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Abstract
Recent works have shown that modelling raw waveform di-
rectly from text in an end-to-end (E2E) fashion produces more
natural-sounding speech than traditional neural text-to-speech
(TTS) systems based on a cascade or two-stage approach. How-
ever, current E2E state-of-the-art models are computationally
complex and memory-consuming, making them unsuitable for
real-time offline on-device applications in low-resource scenar-
ios. To address this issue, we propose a Lightweight E2E-TTS
(LE2E) model that generates high-quality speech requiring min-
imal computational resources. We evaluate the proposed model
on the LJSpeech dataset and show that it achieves state-of-the-
art performance while being up to 90% smaller in terms of
model parameters and 10× faster in real-time-factor. Further-
more, we demonstrate that the proposed E2E training paradigm
achieves better quality compared to an equivalent architecture
trained in a two-stage approach. Our results suggest that LE2E
is a promising approach for developing real-time, high quality,
low-resource TTS applications for on-device applications.
Index Terms: speech synthesis, text-to-speech, end-to-end, on-
device.

1. Introduction
Text-to-speech (TTS) technology has come a long way in recent
years, with state-of-the-art (SOTA) models generating highly
realistic and natural-sounding speech [1]. Given its success,
TTS technology is now widely used in many different applica-
tions, either with cloud-based online connections or offline syn-
thesis. However, as the demand for on-device, real-time speech
synthesis grows, offline TTS systems are becoming increasingly
important in today’s society. With the rise of smart devices and
the Internet of Things (IoT), there is a need for TTS systems
that can function without the need for a remote server connec-
tion, providing users with instant and reliable access to speech
synthesis. Offline on-device TTS systems are particularly use-
ful in scenarios where internet access is limited, unreliable, or
where privacy concerns are critical to the application. Hence,
the development of offline TTS systems is essential to fulfill the
requirements of diverse applications.

Text-to-speech (TTS) models are typically composed of
two components: an acoustic model that predicts acoustic units
from the input text, and a vocoder model that generates the
speech waveform from these acoustic features. However, the
two-stage approach of training separate models leads to a mis-
match between the acoustic features used during training and
those used during inference [2], resulting in a degradation of
synthesis quality. This occurs because the predicted acoustic
features by the acoustic model, usually in the form of a mel-
spectrogram [3, 4], may not precisely match the ones used in

the training process of the vocoder. To overcome this issue, a
fine-tune process is performed to a pre-trained vocoder model
on predicted acoustic features [5, 6]. This approach requires
different sets of hyperparameters and training/fine-tuning pro-
cedures for each model, which can lead to suboptimal perfor-
mance and a more complex pipeline.

In this paper, we propose a new end-to-end text-to-speech
(E2E-TTS) model based on a joint training of a lightweight
acoustic and vocoder model in a single efficient architecture,
enabling the benefits of end-to-end speech modeling to be ap-
plied to on-device TTS systems. Our proposed model is sig-
nificantly smaller than other E2E solutions while maintaining
comparable performance, making our approach more practical
and accessible for low-resource scenarios. The main contribu-
tions of our work are as follows: 1) we present the Lightweight
E2E-TTS (LE2E) model, based on a joint training paradigm of
LightSpeech [7] and Multi-Band MelGAN [8] which outper-
forms its originally designed two-step cascade approach while
only requiring a single joint training scheme; 2) we introduce
an upgraded loss objective based on recent GAN speech dis-
criminators, which we show to be effective not only on a known
neural vocoder architecture but also in an E2E-TTS system and;
3) we show that the proposed model achieves a mean opinion
score (MOS) of 3.79 in the LJSpeech dataset, on par with VITS
[9] and just below JETS [10], while being much more memory-
efficient and faster, suitable for offline on-device applications.

