FedSynth: Gradient Compression via Synthetic Data in Federated Learning

Anonymous Author(s) Affiliation Address email

Abstract

1	Model compression is important in federated learning (FL) with large models to
2	reduce communication cost. Prior works have been focusing on sparsification
3	based compression that could desparately affect the global model accuracy. In
4	this work, we propose a new scheme for upstream communication where instead
5	of transmitting the model update, each client learns and transmits a light-weight
6	synthetic dataset such that using it as the training data, the model performs similarly
7	well on the real training data. The server will recover the local model update via the
8	synthetic data and apply standard aggregation. We then provide a new algorithm
9	FedSynth to learn the synthetic data locally. Empirically, we find our method is
10	comparable/better than random masking baselines in all three common federated
11	learning benchmark datasets.

12 **1** Introduction

Federated Learning(FL) has been widely studied recently to train machine learning models without 13 directly accessing users' data. Despite being successful in achieving high utility performance 14 compared to centralized training, huge communication costs induced by current FL algorithms like 15 FedAvg[10] prevents using federated data to train large scale models. Specifically, communicating 16 the entire model between each client and the server could drastically slower the training process, and 17 imposes communication costs on the users. Many prior efforts have focused on sparsifying the model 18 to reduce communication cost, including masking the model updates [7, 14], low precision training 19 with quantization [1, 2, 3, 4, 12, 15], distillation [11, 18], etc. However, sparsification based methods 20 usually suffers from communication cost-utility trade-off: high compression rate could hurt model 21 quality. 22

To overcome such limitation, we propose a different way to think about model compression in FL. 23 Instead of a model update, which is the same size as the original model, we propose sending a batch 24 of carefully optimized synthetic data, which is significantly smaller in size. Each client crafts a set of 25 synthetic data such that the model updated by the synthetic data performs well on the client's original 26 training data. In this way, we could use a dataset that is significantly smaller than the client training 27 set to obtain a similar model update as if we use the original data. Each client then send the synthetic 28 data to the server. Upon receiving the synthetic data from each client, the server will use it to recover 29 the model updated by synthetic data. 30

Having this intuition in mind, we formally propose a new objective in federated learning for local clients at each communication round. Using this formulation, we propose an effective solver that could adapt to a wide family of existing federated learning algorithm. Specifically, we develop an algorithm that learns synthetic data for local clients under the FedAvg[10] framework. We empirically evaluate and compare our method with prior works, demonstrating advantage of transmitting synthetic data as an effective compression technique.

37 2 Background and Related Work

Compression in FL Model compression techniques has been widely studied in machine learning 38 community with a centralized dataset. Some widely used methods include gradient quantization[1], 39 gradient ternarization[17], using the sign of gradient[3], pruning based methods like masking[4], 40 etc. In federated learning, compression could happen at two places: transmitting model updates 41 from local client to the server (upstream); transmitting updated global model from the server to local 42 client (downstream). Recent works have proposed using sparsification techniques for both upstream 43 and downstream communication to reduce the cost of large scale federated learning [9, 12, 13]. 44 45 Different from our work, these works focused on communicating a sparse model between server and 46 client, where the model performance could significantly degrade given the same number of training steps. Goetz and Tewari [8] proposed a similar scheme to transmit synthetic data via upstream 47 communication. However, they propose optimizing synthetic data to minimize the distance between 48 model updated by synthetic data and model updated by training data. Our proposed objective directly 49 optimizes the synthetic data so that the resulting model achieves good performance on the true 50 training data. 51

Dataset Distillation A motivation of our work is to learn a small set of synthetic data that could 52 perform equally well on a given model compared to real data used to train the model. [16] proposed 53 a dataset distillation algorithm that optimizes synthetic data w_{syn} such that the model learned using 54 55 w_{sun} as the training data approximates the model learned using the true training data. Although 56 similar to our approach, they only considered distillation from a centralized dataset at one time while in our case we learn the objective locally for each client at every communication round. Our proposed 57 method is also more general in the method to update the model using synthetic data (See Section 3.2) 58 rather than restricted to SGD. 59

