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ABSTRACT

Causal representation learning (CRL) aims at recovering latent causal variables
from high-dimensional observations to solve causal downstream tasks, such as
predicting the effect of new interventions or more robust classification. A plethora
of methods have been developed, each tackling carefully crafted problem settings
that lead to different types of identifiability. These different settings are widely
assumed to be important because they are often linked to different rungs of Pearl’s
causal hierarchy, even though this correspondence is not always exact. This work
shows that instead of strictly conforming to this hierarchical mapping, many
causal representation learning approaches methodologically align their representa-
tions with inherent data symmetries. Identification of causal variables is guided by
invariance principles that are not necessarily causal. This result allows us to unify
many existing approaches in a single method that can mix and match different
assumptions, including non-causal ones, based on the invariance relevant to the
problem at hand. It also significantly benefits applicability, which we demon-
strate by improving treatment effect estimation on real-world high-dimensional
ecological data. Overall, this paper clarifies the role of causal assumptions in the
discovery of causal variables and shifts the focus to preserving data symmetries.

1 INTRODUCTION

Causal representation learning (Schölkopf et al., 2021) posits that many high-dimensional percep-
tual data can be described through a simplified latent structure specified by a few low-dimensional
causally-related variables. Discovering hidden causal structures from data has been a long-standing
goal across many scientific disciplines, spanning neuroscience (Vigário et al., 1997; Brown et al.,
2001), communication theory (Ristaniemi, 1999; Donoho, 2006), economics (Angrist & Pischke,
2009) and social science (Antonakis & Lalive, 2011). From the machine learning perspective, algo-
rithms and models integrated with causal structure are often proven to be more robust at distribution
shift (Ahuja et al., 2022a; Bareinboim & Pearl, 2016; Rojas-Carulla et al., 2018), providing better
out-of-distribution generalization results and reliable agent planning (Fumero et al., 2024; Seitzer
et al., 2021; Urpí et al., 2024). The general goal of CRL approaches is formulated as to provably
identify ground-truth latent causal variables and their causal relations (up to certain ambiguities).
Many existing approaches in causal representation learning carefully formulate their problem set-
tings to guarantee identifiability and justify the assumptions within the framework of Pearl’s causal
hierarchy, such as “observational, interventional, or counterfactual CRL" (von Kügelgen et al., 2024;
Ahuja et al., 2023; Brehmer et al., 2022; Buchholz et al., 2024; Zhang et al., 2024a; Varici et al.,
2024a). Yet, several emerging lines of work reveal that not all approaches adhere strictly to this
framework; for instance, the problem setting of temporal CRL works (Lachapelle et al., 2022; Lippe
et al., 2022a;b; 2023) does not always align straightforwardly with existing categories. They of-
ten assume that an individual trajectory is “intervened” upon, but this is not an intervention in the
traditional sense, as noise variables are not resampled. It is also not a counterfactual, as the value
of non-intervened variables can change due to default dynamics. Similarly, domain generalization
(Sagawa et al., 2019; Krueger et al., 2021; Ahuja et al., 2022a) and certain multi-task learning ap-
proaches (Lachapelle et al., 2023; Fumero et al., 2024) are sometimes framed as informally related
to CRL. However, the precise relation to causality is not always clearly articulated. Consequently, a
wide range of methods and empirical findings has emerged, although some of these approaches rely
on assumptions that might be too narrowly tailored for practical, real-world applications. For exam-
ple, Cadei et al. (2024) collected a dataset for estimating treatment effects from high-dimensional
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observations in real-world ecology experiments. Despite the clear causal focus of the benchmark,
they note that even when multiple views and interventions are accessible, neither existing multiview
nor interventional CRL methods are directly applicable due to mismatching assumptions.

This paper contributes a unified framework of many existing CRL works through the lens of invari-
ance (Peters et al., 2014; Heinze-Deml et al., 2018; Arjovsky et al., 2020). We observe that many ex-
isting CRL approaches share methodological similarities, particularly in aligning the representation
with known data symmetries, while differing primarily in how the invariance principle is invoked.
Typically, the invariance principle is formulated implicitly within the assumed data-generating pro-
cess. By making it explicit, we demonstrate that latent causal variable identification originates from
various data subsets characterized by inherent equivalence relations, which are often known a priori-
with a few exceptions. This explicit formulation not only unifies disparate CRL methods but also
offers clear practical advantages. First, it helps clarify the alignment between seemingly different
categories of CRL methods, contributing to a more coherent and accessible framework for under-
standing CRL. This perspective may also allow for the integration of multiple invariance relations in
latent variable identification, which could improve the flexibility of these methods in certain practical
settings. Additionally, our theory highlights a critical discrepancy between the assumptions required
for causal graph learning and those necessary for identifying causal variables: While graph learning
often requires explicit causal assumptions such as interventions, the invariance principles for vari-
able identification do not have to be causal. Last but not least, this formulation of invariance relation
links CRL to many existing representation learning areas outside of causality, including invariant
training (Arjovsky et al., 2020; Ahuja et al., 2022a), domain adaptation (Sagawa et al., 2019; Krueger
et al., 2021), and geometric deep learning (Cohen & Welling, 2016; Bronstein et al., 2017; 2021).

We highlight our contributions as follows:

• We propose a unified framework for existing CRL approaches that leverages the invariance
principles and proving latent variable identifiability in this general setting (§ 3). We show
that 30 existing identification results can be seen as special cases directly implied by our
framework (Tab. 4). This approach also enables us to derive new results, including latent variable
identifiability from one imperfect intervention per node in the nonparametric setting (Cor. D.1).

• In addition to employing different methods, many CRL works use varying definitions of “iden-
tifiability." We formalize these definitions at different levels of granularity and highlight their
interconnections (Proposition C.1). Moreover, we show that existing CRL algorithms can achieve
different levels of identifiability based on additional (e.g., parametric) assumptions, obviating the
need for separate proofs in each case (Proposition C.2).

• Upon the identifiability of the latent variables, we discuss the necessary causal assumptions for
graph identification and the possibility of partial graph identification using the language of causal
consistency. With this, we draw a distinction between the causal assumptions necessary for graph
discovery (such as interventions or graphical assumptions) and those required for variable discov-
ery (App. C.2). This distinction relaxes the stringent requirements typically imposed for latent
variable identifiability, thereby enhancing the framework’s applicability in real-world settings.

• Our framework is broadly applicable across a range of settings. We observe improved results
on real-world experimental ecology data using a high-dimensional causal inference benchmark
by Cadei et al. (2024) (§ 5.1). Additionally, we present a synthetic ablation to demonstrate
that existing methods, which assume access to interventions, actually only require a form of
distributional invariance to identify variables. This invariance does not necessarily need to
correspond to a valid causal intervention (§ 5.2).

2 PROBLEM SETTING

Notation. [N ] is used as a shorthand for {1, . . . , N}. We use bold lower-case z for random
vectors and normal lower-case z for their realizations. A vector z can be indexed either by a single
index i ∈ [dim(z)] via zi or a index subset A ⊆ [dim(z)] with zA := {zi : i ∈ A}. Pz denotes
the probability distribution of the random vector z and pz(z) denotes the associated probability
density function (We omit the subscription and write p(z) when the context is clear). By default, a
"measurable" function is measurable w.r.t. the Borel sigma algebras and defined w.r.t. the Lebesgue
measure. A more comprehensive summary of notations is provided in App. A.

2



Published as a conference paper at ICLR 2025

Table 1: Concrete examples of CRL categories and domain generalization are unified by our
framework, their invariance, and a non-exhaustive list of corresponding references. The invariant
partition A is highlighted with a smoke blue box (∗: Iz1

A
represents the interventional target for

z1 which is {1} in this example). For further technical details and an in-depth discussion on how
various approaches fit within our unified framework, see Appendix App. D.

Category Example Invariance Related work

Multiview CRL z11 z12 z13 z14

x1

z21 z22 z23 z24

x2

Sample level invariance
z1A = z2A

Locatello et al. (2020);
von Kügelgen et al.
(2021); Gresele et al.
(2020)

Interventional
CRL (two
interventions per
node)

z11 z12 z13 z14

x1

z21 z22 z23 z24

x2

∗Same interventional
target Iz1

A
= Iz2

A

von Kügelgen et al.
(2024); Varici et al.
(2024a)

Interventional
CRL (one
intervention per
node)

z11 z12 z13 z14

x1

z21 z22 z23 z24

x2

Marginal invariance
pz1

A
= pz2

A

Zhang et al. (2024a);
Squires et al. (2023);
Buchholz et al. (2024)

Interventional
CRL (one
intervention per
node)

z11 z12 z13 z14

x1

z21 z22 z23 z24

x2

Score invariance
Sz1

A
= Sz2

A

Varici et al. (2023;
2024a)

Temporal CRL z̃t1 z̃t2 z̃t3 z̃t4

x̃t

zt1 zt2 zt3 zt4

xt

Transition invariance
pzA|zt−1 = pz̃A|zt−1

Lippe et al. (2022b;a;
2023)

Multi-task CRL
z1 z2 z3 z4

x

y1 y2

T1 T2

Overlapping task
support zT1

A = zT2
A

Lachapelle et al. (2023);
Fumero et al. (2024)

Domain
generalization z11 z12 z13 z14

x1

y1

z21 z22 z23 z24

x2

y2
Risk invariance on
optimal weights
R∗

1(w
∗z1A,y

1) =
R∗

2(w
∗z2A,y

2)

Arjovsky et al. (2020);
Krueger et al. (2021);
Ahuja et al. (2022a)

This section defines our problem setting using standard CRL concepts and assumptions (Formal
definitions are deferred to App. B). While prior works in CRL typically categorize their settings us-
ing established causal language (such as “counterfactual," “interventional," or “observational"), our
approach introduces a more general invariance principle that aims to unify diverse problem settings.
We introduce the following concepts as mathematical tools to describe our data generating process.

Definition 2.1 (Invariance property). Let A ⊆ [N ] be an index subset of the Euclidean space RN and
let ∼ι be an equivalence relationship on R|A|, with A of known dimension. Let M := R|A| /

∼ι
be

the quotient of R|A| under this equivalence relationship; M is a topological space equipped with the
quotient topology. Let ι : R|A| → M be the projection onto the quotient induced by the equivalence
relationship ∼ι. This projection ι is termed the invariance property of this equivalence relation. Two
vectors a,b ∈ R|A| are invariant under ι if and only if they belong to the same ∼ι equivalence class,
i.e.:

ι(a) = ι(b) ⇔ a ∼ι b.

Extending this definition to the entire latent space RN , we say that two latent vectors z, z̃ ∈ RN are
non-trivially invariant on a subset A ⊆ [N ] if

(i) the invariance property ι holds on the indices A ⊆ [N ] in the sense that ι(zA) = ι(z̃A);
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(ii) for any smooth functions h1, h2 : RN → R|A|, the invariance property between z, z̃ breaks
under the h1, h2 transformations if either function depends on some other component zq with
q ∈ [N ] \A. More formally, considering h1 and z as an example,

∃q ∈ [N ] \A, z∗ ∈ RN , s.t.
∂h1

∂zq
(z∗) exists and is non zero ⇒ ι(h1(z)) ̸= ι(h2(z̃)).

This indicates the output of function h1 is influenced by a latent variable zq outside the invari-
ant set A, thereby violating the invariance property.

Intuition: The invariance property ι maps the invariant latent subset zA to the quotient space
M. Both ι and M can take various concrete forms depending on the problem settings: In the
multi-view literature (von Kügelgen et al., 2021; Brehmer et al., 2022; Yao et al., 2023), ι is
the identity map because the pre-and post action views share the exact value of the invariant
latents. For both interventional and temporal CRL (Varici et al., 2023; von Kügelgen et al.,
2024; Lachapelle et al., 2022; Lippe et al., 2022a), ι acts as an operator that maps the invariant
latent subset zA to its associated density function – yielding the marginal density pzA

in the
interventional setting and conditional density pzt

A|zt−1 in the temporal setting. In this context,
the codomain M is the set of valid density functions. In multi-task CRL (Lachapelle et al., 2023;
Fumero et al., 2024) and domain generalization (Arjovsky et al., 2020; Krueger et al., 2021), ι
maps the overlapping task support and the risk implied by ground truth latent-target dependency,
respectively. Concrete examples and detailed formulations of the corresponding invariance
properties for each case are provided in Tab. 1.

Remark: Defn. 2.1 (ii) is crucial for ensuring latent variable identification on the invariant partition
A. Its necessity is further justified in App. E.1, where we demonstrate that violating (ii) leads to
non-identifiability. Intuitively, condition (ii) enforces a clear separation between the invariant and
variant components of the ground truth generating process. This idea parallels key identifiability
assumptions in CRL – albeit under different names – such as sufficient variability (von Kügelgen
et al., 2024; Lippe et al., 2022b), interventional regularity (Varici et al., 2023; 2024b), and interven-
tional discrepancy (Wendong et al., 2024; Varici et al., 2024a). At a high level, these assumptions
ensure that the mechanism under intervention deviates sufficiently from the default causal mecha-
nism, thereby allowing one to distinguish between intervened and non-intervened latent variablesa
function that is directly served by Defn. 2.1 (ii). We elaborate on this link further in App. E.1.

We denote by Sz := {z1, . . . , zK} the set of latent random vectors with zk ∈ RN and write its
joint distribution as PSz . The joint distribution PSz has a probability density pSz(z

1, . . . , zK). Each
individual random vector zk ∈ Sz follows the marginal density pzk with the non-degenerate support
Zk ⊆ RN , whose interior is a non-empty open set of RN .

Definition 2.2 (Observable of a set of latent random vectors). Consider a set of random vectors
Sz := {z1, . . . , zK} with zk ∈ RN , the corresponding set of observables Sx := {x1, . . . ,xK} is
generated by Sx = F (Sz), where the map F defines a push-forward measure F#(PSz) on the image
of F as:

F#(PSz)(x
1, . . . ,xK) = PSz(f

−1
1 (x1), . . . , f−1

K (xK)) (2.1)

with the support X := Im(F ) ⊆ RK×D. Note that F satisfies the diffeomorphism assump-
tion (Asm. B.1) as each fk is a diffeomorphism onto its image according to Asm. B.1.