2. Related work
Several recent studies have proposed removing the mel-
spectrogram as an intermediate representation for E2E-TTS
synthesis [11, 9]. FastSpeech2 [12] uses Parallel WaveGAN
[13] to synthesize speech directly from text, while VITS [9] and
NaturalSpeech [14] proposes a flow-based TTS system trained
jointly with the HiFi-GAN [5] vocoder to generate waveforms
from text sequences. JETS [10] improves upon FastSpeech2 by
jointly training with the HiFi-GAN vocoder. Both JETS and
VITS have shown impressive results, but they are not suitable
for on-device low resource real-time synthesis due to their high
computational requirements. In contrast, low-memory foot-
print TTS systems like LightSpeech [7], SpeedySpeech [15]
and FCH-TTS [16] strive to minimize computational power, but
operate on a cascade approach and require specific vocoder ar-
chitectures. LiteTTS [17] is a lightweight mel-spectrogram-free
TTS system that achieved competitive results compared to state-
of-the-art E2E models, but employs the memory-heavy HiFi-
GAN as vocoder. Low-resource E2E speech synthesis models
have been explored in works like [18] which propose an au-
toregressive model or in [19] which present a lightweight flow-
based E2E architecture for on-device applications.



Figure 1: LE2E model architecture and training discriminators.

3. Methodology

The proposed model is shown in Figure 1. LE2E follows the
typical GAN-based setup of a generator (G) that includes an
acoustic latent encoder and an acoustic decoder, and a set of
discriminators (D) divided in two different sets of multi-period
(MPD) and multi-resolution discriminators (MRD).

3.1. Generator

The waveform generator consists of two components: an acous-
tic latent model and a neural vocoder, which are concatenated
into a jointly trained single architecture. The acoustic latent
model is inspired by the LightSpeech [7] model, but instead of
predicting mel-spectrograms, it is trained to produce unsuper-
vised acoustic latents that are used as input by the vocoder. The
model takes phoneme and positional embeddings and outputs
latent frame-level up-sampled acoustic embeddings. It is di-
vided in three components: a text encoder (E), a variance adap-
tor (V) and an acoustic decoder (D). The text encoder gener-
ates positional aware phoneme embeddings through a stack of
transformer layers. Then, these are fed into the variance adap-
tor. The variance adaptor is comprised of a duration predic-
tor and a pitch predictor. The duration predictor takes output
of the text encoder and predicts phoneme-level durations, used
to up-sample the phoneme embeddings. Then, the up-sampled
phoneme embeddings are fed to the pitch predictor, which is
trained to predict frame-level pitch latents that are added up to
the up-sampled phoneme embeddings. Finally, the output of
the variance adaptor is inputted to the acoustic decoder. The
acoustic decoder follows the exact same stack of transformer
layer as the phoneme encoder. The vocoder model generates
waveform signals from the latent embeddings produced by the
acoustic model. The model is based on Multi-Band MelGAN
[8] and takes the intermediate acoustic latents and upsamples
them to generate the waveform. It is composed of a stack of
up-sampling blocks that follow a transposed convolution and
a set of residual blocks with dilated convolutions that increase
the receptive field. The proposed vocoder architecture follows
the method in [20] and generates different waveform sub-bands
that are then combined to generate the final output waveform
through Pseudo Quadrature Mirror Filter bank (PQMF).

3.2. Discriminators

State-of-the-art E2E-TTS systems use multiple discriminators
that guide the generator in synthesizing a coherent waveform
while minimizing perceptual artifacts that can be easily distin-
guished by a human ear. We adopted the set of discriminators
proposed in BigVGAN [21], which includes a multi-period dis-
criminator (MPD) and a multi-resolution discriminator (MRD).
It is important to note that each discriminator comprises several
sub-discriminators that operate on different resolution windows
of the waveform. The MPD reshapes the predicted waveform
into 2D representations with varying heights and widths to sep-
arately capture multiple periodic structures. On the other hand,
the MRD is composed of several sub-discriminators that op-
erate on multiple linear spectrograms with different short-time
Fourier transform (STFT) resolutions.