60 **3** Communication via Synthetic Data

61 3.1 Formulation

⁶² Traditional Federated Learning(FL) aims at solving the following objective:

$$\min_{w} \sum_{k=1}^{K} p_k F_k(w) \tag{1}$$

where $F_k(w)$ is the local objective for client k, p_k are pre-defined weights such that $\sum_k p_k = 1$. At 63 each communication round, the central server selects a subset of clients and send the current model 64 to the them. Each client then separately optimizes its local objective iteratively using stochastic 65 gradients. Then the server collects and aggregates the model updates from every client to obtain the 66 new global model. Note that model updates have the same size as the actual global model, which 67 means if a large-scale model is used as the model, the client would need to send a model as large as 68 the global model. Under our proposed method, instead of sending the model updates, each client 69 now sends batches of synthetic data generated locally to the server. The server will then utilize the 70 synthetic data to recover the local model updates. We formalize the optimization process of synthetic 71 data as the following. 72

For client k, let $D_k^{tr} = (X_k, Y_k)$ be the training data and w_k^t the local copy of global model at the t-th communication round. In traditional FL, at every communication round, client k tries to solve

$$\min_{w} F_k(D_k^{tr}; w) \tag{2}$$

⁷⁵ using w_k^t is as the initialization of w. Note that a lot of existing federated learning methods rely ⁷⁶ on using iterative gradient methods to solve for Equation 2. Let's define the update process for ⁷⁷ any client k at communication round t to be ClientUpdate^k($\cdot; w_k^t$). Thus, in the traditional FL ⁷⁸ setting, local optimization process could be written as ClientUpdate^k($D_k^{tr}; w_k^t$). The goal is to find ⁷⁹ a set of synthetic data $D_k^{syn} = \{x_k^i, y_k^i\}_{i=1,\cdots,m}$ that is significantly smaller in memory size than ⁸⁰ w, such that ClientUpdate^k($D_k^{syn}; w_k^t$) is similar to optimizing ClientUpdate^k($D_k^{tr}; w_k^t$). At the ⁸¹ end of that communication round, client k will send D_k^{syn} to the server and the server could recover ⁸² $w_k^{syn} =$ ClientUpdate^k($D_k^{syn}; w_k^t$) and utilizes w_k^{syn} as client k's updated model for aggregation.

- Now the problem becomes how can we find D_k^{syn} that distills the knowledge from D_k^{tr} . The most direct way to do so is to minimize a distance metric between the model generated from synthetic data 83
- 84 and the model generated from true train data. However, note that our purpose is that using D_k^{syn} , 85
- we could obtain an updated model w_k^{syn} such that $F_k(D_k^{tr}; w_k^{syn})$ is as good as $F_k(D_k^{tr}; w_k^{tr})$. With certain purpose in mind, we propose the following objective: 86

87

$$\min_{D_k^{syn}} F_k\left(D_k^{tr}; \operatorname*{arg\,min}_w F_k\left(D_k^{syn}; w\right)\right) \tag{3}$$

88

- Note that when Equation 2 is convex in w and Equation 3 is convex in D_k^{syn} , given the same D_k^{tr} , both equations are essentially finding the same optimal local model. However, when there doesn't exist a closed form solution for $\arg \min_w F_k(D_k^{syn}; w)$, the inner optimization problem for Equation 3 could not be solved exactly with finite number of steps at every communication round. To find an 89
- 90

91 approximate solution, most existing FL methods utilize gradient based methods like SGD. Therefore, 92

we propose to optimize the following objective in practice instead of Equation 3: 93

$$\min_{D^{syn}} F_k\left(D_k^{tr}; \texttt{ClientUpdate}_k\left(D_k^{syn}; w_k^t\right)\right) \tag{4}$$

Without loss of generality, ClientUpdate could be any local optimization methods including GD, 94 SGD, etc. 95

3.2 Algorithm 96

We summarize our algorithm for federated learning via synthetic data in Algorithm 1. Our algorithm 97 is based off of FedAvg[10], a communication efficient method widely used in federated learning. At 98 each communication round, instead of performing SGD on the local training data, each selected client 99 k first initializes a synthetic dataset D_k^{syn} (line 5). To find the best w_k^{syn} , synthetic updated model 100 generated by D_k^{syn} (line 7) that minimizes the its loss on the original training data D_k^{tr} , we propose to apply gradient descent on D_k^{syn} for multiple iterations (line 8). After that, client k would send D_k^{syn} , an entity that requires significantly less storage compared to the model weight, back to the server. To 101 102 103 recover client k's learned model, the server updates w_k^t with D_k^{syn} using the same process client k generated w_k^{syn} (line 12). We also provide an example of the ClientUpdate method: running SGD on w_k^t using the D_k^{syn} (line 16-19). This is consistent to the local update rule in FedAvg, where client 104 105 106 applies SGD to update w_k^t using its local training data. In order to fully utilize the advantage of using synthetic data to distill the information from the original training data, we also propose the following 107 108 techniques while learning D_k^{syn} . 109