Intuition. Defn. 2.2 formalizes how the set of observables Sx is generated from a set of latent ran-
dom vectors Sz via a joint pushforward. For example, in the multiview scenario (von Kügelgen
et al., 2021; Daunhawer et al., 2023; Yao et al., 2023), PSx represents the distribution of the con-
currently observed views {x1, . . . ,xk}. In interventional CRL, each observable xk corresponds
to data collected under different environments, so that PSx factorizes into environment-specific
distributions. In temporal CRL, the observable distribution PSx explicitly conditions on the pre-
vious time step, reflecting the sequential dependencies inherent in the process. In the supervised
setting, such as multi-task CRL and domain generalization, the observables xk are augmented
with task labels yk, capturing additional structure necessary for the task. Overall, Defn. 2.2
provides a unified formulation of the data-generating process across diverse settings, serving as
the foundation for the unified latent variable identification techniques developed in later sections.
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In the following, we denote by I := {ιi : R|Ai| → Mi} a finite set of invariance properties with
their respective invariant subsets Ai ⊆ [N ] and their equivalence relationships ∼ιi , each inducing
a projection onto its quotient and invariance property ιi (Defn. 2.1). For a set of observables
Sx := {x1, . . . ,xK} ∈ X generated from the data generating process described in § 2, we assume:

Assumption 2.1. For each ιi ∈ I, there exists a unique, known index subset Vi ⊆ [K] with at least
two elements (i.e., |Vi| ≥ 2) such that the corresponding observables xVi := {xk : k ∈ Vi} are
generated from an equivalence class of latent vectors:

[z]∼ιi
:= {z̃ ∈ RN : zAi ∼ιi z̃Ai}.

Following Defn. 2.2, the generating process is formally written as:

xVi = {fk(zk) : k ∈ Vi, z
k ∈ [z]∼ιi

} = F ([z]∼ιi
).

Remark: Intuitively, Asm. 2.1 ensures that for each invariance property ιi ∈ I, there are at least
two observables generated from latents that share ιi; otherwise the invariance partition Ai becomes
undefined and no identification results can be derived. While I does not need to be fully described
with explicit forms, the assignment of observables to equivalence classes is known (denoted as
Vi ⊆ [K] for the invariance property ιi ∈ I). This is a standard assumption and is equivalent to
knowing, e.g., two views are generated from partially overlapped latents (Yao et al., 2023).

Problem setting. Given a set of observables Sx ∈ X satisfying Asm. 2.1, we show that we can
simultaneously identify multiple invariant latent blocks Ai under a set of weak assumptions. In
an ideal scenario, if each individual latent component is represented as a single invariant block
through individual invariance property ιi ∈ I, we can learn a fully disentangled representation
and further identify the latent causal graph by additional technical assumptions.

3 IDENTIFIABILITY THEORY VIA THE INVARIANCE PRINCIPLE

High-level overview. This section presents a general theory for latent variable identification that
brings together many identifiability results from existing CRL works, including multiview, inter-
ventional, temporal, and multi-task CRL. Our theory of latent variable identifiability, based on the
invariance principle, consists of two key components: (1) ensuring the encoder’s sufficiency, thereby
obtaining an adequate representation of the original input for the desired task; (2) guaranteeing the
learned representation to preserve known data symmetries as invariance properties. The sufficiency
is often enforced by minimizing the reconstruction loss (Locatello et al., 2020; Ahuja et al., 2022b;
Lippe et al., 2022b;a; Lachapelle et al., 2022) in auto-encoder based architecture, maximizing the
log likelihood in normalizing flows or maximizing entropy (Zimmermann et al., 2021; von Kügel-
gen et al., 2021; Daunhawer et al., 2023; Yao et al., 2023) in self-supervised approaches. The in-
variance property in the learned representations is often enforced by minimizing some equivalence
relation-induced regularizer (von Kügelgen et al., 2021; Yao et al., 2023; Lippe et al., 2022b; Zhang
et al., 2024a) or by some iterative algorithm that provably ensures the invariance property on the
output (Squires et al., 2023; Varici et al., 2024b). As a result, all invariant blocks Ai, i ∈ [|I|] can be
identified up to a mixing within the blocks while being disentangled from the rest. This type of iden-
tifiability is defined as block-identifiability (von Kügelgen et al., 2021) which we restate as follows:

Definition 3.1 (Block-identifiability (von Kügelgen et al., 2021)). A subset zA := {zj}j∈A with
A ⊆ [N ] of the latent variables is block-identified by an encoder g : RD → RN on the invariant
subset A if the learned representation ẑÂ := [g(x)]Â with Â ⊆ [N ], |A| = |Â| contains all and only
information about the ground truth zA, i.e. ẑÂ = h(zA) for some diffeomorphism h : R|A| → R|A|.

Intuition: Block-identifiability relaxes the standard notion of disentanglement (Locatello et al.,
2020; Lachapelle et al., 2023; Fumero et al., 2021) by allowing the learned representation zA
to be an entangled block that still captures all the information of the true latent block zA up to
a diffeomorphism. In this framework, classical disentanglement corresponds to the special case
where each latent variable is identified as an individual invariant block.

Definition 3.2 (Encoders). The encoders G := {gk : X k → Zk}k∈[K] consist of smooth functions
mapping from the observational support X k to the corresponding latent support Zk (§ 2).
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Intuition: For the purpose of generality, we design the encoder gk to be specific to individual
observable xk ∈ Sx. However, multiple gk can share parameters if they work on the same
modality. Ideally, the encoders should preserve as many invariances (from I) as possible. Thus, a
clear separation between different encoding blocks is needed. To this end, we introduce selectors.

Definition 3.3 (Selection (Yao et al., 2023)). A selection ⊘ operates between two vectors a ∈
{0, 1}d , b ∈ Rd where a⊘ b := [bj : aj = 1, j ∈ [d]].

Definition 3.4 (Invariant block selectors). The invariant block selectors Φ := {ϕ(i,k)}i∈[|I|],k∈Vi

with ϕ(i,k) ∈ {0, 1}N perform selection (Defn. 3.3) on the encoded information ẑk: for any invari-
ance property ιi ∈ I, any observable xk, k ∈ Vi we have the selected representation:

ϕ(i,k) ⊘ ẑk = ϕ(i,k) ⊘ gk(x
k) =

[
[gk(x

k)]j : ϕ
(i,k)
j = 1, j ∈ [N ]

]
, (3.1)

with
∥∥ϕ(i,k)

∥∥
0
= ∥ϕ(i,k′)∥0 = |Ai| for all ιi ∈ I, k, k′ ∈ Vi.

Intuition: Selectors select the relevant encoding dimensions for each invariance property ιi ∈ I.
Each selector ϕ(i,k) implies a index subset Âk

i := {j : ϕ
(i,k)
j = 1} ⊆ [N ] that is specific to the

invariance property ιi and the observable xk. The assumption of known invariance size |Ai| can
be lifted in certain scenarios by, e.g., enforcing sharing between the learned latent variables, as
shown by Fumero et al. (2024); Yao et al. (2023), or leveraging sparsity constraints (Lachapelle
et al., 2022; 2024; Zheng et al., 2022; Xu et al., 2024).

Constraint 3.1 (Invariance constraint). For any invariance property ιi ∈ I, i ∈ [|I|], the selected
representations ϕ(i,k) ⊘ gk(x

k), k ∈ Vi must be ιi-invariant across the observables from the subset
Vi ⊆ [K]:

ιi(ϕ
(i,k) ⊘ gk(x

k)) = ιi(ϕ
(i,k′) ⊘ gk′(xk′

)) ∀i ∈ [|I|] ∀k, k′ ∈ Vi (3.2)

Constraint 3.2 (Sufficiency constraint). For any ιi ∈ I, i ∈ [|I|], the selected representation
ϕ(i,k) ⊘ gk(x

k), k ∈ Vi must preserve all information of the invariant partition zAi that we aim to
identify, i.e., I(zAi

, ϕ(i,k) ⊘ gk(x
k)) = H(zAi

) ∀i ∈ [|I|], k ∈ Vi, where I(·, ·) denotes the mutual
information and H(·) denotes the differential entropy of the ground truth latent distribution pzAi

.

Intuition: The regularizer enforcing this sufficiency constraint can be tailored to suit the specific
task of interest. For example, for self-supervised training, it can be implemented as the mutual
information between the input data and the encodings, i.e., I(x, g(x)) = H(x), to preserve the
entropy from the observations; for classification, it becomes the mutual information between
the task labels and the learned representation I(y, g(x)). Sometimes, sufficiency does not have
to be enforced on the whole representation. For example, in the multiview line of work (von
Kügelgen et al., 2021; Daunhawer et al., 2023), when considering a single invariant block A,
enforcing sufficiency on the shared partition (implemented as entropy on the learned encoding
H(g(x)1:|A|)) is enough to block-identify these shared latent variables zA.

Theorem 3.1 (Identifiability of multiple invariant blocks). Consider a set of observables Sx =
{x1,x2, . . . ,xK} ∈ X generated from § 2 satisfying Asm. 2.1. Let G,Φ be the set of smooth
encoders (Defn. 3.2) and selectors (Defn. 3.4) that satisfy Constraints 3.1 and 3.2, then the invariant
component zkAi

is block-identified (Defn. 3.1) by ϕ(i,k) ⊘ gk for all ιi ∈ I, k ∈ [K].

Discussion: Thm. 3.1 demonstrates that by enforcing all invariance properties ιi ∈ I jointly,
our framework can simultaneously learn representations that block-identify all invariant la-
tent blocks. This unified approach accommodates multiple invariance principles, making it
well-suited for complex real-world scenarios where diverse invariance relations coexist. In
practice, the resulting constrained optimization problem admits various solution strategies.
For instance, Lippe et al. (2022b;a) adopt a two-stage process: first addressing the sufficiency
constraint and then the invariance constraint, while Lachapelle et al. (2023); Fumero et al. (2024)
frame the problem as a bi-level constrained optimization task. Some works (von Kügelgen et al.,
2021; Yao et al., 2023; Daunhawer et al., 2023; Zhang et al., 2024a; Ahuja et al., 2024) propose
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loss functions that directly enforce these constraints, whereas others (Squires et al., 2023; Varici
et al., 2024a;b) develop iterative, step-by-step algorithms. This diversity of solution methods
not only underscores the flexibility of our theoretical framework but also highlights its practical
relevance across different CRL settings.

What about the variant latents? Intuitively, the variant latents are not identifiable, as the invariance
constraint (Constraint 3.1) is applied only to the selected invariant encodings, leaving the variant
part without any weak supervision (Locatello et al., 2019). This result is formalized as follows:

Proposition 3.2 (General non-identifiability of variant latent variables). Consider the setup
in Thm. 3.1, let A :=

⋃
i∈[|I|] Ai denote the union of block-identified latent indices and

Ac := [N ] \ A the complementary set where no ι-invariance ι ∈ I applies, then the variant latents
zAc cannot be identified.

Although variant latent variables are generally non-identifiable, they can be identified under certain
conditions. The following demonstrates that variant latent variables can be identified under invertible
encoders when the variant and invariant partitions are mutually independent.

Proposition 3.3 (Identifiability of variant latent under independence). Consider an optimal encoder
g ∈ G∗ and optimal selector ϕ ∈ Φ∗ from Thm. 3.1 that jointly identify an invariant block zA (we
omit subscriptions k, i for simplicity), then zAc(Ac := [N ] \A) can be identified by the complemen-
tary encoding partition (1− ϕ)⊘ g only if

(i) g is invertible in the sense that I(x, g(x)) = H(x);

(ii) zAc is independent on zA.

Discussion: The generalization of new interventions in CRL can be viewed through two distinct
layers. The first layer involves generalizing to unseen interventional values, where the model
encounters novel combinations of intervention settings; this has been demonstrated in several
existing works (Zhang et al., 2024a; von Kügelgen et al., 2024). The second layer concerns
generalization to unseen nodes, which, as Proposition 3.2 shows, is fundamentally challenging
without additional conditions. However, under weak assumptions such as the independence of
variant and invariant latent partitions and sufficient latent representation for reconstruction, non-
intervened nodes in the training phase can be identified during inference (Proposition 3.3). This
observation aligns with the identifiability algebra described in (Yao et al., 2023) and is supported
by findings in disentanglement literature (Locatello et al., 2020; Fumero et al., 2024) as well as
in temporal CRL (Lippe et al., 2022b; Lachapelle et al., 2024). Overall, this result emphasizes
the need for carefully considering the conditions under which variant latents can be identified,
and it delineates the practical limitations of CRL methods when generalizing to unseen nodes.

4 RELATED WORKS AS SPECIAL CASES OF OUR THEORY

This section provides an overview of the literature on CRL, including multiview, interventional,
temporal, and multi-task settings, as well as domain generalization. We explain the underlying in-
variance principles and show how they naturally fit into our framework as special cases. Tab. 1 lists
concrete examples and the explicit forms of their underlying invariance, and further mathematical
details are deferred to Appendix App. D.

Multiview CRL. Multiview CRL (also considered as “counterfactual" CRL) considers a setting
where each view (observable xk) is generated from a subset of latent causal variables (Locatello
et al., 2020; Ahuja et al., 2022b; von Kügelgen et al., 2021; Daunhawer et al., 2023; Yao et al.,
2023). Given any set of jointly observed views, the view-specific generating latents could overlap,
giving rise to sample level invariance on all realizations of these shared latents. The common
theoretical contribution in this line of work in terms of identifiability is that the invariant partition
of latents (shared ones) can be block-identified by enforcing aligned and sufficient representation,
which is a special case of Thm. 3.1 with specified sample invariance.

