds. Filtering AIGC
from future datasets requires a high TPR, as being overly cautious is preferred,
while the FPR is less relevant. Conversely, detecting AIGC in student submis-
sions requires a low FPR at the cost of letting some AIGC evade detection. Thus,
we also investigate the ROC curves. Only curves that dominate others can be
called superior detectors. Inspecting several ROC curves with varying detection
methods, generator and base model combinations reveals a clear trend: Gen-
erally, the larger the difference between the AUROC scores, the greater the
likelihood that the ROC curve dominates the other (see Figure 12 in the Ap-
pendix), meaning that the TPR lies above the other across all FPRs. This is
notable because it allows us to define a heuristic that we call a “difference heat
map” to better visualise differences in AUROC scores. The difference heat map
visualises performance improvements of dataset B over A (A vs B) by calculating
B - A per tile, highlighting positive differences in green and negative in red. In
particular, the larger the absolute difference the more accurate the heuristic.

RQ2: What is the impact of data leakage on detection performance?

Figure 3 highlights the difference in AUROC between datasets before and after
the cut-off date using the same detection methods. Although most detection
methods showed an improvement, supporting hypothesis B, the entropy detector
often decreased with novel samples (see Figure 3).
Unlike when comparing Stack Overflow Post to APPS and CodeSearchNet, there
was no significant change in detection performance between Stack Overflow Pre
and Post (see Figure 4a). While contradictory to both our hypotheses, this is
not an inexplicable result. Firstly, less than 1% of samples were used in both of
the 250-day periods of Stack Overflow Pre and Post. Additionally, the labelling
process helped mitigate dataset contamination by encouraging novel outputs
that better reflect the model’s true coding abilities. This likely impacted how
recognisable these samples were, even if seen during training. Since these steps
were applied to both datasets, the generated samples should be of similar qual-
ity leading to the observed results. These findings may change if the natural
language-to-code generation performance continues to increase or methods like
retrieval augmented generation (RAG) are utilised during generation. Future
work may look further into the impact of rephrasing problem descriptions from
existing datasets on detection performance. The minimal performance difference
between Stack Overflow Pre and Post contrasts with the significant variations
observed between APPS, CodeSearchNet, and Stack Overflow Post, as well as
LeetCode Pre and Post. This highlights a key finding: for current LLMs, collect-
ing newly labelled data outside of benchmarks and common training datasets is
just as crucial as the cut-off date.
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Fig. 4: (a) Cross-model performance comparison between Stack Overflow Pre
and Stack Overflow Post using log-likelihood (b) Python-only cross-model per-
formance comparison between CodeSearchNet at varying temperature and top-p
using Fast-DetectGPT. Green indicates an improvement in AUROC. Red indi-
cates a decrease in AUROC.

RQ3: How do generation parameters of LLMs, such as temperature,
affect detection performance?

Difference heatmaps can also be used to examine how detection methods per-
form under varying generation parameters. Since AUROC values across different
top-p and temperature configurations are derived from the same human refer-
ence samples, comparing them is meaningful. The difference heat maps indicate
that lower top-p and temperature values resemble the results of newly labelled
data (see Figure 4b). In most cases, the AUROC score of detection methods in-
creased significantly across the board except for entropy detection. These results
further underscore the need for standardised detection datasets and frameworks,
as variations in generation parameters can further complicate the comparability
of presented results.

Additionally, difference heat maps can also be used to investigate the perfor-
mance difference of detection methods across different programming languages
(see Appendix D.2). While the programming language distributions also fol-
low a log-normal distribution, it is advised to cautiously interpret these results,
as the distributions differ far more across programming languages than across
datasets. However, these significant differences in detection performance still
raise the question of the cause underlying this discrepancy. Hoq et al. [13] sug-
gest that syntactic differences are a sufficiently strong indicator for differentiating
AI-generated code from student submissions. This is partially substantiated in
our dataset by our token frequency analysis (see Appendix D.1), where it can
be seen that some tokens are preferred by either humans or LLMs. While this
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may explain one possible factor for the variation in detection performance be-
tween different programming languages, further work investigating aspects such
as the influence of training data or programming ability of an LLM in a specific
language is required.

