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Abstract

Reliable out-of-distribution (OOD) detection is a fundamental step towards a safer
implementation of modern machine learning (ML) systems under distribution
shift. In this paper, we introduce IGEOOD, an effective method for detecting OOD
samples. IGEOOD applies to any pre-trained neural network, works under different
degrees of access to the ML model, does not require OOD samples or assumptions
on the OOD data, but can also benefit (if available) from OOD samples. By building
on the geodesic (Fisher-Rao) distance between the underlying data distributions,
our discriminator combines confidence scores from the logits outputs and the
learned features of a deep neural network. Empirically, we show that IGEOOD is
competitive and often outperforms state-of-the-art methods by a large margin on a
variety of networks architectures and datasets.

1 Introduction

Out-Of-Distribution (OOD) or novelty detection is one of the main objectives in conceiving reliable
ML systems [1]. An application of these methods arises in monitoring ML-based online services
for drifting distributions. Tracking changes in the underlying data distribution is challenging as
they contain unusual (irregular or unexpected) events and have large dimensions. For instance,
the detection of such anomalous observations will have to rely on the intrinsic properties of the
ML models, methods, and algorithms based on their statistical behavior in the presence of in-
distribution data. Classic approaches to OOD detection consist of deriving metrics for detecting those
abnormalities from the lens of ML models (e.g., softmax output, latent representations across layers),
provided that the data is high dimensional and often only a single test example is available.

1.1 Contributions

In this paper, we propose IGEOOD, a new unified and effective method to perform OOD detection
by rigorously exploring the information-geometric properties of the feature space on various depths
of a DNN. IGEOOD provides a flexible framework that applies to any pre-trained softmax neural
classifier. A key ingredient of IGEOOD is the Fisher-Rao distance. This distance is used as an effective
differential geometry tool for clustering in the context of multivariate Gaussian pdfs [30, 37]. In our
context, we measure the dissimilarity between probability (in and out) distributions, as the length of
the shortest path within the manifold induced by the underlying class of distributions (i.e., the softmax
probabilities of the neural classifier or the densities modeling the learned representations across the
layers). By doing so, we can explore statistical invariances of the geometric properties of the learned
features [5]. Our method adapts to various scenarios depending on the level of information access of
the DNN, uses only in-distribution samples but can also benefit (if available) of OOD samples.
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1.2 Related works

OOD detectors are binary classifiers that discriminate in- and out-of-distribution samples. A few
works [36, 14, 4, 26, 40, 39, 12] propose retraining the base (or an auxiliary) model with synthetic or
ground truth OOD samples to serve as a classifier and as an OOD discriminator. Disposing of both
OOD and in-distribution samples during training enables the hidden layers to learn representations to
facilitate OOD detection. These methods will not be compared to ours in this work, as they entail
retraining or modifying the base neural network by using OOD data to further train parameters.
Moreover, this assumes that OOD samples are stationary, which is an unrealistic assumption in
practical scenarios. The work [27] demonstrates failure modes of OOD detection methods to better
understand how to improve them, especially how spurious features like image background can vastly
degrade detection performance. references [35, 17, 6, 38, 42, 33, 45, 25] study OOD detection in the
context of generative models. Open set recognition [3], outlier or anomaly detection [29], concept
drift detection [31], and adversarial attacks detection [10, 23] are related topics.

WHITE-BOX scenario. This class of OOD detectors allows discriminators to have access to all
intermediate layer outputs. Naturally, they have access to more information than BLACK-BOX or
GREY-BOX techniques, which provide detection based only on the network’s outputs, i.g., MSP [13],
ODIN [21], and the free-energy [22] based methods to name a few. reference [34] proposes high
order Gram matrices to perform OOD detection, by computing class-conditional pairwise feature
correlations across the hidden layers of the network. The work [20] models the latent features’ outputs
of DNN models as a class-conditional Gaussian mixture distribution with tied covariance matrix and
class-conditional mean vectors. They calculate the Mahalanobis distance between an OOD sample as
a single estimator of the mean of a class-conditional Gaussian distribution with covariance matrix
estimated on the entire training set. The importance of each feature component and hyperparameters
are tuned using validation data. The work [32] modifies the Mahalanobis distance-based OOD
detector [20] to improve near-OOD detection by reducing the importance of features shared by in-
and out-of-distribution data.