Interventional CRL. Interventional (also termed multi-environment) CRL (Ahuja et al., 2023;
Squires et al., 2023; Zhang et al., 2024a; Buchholz et al., 2024; Varici et al., 2023; 2024a; von
Kügelgen et al., 2021; Wendong et al., 2024) collects data from multiple environments that follow
different data distributions, often originated from interventions (xk ∼ P k). Current interventional
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CRL literature has provided fruitful identifiability results based on various types of interventions:
either atomic or paired interventions per node or different parametric assumptions on the mixing
function or the latent causal model. Interventions give rise to many types of invariance: When
performing an atomic intervention on an arbitrary node, the marginal of its non-descendants
remain invariant; the score of all other nodes than its parents and itself also remain invariant. By
utilizing these two types of invariance, we can not only explain various prior identification theories
as special cases of Thm. 3.1, but also directly develop new element-wise identification results
on the latent variables, given imperfect atomic interventions per node (Cor. D.1). Some other
works (von Kügelgen et al., 2021; Varici et al., 2024a) consider paired interventions per node,
with an invariant interventional target between these paired interventional environments. This
invariance imposes a certain score structure in the latent space, which can be used as the invariant
constraint (Constraint 3.1). More details in this regard are provided in App. D.2. More recently,
Ahuja et al. (2024) explains previous interventional identifiability results from a general weak distri-
butional invariance perspective. Ahuja et al. (2024) proves block-affine identification (Defn. C.1) by
additionally assuming the mixing function to be finite degree polynomial, which can be explained
by Proposition C.2 together with our block-identifiability results under the general nonparametric
setting. They consider one single invariance set, which is a special case of Thm. 3.1 with one joint
ι-property. Another line of interventional CRL work (Zhang et al., 2024a) employs an orthogonal
proof technique, originating from nonlinear ICA with auxiliary variables (Hyvarinen et al., 2019).
We remark that our framework does not directly include this line of identifiability theory.

Temporal CRL. Extending CRL into time-series setting, temporal CRL often assumes an “inter-
venable" trajectory in the latent space (Lippe et al., 2022a;b; 2023; Lachapelle et al., 2022; Yao
et al., 2022b;a; Li et al., 2024b). At each time step, an intervention/action modifies the dynamics
of a subset of latent variables, with the remaining invariant partition following the default dynamics
conditioning on the previous time step. Existing works have shown that the intervened part can
be disentangled from the invariant part when there is no causal link between the latent causal
variables at the same time step (Lachapelle et al., 2022; Lippe et al., 2022a;b). Comparing the
“counterfactual" latent with the actual partially intervened latents on the same time step, one
observes the transitional distribution (current latents conditioning on previous latents) remain
invariant for the non-intervened partition (see Tab. 1 for concrete examples). This formulates an
explicit ι-property (Defn. 2.1) for each time step with potentially different invariant partitions,
explaining many existing temporal CRL identifiability theories by incorporating Thm. 3.1.

Multi-task CRL In supervised CRL, latent variables (Lachapelle et al., 2023; Fumero et al.,
2024) are shown to be identifiable under multi-task setting, meaning there are multiple task labels
available for each observable (xk := (x,yk)). The key criterion for achieving identifiability is
overlapping task support, i.e., a set of tasks depends on a shared set of latents. This shared set of
latents constitutes the invariant partition zA, as illustrated in Tab. 1. Incorporating this invariance
principle into Thm. 3.1 explains the identification results of (Lachapelle et al., 2023; Fumero et al.,
2024), showing the overlapping task support can be identified.

Domain Generalization. The field of domain generalization focuses on the out-of-distribution
performance of the learned representation instead of the theoretical identifiability guarantee (Rojas-
Carulla et al., 2018; Arjovsky et al., 2020; Ahuja et al., 2022a; Krueger et al., 2021; Sagawa et al.,
2019). The goal is to learn representations that perform equally well across domains originating
from distributional shifts, such as covariates shift or concept shift. Domain generalization typically
assumes the same downstream prediction task, and this task depends on the same subset of latent
factors A across all domains. Given the same ground truth task-latent dependency, the domain risk
w.r.t. ground truth inverting process remains invariant across all domains. This invariance property
together with Thm. 3.1 could provide theoretical insights for domain generalization works such
as (Krueger et al., 2021; Sagawa et al., 2019) (formal mathematical derivation provided in (f)).

5 EXPERIMENTS

This section illustrates the expanded applicability of CRL algorithms under the invariance princi-
ple. § 5.1 shows improved treatment effect estimation on the high-dimensional causal inference
benchmark (Cadei et al., 2024) by enforcing the invariance principle through existing domain gen-
eralization techniques (Krueger et al., 2021). This result underscores the practical utility of our
unified approach. Additionally, § 5.2 provides ablation studies on existing interventional CRL meth-
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(a) Experiment Sampling
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(b) Position Sampling

Figure 1: TERB and Balanced Accuracy with standard deviation over 20 different seeds varying the
invariance weight λINV of V-REx (Krueger et al., 2021) on ISTAnt dataset (Cadei et al., 2024). Stars
represent the selected best models based on a small but heterogeneous validation set.

ods (Ahuja et al., 2023; Zhang et al., 2024a), showcasing that the non-trivial distributional invariance
required for latent variable identification can arise from non-causal assumptions.

5.1 CASE STUDY: ISTANT

This experiment focuses on ISTAnt (Cadei et al., 2024), a recent real-world ecological benchmark de-
signed for treatment effect estimation. ISTAnt consists of video recordings of ants triplets with occa-
sional grooming behavior. The goal is to extract a per-frame representation for supervised behavior
classification (grooming or not) to estimate the Average Treatment Effect of an intervention (expo-
sure to a chemical substance). Further details about the problem setting are provided in App. F.1.

Experiment settings. Different videos in ISTAnt are considered different experiments as the
experiment settings and treatments vary. We consider hard annotation sampling criteria (more
non-annotated than annotated) for both experiments (videos) and positions, as described by Cadei
et al. (2024). For the training, we adopt a domain generalization objective that utilizes the invariance
principle (Krueger et al., 2021), which is restated as follows:

RV-REx(w ◦ g) = λINV Var({R1(w ◦ g), . . . ,RK(w ◦ g)})︸ ︷︷ ︸
invariance

+
∑

k∈[K] Rk(w ◦ g)︸ ︷︷ ︸
sufficiency

, (5.1)

we provide a detailed derivation in (f) showing the invariance term above is indeed enforcing risk
invariance. We vary the strength of the invariant component in eq. (5.1) by setting the regularization
multiplier λINV from 0 (ERM) to 10 000. We repeat 20 independent runs for each λINV to estimate
the statistical error. Further implementational details are deferred to App. F.1. We evaluate the
performance with both balanced accuracy and Treatment Effect Relative Bias (TERB). TERB is
defined by Cadei et al. (2024) as the ratio between the bias in the predictions across treatment groups
and the true average treatment effect estimated with ground-truth annotations over the whole trial.

Results. Fig. 1 depicts the model performance regarding varying invariance regularization strength
λINV. Consistent with our expectation, the balanced accuracy initially increases with the λINV, as
adequate invariance enforces identifying task-related latents, thus benefiting the prediction problem.
At a later point, the performance decreases because the sufficiency component is not correctly
balanced with the invariance. Similarly, the TERB improves positively, weighting the invariance
component until a certain threshold. On average, with λINV = 100 the TERB decreases to 20%
(from 100% using ERM) with experiment subsampling. In agreement with (Cadei et al., 2024),
a naive estimate of the TERB on a small validation set is a reasonable (albeit not perfect) model
selection criterion. Although it performs slightly worse than model selection based on Empirical
Risk Minimization(ERM) loss in the position sampling case, it shows more reliability overall.
This experiment underscores the advantages of flexibly enforcing known invariances in the data,
corroborating our identifiability theory (§ 3).

5.2 SYNTHETIC ABLATION WITH “NINTERVENTIONS”
This subsection presents identifiability results under non-causal conditions using simulated data. We
consider a simple graph of three causal variables as z1 → z2 → z3. The corresponding joint density
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has the form of
pz(z1, z2, z3) = p(z3 | z2)p(z2 | z1)p(z1).

This experiment aims at demonstrating that existing methods of interventional CRL rely primarily
on distributional invariance, regardless of whether this invariance arises from a well-defined inter-
vention or some other arbitrary transformation. To illustrate this, we introduce the concept of a
“nintervention," which has a similar distributional effect to a regular intervention, maintaining cer-
tain conditionals invariant while altering others, but without a causal interpretation.

Definition 5.1 (Nintervention). We define a “nintervention” on a causal conditional as the process
of changing its distribution but cutting all incoming and outgoing edges. Child nodes condition
on the old, pre-intervention, random variable. Formally, we consider the latent SCM as defined
in Defn. B.1, an nintervention on a node j ∈ [N ] gives rise to the following conditional factorization

p̃z(z) = p̃(zj)
∏

i∈[N ]\{j} p(zi | zold
pa(i))

Note that the marginal distribution of all non-nintervened nodes Pz[N]\j remain invariant after nin-
tervention. In previous example, we perform a nintervention by replacing the conditional density
p(z2 | z1) using a sufficiently different marginal distribution p̃(z2) that satisfies Defn. 2.1 (ii), which
gives rise to the following new factorization p̃z(z1, z2, z3) = p(z3 | zold

2 )p̃(z2)p(z1). Note that z3
conditions on the random variable z2 before nintervention, whose realization is denoted as zold

2 . Dif-
fering from a causal intervention, we cut both the incoming and outgoing links of z2 and keep the
marginal distribution of z3 the same. Clearly, this is a non-sensical intervention from the causal
perspective because we eliminate the causal effect from z2 to its descendants.

Experiment settings. As a proof of concept, we choose a linear Gaussian additive noise model and
a nonlinear mixing function implemented as a 3-layer invertible MLP. We average the results over
three independently sampled ninterventional densities p̃(z2) while guaranteeing all ninterventional
distributions satisfy Defn. 2.1 (ii). As the marginal distribution of both z1, z3 remains the same after
a nintervention, we expect z1, z3 to be block-identified (Defn. 3.1) according to Thm. 3.1. In prac-
tice, we enforce the marginal invariance constraint (Constraint 3.1) by minimizing the MMD loss, as
implemented by the interventional CRL works (Zhang et al., 2024a; Ahuja et al., 2024) and train an
auto-encoder for a sufficient representation (Constraint 3.2). Further details are included in App. F.2.

Results. To validate block-identifiability, we perform Kernel-Ridge Regression between the
estimated block [ẑ1, ẑ3] and the ground truth latents z1, z2, z3. Both z1 and z3 are block-identified
with high R2 scores of 0.863± 0.031 and 0.872± 0.035. In contrast, z2 is not identified, with a low
R2 of 0.065± 0.017, indicating identification is driven by the underlying distributional invariance.

6 CONCLUSION

In this paper, we examined a broad range of CRL methods and found that many of them share
common strategies for aligning representations with known data symmetries. We identified two key
components in achieving identifiability: preserving data information and enforcing a set of known in-
variances (see § 3). Our work clarifies the role of causal assumptions in latent variable identification,
shifting the focus from specific, often impractical, assumptions to a general recipe that enables practi-
tioners to specify and leverage known invariances in their problems. Following this recipe, we exem-
plified the practical impact of our approach on ecological data (§ 5.1). This paper leaves out settings
involving discrete variables and finite sample guarantees, which might be interesting for future work.

ETHICS STATEMENT

This work unifies many existing theoretical results in CRL, thus vastly broadening its real-world ap-
plicability. As the paper is predominantly theoretical, we believe it poses no immediate ethical risks.

REPRODUCIBILITY STATEMENT

All proofs in this paper are deferred to App. E. The ISTAnt dataset in § 5.1 is published
by (Cadei et al., 2024). Results provided in § 5 can be reproduced following the details
given in App. F. Since our primary focus is on the theoretical unification of latent vari-
able identification algorithms, the practical implementation of the invariance and sufficiency
constraints may take various forms (as illustrated in Tab. 4) and should be tailored to the
specific problem at hand. For a brief example of the ecology experiment (§ 5.1), please visit:
https://github.com/CausalLearningAI/ISTAnt/blob/main/experiments/invariance.ipynb.
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A NOTATION AND TERMINOLOGY

This section provides a glossary of symbols and notations used throughout the paper.

f Mixing function

g Smooth encoder

x Entangled observables

z Ground truth latent variables

D Dimensionality of observable x

N Dimensionality of latents z

Sx A set of observables

Sz A set of latent vectors

A Subset of latent indices with invariance properties (A ⊆ [N ])

ι Invariance property
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∼ι The latent equivalence relation

I A set of invariance properties

X Support of a set of observables Sx

Z Support of a set of latent vectors Sz

G A set of smooth encoders

Φ A set of selectors

G Ground truth causal graph

TC Transitive closure

B PRELIMINARIES

In this subsection, we revisit the common definitions and assumptions in identifiability works from
CRL that are needed for subsequent theoretical analysis. We begin with the definition of a latent
structural causal model:

Definition B.1 (Latent SCM (von Kügelgen et al., 2024)). Let z = {z1, . . . , zN} denote a set of
causal “endogenous" variables with each zi taking values in R, and let u = {u1, . . . ,uN} denotes
a set of mutually independent “exogenous" random variables. The latent SCM consists of a set of
structural equations

{zi := mi(zpa(i)),ui}Ni=1, (B.1)

where zpa(i) are the causal parents of zi and mi are the deterministic functions that are termed
“causal mechanisms". We indicate with Pu the joint distribution of the exogenous random variables,
which, due to the independence hypothesis, is the product of the probability measures of the individ-
ual variables. The associated causal diagram G is a directed graph with vertices z and edges zi → zj
iff. zi ∈ zpa(j); we assume the graph G to be acyclic.

The latent SCM induces a unique distribution Pz over the endogenous variables z as a pushforward
of Pu via eq. (B.1). Its density pz follows the causal Markov factorization:

pz(z) =

N∏
i=1

pi(zi | zpa(i)). (B.2)

Instead of directly observing the endogenous and exogenous variables z and u, we only have access
to some “entangled" measurements x of z generated through a nonlinear mixing function:

Definition B.2 (Mixing function). A deterministic smooth function f : RN → RD mapping the
latent vector z ∈ RN to its observable x ∈ RD, where D ≥ N denotes the dimensionality of the
observational space.

Assumption B.1 (Diffeomorphism). The mixing function f is diffeomorphic onto its image, i.e. f
is C∞, f is injective and f−1|Im(f) : Im(f) → RD is also C∞.

Remark: Settings with noisy observations (x = f(z) + ϵ, z ⊥ ϵ) can be easily reduced to our de-
noised version by applying a standard deconvolution argument as a pre-processing step, as indicated
by Lachapelle et al. (2022); Buchholz et al. (2024).