Multiple batches of synthetic data At every communication round, FedAvg allows a selected client 110 k to split its local training data into multiple batches and perform minibatch-SGD for multiple epochs. 111 Motivated by this, we allow client k to create multiple batches of synthetic data. Instead of running 112 one step gradient descent on the entire synthetic data, client k updates w_k^t sequentially using different 113 batches of synthetic data, as specified in Line 18 of Algorithm 1. 114

Trainable label In a traditional supervised classification task, the data usually has fixed label y. 115 When using cross entropy as the loss function, fixed y is encoded as an one-hot vector in $\mathbb{R}^{|C|}$ where 116 C is the set of all labels. However, this is not necessary for synthetic data. The purpose of using 117 synthetic data is only to generate a model that performs well on the real training data. Restricting 118 any synthetic x_i to have a fixed label y_i is too stringent and limit the search space for pairs of 119 (x_i, y_i) to learn the information of the original training data. Hence, we propose randomly initializing 120 $y_i \sim Uniform(0,1)^{|C|}$. While updating synthetic data (x_i, y_i) , we calculate 121

$$x_i \leftarrow x_i - \eta_x \nabla_{x_i} F_k(D_k^{tr}; w_k^{syn}) \tag{5}$$

$$y_i \leftarrow y_i - \eta_y \nabla_{y_i} F_k(D_k^{tr}; w_k^{syn}) \tag{6}$$

It is worth noting that under certain scenario, we do not limit y_i to be a vector representing the 122 probability that x_i belongs to a certain class. Each entry for y_i could be arbitrary real numbers so that 123 we could search in the entire $\mathbb{R}^{|C|}$ to find a good local minima for y_i . 124

Experiments 4 125

In this section we empirically evaluate our Algorithm 1 on common large scale federated learning 126 benchmarks. We first demonstrate that given the same compression rate our method could achieve 127

Algorithm 1 FedSynth

1: Input: $T, E, \eta, \eta_w, w^0, \{D_k^{tr}\}_{k=1,\dots,K}$ 2: for $t = 0, \dots, T - 1$ do

- Server selects a subset of clients S_t and broadcasts w^t to S_t . 3:
- for all $k \in S_t$ in parallel do 4:
- Client k initializes $w_k^t = w^t$ and m batches of synthetic data $D_k^{syn} = \{x_i, y_i\}_{i=1, \dots, m}$. 5:
- for $j = 0, 1, \dots, E$ do 6:
- Client k obtains the model updated by D_{k}^{syn} 7:

$$w_k^{syn} = \texttt{ClientUpdate}(D_k^{syn}; w_k^t)$$

Client k updates D_k^{syn} by 8:

$$D_k^{syn} \leftarrow D_k^{syn} - \eta \nabla_{D_k^{syn}} F_k(D_k^{tr}; w_k^{syn})$$

- 9: end for
- Client k sends D_k^{syn} back to the server. 10:
- 11: end for
- Server recovers $\widehat{w}_k^{syn} = \texttt{ClientUpdate}(D_k^{syn}, w_k^t)$ for every k. Server aggregates the weight 12:
- 13:

$$w^{t+1} = w^t + \frac{1}{|S_t|} \sum_{k \in S_t} (\widehat{w}_k^{syn} - w^t)$$

- 14: end for
- 15: return w^T
- 16: ClientUpdate($\{x_i, y_i\}_{i=1,2,\dots,m}; w$)
- 17: for $j = 1, \dots, m$ do
- Client performs minibatch-SGD locally 18:
 - $w \leftarrow w \eta_w \nabla_w F_k((x_i, y_i); w)$
- 19: end for

higher test accuracy then random masking, a popular compression method used in federated learning. 128 We also show how number of batches of synthetic data(m) and the size of each batch could affect the 129 resulting model's performance. 130

4.1 Experimental setup details 131

For fair comparison, all methods are trained for the same amount of communication rounds for 132 each dataset. For baseline method(Random Masking), we only apply the compression technique 133 during the upstream communication (i.e. only compress the model sent from client to the server) 134 in order to be consistent to our method. For a fixed compression rate, we apply grid search to tune 135 the hyperparameters (E, η, η_w) for our method on the validation data and report the test accuracy 136 corresponding to the best validation accuracy. We similarly finetune the hyperparameters for random 137 masking and baseline FedAvg as well. For all our experiments, we evaluate the test accuracy and 138 compression rate for a fixed number of communication rounds T. All experiments are performed 139 on common federated learning benchmark datasets. Data for FEMNIST and Reddit are naturally 140 partitioned among all the users. 141