2 IGEOOD: OOD Detection using the Fisher-Rao Distance

In this section, we introduce IGEOOD, a flexible framework for OOD detection. IGEOOD is imple-
mented in two ways: at the level of the logits using temperature scaling (Section 2.1), and layer-wise
level (Section 2.2). The key ingredient of IGEOOD is the Fisher-Rao (F-R) distance [2] This distance
measures the dissimilarity between two probability models within a class of probability distributions
by calculating the geodesic distance between two points on the learned manifold.

2.1 IGEOOD score using the softmax probability

For the classification problem, we can take the temperature T scaled softmax function (Eq. (1)) as an
approximation of a class-conditional probability distribution:

qθ (y|f(x);T ) ,
exp (fy(x)/T )∑

y′∈Y exp (fy′(x)/T )
, (1)

where f : X → RC is a vectorial function with f ,
(
f1, f2, . . . , fC

)
and fy(·) denotes the y-th logits

output value of the DNN classifier. The F-R distance dFR−Logits between two softmax probability
distributions can be shown by1

dFR−Logits
(
qθ(·|f(x)), qθ(·|f(x′))

)
, 2 arccos

∑
y∈Y

√
qθ
(
y|f(x)

)
qθ
(
y|f(x′)

) . (2)

Class conditional centroid estimation. We model the training dataset class-conditional posterior
distribution by calculating the centroid of the logits representations of this set. Precisely, we compute
the centroid for the logits of each class y of the in-distribution training dataset DN corresponding to

1We refer the reader to the appendix (see Section A).
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the F-R distance, i.e.,

µy , min
µ∈RC

1

Ny

∑
∀ i : yi=y

dFR−Logits
(
qθ(·|f(xi)), qθ(·|µ)

)
, (3)

where Ny is the amount of training examples with label y. We optimize this expression using SGD
algorithm, where the parameter to be tuned is µ in the logits space.

OOD detection score. We propose the F-R distance-based OOD detection score FR0(x) on the
space of the logits to be the sum of the distances between f(x) and each individual class conditional
centroid µy calculated by Eq. (3). We denote it as follows:

FR0(x) ,
∑
y∈Y

dFR−Logits
(
qθ(·|f(x)), qθ(·|µy)

)
. (4)

We obtained better performance by taking the sum instead of the minimal distance. A likely
explanation for this would be that Eq. (4) leverages useful information related to the example’s
confidence score for each class y.

2.2 IGEOOD score leveraging latent features

For each layer, we define a set of class-conditional Gaussian distributions with diagonal standard
deviation matrix σ(`) and class-conditional mean µ(`)

y , where y ∈ {1, . . . , C} and ` is the index of
the latent feature. We compute the empirical estimates of these parameters according to

µ(`)
y =

1

Ny

∑
∀i : yi=y

f (`) (xi) , and σ(`) = diag

√ 1

N

∑
y∈Y

∑
∀i : yi=y

(
f
(`)
j (xi)− µ(`)

y,j

)2 , (5)

where j ∈ {1, . . . , k}, k is the size of feature `, and f (`)(·) is the output of the network for feature `.
The F-R distance ρFR between two univariate Gaussian pdfsN (µ1, σ

2
1) andN (µ2, σ

2
2) is given by2

ρFR ((µ1, σ1) , (µ2, σ2)) =
√
2 log

∣∣∣( µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣+ ∣∣∣( µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣∣∣∣( µ1√
2
, σ1