C IDENTIFIABILITY THEORY

In addition to the general results for latent variable identification presented in § 3, we compare
in App. C.1 different granularity of latent variable identification and show their transitions through
certain assumptions on the causal model or mixing function. Afterward, App. C.2 discusses the
identification level of a causal graph depending on the granularity of latent variable identification
under certain structural assumptions. Proofs are deferred to App. E.
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Figure 2: Relations between different identification classes (Defns. 3.1 and C.1 to C.3). Some CRL
works proposed a more fine-grained classification of identifiability concepts with slightly different
terminology, which we omit here for readability.

C.1 ON THE GRANULARITY OF LATENT VARIABLE IDENTIFICATION

Different levels of identification can be achieved depending on the degree of underlying invariance
and data symmetry. Below, we present three standard identifiability definitions from the CRL litera-
ture, each providing a stronger identification result than block-identifiability (Defn. 3.1).

Definition C.1 (Block affine-identifiability). Let ẑ be the learned representation, for a subset A ⊆
[N ] it satisfies that:

ẑπ(A) = D · zA + b, (C.1)

where D ∈ R|A|×|A| is an invertible matrix, π(A) denotes the index permutation of A, then zA is
block affine-identified by ẑπ(A).

Definition C.2 (Element-identifiability). The learned representation ẑ ∈ RN satisfies that:

ẑ = Pπ · h(z), (C.2)

where Pπ ∈ RN×N is a permutation matrix, h(z) := (h1(z1), . . . hN (zN )) ∈ RN is an element-
wise diffeomorphism.

Definition C.3 (Affine-identifiability). The learned representation ẑ ∈ RN satisfies that:

ẑ = Λ ·Pπ · z+ b, (C.3)

where Pπ ∈ RN×N is a permutation matrix, Λ ∈ RN×N is a diagonal matrix with nonzero diagonal
entries.

Remark: Block affine-identifiability (Defn. C.1) is defined by Ahuja et al. (2023), stating that a
subset of the learned representation ẑπ(A) is related to the ground truth partition zA through some
affine transformation. Defn. C.2 indicates element-wise identification of latent variables up to
individual diffeomorphisms. Element-identifiability for the latent variable identification together
with the graph identifiability (Defn. C.4) is defined as ∼CRL-identifiability (von Kügelgen
et al., 2024, Defn. 2.6), perfect identifiability (Varici et al., 2024a, Defn. 3). Affine identifiabil-
ity (Defn. C.3) describes when the ground truth latent variables are identified up to permutation,
shift, and linear scaling. In many CRL works, affine identifiability (Defn. C.3) is also termed
as follows: perfect identifiability under linear transformation (Varici et al., 2024b, Defn. 1), CD-
equivalence (Zhang et al., 2024a, Defn. 1), disentanglement (Lachapelle et al., 2022, Defn. 3).

Proposition C.1 (Granularity of identification). Affine-identifiability (Defn. C.3) implies element-
identifiability (Defn. C.2) and block affine-identifiability (Defn. C.1) while element-identifiability
and block affine-identifiability implies block-identifiability (Defn. 3.1).

Proposition C.2 (Transition between identification levels). The transition between different levels
of latent variable identification (Fig. 2) can be summarized as follows:

(i) Element- identifiability (Defns. C.2 and C.3) can be obtained from block-wise identifiabil-
ity (Defns. 3.1 and C.1) when each individual latent constitutes an invariant block;

(ii) Identifiability up to an affine transformation (Defns. C.1 and C.3) can be obtained from
general identifiability on arbitrary diffeomorphism (Defns. 3.1 and C.2) by additionally
assuming that both the ground truth mixing function and decoder are finite degree polyno-
mials of the same degree.

20



Published as a conference paper at ICLR 2025

Discussion. We note that the granularity of identifiability results is primarily determined by
the strength of invariance and parametric assumptions (such as those on mixing functions or
causal models) rather than by the specific algorithmic choice. For example, for settings that
can achieve element-identifiability (von Kügelgen et al., 2024), affine-identifiability results
can be obtained by additionally assuming finite degree polynomial mixing function (proof
see App. E.4). Similarly, element-identifiability can be achieved from block-identifiability by
enforcing invariance properties on each latent component (Yao et al., 2023, Thm. 3.8) instead of
having only one multivariate invariant block (von Kügelgen et al., 2021). In summary, existing
CRL algorithms are capable of achieving different identifiability definitions depending on the
additional (e.g., parametric) assumptions without requiring separate proofs for each case. Tab. 4
provides an overview of recent identifiability results along with their corresponding invariance
and parametric assumptions, illustrating the direct relationship between these assumptions and
the level of identifiability they achieve.

C.2 IDENTIFYING THE CAUSAL GRAPH

In addition to latent variable identification, another goal of CRL is to infer the underlying latent
dependency, namely the causal graph structure. Revisiting the literature on causal graph identifi-
cation highlights a key distinction: While graph discovery often depends on causal assumptions
like interventions or graphical constraints, identifying causal variables can proceed by leveraging
only the invariance relations without requiring these additional assumptions, e.g., distributional
invariance that does not necessarily arise from valid interventions. We begin with restating the
standard definition of graph identifiability in CRL.

Definition C.4 (Graph-identfiability). The estimated graph Ĝ is isomorphic to the ground truth graph
G through a bijection h : V (G) → V (Ĝ) in the sense that two vertices zi, zj ∈ V (G) are adjacent in
G if and only if h(zi), h(zj) ∈ V (Ĝ) are adjacent in Ĝ.

We remark that the “faithfulness" assumption (Pearl, 2009, Defn. 2.4.1) is a standard assumption in
the CRL literature, commonly required for graph discovery. We restate it as follows:

Assumption C.1 (Faithfulness (or Stability)). Pz is a faithful distribution induced by the la-
tent SCM (Defn. B.1) in the sense that Pz contains no extraneous conditional independence;
in other words, the only conditional independence relations satisfied by Pz are those given by
{zi ⊥ znd(i) | zpa(i)} where znd(i) denotes the non-descends of zi.

As indicated by Defn. C.4, the preliminary condition of identifying the causal graph is to have an
element-wise correspondence between the vertices in the ground truth graph G (i.e., the ground truth
latents) and the vertices of the estimated graph. Therefore, the following assumes that the learned
encoders G (Defn. 3.2) achieve element-identifiability (Defn. C.2), that is, for each zi ∈ z, we have
a diffeomorphism hi : R → R such that ẑi = hi(zi). However, additional assumptions are needed
to identify the graph structure: either on the source of invariance or on the parametric form of the
latent causal model.

Graph identification via interventions. Under the element-identifiability (Defn. C.2) of the latent
variables z, the causal graph structure G can be identified up to its isomorphism (Defn. C.4), given
multi-environment data from paired perfect interventions per-node (von Kügelgen et al., 2024;
Varici et al., 2024a). Using data generated from imperfect interventions is generally insufficient
to identify the direct edges in the causal graph. It can only identify the ancestral relations, i.e.,
up to the transitive closure of G (Brehmer et al., 2022; Zhang et al., 2024a). Unfortunately, even
imposing the linear assumption on the latent SCM does not provide a solution (Squires et al., 2023).
Nevertheless, by adding sparsity assumptions on the causal graph G and polynomial assumption on
the mixing function f , Zhang et al. (2024a) has shown isomorphic graph identifiability (Defn. C.4)
under imperfect intervention per node. In general, access to the interventions is necessary for graph
identification if alternative parametric assumptions are not imposed. Conveniently, in this setting,
the graph identifiability is linked with that of the variables since the latter leverages the invariance
induced by the intervention.

Graph identification via parametric assumptions. In this work, we focus exclusively on the post-
nonlinear additive noise model (Zhang & Hyvärinen, 2010, Sec. 2) because it provides a sufficiently
general framework that subsumes other parametric instances (such as the standard additive noise
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and the location-scale models) while offering greater flexibility in modeling complex causal mecha-
nisms.

Definition C.5 (Post-nonlinear acyclic causal model). The following causal mechanism describes a
post-nonlinear acyclic causal model:

zi = γi(mi(zpa(i)) + ui), (C.4)

where γi : R → R is a diffeomorphism and mi is a non-constant causal mechanism, and ui is an
exogenous noise term.

Note that this model reduces to the standard additive noise model (Hoyer et al., 2008) with γi = id
and to the location-scale form when γi is affine (i.e., γi(x) = Λix+ βi with an invertible matrix Λi

and bias βi).

We assume that the ground truth latent SCM (Defn. B.1) is a post-nonlinear acyclic causal model as
specified in Defn. C.5. Given that each latent variable zi is element-wise identified via a diffeomor-
phism hi : R → R for all i ∈ [N ], we define the estimated causal parents as

ẑpa(i) := {ẑj : zj ∈ zpa(i)}.
It then follows that the learned representations ẑi also obey a postnonlinear acyclic model:

ẑi = hi(zi) = hi

(
γi
(
mi(zpa(i)) + ui

))
= hi

(
γi

(
mi

(
{h−1

j (ẑj) : zj ∈ zpa(i)
)
+ ui

))
= hi

(
γi
(
m̃i(ẑpa(i)) + ui

))
=

(
hi ◦ γi

)(
m̃i(ẑpa(i)) + ui

)
,

(C.5)

where we define
m̃i(ẑpa(i)) := mi

(
{h−1

j (ẑj) : zj ∈ zpa(i)

)
.

Since the composition hi ◦ γi is a diffeomorphism, the conditional dependencies among the latents
are preserved. Thus, following the approach in Zhang & Hyvärinen (2009, Sec. 4), the underlying
causal graph G can be identified up to an isomorphism as defined in Defn. C.4.

What happens if variables are identified in blocks? Consider the case where the latent variables
cannot be identified up to element-wise diffeomorphism; instead, one can only obtain a coarse-
grained version of the variables (e.g., as a mixing of a block of variables (Defn. 3.1)). Nevertheless,
certain causal links between these coarse-grained block variables are of interest. These block
variables and their causal relations in between form a “macro" level of the original latent SCM,
which is shown to be causally consistent under mild structural assumptions (Rubenstein et al., 2017,
Thm. 11). In particular, the macro-level model can be obtained from the micro-level model through
an exact transformation (Beckers & Halpern, 2019, Defn. 3.4) and thus produces the same causal
effect as the original micro-level model under the same type of interventions, providing useful
knowledge for downstream causal analysis. More formal connections are beyond the scope of this
paper. Still, we see this concept of coarse-grained identification on both causal variables and graphs
as an interesting avenue for future research.

D RELATED WORKS

This section reviews related CRL and domain generalization works and frames them as specific
instances of our theory (§ 3). These CRL works were initially categorized into various types
(multiview, interventional, multi-task, and temporal CRL) based on the level of invariance in the
data-generating process, leading to varying degrees of identifiability results (App. C.1). While the
implementation of individual works may vary, the methodological principle of aligning represen-
tation with known data symmetries remains consistent, as shown in § 3. We begin with revisiting
the data-generating process of each category and explain how they can be viewed as specific cases
of the proposed invariance framework (§ 2). We then present individual identification algorithms
from existing literature as particular applications of our theorems based on the implementation
choices needed to satisfy the invariance and sufficiency constraints (Constraints 3.1 and 3.2). A
more detailed overview of the individual works is provided in Tab. 4.
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D.1 MULTIVIEW CRL

High-level overview. The multiview setting in CRL (Daunhawer et al., 2023; Yao et al., 2023)
considers multiple observables that are concurrently generated by an overlapping subset of latent
variables. Multiview scenarios are often found in a partially observable setup. For example, mul-
tiple devices on a robot measure different modalities, jointly monitoring the environment through
these real-time measurements. While each device measures a distinct subset of latent variables, these
subsets probably still overlap as they are measuring the same system at the same time. In addition
to partial observability, another way to obtain multiple views is to perform an “intervention/pertur-
bation" (Locatello et al., 2020; von Kügelgen et al., 2021; Ahuja et al., 2022b; Brehmer et al., 2022)
and collect both pre-action and post-action views on the same sample. This setting is often improp-
erly termed “counterfactual"1 in the CRL literature, and this type of data is termed “paired data".
From another perspective, the paired setting can be cast in the partial observability scenario by con-
sidering the same latent before and after an action (mathematically modeled as an intervention) as
two separate latent nodes in the causal graph, as shown by von Kügelgen et al. (2021, Fig. 1). Thus,
both pre-action and post-action views are partial because neither of them can observe pre-action and
post-action latents simultaneously. These works assume the latents that are not affected by the ac-
tion remain constant, an assumption that is relaxed in temporal CRL works. See App. D.3 for more
discussion on temporal CRL.

Data generating process. In the following, we introduce the data-generating process of a multiview
setting in the flavor of the invariance principle as introduced in § 2. We consider a set of views
{xk}k∈[K] with each view xk ∈ X k generated from some latents zk ∈ Zk. Let Sk ⊆ [N ] be the
index set of generating factors for the view xk, we define zkj = 0 for all j ∈ [N ] \ Sk to represent
the uninvolved partition of latents. Each entangled view xk is generated by a view-specific mixing
function fk : Zk → X k:

xk = fk(z
k) ∀k ∈ [K] (D.1)

Define the joint overlapping index set A :=
⋂

k∈[K] Sk, and assume A ⊆ [N ] is a non-empty subset
of [N ]. Then the value of the sharing partition zA remain invariant for all observables {xk}k∈[K]

on a sample level. By considering the joint intersection A, we have one single invariance property
ι : R|A| → R|A| in the invariance set I; and this invariance property ι emerges as the identity
map id on R|A| in the sense that id(zkA) = id(zk

′

A ) and thus zkA ∼ι zk
′

A for all k, k′ ∈ [K]. Note
that Defn. 2.1 (ii) is satisfied because any transformation hk that involves other components zq with
q /∈ A violates the equality introduced by the identity map. For a subset of observations Vi ⊆ [K]
with at least two elements |Vi| > 1, we define the latent intersection as Ai :=

⋂
k∈Vi

Sk ⊆ [N ], then
for each non-empty intersection Ai, there is a corresponding invariance property ιi : R|Ai| → R|Ai|

which is the identity map specified on the subspace R|Ai|. By considering all these subsets V :=
{Vi ⊆ [K] : |Vi| > 1, |Ai| > 0}, we obtain a set of invariance properties I := {ιi : R|Ai| → R|Ai|}
that satisfy Asm. 2.1.