4.2 Comparison between FedSynth and Random Masking 142

We evaluated our method on three commonly used federated benchmark datasets: FEMNIST, MNIST, 143 and Reddit [5]. The results are shown in Table 1. Under all three datasets, our method achieves 144 comparable/better performance then baseline random masking methods. Specifically, under a low 145 compression rate, there is an advantage of using our method over random masking in all three 146 datasets. Under Reddit next word prediction task where the utility performance is extremely sensitive 147 to masking, our method that utilizes synthetic data without trainable y achieves higher test accuracy 148 than prior works under all compression rates we experimented. It is also worth noting that our 149 method with trainable y does not always outperform synthetic data with a fixed label, as shown in the 150 FEMNIST experiment. 151

comp	pression rate is I	nighlighted				
	FEMNIST	FedAvg	Random Masking	FedSvnth(Ours)	FedSynth w/ Trainable u (Ours)	

Table 1: Comparing our method with previous compression baselines. The best performance under each given

1x69.2969.2969.2969.29 $5.8x$ - 68.21 68.63 46.67 $11.6x$ - 67.34 63.27 39.98 MNIST FedAvgRandom MaskingFedSynth(Ours)FedSynth w/ Trainable y (Ours) $1x$ 97.74 97.74 97.74 97.74 $7.8x$ - 97.08 95.28 97.25 $15.6x$ - 96.94 93.68 96.62 Reddit FedAvgRandom MaskingFedSynth(Ours)FedSynth w/ Trainable y (Ours) $1x$ 14.19 14.19 14.19 $1.3x$ - 8.20 8.86 - $2.6x$ - 4.87 4.89 -	F ENINIS I	reuAvg	Kandoni Masking	reusynun(Ours)	reusyllul w/ Italiable y (Ouis)
11.6x - 67.34 63.27 39.98 MNIST FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 97.74 97.74 97.74 97.74 7.8x - 97.08 95.28 97.25 15.6x - 96.94 93.68 96.62 Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	1x	69.29	69.29	69.29	69.29
MNIST FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 97.74 97.74 97.74 97.74 7.8x - 97.08 95.28 97.25 15.6x - 96.94 93.68 96.62 Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	5.8x	-	68.21	68.63	46.67
1x 97.74 97.74 97.74 97.74 7.8x - 97.08 95.28 97.25 15.6x - 96.94 93.68 96.62 Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	11.6x	-	67.34	63.27	39.98
7.8x - 97.08 95.28 97.25 15.6x - 96.94 93.68 96.62 Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	MNIST	FedAvg	Random Masking	FedSynth(Ours)	FedSynth w/ Trainable y (Ours)
15.6x - 96.94 93.68 96.62 Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	1x	97.74	97.74	97.74	97.74
Reddit FedAvg Random Masking FedSynth(Ours) FedSynth w/ Trainable y (Ours) 1x 14.19 14.19 14.19 14.19 1.3x - 8.20 8.86 -	7.8x	-	97.08	95.28	97.25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.6x	-	96.94	93.68	96.62
1.3x - 8.20 8.86 -	Reddit	FedAvg	Random Masking	FedSynth(Ours)	FedSynth w/ Trainable y (Ours)
	1x	14.19	14.19	14.19	14.19
2.6x - 4.87 4.89 -	1.3x	-	8.20	8.86	-
	2.6x	-	4.87	4.89	-

Table 2: The effect of number of synthetic batches and batch size on the test accuracy of FedSynth.

FEMNIS	ST	FedSynth	FedSynth w/ Trainable y
Synthetic Batches	Batch size		
1	10	11.87	10.93
5	5	64.21	29.43
10	5	67.92	46.67
10	2	60.19	39.72
20	2	68.63	42.32
10	1	56.47	26.29
20	1	62.37	39.98

152 4.3 Number of synthetic batches vs. batch size

c

As we mentioned in Section 3, each client could split their synthetic data into multiple batches. In 153 Table 2, we demonstrate how different number of synthetic batches and batch size could influence the 154 model performance. Given the same number of data points, having more small batches significantly 155 outperforms having few large batches. On one extreme where we treat the entire synthetic dataset as 156 a large batch, i.e. w_k^t is only updated once to get w_k^{syn} , model trained using our methods is barely 157 useful. However, on the other extreme where every single piece of data is treated as a separate batch, 158 our method is able to achieve significantly better performance. We would also like to highlight 159 that the more synthetic data we use, the better model performance we could obtain, given the same 160 number of synthetic batches used for getting w_k^{syn} . 161

162 **5** Conclusion and Future works

In this work, we propose a new objective for communication efficient federated learning along with a practical algorithm to solve it. We showed empirically that our methods outperforms baseline methods at low compression level in all three datasets we evaluated. In future works, we aim at making the algorithm more scalable so that learning of synthetic data would require less iterations. We also want to look at sending differentially private synthetic data to protect the local data from potential privacy leakage.