)
−
(
µ2√
2
,−σ2

)∣∣∣− ∣∣∣( µ1√
2
, σ1

)
−
(
µ2√
2
, σ2

)∣∣∣ . (6)

where (µi, σi) is a 2-dimensional vector with components µi and σi and | · | is the 2-norm. Similarly,
the F-R distance dFR−Gauss between two multivariate Gaussian pdfs with diagonal standard deviation
matrix is derived from the univariate case and is given by

dFR−Gauss

(
(µ,σ), (µ′,σ′)

)
=

√√√√ k∑
i=1

ρFR
(
(µi, σi,i) ,

(
µ′i, σ

′
i,i

))2
, (7)

where k is the cardinality of the distributions N (µ,σ2) and N (µ′,σ′2), µi is the i-th component of
the vector µ, and σi,i is the entry of index i, i of the standard deviation matrix σ.

Experimental support for a diagonal Gaussian mixture model. We observed that the latent
features covariance matrices are often ill-conditioned and are diagonal dominant. In other words, the
condition number of the covariance matrix often diverges, and the magnitude of the diagonal entry in
a row is greater than or equal to the sum of all the other entries in that row for most rows.

Fisher-Rao distance-based feature-wise confidence score. We derive a confidence score by ap-
plying the F-R distance between the test sample x and the closest class-conditional diagonal Gaussian
distribution. We can consider two situations: (i) we do not have access to any validation OOD data
whatsoever. In this case, the natural choice is to model the test samples as Gaussian distribution with
the same diagonal standard deviation as the learned representation, i.e.,

FR`(x) = min
y∈Y

dFR−Gauss

(
(x,σ(`)), (µ(`)

y ,σ(`))
)
; (8)

and (ii), we dispose of a validation OOD dataset on which the features’ diagonal standard deviation
matrices σ′(`) and µ′(`) can be estimated, as well as the quantity

FR′`(x) = min
y∈Y

dFR−Gauss

(
(x,σ(`)), (µ′(`),σ′(`))

)
. (9)

2The reader can be refereed to the appendix (Section A) for the derivation of this distance.
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Feature ensemble. Similarly to [20], we combine the confidence scores of the logits and low-level
features through a linear combination to emphasize features that demonstrate a greater capacity for
detecting abnormal samples. The following equation summarizes the IGEOOD score:

FR(x) , α0FR0(x) +
∑
`

α` · FR`(x) + α′` · FR′`(x). (10)

3 Experimental Results

The experimental setup follows the setting established by [13], [21] and [20]. We use two pre-trained
deep neural networks architectures for image classification tasks: DenseNet-BC-100 [16] and a
ResNet-34 [11]. We take as in-distribution data images from CIFAR-10 [18], CIFAR-100 and SVHN
[28] datasets. For out-of-distribution data, we use natural image examples from the datasets: Tiny-
ImageNet [19], LSUN [44], Describable Textures Dataset [7], Chars74K [8], Places365 [46], iSUN
[43] and a synthetic dataset generated from Gaussian noise. For models pre-trained on CIFAR-10,
data from CIFAR-100 and SVHN are also considered OOD; for models pre-trained on CIFAR-100,
data from CIFAR-10 and SVHN are considered OOD, and for models pre-trained on SVHN, the
CIFAR-10 and CIFAR-100 datasets are considered OOD. Even though we ran experiments with
image data, IGEOOD could be applied to any neural-based classification task.

We consider two tuning scenarios: one with data from adversarially generated [10] (FGSM) samples
from the training dataset, and another with data from the OOD test set. For the former, we tune
hyperparameters for each method with generated data (pseudo OOD) and in-distribution data. While
for the latter, we tune hyperparameters with 1,000 OOD data samples and in-distribution data. We
derive two methods: IGEOOD+, which is given by Eq. (10) and considers that we have an estimate
on the diagonal covariance matrix and mean vector from OOD data as additional information; and
IGEOOD, which doesn’t consider any prior on OOD data, i.e., set α′` = 0 on Eq. (10).