Identification algorithms. Many multiview works (von Kügelgen et al., 2021; Daunhawer et al.,
2023; Yao et al., 2023) employ the L2 loss as a regularizer to enforce sample-level invariance on
the invariant partition, cooperated with some sufficiency regularizer to preserve sufficient informa-
tion about the observables (Constraint 3.2). Aligned with our theory (Thm. 3.1), these works have
shown block-identifiability on the invariant partition of the latents across different views. Follow-
ing the same principle, there are certain variations in the implementations to enforce the invariance
principle, e.g. Locatello et al. (2020) directly average the learned representations from paired data
g(x1), g(x2) on the shared coordinates before forwarding them to the decoder; Ahuja et al. (2022b)
enforces L2 alignment up to a learnable sparse perturbation δ. As each latent component constitutes
a single invariant block in the training data, these two works element-identifies (Defn. C.2) the latent
variables, as explained by Proposition C.2.

1Traditionally, counterfactual in causality refers to non-observable outcomes that are “counter to the
fact” (Rubin, 2005). The works we refer to here represent pre- and post-actions that affect some latent vari-
ables but not all. This can be mathematically expressed as a counterfactual in an SCM but is conceptually
different as both pre- and post-action outcomes are realized (Liu et al., 2023). The “counterfactual” terminol-
ogy silently implies that this is a strong assumption, but nuance is needed and it can in fact be much weaker
than an intervention.
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D.2 INTERVENTIONAL CRL
High-level overview. Interventional/Multi-environment CRL considers data generated from multi-
ple environments with different data distributions. In the scope of CRL, multi-environment data
is often instantiated through interventions on the latent structured causal model (von Kügelgen
et al., 2021; Zhang et al., 2024a; Buchholz et al., 2024; Squires et al., 2023; Varici et al., 2023;
2024b;a). Recently, Ahuja et al. (2024) provides a more general identifiability statement where
multi-environment data is not necessarily originated from interventions; instead, they can be indi-
vidual data distributions that preserve certain symmetries such as marginal invariance or support
invariance.

Data generating process The following presents the data generating process described in most
interventional CRL works. Formally, we consider a set of observables {Pxk}k∈[K] that are collected
from multiple environments (indexed by k ∈ [K]) with a shared latent SCM (Defn. B.1) and a
shared mixing function f : xk = f(zk) (Defn. B.2) satisfying Asm. B.1. Let k = 0 denote the
non-intervened environment and Ik ⊆ [N ] denotes the set of intervened nodes in k-th environment,
the latent distribution Pzk is associated with the density

pzk(zk) =
∏
j∈Ik

p̃(zkj | zkpa(j))
∏

j∈[N ]\Ik

p(zkj | zkpa(j)), (D.2)

where we denote by p the original density and by p̃ the intervened density. Interventions natu-
rally introduce various distributional invariances that can be utilized for latent variable identifica-
tion: Under the intervention Ik in the k-th environment, we observe that both (1) the marginal
distribution of zA with A := [N ] \ TC(Ik), with TC denoting the transitive closure and (2) the
score [S(zk)]A′ := ∇zk

A′
log pzk on the subset of latent components A′ := [N ] \ pa(Ik) with

pa(Ik) := {j : j ∈ Ik ∪ pa(Ik)} remain invariant across the observational and the k-th interven-
tional environment. Formally, under intervention Ik, we have

• Marginal invariance:

pz0(z0A) = pzk(zkA) A := [N ] \ TC(Ik); (D.3)

• Score invariance:
[S(z0)]A′ = [S(zk)]A′ A′ := [N ] \ pa(Ik). (D.4)

According to our theory Thm. 3.1, we can block-identify both zA, zA′ using these invariance princi-
ples (eqs. (D.3) and (D.4)). Since most interventional CRL works assume at least one intervention
per node (Squires et al., 2023; Zhang et al., 2024a; von Kügelgen et al., 2024; Varici et al., 2024a;
2023; Buchholz et al., 2024; Ahuja et al., 2023), more fine-grained variable identification results,
such as element-wise identification (Defn. C.2) or affine-identification (Defn. C.3), can be achieved
by combining multiple invariances from these per-node interventions, as we elaborate below.

Identifiability with one intervention per node. By invoking Thm. 3.1, we establish that, in non-
parametric settings, latent causal variables z can be identified up to an element-wise diffeomorphism
(see Defn. C.2) using single-node imperfect interventions for each node. This result addresses an
open conjecture posed by von Kügelgen et al. (2024). We assume:

Assumption D.1 (Topologically ordered interventional targets). Specifying Asm. 2.1 in the inter-
ventional setting, we assume there are exactly N environments {k1, . . . , kN} ⊆ [K] where each
node j ∈ [N ] undergoes one imperfect intervention in the environment kj ∈ [K]. The interven-
tional targets 1 ⪯ · · · ⪯ N preserve the topological order, meaning that i ⪯ j only if there is a
directed path from node i to node j in the underlying causal graph G.

Remark: Asm. D.1 is directly implied by Asm. 2.1 as we need to know which environments fall into
the same equivalence class. We believe that identifying the topological order is another subproblem
orthogonal to identifying the latent variables, which is often termed “uncoupled/non-aligned prob-
lem" (Varici et al., 2024a; von Kügelgen et al., 2024). As described by Zhang et al. (2024a), the
topological order of unknown interventional targets can be recovered from single-node imperfect
intervention by iteratively identifying the interventions that target the source nodes. This iterative
identification process may require additional assumptions on the mixing functions (Zhang et al.,
2024a; Ahuja et al., 2023; Varici et al., 2023; 2024b; Squires et al., 2023) and the latent structured
causal model (Buchholz et al., 2024; Squires et al., 2023), or on the interventions, such paired per-
fect interventions per node (von Kügelgen et al., 2024; Varici et al., 2024a).
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Corollary D.1 (Identifiability from single node imperfect intervention per node). Given N envi-
ronments {k1, . . . , kN} ⊆ [K] satisfying Asm. D.1, the ground truth latent variables z can be
identified up to element-wise diffeomorphism (Defn. C.2) by combining both marginal and score
invariances (eqs. (D.3) and (D.4)) under our framework (Thm. 3.1).

The proof for Cor. D.1 is included in App. E.5. Upon element-wise identification from single-node
intervention per node, existing works often provide more fine-grained identifiability results by in-
corporating other parametric assumptions on the mixing functions (Varici et al., 2023; Ahuja et al.,
2023; Zhang et al., 2024a; Squires et al., 2023). This perspective is elaborated in Proposition C.2, as
element-wise identification can be refined to affine-identification (Defn. C.3) given additional para-
metric assumptions on the mixing functions. However, note that under the milder setting of imper-
fect intervention per node, the full graph is not identifiable without further assumptions. See (Zhang
et al., 2024a) for more details.

Identifiability with two interventions per node Current literature in interventional CRL targeting
the general nonparametric setting (Varici et al., 2024a; von Kügelgen et al., 2024) typically assumed
a pair of sufficiently different perfect interventions per node. Thus, any latent variable zj , j ∈ [N ],
as an interventional target, is uniquely shared by a pair of interventional environment k, k′ ∈ [K],
forming an invariant partition Ai = {j} constituting of individual latent node j ∈ [N ]. Formally,
we write

Ik = Ik′ = Ai = {j} (D.5)

where Ik represent the interventional target for the k-th environment. Note that this invariance
property implies the following distributional property:

[S(zk)− S(zk
′
)]j ̸= 0 only if Ik = Ik′ = {j}. (D.6)

According to Thm. 3.1, each latent variable can thus be identified separately, giving rise to element-
wise identification, as shown by (Varici et al., 2024a; von Kügelgen et al., 2024).

Identifiability under multiple distributions. More recently, Ahuja et al. (2024) explains previous
interventional identifiability results from a general weak distributional invariance perspective. In a
nutshell, a set of variables zA can be block-identified if certain invariant distributional properties
hold: The invariant partition zA can be block-identified (Defn. 3.1) from the rest by utilizing the
marginal distributional invariance or invariance on the support, mean or variance. Ahuja et al.
(2024) additionally assume the mixing function to be finite degree polynomial, which leads to block-
affine identification (Defn. C.1), whereas we can also consider a general nonparametric setting; they
consider one single invariance set, which is a special case of Thm. 3.1 with one joint ι-property.

Identification algorithms. Instead of iteratively enforcing the invariance constraint across the
majority of environments as described in Cor. D.1, most single-node interventional works develop
equivalent constraints between pairs of environments to optimize. For example, the marginal
invariance (eq. (D.3)) implies the marginal of the source node is changed only if it is intervened
upon, which is utilized by Zhang et al. (2024a) to identify latent variables and the ancestral relations
simultaneously. In practice, Zhang et al. (2024a) propose a regularized loss that includes Maximum
Mean Discrepancy(MMD) between the reconstructed "counterfactual" data distribution and the
interventional distribution, enforcing the distributional discrepancy that reveals graphical structure
(e.g., detecting the source node). Similarly, by enforcing sparsity on the score change matrix,
Varici et al. (2023) restricts only score changes from the intervened node and its parents. In the
nonparametric case, von Kügelgen et al. (2024) optimize for the invariant (aligned) interventional
targets through model selection, whereas Varici et al. (2024a) directly solve the constrained
optimization problem formulated using score differences. Considering a more general setup, Ahuja
et al. (2024) provides various invariance-based regularizers as plug-and-play components for any
losses that enforce a sufficient representation (Constraint 3.2).

D.3 TEMPORAL CRL
High-level overview. Temporal CRL (Lippe et al., 2022a; 2023; 2022b; Yao et al., 2022a;b;
Lachapelle et al., 2022; 2024; Li et al., 2024a;b) focuses on retrieving latent causal structures from
time series data, where the latent causal structure is typically modeled as a Dynamic Bayesian Net-
work (DBN) (Dean & Kanazawa, 1989; Murphy, 2002). Existing temporal CRL literature has devel-
oped identifiability results under varying sets of assumptions. A common overarching assumption
is to require the Dynamic Bayesian Network to be first-order Markovian, allowing only causal links
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from t−1 to t, eliminating longer dependencies (Lippe et al., 2022b; 2023; 2022a; Yao et al., 2022b).
While many works assume that there is no instantaneous effect, restricting the latent components of
zt to be mutually dependent (Lippe et al., 2022b; Yao et al., 2022b; Lippe et al., 2023), some ap-
proaches have lifted this assumption and prove identifiability allowing for instantaneous links among
the latent components at the same timestep (Lippe et al. (2022a)).

Data generating process. We present the data generating process followed by most temporal causal
representation works and explain the underlying latent invariance and data symmetries. Let zt ∈ RN

denotes the latent vector at time t and xt = f(zt) ∈ RD the corresponding entangled observable
with f : RN → RD the shared mixing function (Defn. B.2) satisfying Asm. B.1. The actions at with
cardinality |at| = N mostly only target a subset of latent variables while keeping the rest untouched,
following its default dynamics (Lippe et al., 2022b; 2023; Lachapelle et al., 2022; 2024). Intuitively,
these actions at can be interpreted as a component-wise indicator for each latent variable ztj , j ∈ [N ]

stating whether ztj follows the default dynamics p(ztj | zt−1) or the modified dynamics induced by
the action atj . From this perspective, the non-intervened causal variables at time t can be considered
the invariant partition under our formulation, denoted by ztAt

with the index set At defined as At :=
{j : aj = 0}. Note that this invariance can be considered as a generalization of the multiview case
because the realizations ztj , z

t−1
j are not exactly identical (as in the multiview case) but are related

via a default transition mechanism p(ztj | zt−1). To formalize this intuition, we define z̃t := zt | at
as the conditional random vector conditioning on the action at at time t. For the non-intervened
partition At ⊆ [N ] that follows the default dynamics, the transition model should be invariant:

p(ztAt
| zt−1) = p(z̃tAt

| zt−1), (D.7)

which gives rise to a non-trivial distributional invariance property (Defn. 2.1). Note that the
invariance partition At could vary across different time steps, providing a set of invariance
properties I := {ιt : R|At| → Mt}Tt=1, indexed by time t. Given by Thm. 3.1, all invariant
partitions ztAt

can be block-identified; furthermore, as shown in Proposition 3.3, the complementary
variant partition can also be identified under an invertible encoder and mutual independence within
zt (here conditioning on the previous time step zt−1). This result aligns with the identification
results without instantaneous effect, i.e. there is no causal link between variables at the same
time step (Lippe et al., 2022b; Yao et al., 2022b; Lachapelle et al., 2022; 2024). On the other
hand, temporal causal variables with instantaneous effects are shown to be identifiable only if
“instantaneous parents” (i.e., nodes affecting other nodes instantaneously) are cut by actions (Lippe
et al., 2022a), reducing to the setting without instantaneous effect where the latent components
at t are mutually independent. Upon invariance, more fine-grained latent variable identification
results, such as element-wise identifiability, can be obtained by incorporating additional technical
assumptions, such as the sparse mechanism shift (Lachapelle et al., 2022; 2024; Li et al., 2024b)
and parametric latent causal model (Yao et al., 2022b; Klindt et al., 2021; Khemakhem et al., 2020).

Identification algorithms. From a high level, the distributional invariance (eq. (D.7)) indicates
full explainability and predictability of ztAt

from its previous time step zt−1, regardless of the
action at. In principle, this invariance principle can be enforced by directly maximizing the
information content of the proposed default transition density between the learned representation
p(ẑtAt

| ẑt−1) (Lippe et al., 2022a;b). In practice, the invariance regularization is often incorporated
together with the predictability of the variant partition conditioning on actions, implemented
as a KL divergence between the observational posterior q(ẑt | xt) and the transitional prior
p(ẑt | ẑt−1,at) (Lachapelle et al., 2022; 2024; Klindt et al., 2021; Yao et al., 2022a;b; Lippe et al.,
2023), estimated using variational Bayes (Kingma & Welling, 2013) or normalizing flow (Rezende
& Mohamed, 2015).