3.3. Training objectives

The training objective of LE2E includes losses applied to the
duration predictor, pitch predictor and waveform level, which
include GAN and regression losses in form of power loss and
multi-resolution STFT loss.

3.3.1. Duration loss

The acoustic latent model takes the hidden representation of the
input phonemes and predicts the frame-level duration of each
one of them in the logarithmic scale. The duration predictor is
optimized with mean square error (MSE) loss, Ldur between
predicted and oracle durations extracted by an external aligner
based on the Kaldi Speech Recognition Toolkit [22] used in our
experiments.

3.3.2. Pitch loss

Pitch prediction is typically achieved through regression tasks
that estimate the exact pitch value [12, 23]. However, due to
the high variability of ground-truth pitch contours, we replace
the regression task with cross-entropy density modeling. To ac-
complish this, we follow [24] and apply a 256-bin quantization
to the standardized pitch signal, followed by a cross-entropy
loss function, Lf0 on top of softmaxed predicted pitch logits.



3.3.3. Adversarial training

For simplicity with the notation, we name all the K discrimina-
tors from MPD and MRD under the set of discriminators Dk.
GAN Loss. The main adversarial training objective follows the
least squares loss functions for non-vanishing gradient flows.
The discriminator is trained to classify target samples to 1 and
predicted samples to 0. The generator is trained to fake the
discriminator by updating the sample quality to be classified.
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Feature matching loss. Used in [25], it is defined as the simi-
larity metric measured by the difference in features of discrim-
inators between a ground truth sample and a generated sample.
Feature matching loss is computed as the L1 distance between
target and predicted discriminator hidden intermediate features
and it is defined as:
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3.3.4. Reconstruction losses

Applying a reconstruction loss to GAN models helps to gener-
ate realistic results [13]. We utilize two widely used reconstruc-
tion losses as auxiliary objectives to the GAN-based training.
Multi-resolution STFT loss. This loss is defined as the sum of
spectral convergence Lsc and STFT magnitude Lmag between
predicted ŝ and target s STFT linear spectrograms:

Lsc(s, ŝ) =
∥s− ŝ∥
∥s∥F

, Lmag(s, ŝ) =
1

S
∥log(s)− log(ŝ)∥

(4)
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where ∥·∥F denotes the Frobenius norm and ∥·∥1 the L1
norm, S refers to the total number of values in both time and
channel dimension in the linear spectrogram and M denotes
the number of different STFT resolutions, which coincide with
the different inputs of the MRD. Note that following [8] we
apply the defined multi-resolution STFT loss in both full-band
and sub-band predictions. Therefore, the final multi-resolution
STFT used is:

LSTFT (x, x̂) =
1

2

(
Lfull

STFT (x, x̂) + Lsub
STFT (x, x̂)

)
(6)

Mel-Spectrogram loss. In addition to the multi-resolution
STFT loss, we also incorporate a mel-spectrogram loss, also
known as power loss, in the full-band prediction to improve the
training stability [21, 5] . It is defined as the L1 norm between
the predicted m̂ and target m mel-spectrogram extracted with
the same parameters as in [5]:

Lmel(x, x̂) = Ex,x̂

[
∥m− m̂∥1

]
(7)

3.3.5. Total loss

Summing up all the described loss functions, we end up with
the final loss L for the generator in the jointly E2E training of
the proposed architecture:

L = Ldur + Lf0 + LG + λFMLFM +

+ λmelLmel + λSTFTLSTFT (8)

where we set λFM = 2, λmel = 5 and λSTFT = 2.5.
The architecture is optimized to minimize the total loss L in ad-
dition with the discriminator loss LD in an adversarial training
approach.

4. Experiments and results
4.1. Experimental setup

For reporting the results of the proposed model and for easy
comparison of our architecture, we evaluate our model on
the widely used LJSpeech dataset [26]. LJSpeech consists of
13.100 pairs of text and speech data with approximately 24
hours of speech. We split the dataset into three parts: 12.900
samples for training and 100 samples for both validation and
test set.