6 Conclusions

In this paper, we investigated the efficacy of existing zero-shot methods for
detection of AI-generated code by assembling a large corpus of 113 776 samples
generated by 17 LLMs. Using the generated code samples, we then produced
12 294 388 detection samples, by applying five detection methods and 16 of the
LLMs.

We achieved this by developing a framework called “Codetector” that facili-
tates the modular integration of new data sources and LLMs for generating and
detecting AI-generated content. The goal of our unified framework is to benefit
the task of AIGC detection by allowing for an easier and more reliable compar-
ison between detection methods. Using our framework, we gathered a mixture
of newly labelled and existing human-generated code samples from various on-
line sources, ensuring similar programming languages and length distributions.
These samples were then used to generate new ones with the integrated LLMs.
This careful scrutiny of collected and generated samples allowed us to not only
show the feasibility of detecting AI-generated code but also to closely compare
the detection results between subsets of our large set of samples.

We found that both old and new zero-shot detection methods often perform
better when using new, unseen samples during generation and detection, with
some detector-generator combinations showing an absolute AUROC increase of
over 40%. This was achieved by using samples created after the model cut-off
date or by relabelling existing samples. By doing so, we achieved AUROC scores
of up to 97% with an average of around 83% using newer detection methods,
despite using high temperature and top-p values of 0.97 and 0.95, respectively,
during generation. In addition to the impact of diverse datasets and possible data
leakage, we showed the significant impact of generation parameters on detection
performance.

We hope that our findings on how various factors bearing on dataset creation
impact detectability will further motivate the development of unified benchmarks
for AIGC detection. Additionally, we aim for our unified framework to facilitate
a more reliable comparison between detection methods, ultimately accelerating
the development of novel detection techniques.
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A Zero-Shot Detection Methods

All of the zero-shot detection methods investigated in this paper utilise proba-
bility distributions generated by underlying LLMs. To be precise, the detection
methods operate with the non-normalised vector outputs (logits) of each in-
put token, resulting in a matrix with dimensions vocabulary size × input token
count. When normalised, each column can be seen as the conditional probability
distribution of the tokens at that position.

The main goal of this paper was to determine the efficacy of various zero-shot
detectors from the domain of natural language detection for code detection. Due
to computational constraints, we could only thoroughly analyse a few. Despite
older methods showing weaker detection performance in code detection, they
are included here as a reference for both the progression of the field and as a
comparison to detection scores found in the literature.

Log-Likelihood

One of the first proposed methods of detecting AIGC was using the log-likelihood
of a sample given an LLM [8,29]. Intuitively this makes sense, as a model should
assign a high log-likelihood to samples it has generated and lower values to
foreign samples. This introduces a common problem amongst many detection
methods. Under this assumption, the LLM cannot differentiate between a hu-
man sample and a foreign machine-generated one created by another LLM. This
should in theory lead to a weak cross-model/black-box performance of this de-
tection method. This is substantiated during analysis in Section 5. Under the
hood, the log-likelihood of a model is determined by calculating the negative
loss of the model. This is because negative cross-entropy (loss) is equivalent to
log-likelihood.

Entropy

Entropy detection utilises a LLM’s predicted entropy of a given sample [8]. A
high entropy is equivalent to a lower perplexity, which is often used to measure
how “unexpected” the input is to the model [11]. This should not be confused
with cross-entropy despite being functionally similar. The key difference is that
only the logits of the LLM are utilised in the calculation of entropy. In cross-
entropy, the target labels derived from the sample are used as well.

Rank

The rank a LLM assigns a sample is determined by the average token position in
the LLM’s normalised output logit [8]. Simply put, at each token position of the
sample, the LLM assigns the token a rank in order of likelihood that it would
output it. A rank of n = 1 indicates that the token is the last one the LLM
would have chosen, while a rank of n = vocab_size would indicate that the LLM
would have chosen that exact token [8].
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DetectGPT

Fig. 5: Image depicting log-likelihood curvature utilised by DetectGPT [19]. Here,
S represents the space of all possible samples. Fake samples are sampled from
pθ(s) while real samples are sampled from ph(s). Figure adapted from Detect-
GPT [19].