Comparison with Mahalanobis. For each DNN model and in-distribution dataset pair, we report
the average OOD detection performance for Mahalanobis [20], IGEOOD and IGEOOD+. Table 1
validates the contributions of our techniques. We observe substantial performance improvement in
all experiments for the left-hand side of the table, where IGEOOD+ outperforms Mahalanobis on
average for all test cases, recording an improvement up to 23% on TNR at TPR-95%. To assess the
consistency of IGEOOD to the choice of validation data, we measured the detection performance when
hyperparameters are tuned only using in-distribution and generated adversarial data as observed in the
right-hand side of Table 1. In this setup, IGEOOD improves by 2.5% the average TNR at TPR-95%
across all datasets and models, but is sometimes outperformed by 2-3%.

Table 1: Average and standard deviation of OOD detection performance for the WHITE-BOX settings.
The abbreviation TNR-95%, C-10 and C-100 stands for TNR at TPR-95%, CIFAR-10 and CIFAR-
100, respectively. The extended results can be found in Tables 6 and 7 in the appendix.

Tuning on OOD data Tuning on adversarial data
TNR-95% AUROC TNR-95% AUROC

Model In-dist. Mahalanobis / IGEOOD+ (ours) Mahalanobis / IGEOOD (ours)

DenseNet
C-10 76.6±31/92.6±14 92.1±12/98.4±3.0 75.9±30/77.9±29 91.7±12/94.0±9.0

C-100 67.2±28/90.2±21 90.2±13/97.7±5.0 60.4±34/70.9±35 85.3±19/90.8±13

SVHN 93.3±8.0/98.0±2.0 98.6±1.0/99.6±0.1 93.7±10/92.2±9.0 98.6±2.0/98.4±1.0

ResNet
C-10 82.5±23/91.6±16 96.5±4.0/98.4±3.0 78.6±24/77.3±32 95.3±6.0/90.0±15

C-100 70.4±30/86.4±23 91.9±10/97.1±5.0 57.4±36/65.1±33 86.9±13/88.6±15

SVHN 96.8±6.0/98.9±2.0 99.2±1.0/99.7±0.1 96.3±8.0/93.6±14 99.1±1.0/98.4±3.0

Average and Std. 81.1±11/92.9±4.0 94.8±4.0/98.5±1.0 77.0±15/79.5±10 92.8±5.4/93.4±3.9

Ablation study. The IGEOOD score has three components, FR0, FR`, and FR′`, that together
compose the final metric given by Eq. (10). The outputs of the network provide limited OOD
detection capacity. Always when available, the intermediate features, i.e., FR`, are a valuable resource
for OOD detection. Moreover, when few reliable OOD data are available, calculating FR′` can further
improve the detection performance as shown on the left side column of Table 1. Also, data from a
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source other than in-distribution, e.g., adversarial samples, is enough for tuning hyperparameters and
combining features, as observed on the right side column of Table 1. Figure 1 shows the detection
performance for each hidden feature of a DenseNet as well as the scores histograms for a particular
task for both Mahalanobis and IGEOOD scores.

(a) Block 1. (b) Block 2. (c) Block 3.

Figure 1: Histograms of the Mahalanobis and IGEOOD scores for the outputs of each hidden block of
a DenseNet model on CIFAR-10 (in-dstribution) and SVHN (out-of-distribution) datasets.

IGEOOD compared to other WHITE-BOX methods. Even though reference [20] shares the clos-
est setup to ours, recent literature also proposes OOD detection in a WHITE-BOX setting, achieving
state-of-the-art in a few benchmarks. Notably, [34, 15, 47] achieve great performance in a range of
benchmarks. Thus, we report the results from the original references in Table 2. This setup considers
that a few OOD samples are available for tuning. We refer the reader to the appendix (see Section D)
where we provide a table of results with validation on adversarial data.