4.2. Model details

Generator The generator of LE2E is built upon two main com-
ponents: the acoustic latent model and the vocoder model. The
acoustic model follows a 4 block transformer phoneme encoder
with self-attention. The dimension of the phoneme embeddings
and hidden sizes of the self-attention are 256. The kernel size of
the separable convolutional layers within each transformer layer
follow [5, 25, 13, 9] respectively. The duration predictor is a
2-layer 1D separable convolutional neural network with kernel-
size 3. The pitch predictor is a 5-layer 1D separable convolution
neural network with kernel-size 5 followed by a linear projec-
tion layer to 256 hidden dimensionality for pitch logits. The
decoder follows the same architecture as the encoder, where
each separable convolution has its kernel size to [17, 21, 9, 13]
respectively. As for the vocoder module, 300× upsampling is
conducted through 3 upsampling layers with [3, 5, 5] upsam-
pling factors respectively and a PQMF synthesis filter. The
output channels of each upsampling layer are [192, 96, 48] and
each transposed convolution in the upsampling layer has its
kernel-size of [6, 10, 10] respectively. Each upsampling layer
has 4 stacked residual blocks consisting of a 1D dilated con-
volution with kernel-size 3, a Leaky Relu activation with 0.2
slope, and a final 1D convolution with kernel-size 1. The di-
lation component in each dilated convolution of the 4 residual
blocks follow [1, 3, 9, 27] respectively. The final 1D convolu-
tion has a kernel-size of 7 and 4 output channels, which they
get combined through a carefully designed PQMF filter with 62
taps, β = 0.9 and a cutoff ratio of 0.1492.
Discriminator LE2E discriminators are divided into the MRD
and MPD module. Each module contains a set of sub-
discriminators that use a stack of 2D convolutions followed
by ReLU activations. In the MPD, the input waveform is
first reshaped into a 2D signal by concatenating samples every
[2, 3, 5, 7, 11] samples (period) with reflective padding. In the
MRD, the input is a linear spectrogram with a variable number
of fast Fourier transform (FFT) points: [1024, 2048, 512] with
respective hop lengths of [120, 240, 50] and window lengths of
[600, 1200, 240].



Table 1: Evaluation metrics results on the LJSpeech dataset validation split. MOS is reported with a 95% confidence interval (CI)

Model cFSD (↓) F0 RMSE (↓) XWLM (↑) MOS (CI) (↑)

Recordings - - - 4.25 (±0.10)

VITS [9] 0.254 0.042± 0.024 0.985± 0.006 3.81 (±0.14)
FastSpeech2 + HiFi-GAN (JETS [10]) 0.212 0.041± 0.058 0.979± 0.011 4.01 (±0.13)

LightSpeech + MB-MelGAN+ (cascade) 0.248 0.029± 0.028 0.968± 0.016 3.73 (±0.14)
LightSpeech + MB-MelGAN+ (LE2E) 0.167 0.033± 0.027 0.972± 0.017 3.79 (±0.14)

Training process The model was trained for 1M steps with an
effective batch size of 128 samples. We used the AdamW [27]
optimizer with β1 = 0.8 and β2 = 0.99 and an initial learning
rate of 2× 10−4. We used an exponential decay scheduler that
reduced the learning rate by a factor γ = 0.99 at each training
epoch and a weight decay penalty factor of 1e− 2.