DetectGPT [19] was the first of its kind to introduce the notion of detection
via perturbation. Perturbation methods are more effective because they sample
neighbourhoods instead of singular points in the model’s probability space. This
gives rise to the possibility of detecting patterns, such as negative curvature dis-
covered by DetectGPT, in these high-dimensional spaces. The negative curvature
observation is attributed to the way LLMs sample their probability distribution.
AIGC samples tend to lie on maxima in the model’s log-likelihood space and
perturbed samples lower around them [19]. Human samples on the other hand
do not follow the model’s distribution and will often lie in more rugged areas in
the model’s log-likelihood space (see Figure 5). To obtain a high resolution of
the neighbouring topology, a large number of perturbations need to be gener-
ated and evaluated. The slow-down is two-fold when another LLM generates the
perturbations. During preliminary analysis, it was determined that DetectGPT
performed significantly worse than other newer detection methods on a test set.
Because of this and its slow detection speed, it was removed from the paper.



20 N. Adham et al.

Fast-DetectGPT

Fast-DetectGPT [3] extends DetectGPT’s findings. Like its predecessor, it is a
perturbation-based model that utilises the curvature of samples in a probability
space to aid in detection but differs in the space that it probes. Instead of deter-
mining the curvature in the log-likelihood space of the model, the curvature is
estimated in the conditional probability space. The paper goes into detail about
the rationale. Simply put, instead of generating perturbations and evaluating
them separately, the posterior of the conditional probability can be modified
instead [3]. This is easy to do as this is simply a resampling of the probabilities
integrated into the logits of the LLM. That means that the logits only need to be
generated once instead of hundreds of times compared to DetectGPT [3]. Unlike
in log-likelihood space, it was observed that AIGC tends to lie in points with
positive curvature. Due to the increase in efficiency, 10,000 samples can be gener-
ated to better approximate the curvature. This leads to a superior performance
over DetectGPT. The paper also derives an analytical form of the resampling
step that further speeds up the detection process. This has led to a measured
speed-up of 340 times over regular DetectGPT [3].

Binoculars

Binoculars [11] is a novel zero-shot detection method that departs from perturbation-
based detection methods. The authors of Binoculars highlight the issue of hu-
man written prompts impacting model perplexity, which they name “the capy-
bara problem”. Note that: Here, perplexity is defined as an exponentiated cross-
entropy [11]. In their paper, they give an example of a prompt that elicits a
response that would have high perplexity, should the prompt be omitted, which
would lead to misclassification by perplexity-based detectors. Binoculars ad-
dresses this issue by introducing cross-perplexity normalisation. The idea is to
reset the perplexity baseline using a secondary observer model. Their Binoculars
score is the ratio of perplexity to cross-perplexity [11]. The score can be rein-
terpreted as the log-likelihood divided by the summed negative cross-entropy
of the sample. Despite its seeming simplicity, Binoculars outperforms many of
the SoTA detection methods in the domain of natural language detection. It is
also important to note that the values output by binoculars have been flipped
from the reference implementation. We did this due to the average AUROC
being significantly below 0.5 indicating that the detector was consistently as-
signing samples to the wrong class. This effectively means that 1−AUROC was
calculated in the heat maps.
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B Additional Tables

Table 2: List of the datasets, models (Generator + Detector), and the detection
type (Zero-shot, classifier, etc.) of various code detection papers.

Paper Detection Type Datasets/ Programming Models

Sources Languages

Evaluating AIGC Detectors on
Code Content [31]

Zero-shot,
Proprietary

Stack Overflow,
CodeSearchNet,

APPS, CONCODE

Python, Java,
Javascript, PHP,

Ruby, Go
ChatGPT

Assessing AI Detectors in
Identifying AI-Generated Code:
Implications for Education [24]

Zero-shot

Python Coding
Questions (Quescol),

Coding Problems
(Kaggle), Leetcode

Python ChatGPT

Detecting ChatGPT-Generated
Code Submissions in a CS1 Course
Using Machine Learning Models

[13]