Table 2: TNR at TPR-95% (%) performance comparison in a WHITE-BOX setting considering the
original results from [20, 34, 15, 47]. Methods with an (*) are tuned only with in-distribution data.

OOD
dataset

CIFAR-10 CIFAR-100 SVHN
Mahalanobis [20] / Gram Matrix* [34] / DeConf-C* [15] / Res-Flow [47] / IGEOOD / IGEOOD+

D
en

se
N

et iSUN 95.3/99.0/ - / - /97.7/99.8 87.0/95.9/ - / - /93.8/99.7 99.9/99.4/ - / - /98.3/99.9
LSUN 97.2/99.5/99.4/98.2/98.5/99.9 91.4/97.2/98.7/96.3/95.2/99.9 99.9/99.5/ - /100/97.1/99.9
TinyImgNet 95.0/98.8/99.1/96.4/95.7/99.8 86.6/95.7/98.6/93.0/94.5/99.5 99.9/99.1/ - /100/98.2/99.9
SVHN/C-10 90.8/96.1/98.8/94.9/98.9/99.9 82.5/89.3/95.9/84.9/93.3/99.6 96.8/80.4/ - /99.0/91.6/98.3

R
es

N
et

iSUN 97.8/99.3/ - / - /97.2/99.9 89.9/94.8/ - / - /93.4/99.8 99.7/99.4/ - / - /99.8/100
LSUN 98.8/99.6/ - /99.0/98.4/100 90.9/96.6/ - /96.2/94.3/100 99.9/99.6/ - /100/99.7/99.9
TinyImgNet 97.1/98.7/ - /97.8/96.3/99.6 90.9/94.8/ - /94.6/90.1/99.6 99.9/99.3/ - /100/99.7/99.9
SVHN/C-10 87.8/97.6/ - /96.5/98.8/99.8 91.9/80.8/ - /93.0/91.6/99.7 98.4/85.8/ - /99.4/97.7/99.7

4 Summary and Concluding Remarks

In this work, we introduced IGEOOD, an effective and flexible method for Out-Of-Distribution (OOD)
detection that applies to any pre-trained neural network. The main feature of IGEOOD relies on the
geodesic distance of the probabilistic manifold of the learned latent representations that induces an
effective measure for OOD detection. The Fisher-Rao distance between pdf of the latent feature,
corresponding to the test sample, and a reference pdf, corresponding to the conditional-class of
pdfs, provides an effective confidence score. We consider diverse testing environments where prior
knowledge of OOD data may or may not be available. Experimentally, we showed that IGEOOD can
significantly and consistently improves the accuracy of OOD detection on several DNN models and
across various OOD datasets, achieving new state-of-the-art performances on a few benchmarks.
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A Review of Fisher-Rao Distance (FRD)

In this section, we review some results from references [2, 30]. We intend to clarify some basic concepts
surrounding the Fisher-Rao distance while motivating the use of this measure in the context of OOD detection.

In few words, the Fisher-Rao’s distance is given by the geodesic distance, i.e., the shortest path between points
in a Riemannian space induced by a parametric family. Consider the family C of probability distributions over
the class of discrete concepts or labels: Y = {1, . . . , C}, denoted by C ,

{
qθ(·|x) : x ∈ X ⊆ RC

}
.

We are interested in measuring the distance between probability distributions qθ(·|x) with respect to the testing
input x and a population of inputs drawn accordingly to the in-distribution data set. To this end, we first need to
characterize the Fisher-Rao distance for two inputs or for two probability distributions qθ, q′θ ∈ C.

Assume that the following regularity conditions hold [2]:

(i) ∇x qθ(y|x) exists for all x, y and θ ∈ Θ;

(ii)
∑
y∈Y
∇x qθ(y|x) = 0 for all x and θ ∈ Θ;

(iii) G(x) = EY∼qθ(·|x)

[
∇x log qθ(Y |x)∇>x log qθ(Y |x)

]
is positive definite for any x and θ ∈ Θ.