D.4 MULTI-TASK CRL
High-level overview. Multi-task CRL aims to identify latent causal variables via external supervi-
sion, in this case, the label information of the same instance for various tasks. Previously, multi-task
learning (Caruana, 1997; Zhang & Yang, 2018) has been mostly studied outside the scope of
identifiability, mainly focusing on domain adaptation and out-of-distribution generalization. One
of the popular ideas that was extensively used in the context of multi-task learning is to leverage
interactions between different tasks to construct a generalist model that is capable of solving all
classification tasks and potentially better generalizes to unseen tasks (Zhu et al., 2022; Bai et al.,
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2022). Recently, Lachapelle et al. (2023); Fumero et al. (2024) systematically studied under which
conditions the latent variables can be identified in the multi-task scenario and correspondingly
provided identification algorithms.

Data generating process. Multi-task CRL considers a supervised setup: Given a latent SCM
as defined in Defn. B.1, we generate the observable x ∈ RD through some mixing function
f : RN → RD satisfying Asm. B.1. Consider a set of task T = {T1, . . . , Tk} with corresponding
task labels yk ∈ Yk, we assume each task only depends on a subset of latent variables Sk ⊆ [N ].
In other words, the label yk can be expressed as a function that contains all and only information
about the latent variable zSk

:
yk = rk(zSk

), (D.8)

where r : R|Sk| → Yk is some deterministic function which maps the latent subspace R|Sk| to the
task-specific label space Yk, which is often assumed to be linear and implemented using a linear
readout in practice (Lachapelle et al., 2023; Fumero et al., 2024). For each task tk, k ∈ [K], we
observe the associated data distribution Px,yk . Consider two different tasks Tk, Tk′ with k, k′ ∈ [K],
the corresponding data x,yk and x,yk′

are invariant in the intersection of task-related features zA
with A = Sk ∩ Sk′ . To ease the notation, let zTk := zSk

represent the task-related latents for task
Tk. Formally, it holds that

zTk

A = z
Tk′
A , (D.9)

showing alignment on the shared partition of the task-related latents. In the ideal case, each latent
component j ∈ [N ] is uniquely shared by a subset of tasks, all factors of variation can be fully disen-
tangled, which aligns with the theoretical claims by Lachapelle et al. (2023); Fumero et al. (2024).

Identification algorithms. We remark that the sharing mechanism in the context of multi-task
learning fundamentally differs from that of multiview setup, thus resulting in different learning
algorithms. Regarding learning, the shared partition of task-related latents is enforced to align
up to the linear equivalence class (given a linear readout) instead of sample level L2 alignment.
Intuitively, this invariance principle can be interpreted as a soft version of the that in the multiview
case. In practice, under the constraint of perfect classification, one employs (1) a sparsity constraint
on the linear readout weights to enforce the encoder to allocate the correct task-specific latents
and (2) an information-sharing term to encourage reusing latents across various tasks. Equilibrium
can be obtained between these two terms only when the shared task-specific latent is element-wise
identified (Defn. C.2). Thus, this soft invariance principle is jointly implemented by the sparsity
constraint and information sharing regularization (Fumero et al., 2024, Sec. 2.1).

D.5 DOMAIN GENERALIZATION

High-level overview. Domain generalization aims at out-of-distribution performance. That is,
learning an optimal encoder and predictor that performs well at some unseen test domain that
preserves the same data symmetries as in the training data. At a high level, domain generaliza-
tion (Sagawa et al., 2019; Zhang et al., 2017; Ganin et al., 2016; Arjovsky et al., 2020; Krueger
et al., 2021) considers a similar framework as introduced for interventional CRL, i.e., having access
to multiple environment with different data distributions, but additionally incorporated with external
supervision and focusing more on model robustness perspective. While interventional CRL aims
to identify the true latent factors of variations (up to some transformation), domain generalization
learning focuses directly on out-of-distribution prediction, relying on some invariance properties
preserved under the distributional shifts. Due to the non-causal objective, new methodologies are
motivated and tested on real-world benchmarks (e.g., VLCS (Fang et al., 2013), PACS (Li et al.,
2017), Office-Home (Venkateswara et al., 2017), Terra Incognita (Beery et al., 2018), DomainNet
(Peng et al., 2019)) and could inspire future real-world applicability of CRL approaches.

Data generating process. The problem of domain generalizations is an extension of supervised
learning where training data from multiple environments are available (Blanchard et al., 2011). An
environment is a dataset of i.i.d. observations from a joint distribution Pxk,yk of the observables
xk ∈ RD and the label yk ∈ R. The label yk ∈ Rm only depends on the invariant latents zkA ∈ R|A|

through a linear regression structural equation model (Ahuja et al., 2022a, Assmp. 1), described as
follows:

yk = w∗zkA + ϵk, z
k
A ⊥ ϵk

xk = f(zk)
(D.10)
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where w∗ ∈ RD×m represents the ground truth relationship between the label yk and the invariant
latents zkA. ϵk is some white noise with bounded variance and f : RN → RD denotes the
shared mixing function for all k ∈ [K] satisfying Asm. B.1. The set of environment distributions
{Pxk,yk}k∈[K] generally differ from each other because of interventions or other distributional
shifts such as covariates shift and concept shift. However, as the relationship between the invariant
latents and the labels w∗ and the mixing mechanism f are shared across different environments, the
risk on optimal weights remain invariant:

R∗
k(w

∗zkA,y
k) = R∗

k′(w∗zk
′

A ,yk′
) (D.11)

where w∗ denotes the ground truth relation between the invariant latents zkA and the labels yk.

Identification algorithms. Different distributional invariance are enforced by interpolating and
extrapolating across various environments. Among the countless contribution to the literature,
mixup (Zhang et al., 2017) linearly interpolates observations from different environments as a robust
data augmentation procedure, Domain-Adversarial Neural Networks (Ganin et al., 2016) support
the main learning task discouraging learning domain-discriminant features, Distributionally Robust
Optimization (DRO) (Sagawa et al., 2019) replaces the vanilla Empirical Risk objective minimizing
only with respect to the worst modeled environment, Invariant Risk Minimization (Arjovsky et al.,
2020) combines the Empirical Risk objective with an invariance constraint on the gradient, and
Variance Risk Extrapolation (Krueger et al., 2021, V-REx), similar in spirit combines the empirical
risk objective with an invariance constraint using the variance among environments. For a more
comprehensive review of domain generalization algorithms, see Zhou et al. (2022).

D.6 FURTHER EXPLANATIONS FOR TAB. 4
General clarification. Tab. 4 summarizes special cases of our invariance framework. For each
work, we present their technical assumptions, the type of invariance, the implementation for the
invariance and the sufficiency regularizers (to satisfy Constraints 3.1 and 3.2), and the type of
identifiability they achieve. Note that this table is by no means exhaustive. Also, we omit some
additional results and technical assumptions of individual papers for readability. A list of paragraphs
is provided below for further clarification, as referenced in Tab. 4.

(a) Single-node intervention and parametric assumptions. Many existing CRL works that
consider single node intervention per node require additional parametric assumptions, either on the
mixing function (Varici et al., 2023; Zhang et al., 2024a) or the latent causal model (Buchholz et al.,
2024) or both (Squires et al., 2023), thus achieving (at least) element-wise identifiability (Defn. C.2).
We conjecture these additional parametric assumptions serve two purposes: (1) to identify valid
topological order of the interventional targets, as required by Asm. D.1 for Cor. D.1 (2) to get a
more fine-grained identification level of affine transformation, as explained by Proposition C.2.

In the following, we restate the definition of linear latent SCM for reference:

Definition D.1 (Linear latent SCM (Squires et al., 2023; Buchholz et al., 2024)). The latent variables
z follows a linear SCM with Gaussian noise in the sense that

z = Az+ Γ1/2ϵ, (D.12)

where Γ is a diagonal matrix with positive entries, A encodes the underlying causal graph G and the
ϵ is the standard Gaussian noise. For the sake of simplicity, we often define B := Γ−1/2(Id − A)
such that z = B−1ϵ to explicitly map from the exogenous noise ϵ to the latent variables z. We use
Bk to denote this matrix for the domain k.

(b) Multi-node intervention and linear mixing. Recently, Varici et al. (2024b) extends previous
interventional CRL works to unknown multi-node interventions and achieves identifiability
under the assumption of a linearly independent intervention signature matrix Mint ∈ {0, 1}N×K

with each column k represents the intervened node in this environment k. The row-wise linear
independence of Mint implies that each latent variable must have been intervened at least once.
Let M ∈ {0, 1}N×N represent a submatrix of Mint with linearly independent columns. By
multiplying M with its adjoint transpose adj⊺(M), one obtains a matrix where each column has
only one non-zero component. Applying the same transformation to the score change, this problem
is reduced to a similar setting as a single node intervention per node, which can be intuitively
explained using the same distributional invariance principle introduced earlier (App. D.2).
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(c) Paired single-node intervention per node under nonparametric assumptions. In the
nonparametric settings, several works (von Kügelgen et al., 2024; Varici et al., 2024a) have shown
element-wise latent variable identification under sufficiently different paired perfect intervention
per node. By having two sufficiently different interventions per node, one introduces invariance on
the interventional target across these paired interventional environments. This invariance property
can be enforced using the score differences (Varici et al., 2024a) or algorithmically by performing
model selection (von Kügelgen et al., 2024), as elaborated in App. D.2.

(d) Variant latents identification under independence. While some papers states main identifi-
cation results on the variant partition, it can be explained by Thm. 3.1 and Proposition 3.3 stating
that the variant block can be identified under independence and invertible encoder. For example,
Wendong et al. (2024, Thm. 4.5) shows block-identifiability on the intervened (variant) latents
under (Wendong et al., 2024, Assumption 4.4) of block-wise independence between the invariant
and variant blocks.

(e) Invariance regularizers in multitask CRL. Under the assumption of knowing the number
of latent variables, Lachapelle et al. (2023) solves a bi-level optimization problem, enforcing L2,1

sparsity on individual task readouts in the inner problem. Coupled with a backbone shared across
all tasks, this implicitly encourages discovering the ground truth overlapping partition of task sup-
port. Fumero et al. (2024) lifted the constraint of assuming the known number of latents by incorpo-
rating an additional information-sharing regularizer, as explained in (Fumero et al., 2024, Sec. 2.1).

(f) Invariance regularizers in domain generalization. While Sagawa et al. (2019) directly opti-
mize for the worst-case risk, a link can be drawn between this objective and the risk invariance:
Given a pair of linear head w and encoder g shared across [K] domains, let the order of risks be
Rπ1 ≥ Rπ2 . . .RπK . Since Rπ1 is lower bounded by Rπ2 , the minimum of the training objective
in Sagawa et al. (2019) (maxk∈[K] Rk(w, g)) is obtained when Rπ1 = Rπ2 . Then we have Rπ1 =
Rπ2 ≥ · · · ≥ RπK , and the next minimum will be obtained when Rπ1 = Rπ2 = Rπ3 , and so on so
forth. The optimization procedure stops when the risks are equally minimized across all domains.

(Krueger et al., 2021) minimizes variance between domain risks to enforce the risk invariance. We
formally show these two are equivalent in the following. Note that the invariance principle for risk
alignment can be formulated as

(Rk −Rk′ )2 (D.13)

According to Zhang et al. (2012), variance can be equivalently expressed as pair-wise distances
between the samples. Hence, we can reformulate the risk variance term in (Sagawa et al., 2019) as
follows:

Var [R] =
1

K2

∑
k,k′∈[K]

1

2
(Rk −Rk′)

2
,

showing that the variance regularization in (Krueger et al., 2021) enforces risk invariance.

D.7 NOTABLE CASES NOT DIRECTLY COVERED BY THE THEORY

Some works not listed in Tab. 4 cannot yet be directly explained by our invariance frameworks but
are rather loosely connected. One representative line of work (Lachapelle et al., 2022; Zheng et al.,
2022; Xu et al., 2024; Lachapelle et al., 2024) relies on the sparsity assumption in the latent de-
pendency to achieve latent variable and graph identification. This assumption is closely related to
the sparse mechanism shift hypothesis in CRL (Schölkopf et al., 2021), stating small distributional
changes should not affect all causal variables but only a small subset of these. Note that the sparsity
constraint is often formulated as the estimator (either for the graph (Lachapelle et al., 2023; 2024)
or of the latents (Xu et al., 2024)) should be at least sparse as the ground truth one, maximizing
the cardinality of the unaffected (invariant) part. Some theoretical results do not rely on multiple
data pockets that share certain invariance properties but directly employ specific properties within
the observational data, such as independent support (Ahuja et al., 2023), or shared cluster mem-
bership (Khemakhem et al., 2020; Kivva et al., 2022). Some works (Zhang et al., 2024b) follow
an orthogonal proof technique originating from the nonlinear ICA with auxiliary variable line of
work (Hyvarinen et al., 2019). Their proofs often rely on linear independence derived from the sta-
tistical diversity of various underlying data distributions instead of shared invariance properties. Our
framework thus does not trivially include them.
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E PROOFS

This section includes formal proofs for the theoretical statements of the paper.

E.1 ASSUMPTION JUSTIFICATION

We justify the Defn. 2.1 (ii) by showing negative results under violation of this assumption, i.e.,
trivially invariant latent variables are not identifiable.

Proposition E.1 (General non-identifiability of trivially invariant latent variables). Consider the
setup in Thm. 3.1, w.l.o.g we assume I = {ι} and ι is trivial in the sense that assumption (ii)
in Defn. 2.1 is violated. Then, the corresponding invariant partition zkA is not identifiable for any
k ∈ [K].

Proof. We provide a counter example as follows: Define a trivial ι-property as “if the first compo-
nent is greater than zero on A = {1} of some two dimensional latents z". Formally,

ι(z1) = 1[z1 > 0].

Consider a mixing function f = id and an invertible encoder g(x) = g(f(z)) = [z1 + z2, z2]
satisfying the sufficiency constraint (Constraint 3.2). Define h1 = h2 = [g ◦ f ]A. Then for some
realizations z, z̃ with z1+ z2 > 0 and z̃1+ z̃2 > 0 we have ι(h(z)) = ι(h(z̃)). However, h1, h2 can
not disentangle z1, showing non-identifiability for the invariant partition zA.