169 **References**

- [1] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Communication-efficient sgd via gradient quantization and encoding. *Advances in Neural Information Processing Systems*, 30, 2017.
- [2] D. Basu, D. Data, C. Karakus, and S. Diggavi. Qsparse-local-sgd: Distributed sgd with quantization,
 sparsification and local computations. *Advances in Neural Information Processing Systems*, 32, 2019.
- [3] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signsgd: Compressed optimisation for non-convex problems. In *International Conference on Machine Learning*. PMLR, 2018.
- [4] A. Beznosikov, S. Horváth, P. Richtárik, and M. Safaryan. On biased compression for distributed learning.
 arXiv preprint arXiv:2002.12410, 2020.
- [5] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar. Leaf: A benchmark for federated settings, https://leaf.cmu.edu/. arXiv preprint arXiv:1812.01097, 2018.
- [6] G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. Emnist: Extending mnist to handwritten letters. In
 2017 International Joint Conference on Neural Networks (IJCNN), pages 2921–2926, 2017.
- [7] N. Dryden, T. Moon, S. A. Jacobs, and B. Van Essen. Communication quantization for data-parallel
 training of deep neural networks. In 2016 2nd Workshop on Machine Learning in HPC Environments
 (MLHPC), pages 1–8. IEEE, 2016.
- [8] J. Goetz and A. Tewari. Federated learning via synthetic data. *arXiv preprint arXiv:2008.04489*, 2020.
- [9] F. Haddadpour, M. M. Kamani, A. Mokhtari, and M. Mahdavi. Federated learning with compression:
 Unified analysis and sharp guarantees. In *International Conference on Artificial Intelligence and Statistics*.
 PMLR, 2021.
- [10] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelligence and Statistics*, pages 1273–1282. PMLR, 2017.
- [11] A. Polino, R. Pascanu, and D. Alistarh. Model compression via distillation and quantization. *arXiv preprint arXiv:1802.05668*, 2018.
- [12] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani. Fedpaq: A communication efficient federated learning method with periodic averaging and quantization. In *International Conference* on Artificial Intelligence and Statistics. PMLR, 2020.
- [13] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek. Robust and communication-efficient federated
 learning from non-i.i.d. data. *IEEE Transactions on Neural Networks and Learning Systems*, 2020.
- [14] N. Strom. Scalable distributed dnn training using commodity gpu cloud computing. In *Sixteenth annual conference of the international speech communication association*, 2015.
- [15] A. T. Suresh, X. Y. Felix, S. Kumar, and H. B. McMahan. Distributed mean estimation with limited communication. In *International conference on machine learning*, pages 3329–3337. PMLR, 2017.
- [16] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros. Dataset distillation. *arXiv preprint arXiv:1811.10959*, 2018.
- [17] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li. Terngrad: Ternary gradients to reduce communication in distributed deep learning. *Advances in neural information processing systems*, 30, 2017.
- [18] C. Wu, F. Wu, R. Liu, L. Lyu, Y. Huang, and X. Xie. Fedkd: Communication efficient federated learning
 via knowledge distillation. *arXiv preprint arXiv:2108.13323*, 2021.
- [19] C. Xie, S. Koyejo, and I. Gupta. Asynchronous federated optimization. *arXiv preprint arXiv:1903.03934*, 2019.

Table 3

Dataset	Number of clients	Model	Task Type
FEMNIST [5, 6]	1000	4-layer CNN[19]	62-class image classification
MNIST	60	4-layer CNN[19]	10-class image classification
Reddit [5]	100	Stacked LSTM	Next word precition

211 A Appendix

212 A.1 Datasets and Models

²¹³ We summarize the details of the datasets and models we used in our empirical study in Table 3.

Our experiments include both text (Reddit) and image (MNIST and FEMNIST) datasets with both

215 classification task (MNIST and FEMNIST) and next-word precition task (Reddit).