Fine-tuned CodeWorkout Java ChatGPT

Resilient Watermarking for
LLM-Generated Codes [17] Watermarking MBPP, APPS Python GPT-3.5, GPT-4,

StarCoder

Zero-Shot Detection of
Machine-Generated Codes [33] Zero-shot CodeContests,

APPS Python, Java
GPT-3.5-turbo,

GPT-4,
text-davinci-003

Between Lines of Code: Unraveling
the Distinct Patterns of Machine
and Human Programmers [28]

Zero-shot CodeSearchNet, The
Stack Python

Incoder, Phi-1,
StarCoder,

WizardCoder,
CodeGen2,
CodeLlama
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Table 3: Summary of the LLMs used in the pipeline. (Yes) indicates that the
option exists but was not used.

Model Parameters Multilingual Instruct Release/ Dataset Human- Paper

Cut-off Eval

Code Llama 7B, 13B Yes Yes July 2023
Public
Online
Data

34.8%,
42.7% [26]

Llama 3 8B Yes Yes July 2023
Public
Online
Data

62.2% [9]

CodeGen 2.5 7B Yes (Yes) July 2023 The Stack
v1.2 28.36% [20]

CodeGeeX2 6B Yes No July 2023

The Pile,
CodePar-

rot,
GitHub

35.9% [36]

StarCoder 2 3B, 7B Yes No February
2024

The Stack
v2

31.7%,
35.4% [18]

CodeGemma 7B Yes Yes April 2024
Public
Online
Data

56.1% [35]

WaveCoder-
Ultra 6.7B Yes (Yes) April 2024

CodeSearch-
Net

(Subset)
79.9% [34]

Incoder 1.3B, 6.7B Yes No April 2022
GitHub,
Stack-

Overflow
8%, 15% [7]

Phi-3 mini 3.8B Yes Yes April 2024

Public
Online
Data,

Synthetic
Data

58.5% [1]

Phi-1 1.3B No No June 2023 The Stack
v1.2 45% [10]

o1 mini - Yes Yes October 2023

Public
Online
Data,

Propri-
etary
Data

92.4% [21]
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Table 4: Overview of the number of generated samples per generator and dataset.

Model Stack Overflow Stack Overflow APPS CodeSearch Leetcode Leetcode

Pre Post -Net Pre Post

Human 1700 1700 561 561 500 500

Codellama-
13b 1697 1696 561 559 495 497

Codellama-
instruct-13b 1662 1662 460 526 464 445

Llama3-8b 1688 1688 540 508 497 483

Llama3-
instruct-8b 1678 1680 552 556 497 489

Codellama-7b 1698 1698 560 559 500 500

Codellama-
instruct-7b 1679 1680 478 542 498 469

Codegen2_5-
7b 1700 1700 554 561 499 500

Codegeex2-6b 1697 1699 561 558 500 500

Starcoder2-7b 1700 1700 561 561 500 500

Codegemma-
instruct-7b 1685 1687 497 542 467 454

Wavecoderultra-
7b 1611 1610 522 476 482 450

Incoder-6b 1700 1700 555 561 500 500

Phi3mini4k-
instruct-4b 1692 1693 559 557 498 494

Starcoder2-3b 1700 1699 561 561 500 500

Phi-1b 257 251 527 540 109 93

Incoder-1b 1700 1700 545 561 500 500

o1-mini - 1700 556 561 500 500
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Table 5: Distribution of programming languages across various datasets.

Programming APPS CodeSearchNet Stack Overflow Leetcode

Languages (Pre/Post) (Pre/Post)

Python 561 561 561 195

Java - - 340 139

Javascript - - 255 37

C# - - 255 -

C++ - - 228 129

Go - - 34 -

Rust - - 27 -

Total 561 561 1700 500

C Additional Information: Datasets

Here, we expand on key topics discussed in the paper, providing specific imple-
mentation details, dataset insights, and essential procedures to offer a deeper
understanding of our approach.