Notice that if (i) holds, (ii) also holds immediately for discrete distributions over finite spaces (assuming that∑
y∈Y and ∇x are interchangeable operations) as in our case. When (i)-(iii) are met, the variance of the

differential form∇>x log qθ(Y |x)dx can be interpreted as the square of a differential arc length ds2 in the space
C, which yields

ds2 = 〈dx, dx〉G(x) = dx>G(x)dx. (11)

Thus,G, which is the Fisher Information Matrix (FIM), can be adopted as a metric tensor. We now consider
a curve γ : [0, 1] → X connecting a pair of arbitrary points x, x′ in the input space X , i.e., γ(0) = x and
γ(1) = x′. Notice that any curve γ induces a curve qθ(·|γ(t)) for t ∈ [0, 1] in the space C. The Fisher-Rao
distance between the distributions qθ = qθ(·|x) and q′θ = qθ(·|x′) will be denoted as dR,C(qθ, q′θ) and is
formally defined by the expression:

dR,C(qθ, q
′
θ) , inf

γ

∫ 1

0

√
dγ>(t)

dt
G(γ(t))

dγ(t)

dt
, (12)

where the infimum is taken over all piecewise smooth curves. This means that the FRD is the length of the
geodesic between points x and x′ using the FIM as the metric tensor. In general, the minimization of the
functional in Eq. (12) is a problem that can be solved using the well-known Euler-Lagrange differential equation.

A.1 Derivation of Fisher-Rao distance for the class of Softmax probability distributions

The direct computation of the FIM of the family C with qθ(y|x) in the form of the softmax probability distribution
function Eq. (1) can be shown to be singular, i.e., rank(G(x)) ≤ C − 1, where C − 1 is the number of degrees
of freedom of the manifold C. To overcome this issue, we introduce the probability simplex P defined by

P =

{
q : Y → [0, 1]C :

∑
y∈Y

q(y) = 1

}
. (13)

Next, we consider the following parametrization for any distribution q ∈ P:

q(y|z) =
z2
y

4
, y ∈ {1, . . . , C}. (14)

From this expression, we consider the statistical manifold D =
{
q(·|z) : ‖z‖2 = 4, zy ≥ 0,∀y ∈ Y

}
. Note

that the parameter vector z belongs to the positive portion of a sphere of radius 2 and centered at the origin in
RC . The computation of the FIM for z on D yields:

G(z) = Eq(y|z)

[
∇z log q(y|z)∇>z log q(y|z)

]
=
∑
y∈Y

z2
y

4

(
2

zy
ey

)(
2

zy
e>y

)
=
∑
y∈Y

eye
>
y

= I,

(15)
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where {ey} are the canonical basis vectors in RC and I is the identity matrix. From expression Eq. (15) we can
conclude that the Fisher-Rao metric in this parametric space is equal to the Euclidean metric. Also, since the
parameter vector lies on a sphere, the FRD between the distributions q = q(·|z) and q′ = q (·|z′) can be written
as the radius of the sphere times the angle between the vectors z and z′. Which leads to expression:

dR,D
(
q, q′

)
= 2 arccos

(
z>z′

4

)
= 2 arccos

(∑
y∈Y

√
q(y|z)q (y|z′)

)
. (16)

Finally, we can compute the FRD for softmax distributions in C as

dFR−Logits

(
qθ, q

′
θ

)
= 2 arccos

(∑
y∈Y

√
qθ(y|x)qθ (y|x′)

)
, (17)

obtaining the same form of expression Eq. (2). Notice that 0 ≤ dFR−Logits (qθ, q
′
θ) ≤ π for all x,x′ ∈

X ⊆ RC , being zero when qθ(·|x) = qθ (·|x′) and maximum when the vectors
(
qθ(1|x), . . . , qθ(C|x)

)
and(

qθ (1|x′) , . . . , qθ (C|x′)
)

are orthogonal.