4.3. Evaluation metrics

To measure and compare the quality of the proposed model,
we used a combination of three objective metrics and a subjec-
tive mean opinion score (MOS) evaluation. For objective eval-
uation, first we evaluated signal quality using the conditional
Fréchet Speech Distance (cFSD). To compute cFSD, we gener-
ated activation distributions for both the recordings and the syn-
thesized samples using a pre-trained XLSR-53 [28] wav2vec-
2.0 [29] model. We then compared the distributions using the
Fréchet Distance metric. Second, to assess the intonation fi-
delity, we computed the root mean-squared error (RMSE) of the
fundamental frequency (F0) between the predicted waveforms
and the recordings. A lower RMSE indicates higher F0 fidelity.
Third, we evaluated the similarity between the recordings and
the generated speaker embeddings using the mean cosine dis-
tance metric between extracted embeddings obtained through
the pre-trained XVector head from WavLM [30] (XWLM). For
the MOS evaluation, we gathered 100 US English speakers
from the crowd-sourcing platform ClickWorker to evaluate the
audio quality of 20 random samples from the test set. Each
speaker evaluated 8 test cases and rated each sample on a scale
of 1 (very low quality) to 5 (very high quality). We collected
a total of 40 ratings for each sample to assess the subjective
quality of the synthesized speech.

4.4. Results

Vocoder ablation study In order to show that the new pro-
posed loss objective has a positive impact in our standalone neu-
ral vocoder architecture, we trained the Multi-Band MelGAN
model with the original loss objective [8] and with the proposed
loss described in Section 2.3. We will reefer to this latter as
Multi-Band MelGAN+. Both architectures were trained on the
same LJSpeech dataset and evaluated in the re-synthesis task
of generating waveform signals from the test split. Following
the original training paradigm, we pre-trained the generator for
200K steps and then train the whole architecture for 1M steps
in both models. We used Adam [31] optimizer with a learning
rate of 1e − 4 and a batch size of 128. Subjective MOS in Ta-
ble 2 clearly shows that the proposed loss objective generates
better quality waveform compared to original training objective
without any change in the model architecture.
Model comparison. We compared the proposed LE2E archi-
tecture against two state-of-the-art E2E models: VITS [9] and
JETS [10]. Both models are obtained from the ESPNet [32]

Table 2: MOS comparison between recordings and the same
vocoder model (MB-MelGAN) with different training paradigm.

Model MOS (CI) (↑)

Recordings 4.24 (±0.13)
MB-MelGAN+ 4.02 (±0.14)
MB-MelGAN [8] 3.59 (±0.14)

open-source implementation, in which a checkpoint of each
model trained on LJSpeech dataset [26] is available. In addition,
we trained the LightSpeech model to predict mel-spectrograms
following the original implementation [7] to demonstrate that
the proposed training paradigm improves the traditional cascade
approach. To do so, we generated predicted mel-spectrograms
from it and fine-tuned the proposed MB-MelGAN+ vocoder for
an extra 200K steps to mitigate the domain mismatch in text-to-
speech inference. Table 1 summarizes the comparison results,
while Table 3 presents the memory consumption and computa-
tional complexity. LE2E does not only perform slightly better
than the cascade method with the exact same architecture but
also simplifies the training process by eliminating the need for
two independent trainings and an additional fine-tuning step.
Compared to state-of-the-art E2E models, our model achieves
slightly lower metrics, but it has a much smaller size and faster
inference time. Specifically, LE2E is 90% smaller and 10×
faster than JETS while reporting marginally inferior metrics.

Table 3: Model comparison in terms of memory consumption
and computational complexity in a Nvidia A100 GPU

Model Params. RTF (↓)

VITS [9] 29.36M 0.0814 (±0.0304)
JETS [10] 40.94M 0.0765 (±0.0206)
LE2E 3.71M 0.0084 (±0.0480)

5. Conclusions and future work
We proposed a lightweight end-to-end text-to-speech (LE2E)
architecture that achieves comparable results to VITS and slight
worse performance than JETS while being significantly smaller
and faster, suitable for on-device applications in low-resource
scenarios. Our proposed training paradigm improves existing
vocoder architectures and enables the training of a lightweight
E2E-TTS system, which replaces the traditional cascade ap-
proach and simplifies the training process to a single step. Fu-
ture research could expand our findings to multi-speaker and/or
multi-lingual use-cases, as well as to further explore new dis-
criminator architectures for lightweight TTS models.
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