C.1 Unfiltered Distributions

The following figures represent the raw sample distributions of the datasets be-
fore the processing stage. Here the importance of the processing stage is high-
lighted, as the discrepancy between the various datasets becomes apparent.
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Fig. 6: Code length distribution of Stack Overflow code samples with a bin size
of 16. Stack Overflow Pre (Right) and Stack Overflow Post (Left). Length in
tokens using the cl100k base TikToken tokenizer.
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Fig. 7: Code length distribution of Leetcode code samples with a bin size of
16. Leetcode Pre (Left) and Leetcode Post (Right). Length in tokens using the
cl100k base TikToken tokenizer.
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Fig. 8: Code length distribution of APPS (Left) and CodeSearchNet (Right) with
a bin size of 16. Length in tokens using the cl100k base TikToken tokenizer.

C.2 Filtered Distributions
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Fig. 9: Python code length distribution of APPS (Left), CodeSearchNet (Mid-
dle), and Stack Overflow Post (Right) with a bin size of 16. Length in tokens
using the cl100k base TikToken tokenizer.
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C.3 Framework Dataset Example

from codetector.samples import CodeSample
from codetector.dataset import XMLDataset

class TestXML(XMLDataset):

def getContentType(self):
#Define the object type contained in the dataset.
#This allows for serialisation into arbitrary file formats.
return CodeSample

def preProcess(self):
#Called when loading a dataset for the first time.
pass

def getTag(self):
#The tag of the dataset.
return 'test_xml'

Fig. 10: Example implementation of a XML dataset that contains code samples.

C.4 LeetCode Problem Set Bounds Calculation and Data Collection

As previously stated, to be able to utilise samples from LeetCode, we had to
determine what samples were produced before and after our cut-off date. We
achieved this by collecting existing sitemap XML files archived by the Wayback
Machine and counting the number of problems available at that date. Plotting
and fitting a linear function to the data, we get the data presented in Figure 11.
Problem set 2517 is estimated to be the upper bound for the pre-ChatGPT
dataset and problem set 2883 is the lower bound for the August 2023 dataset.
Additionally to the problem set bound calculation, we had to build a custom
webscraper to collect the newest LeetCode problems that were not contained in
any existing publicly available datasets. We achieved this by utilising a selenium
webdriver that would use the sitemap to go to the new problems, extract the
problem description and other metadata; then it would download several top
solutions and extract the code and programming language from the posts.
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Fig. 11: Scatter plot of LeetCode sitemap dates and the number of available
problems at that date. Red line represents a linear regression used to later de-
termine cut-off dates.

C.5 Log-Normal Distribution

To closely mirror code length distributions found in reality, the code samples
were sampled to match a log-normal distribution. This was achieved using the
following formula:

fdist(binEdge) =

⌊
1

binEdge+k
c · σ

√
2π

e−
ln2(

binEdge+k
c

−µ)

2σ2 · d

⌋
(1)

The values σ = 2.1, µ = 1.3, c = 169.4, k = 217 were used for all distributions.
d was chosen accordingly so that:

63∑
i=0

fdist(16i) = Programming language target total (2)

For example, a target total of 561 samples for Python was chosen. After de-
termining a suitable value for d, the distribution overlap can be generated and
fitted to a scaled log-normal distribution.
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C.6 Prompts

Labelling Prompt The following system prompt was given to GPT-3.5-turbo
to label samples from the Stack Overflow datasets.

You are Code GPT. You will receive a title and a long text
containing lots of technical information and possibly
code.You will output a JSON formatted string with the
following exact format where you parse the code, if present,
from the given text. Additionally, you should add the
programming language (using the given labels) and semantic
meaning of the code if present. Keep the semantic meaning
short but long enough to describe the functionality (maximum
three sentences). When describing the semantic, write it in
the style of a comment describing the code (Do not format it
as a comment). The programming language labels are the
following: python, javascript, c, c++, java, rust, go, c#.
If a language is not in the given list of labels, label it
as generic.

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The format for the JSON is:
{"programming-language": <The programming language of the code>,

"semantic": <The meaning behind the code>}↪→

Return the JSON {"no-code": true} if the text contains no code.

Follow the exact instructions above.

Generation Prompts In the completion and instruction prompts, used to
generate the code samples, the values inside of <. . . > were substituted. The
completion prompt was additionally converted to a comment format using the
appropriate styling for the language.