A.2 Derivation of Fisher-Rao distance for multivariate Gaussian distributions

Consider a broader statistical manifold S , {pθ = p(x;θ) : θ = (θ1, θ2, . . . , θm) ∈ Θ} of multivariate
differential probability density functions. The Fisher information matrix G(θ) = [gij(θ)] in this parametric
space is provided by:

gij(θ) = Eθ
(
∂

∂θi
log p(x;θ)

∂

∂θj
log p(x;θ)

)
=

∫
∂

∂θi
log p(x;θ)

∂

∂θj
log p(x;θ)p(x;θ)dx.

(18)

Next, consider a multivariate Gaussian distribution:

p(x;µ,Σ) =
(2π)−(n

2 )√
Det(Σ)

exp

(
− (x− µ)>Σ−1(x− µ)

2

)
, (19)

where x ∈ Rk is the variable vector, µ ∈ Rk is the mean vector, Σ ∈ Pk(R) is the covariance matrix, and
Pk(R) is the space of k positive definite symmetric matrices. We can define the statistical manifold composed
by these distributions asM = {pθ;θ = (µ,Σ) ∈ Rk × Pk(R)}. By substituting Eq. (19) in expression Eq.
(18), we can derive the Fisher information matrix for this parametrization, obtaining:

gij(θ) =
∂µ>

∂θi
Σ−1 ∂µ

∂θj
+

1

2
tr

(
Σ−1 ∂Σ

∂θi
Σ−1 ∂Σ

∂θi

)
, (20)

which induces the following square differential arc length inM:

ds2 = dµ>Σ−1dµ+
1

2
tr
[(

Σ−1dΣ
)2]

. (21)

Here, dµ = (dµ1, . . . , dµn) ∈ Rk and dΣ = [dσij ] ∈ Pk(R). We observe that this metric is invariant to affine
transformations [30], i.e., for any (c, Q) ∈ Rk × GLk(R), with GLk(R) the space of non-singular order k
matrices, the map (µ,Σ) 7→

(
Qµ+ c, QΣQ>

)
is an isometry inM. Thus, the Fisher-Rao distance between

two multivariate normal distributions with parameters θ1 = (µ1,Σ1) and θ2 = (µ2,Σ2) inM satisfies:

dR,M (θ1,θ2) = dR,M
((
Qµ1 + c, QΣ1Q

>
)
,
(
Qµ2 + c, QΣ2Q

>
))

. (22)

Unfortunately, a closed-form solution for the Fisher-Rao distance remains unknown. This is still an open problem
for an arbitrary covariance matrix Σ and mean vector µ. Fortunately, the FRD is known for the univariate case
and hence, for the submanifold where Σ is diagonal. Notice that in this case Eq. (21) admits an additive form.

From [30], we obtain the analytical expression of the Fisher-Rao in the 2-dimensional submanifold of univariate
Gaussian probability distributionsM2 = {pθ : θ = (µ, σ2) ∈ R× (0,+∞)}:

ρFR

((
µ1, σ

2
1

)
,
(
µ2, σ

2
2

))
=
√

2 log

∣∣∣( µ1√
2
, σ1

)
−
(
µ2√

2
,−σ2

)∣∣∣+
∣∣∣( µ1√

2
, σ1

)
−
(
µ2√

2
, σ2

)∣∣∣∣∣∣( µ1√
2
, σ1

)
−
(
µ2√

2
,−σ2

)∣∣∣− ∣∣∣( µ1√
2
, σ1

)
−
(
µ2√

2
, σ2

)∣∣∣ , (23)

where | · | is the Euclidian norm in R2 and σ denotes the standard deviation. Consequently, the FRD for Gaussian
distributions with diagonal covariance matrix Σ = diag