Link between Defn. 2.1 (ii) and interventional discrepancy. In the following, we elaborate
how Defn. 2.1 (ii) resembles the most common assumption in interventional CRL, the interven-
tional discrepancy (Wendong et al., 2024; Varici et al., 2024a). Note that this assumption may
termed differently as sufficient variability (von Kügelgen et al., 2024; Lippe et al., 2022b), interven-
tional regularity (Varici et al., 2023; 2024b), but the mathematical formulation remain the same. We
begin with restating this assumption:

Assumption E.1 (Interventional discrepancy (Wendong et al., 2024)). Given k ∈ [K], let ptk denote
the causal mechanism of the intervened variable ztk with tk ∈ [N ]. We say a stochastic intervention
p̃k satisfies interventional discrepancy if

∂ log ptk
∂ztk

(ztk | zpa(tk)) ̸=
∂ log p̃tk
∂ztk

(ztk | zpa(tk)) almost everywhere (a.e.).

Proof. We show that any cases violating the interventional discrepancy assumption also vio-
lates Defn. 2.1 (ii) and vice versa. Suppose for a contradiction that there exists tk ∈ [N ] that is
intervened in environment k ∈ [K], and there is a non-empty interior U ⊂ R with non-zero measure
where the interventional discrepancy is violated, i.e., for all ztk ∈ U , it holds

∂ log ptk
∂ztk

(ztk | zpa(tk)) =
∂ log p̃tk
∂ztk

(ztk | zpa(tk)) (E.1)

Under a single node imperfect intervention, the complementary set of the transitive closure of tk,
i.e., A := [N ] \ TC(tk) remain marginally invariant:

ι(zA) = pzA
= p̃zA

.

W.l.o.g, we assume A = {1, . . . , tk − 1}, define a function h : RN → R|A| with

h(z) = [z1, . . . , ztk−2, ztk ]

that omits the tk−1-th component of z but includes the variant component tk. Note that the marginal
of ztk after intervention remains invariant within U because

p(ztk) =

∫
ptk(ztk | zpa(tk))p(zpa(tk))dzpa(tk) pa(tk) ∈ A

=

∫
ptk(ztk | zpa(tk))p̃(zpa(tk))dzpa(tk) eq. (E.1) and both pk, p̃k pdfs

=

∫
p̃tk(ztk | zpa(tk))p̃(zpa(tk))dzpa(tk)

= p̃(ztk).
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Therefore, we have ι(h(z)) = ι(h(z̃)) (with z̃ noting the latent vectors under intervention) contra-
dicting Defn. 2.1 (ii). The other direction (violating Defn. 2.1 (ii) implies violating Asm. E.1) can
be proved using the same example.

E.2 PROOF FOR THM. 3.1
Our proof consists of the following steps:

1. We construct the optimal encoders G∗ (Defn. 3.2) and selectors Φ∗ (Defn. 3.4) that solves
the constrained optimization problem in Thm. 3.1.

2. We show that, for any invariance property ιi ∈ I and any observation xk in the correspond-
ing ιi-equivalent subset xVi

, the selected representation ϕ(i,k)⊘gk(x
k) cannot contain any

other information than the invariant partition zkAi
.

3. Lastly, we prove that selected representation ϕ(i,k) ⊘ gk(x
k) relates to the ground truth

invariant partition zkAi
through a diffeomorphism hi

k : R|Ai| → R|Ai| for all invariance
property ιi ∈ I and for any observable xk from the ιi-equivalent subset xVi

; in other
words, ϕ(i,k) ⊘ gk(x

k) block-identifies zkAi
in the sense of Defn. 3.1.

Lemma E.1 (Existence of optimal encoders and selectors). Consider a set of observables Sx =
{x1,x2, . . . ,xK} ∈ X generated from § 2 satisfying Asm. 2.1, then there exists optimal encoders
G∗ (Defn. 3.2) and selectors Φ∗ (Defn. 3.4) which satisfy both Constraints 3.1 and 3.2.

Proof. The optimal encoders can be constructed as the set of the inverse of the ground truth mixing
functions:

G∗ = {f−1
k }k∈[K], (E.2)

f−1
k is smooth and invertible following Asm. B.1. By definition, for each k ∈ [K], we have:

f−1
k (xk) = zk ∈ Zk. (E.3)

Next, we define the optimal selector Φ∗ = {ϕ(i,k)}i∈[|I|],k∈[K] such that for all i ∈ |I|, k ∈ [K], it
holds

ϕ(i,k) ⊘ zk = zkAi
. (E.4)

Thus, the invariance constraint (Constraint 3.1) is trivially satisfied as given by § 2. The optimal en-
coder f−1

k is smooth and invertible following Asm. B.1 so the sufficiency constraint (Constraint 3.2)
is also satisfied. Hence, we have shown the optimum of the constrained optimization problem
in Thm. 3.1 exists.

Lemma E.2 (Invariant component isolation). Consider the same set of observables Sx as intro-
duced in Lemma E.1, then for any set of smooth encoders G (Defn. 3.2), Φ (Defn. 3.4) that satisfy
the invariance condition (Constraint 3.1), the learned representation ϕ(i,k) ⊘ gk(x

k) can only be
dependent on the invariant latent variables zkAi

:= {zkj : j ∈ Ai}, not any non-invariant variables
zkq with q ∈ Ac

i := [N ] \Ai.

Proof. This proof directly follows Defn. 2.1 (ii). Define

hi
k := ϕ(i,k) ⊘ gk ◦ fk k ∈ [K]. (E.5)

By Constraint 3.1, for all ιi ∈ I, we have

ιi(h
i
k(z

k)) = ιi(h
i
k′(zk

′
)) a.s. ∀k ̸= k′ ∈ [K]. (E.6)

According to Defn. 2.1 (ii), for all i ∈ [|I|], k ∈ Vi, h
i
k cannot depend on any other latent component

zq with q /∈ Ai. Therefore, we have shown that hi
k is a function of zkAi

, for all i ∈ [|I|], k ∈ Vi.

Theorem 3.1 (Identifiability of multiple invariant blocks). Consider a set of observables Sx =
{x1,x2, . . . ,xK} ∈ X generated from § 2 satisfying Asm. 2.1. Let G,Φ be the set of smooth
encoders (Defn. 3.2) and selectors (Defn. 3.4) that satisfy Constraints 3.1 and 3.2, then the invariant
component zkAi

is block-identified (Defn. 3.1) by ϕ(i,k) ⊘ gk for all ιi ∈ I, k ∈ [K].
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Proof. Lem. E.1 verifies that there exists such optimum which satisfies both invariance and suffi-
ciency conditions (Constraints 3.1 and 3.2). Following Lem. E.2, the composition ϕ(i,k) ⊘ gk can
only encode information related to the invariant latent subset Ai specified by the invariance property
ιi ∈ I for all k ∈ Vi. As given by Constraint 3.2, ϕ(i,k) ⊘ gk contain all information the ground
truth invariant latents zAi for i with k ∈ Vi. Therefore, the selected representation ϕ(i,k) ⊘ gk(x

k)
relates to the ground truth invariant partition zAi through some diffeomorphism, i.e., zAi is blocked-
identified by ϕ(i,k) ⊘ gk(x

k) for all invariance property ιi ∈ I and observable k ∈ Vi, .

E.3 PROOFS FOR GENERALIZATION OF VARIANT LATENTS

Proposition 3.2 (General non-identifiability of variant latent variables). Consider the setup
in Thm. 3.1, let A :=

⋃
i∈[|I|] Ai denote the union of block-identified latent indices and Ac := [N ]\A

the complementary set where no ι-invariance ι ∈ I applies, then the variant latents zAc cannot be
identified.

Proof. We provide a simple counter example with two latent variables z = [z1, z2], with the mixing
function f being the identity map id. W.l.o.g. we assume the invariant partition to be A = {1}.
According to Thm. 3.1, the invariant latent variable can be identified up to a certain bijection h :
R → R. Let ẑ be the estimated representation:

ẑ = [h(z1), z2 − z1] (E.7)

with the estimated mixing function f̂ : R2 → R2:

f̂(ẑ) = [h−1(ẑ1), ẑ2 + h−1(ẑ1)], (E.8)

then we obtain the same observations f̂(ẑ) = f(z) whereas ẑ2 consists of a mixing of z1 and z2,
showing the variant latent variable z2 can not be identified.

Proposition 3.3 (Identifiability of variant latent under independence). Consider an optimal encoder
g ∈ G∗ and optimal selector ϕ ∈ Φ∗ from Thm. 3.1 that jointly identify an invariant block zA (we
omit subscriptions k, i for simplicity), then zAc(Ac := [N ] \A) can be identified by the complemen-
tary encoding partition (1− ϕ)⊘ g only if

(i) g is invertible in the sense that I(x, g(x)) = H(x);

(ii) zAc is independent on zA.

Proof. (⇐): We start by showing the sufficiency of conditions (i) and (ii). The mutual information
between the observation x ∈ Sx and the optimal encoder g ∈ G∗ from Thm. 3.1 writes:

I(x, g(x)) = H(x)−H(x | g(x)),

following condition (i) in Proposition 3.3, the second term (conditional entropy) must equal zero:
H(x | g(x)) = 0.

Writing the x = f(zA, zAc), we have

H(x | g(x)) = H(f(zA, zAc) | g(x)) = H(zA, zAc | g(x)),

because the mixing function f is deterministic as given by Defn. B.2.

Note that g(x) can be decomposed into two separate partitions: ϕ⊘ g(x), (1− ϕ)⊘ g(x); thus we
can write the conditional entropy as

H(x | g(x)) = H(zA, zAc | ϕ⊘ g(x), (1− ϕ)⊘ g(x))

= H(zAc | zA, ϕ⊘ g(x), (1− ϕ)⊘ g(x)) +H(zA | ϕ⊘ g(x), (1− ϕ)⊘ g(x))

Given that ϕ⊘ g(x) block identifies zA, (1− ϕ)⊘ g(x)) cannot contain any information about zA,
hence we can simplify the second term as

H(zA | ϕ⊘ g(x))
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Using the additional mutual independence assumption between zA and zAc (Proposition 3.3 (ii)),
we can rewrite the first term as

H(zAc | (1− ϕ)⊘ g(x)).

As a result, the condition entropy H(x | g(x)) can be decomposed as

H(x | g(x)) = H(zA | ϕ⊘ g(x)) +H(zAc | (1− ϕ)⊘ g(x)) = 0.

Since H(zA | ϕ ⊘ g(x)) = 0 following Constraint 3.2, the second term also must be zero, i.e.,
H(zAc | (1 − ϕ) ⊘ g(x)) = 0, which is satisfied only if (1 − ϕ) ⊘ g(x) is a invertible function of
zAc . That is, (1− ϕ)⊘ g(x) block-identifies zAc .

(⇒): We show that block-identifiability of zAc by (1− ϕ)⊘ g implies both conditions (i) and (ii).

For condition (i) To show g is invertible in the sense that I(x, g(x)) = H(x), it is equivalent to
show that H(x | g(x)) = 0 because

I(x, g(x)) = H(x)−H(x | g(x))

Writing x = f(zA, zAc), we have

H(x | g(x)) = H(f(zA, zAc) | g(x)) = H(zA, zAc | g(x)),

because the mixing function f is a diffeomorphism as given by Defn. B.2.

Given that ϕ ⊘ g(x) = h(zA) (indicated by Thm. 3.1) and (1 − ϕ) ⊘ g(x) = hc(zAc) for some
diffeomorphisms h : ZA → ZA and hc : ZAc → ZAc , we can further decompose the conditional
entropy H(x | g(x)) into two separate terms

H(x | g(x)) = H(zA, zAc | ϕ⊘ g(x), (1− ϕ)⊘ g(x))

= H(zAc | zA, ϕ⊘ g(x), (1− ϕ)⊘ g(x)) +H(zA | ϕ⊘ g(x), (1− ϕ)⊘ g(x))

= H(zAc | zA, h(zA), hc(zAc)) +H(zA | h(zA), hc(zAc)))

Since both h, hc are diffeomorphisms (meaning h(zA), hc(zAc) fully determines zA, zAc , respec-
tively), both conditional entropy terms are zero; thus H(x | g(x)) = 0. Hence, we have shown that
g is invertible in the sense that I(x, g(x)) = H(x).

For condition (ii) Given that ϕ ⊘ g(x) block identifies zA, (1 − ϕ) ⊘ g(x) cannot contain any
information about zA (Defn. 3.1), i.e.,

I(zA | (1− ϕ)⊘ g(x)) = 0

Writing (1− ϕ)⊘ g(x) = hc(zAc), we have

I(zA | hc(zAc)) = I(zA | zAc) = 0,

as mutual information is invariant under invertible transformations and hc is invertible. Therefore,
we have shown that zAc is independent on zA.

To this end, we have shown both condition (i) and (ii) and necessary and sufficient conditions for the
block-identifiability of zAc which completes the proof.

E.4 PROOFS FOR GRANULARITY OF LATENT VARIABLE IDENTIFICATION

Proposition C.1 (Granularity of identification). Affine-identifiability (Defn. C.3) implies element-
identifiability (Defn. C.2) and block affine-identifiability (Defn. C.1) while element-identifiability
and block affine-identifiability implies block-identifiability (Defn. 3.1).

Proof. The diagonal matrix Λ in eq. (C.3) is invertible and thus also a diffeomorphism h (eq. (C.2)).
Hence, affine-identifiability implies element-identifiability. Affine-identifiability provides identifi-
cation results with block-size one thus implies block affine-identifiability. On the other hand, block
affine-identifiability is block-identifiability with affine bijection h and element-identifiability defines
a special case of block-identifiability where each latent component zi is an individual block.
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Proposition C.2 (Transition between identification levels). The transition between different levels
of latent variable identification (Fig. 2) can be summarized as follows:

(i) Element- identifiability (Defns. C.2 and C.3) can be obtained from block-wise identifiabil-
ity (Defns. 3.1 and C.1) when each individual latent constitutes an invariant block;

(ii) Identifiability up to an affine transformation (Defns. C.1 and C.3) can be obtained from
general identifiability on arbitrary diffeomorphism (Defns. 3.1 and C.2) by additionally
assuming that both the ground truth mixing function and decoder are finite degree polyno-
mials of the same degree.