*Completion

language: <The programming language>
<The prompt>

*Instruction

In <natural language name of programming language>, write some
code with the following functionality: <The prompt>.↪→

Do not explain the code, only return the code and comments if
necessary. DO NOT REPEAT YOURSELF! Only explain things in
the comments of code. Otherwise do not write any plain text.
Start with the code here:

↪→

↪→

↪→
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D Additional Information: Analysis

Here, we provide further insights into the properties of the generated samples
and LLMs, analysing ROC curves, relative token frequencies, the impact of pro-
gramming languages on detection, and correlations between various factors and
AUROC.
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Fig. 12: Receiver Operating Characteristic (ROC) curves of various detection
methods. (a) ROC curve of entropy detector with Phi-3 4k Mini 3.8B as the
generator model and StarCoder 2 7B as the base model showing dominance with
a large AUROC difference (b) ROC curve of log-likelihood detector with Code
Llama 13B as both a base model and generator model showing no dominance
with a small AUROC difference across datasets.

D.1 Token Frequency Analysis

Additionally, we inspected the token frequency distributions of the generated
samples. To visualise the preference of specific tokens that LLMs may have, we
plotted the individual LLM token frequencies against their human frequency
(see Figure 13). Values above the identity indicate a stronger preference for the
LLM over human samples and vice versa for below. The top 15 tokens were
highlighted using a simple heuristic based on the product between the perpen-
dicular distance to the identity and the distance to the origin. The tokenizer
plays a large role in the distribution and selection of tokens in the plot. To
enhance human readability, we utilised the Natural Language Toolkit (NLTK)
TreebankWordTokenizer tokenizer that uses regular expressions to break down
strings into token sequences. Inspecting the various plots, a few observations can
be made. Generally, the majority of the LLMs share a large number of the top
tokens assigned by the heuristic. They also have the tendency to utilise more
comment tokens like ‘//’ or ‘#’ than humans. The token ‘the’ is often to be
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Fig. 13: Correlation plot between the relative token frequencies of AIGC from
two LLMs against human token frequencies.

found in close proximity indicating that the token is probably frequently used
inside of comments. Like the rest of the figures presented in this paper, the token
frequency plots are supplied as SVGs and PNGs, alongside the code to generate
them from scratch.
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D.2 Programming Language Detection Comparison
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Fig. 14: (a) Cross-model performance comparison between C# and Python using
Binoculars (b) Cross-model performance comparison between Java and Python
using entropy detector.
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D.3 AUROC Correlation
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Fig. 15: Correlation plot between AUROC scores and various properties. AUROC
scores were calculated using Binoculars in a white box context.

Plotting AUROC scores against various factors offers a way to extrapolate the
future prospects of detection in the field. To be precise, we investigated the re-
lation of AUROC to training date, HumanEval scores, and model size. Newer
detection methods, such as Fast-DetectGPT and Binoculars, show a slight down-
ward trend for models with either newer, larger, or higher HumanEval scores (see
Figure 15). However, it is important to note that the newest, largest and best
model tested, o1 mini, is among one of the “easiest” models to detect.

D.4 Full-sized Heat maps

We append a list of full-sized heat maps used in the paper. For heat maps that
contain values of all 17 LLMs please see our GitHub repository.
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Fig. 16: Cross-model performance on two datasets. (a) Fast-DetectGPT on Stack
Overflow Post and (b) Binoculars detector on APPS.
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Fig. 17: (a) Python-only cross-model performance comparison between Code-
SearchNet and Stack Overflow Post using rank (b) Cross-model performance
comparison between LeetCode Pre and LeetCode Post using entropy. Green in-
dicates an improvement in AUROC. Red indicates a decrease in AUROC.
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Fig. 18: (a) Cross-model performance comparison between Stack Overflow Pre
and Stack Overflow Post using log-likelihood (b) Python-only cross-model per-
formance comparison between CodeSearchNet at varying temperature and top-p
using Fast-DetectGPT. Green indicates an improvement in AUROC. Red indi-
cates a decrease in AUROC.
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