Proof. The proof for (i) is trivial in the sense that identification of block with size one boils down to
the identification on the element level. (ii) directly follows Ahuja et al. (2023, Thm. 4.4) and Zhang
et al. (2024a, Lem. 1), stating that when both ground truth mixing function and decoder are finite
degree polynomials of the same degree, the invertible encoder learns a representation that is affine
linear to the ground truth latents, i.e., ẑ = L · z+ b with L ∈ RN×N .

E.5 PROOF FOR COR. D.1

Corollary D.1 (Identifiability from single node imperfect intervention per node). Given N envi-
ronments {k1, . . . , kN} ⊆ [K] satisfying Asm. D.1, the ground truth latent variables z can be
identified up to element-wise diffeomorphism (Defn. C.2) by combining both marginal and score
invariances (eqs. (D.3) and (D.4)) under our framework (Thm. 3.1).

Proof. We consider a coarse-grained version of the underlying causal graph consisting of a block-
node z[N−1] := {z1, . . . , zN−1} and the leaf node zN with z[N−1] causing zN (i.e., z[N−1] → zN ).
We first select a pair of environments V = {0, kN} consisting of the observational environment and
the environment where the leaf node zN is intervened upon. According to eq. (D.3), the marginal
invariance holds for the partition A = [N − 1], implying identification on z[N−1] from Thm. 3.1.
At the same time, when considering the set of environments V ′ = {0, k1, . . . , kN−1}, the leaf node
N is the only component that satisfy score invariance across all environments V ′, because N is not
the parent of any intervened node (also see (Varici et al., 2023, Lemma 4)). So here we have another
invariant partition A′ = {N}, implying identification on zN (Thm. 3.1). By jointly enforcing the
marginal and score invariance on A and A′ under a sufficient encoder (Constraint 3.2), we identify
both z[N−1] as a block and zN as a single element. Formally, for the parental block z[N−1], we have:

ẑk[N−1] = g:N−1(x
k) ∀k ∈ {0, k1, . . . , kN} (E.9)

where g:N−1(x
k) := [g(xk)]:N−1 relates to the ground truth z[N−1] through some diffeomorphism

h[N−1] : RN−1 → RN−1 (Defn. 3.1). Now, we can remove the leaf node N as follows: For each
environment k ∈ {0, k1, . . . , kN−1}, we compute the pushforward of Pxk using the learned encoder
g:N−1 : X k → RN−1:

Pẑk
[N−1]

= g:N−1#(Pxk)

Note that the estimated representations Pẑk
[N−1]

can be seen as a new observed data distribution for
each environment k that is generated from the subgraph G−N without the leaf node N . Using an
iterative argument, we can identify all latent variables element-wise (Defn. C.2).

F IMPLEMENTATION DETAILS

This section provides further details about the experiment settings of § 5, including a formal in-
troduction to the ISTAnt dataset, highlighted open challenges (App. F.1), and additional training
settings for reproducibility (App. F.2).
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X Y

W

T

S

Figure 3: Causal Model for generic partially an-
notated scientific experiment: T treatment, W
experimental settings, X high-dimensional ob-
servation, Y outcome, S annotation flag. Fig-
ure and caption adapted from (Cadei et al., 2024,
Fig. 1)

(a) Grooming (blue to focal) (b) No Action

Figure 4: Examples of high-dimensional obser-
vations X with corresponding annotated social
behaviour Y (grooming). Figure and caption
adapted from (Cadei et al., 2024, Fig. 2)

F.1 CASE STUDY: ISTANT

Problem. Despite the majority of CRL algorithms being designed to enforce the identifiability
of some latent factors and tested on controlled synthetic benchmarks, there are a plethora of real-
world applications across scientific disciplines requiring representation learning to answer causal
questions (Robins et al., 2000; Samet et al., 2000; Van Nes et al., 2015; Runge, 2023). Recently,
Cadei et al. (2024) introduced ISTAnt, the first real-world representation learning benchmark with a
real causal downstream task (treatment effect estimation). This benchmark highlights different chal-
lenges (sources of biases) that could arise from machine learning pipelines even in the simplest pos-
sible setting of a randomized controlled trial. Videos of ants triplets are recorded, and a per-frame
representation has to be extracted for supervised behavior classification to estimate the Average
Treatment Effect of an intervention (exposure to a chemical substance). Beyond desirable identifi-
cation result on the latent factors (implying that the causal variables are recovered without bias), no
clear algorithm has been proposed yet on minimizing the Treatment Effect Bias (TEB) (Cadei et al.,
2024). One of the challenges highlighted by Cadei et al. (2024) is that in practice, there is both
covariate and concept shifts due to the effect modification from training on a non-random subset of
the RCT because, for example, ecologists do not label individual frames but whole video recordings.
Figs. 3 and 4 shows the underlying causal graph and example input.

Solution. Relying on our framework, we can explicitly aim for low TEB by leveraging known data
symmetries from the experimental protocol. In fact, the causal mechanism (P (Y e|do(Xe = x))
stays invariant among the different experiment settings (i.e., individual videos or position of the
petri dish). This condition can be easily enforced by existing domain generalization algorithms. For
exemplary purposes, we choose Variance Risk Extrapolation (Krueger et al., 2021, V-REx), which
directly enforces both the invariance sufficiency constraints (Constraints 3.1 and 3.2) by minimizing
the Empirical Risk together with the risk variance inter-environments.

Implementation details All training settings follow the best-performing settings from (Cadei et al.,
2024), which we restate in Tab. 2 for reference.

Discussion. Interestingly, Gulrajani & Lopez-Paz (2020) empirically demonstrated that no do-
main generalization algorithm consistently outperforms Empirical Risk Minimization in out-of-
distribution prediction. However, in this application, our goal is not to achieve high out-of-
distribution accuracy but rather to identify a representation that is invariant to the effect modifiers
introduced by the data labeling process. This experiment serves as a clear example of the paradigm
shift of CRL via the invariance principle. While existing CRL approaches design algorithms based
on specific assumptions that are often challenging to align with real-world applications, our approach
begins from the application perspective. It allows for the specification of known data symmetries
and desired properties of the learned representation, followed by selecting an appropriate implemen-
tation for the distance function (potentially from existing methods). Ultimately, identifiability hinges
on the guarantee of asymptotic consistency in the estimates.

35



Published as a conference paper at ICLR 2025

Model/Hyper-parameters Value(s)
Encoder DINOv2 (Oquab et al., 2023)
Encoder (token) class
MLP (head): hidden layers 1
MLP (head): hidden nodes 256
MLP (head): activation function ReLU + Sigmoid output
Tass or
Dropout No
Regularization No
Loss BCELoss (with positive weighting)
Loss: Positive Weight

∑ns
i=1 1−Yi∑ns

i=1 Yi

Learning Rate 0.0005
Optimizer Adam (β1 = 0.9, β2 = 0.9, ϵ = 10−8)
Batch Size 128
Epochs 15
Seeds range(20)

Table 2: Model and training details for the case study on ISTAnt (§ 5.1). Table adapted from (Cadei
et al., 2024, Tab. 4)

F.2 SYNTHETIC ABLATION WITH “NINTERVENTIONS"
The numerical data is generated using a linear Gaussian additive noise model as follows:

p(z1) = N (µ1, σ
2
1)

p(z2 | z1) = N (α1 · z1 + β1, σ
2
2)

p(z3 | z2) = N (α2 · z2 + β2, σ
2
3)

p̃(z2) = N (µ̃2, σ̃
2
2)

(F.1)

We choose µ1 = 10.5, σ1 = 0.8, α1 = 0.02, β1 = 0, σ2 = 0.5, α2 = 1, β2 = 3, σ3 = 1, σ̃2 =
0.02. We sample three independent µ̃2 according to a uniform distribution Unif[2, 5] to validate the
consistency of the identification results.

For the training, we employ a simple auto-encoder architecture implementing both encoder and
decoder as 3-Layer MLP. We enforce the marginal invariance using the Max Mean Discrepancy loss
(MMD) on the first and last component ẑ1, ẑ3. Formally, the objective function writes

L(g, f̂) = Ex,x̃

[∥∥∥f̂(g(x))− x
∥∥∥2
2
+
∥∥∥f̂(g(x̃))− x

∥∥∥2
2

]
+ MMD(g(x)[1,3], g(x̃)[1,3]),

where x, x̃ denote the observational and ninterventional data, respectively.

Further training details are summarized in Tab. 3

G FURTHER DISCUSSIONS AND CONNECTIONS TO OTHER FIELDS

In this paper, we take a closer look at the wide range of CRL methods. Interestingly, we find that the
differences between them may often be more related to “semantics" than to fundamental method-
ological distinctions. We identified two components involved in identifiability results: preserving
information of the data and a set of known invariances. Our results have two immediate implications.
First, they provide new insights into the “CRL problem," particularly clarifying the role of causal
assumptions. We have shown that while learning the graph requires traditional causal assumptions
such as additive noise models or access to interventions, identifying the causal variables may not.
This is an important result, as access to causal variables is standalone useful for downstream tasks,
e.g., for training robust downstream predictors or even extracting pre-treatment covariates for treat-
ment effect estimation (Yao et al., 2024), even without knowledge of the full causal graph. Second,
we have exemplified how causal representation can lead to successful applications in practice. We
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Table 3: Training setup for synthetic ablations in § 5.2.

Parameter Value
Mixing function 3-layer MLP
Encoder 3-layer MLP
Decoder 3-layer MLP
Hidden dim 128
Activation Leaky-ReLU
Optimizer Adam
Adam: learning rate 1e-4
Adam: beta1 0.9
Adam: beta2 0.999
Adam: epsilon 1e-8
Batch size 4000
Sample size 200,000
# Epochs 500

moved the goal post from a characterization of specific assumptions that lead to identifiability, which
often do not align with real-world data, to a general recipe that allow practitioners to specify known
invariances in their problem and learn representations that align with them. In the domain generaliza-
tion literature, it has been widely observed that invariant training methods often do not consistently
outperform empirical risk minimization (ERM). In our experiments, instead, we have demonstrated
that the specific invariance enforced by V-REx (Krueger et al., 2021) entails good performance in
our causal downstream task (§ 5.1). Our paper leaves out certain settings concerning identifiability
that may be interesting for future work, such as discrete variables and finite samples guarantees.

One question the reader may ask, then, is “so what is exactly causal in CRL?”. We have shown that
the identifiability results in typical CRL are primarily based on invariance assumptions, which do not
necessarily pertain to causality. We hope this insight will broaden the applicability of these methods.
At the same time, we used causality as a language describing the “parameterization” of the system
in terms of latent causal variables with associated known symmetries. Defining the symmetries at
the level of these causal variables gives the identified representation a causal meaning, important
when incorporating a graph discovery step or some other causal downstream task like treatment
effect estimation. Ultimately, our representations and latent causal models can be “true” in the sense
of (Peters et al., 2014) when they allow us to predict “causal effects that one observes in practice”.
Overall, our view also aligns with “phenomenological” accounts of causality (Janzing & Mejia,
2024), that define causal variables from a set of elementary interventions. In our setting too, the
identified latent variables or blocks thereof are directly defined by the invariances at hand. From
the methodological perspective, all is needed to learn causal variables is for the symmetries defined
over the causal latent variables to entail some statistical footprint across pockets of data. If variables
are available, learning the graph has a rich literature (Peters et al., 2017), with assumptions that are
often compatible with learning the variables themselves. Our general characterization of the variable
learning problem opens new frontiers for research in representation learning:

G.1 REPRESENTATIONAL ALIGNMENT

Several works (Li et al. (2015); Moschella et al. (2022); Kornblith et al. (2019); Huh et al. (2024))
have highlighted the emergence of similar representations in neural models trained independently.
In Huh et al. (2024) is hypothesized that neural networks, trained with different objectives on various
data and modalities, are converging toward a shared statistical model of reality within their represen-
tation spaces. To support this hypothesis, they measure the alignment of representations proposing
to use a mutual nearest-neighbor metric, which measures the mean intersection of the k-nearest
neighbor sets induced by two kernels defined on the two spaces, normalized by k. This metric can
be an instance to the distance function in our formulation in Thm. 3.1. Despite not being optimized
directly, several models in multiple settings (different objectives, data and modalities) seem to be
aligned, hinting at the fact that their individual training objectives may be respecting some unknwon
symmetries. A precise formalization of the latent causal model and identifiability in the context of
foundational models remains open and will be objective for future research.
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G.2 ENVIRONMENT DISCOVERY

Domain generalization methods generalize to distributions potentially far away from the training,
distribution, via learning representations invariant across distinct environments. However this can
be costly as it requires to have label information informing on the partition of the data into environ-
ments. Automatic environment discovery (Creager et al. (2021); Arefin et al. (2024); Pezeshki et al.
(2024)) attempts to solve this problem by learning to recover the environment partition. This is an in-
teresting new frontier for CRL, discovering data symmetries as opposed to only enforcing them. For
example, this would correspond to having access to multiple interventional distributions but without
knowing which samples belong to the same interventional or observational distribution. Discovering
that a data set is a mixture of distributions, each being a different intervention on the same causal
model, could help increase applicability of causal representations to large obeservational data sets.
We expect this to be particularly relevant to downstream tasks were biases to certain experimental
settings are undesirable, as in our case study on treatment effect estimation from high-dimensional
recordings of a randomized controlled trial.

G.3 GEOMETRIC DEEP LEARNING

Geometric deep learning (GDL) (Bronstein et al. (2017; 2021)) is a well estabilished learning
paradigm which involves encoding a geometric understanding of data as an inductive bias in deep
learning models, in order to obtain more robust models and improve performance. One fundamental
direction for these priors is to encode symmetries and invariances to different types of transfor-
mations of the input data, e.g. rotations or group actions (Cohen & Welling (2016); Cohen et al.
(2018)), in representational space. Our work can be fundamentally related with this direction, with
the difference that we don’t aim to model explicitly the transformations of the input space, but the
invariances defined at the latent level. While an initial connection has been developed for disentan-
glement Fumero et al. (2021); Higgins et al. (2018), a precise connection between GDL and CRL
remains a open direction. We expect this to benefit the two communities in both directions: (i) by
injecting geometric priors in order to craft better CRL algorithms and (ii) by incorporating causality
into successful GDL frameworks, which have been fundamentally advancing challenging real-world
problems, such as protein folding (Jumper et al. (2021)).
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