(
σ2

1 , σ
2
2 , . . . , σ

2
k

)
in the 2k-dimensional statistical

submanifoldMD =
{
pθ : θ = (µ,Σ),Σ = diag

(
σ2

1 , σ
2
2 , . . . , σ

2
k

)
, σi > 0, i = 1, . . . , k

}
is

dFR−Gauss (θ1,θ2) =

√√√√ k∑
i=1

dR,M2

(
(µ1i, σ1i) , (µ2i, σ2i)

)2

. (24)
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A.3 Fisher-Rao vs. Mahalanobis distance

There is an intricate relationship between the FRD for multivariate Gaussian distributions and the Mahalanobis
distance. We borrow the result from [30], which states that in the k-dimensional submanifoldMΣ ofM where
Σ is constant, i.e.,MΣ = {pθ : θ = (µ,Σ),Σ = Σ0 ∈ Pk(R)}, the Fisher-Rao distance dR,MΣ between two
distributions is given by the Mahalanobis distance [24]:

dR,MΣ

(
N (µ1,Σ),N (µ2,Σ)

)
=
√

(µ1 − µ2)TΣ−1(µ1 − µ2). (25)

The Mahalanobis distance is also used for OOD detection [20] and its performance is compared to the FRD
through several experiments in Section 3.

B IGEOOD Algorithms

In this section, we provide pseudo-code for calculating the IGEOOD score from the logits (Algorithm 1) and
from the latent features (Algorithm 2). The BLACK-BOX IGEOOD score is obtained with Algorithm 1 by setting
ε = 0, while the GREY-BOX IGEOOD score is obtained with ε > 0. We calculated the centroid of the logits for
the in-distribution training set by optimizing the objective function given by Eq. (3) through a gradient descent
algorithm for each DNN. We used a constant learning rate of 0.01 and a batch size of 128 for 100 epochs.
Finally, the WHITE-BOX IGEOOD score is obtained by combining the outputs of Algorithms 1 and 2 through
fitting the multiplicative weights α through a logistic function classifier on a labeled mixture dataset composed
from in- and out-of-distribution data according to a validation dataset, which leads to expression Eq. (10).

Algorithm 1: Evaluating IGEOOD score based on the logits.
Input :Test sample x, temperature T and noise magnitude ε parameters, and training set

DN = {(xi, yi)}Ni=1.
Output :FR0: IGEOOD score in the logits level.

// Offline computation
Calculate the logits centroids from the training data:

µy , minµ∈RC
1
Ny

∑
∀ i : yi=y 2 arccos

(∑
y′∈Y

√
qθ
(
y′|f(xi)

)
qθ
(
y′|µ

))
// Online computation
Add small perturbation to x:
x̃← x+ ε� sign

[
∇x
∑
y 2 arccos

(∑
y′∈Y

√
qθ(y′|f(x))qθ(y′|µy)

)]
return FR0(x̃)←

∑
y 2 arccos

(∑
y′∈Y

√
qθ(y′|f(x̃))qθ(y′|µy)

)

Algorithm 2: Evaluating feature-wise IGEOOD score.

Input : Test sample x and training set DN = {(xi, yi)}Ni=1.
Output : FR`: feature-wise IGEOOD scores.

for each feature ` ∈ {1, . . . , L} do
// Offline computation

Calculate the means: µ(`)
y ← 1

Ny

∑
i:yi=y

f (`) (xi)

Calculate the diagonal standard deviation matrix:

σ
(`)
jj ←

√
1
N

∑
y∈Y

∑
∀i : yi=y

(
f
(`)
j (xi)− µ(`)

y,j

)2
// Online computation
Compute the OOD score for `:

FR`(x)← miny

√∑k
j=1 ρFR

((
µ
(`)
y,j , σ

(`)
jj

)
,
(
f
(`)
j (x), σ

(`)
jj

))2
end
return

(
FR1(x), . . . ,FRL(x)

)
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Algorithm 3: Evaluating feature-wise IGEOOD+ score.

Input : Test sample x, training set DN = {(xi, yi)}Ni=1 and M OOD samples
OM = {x′i}

M
i=1.

Output : FR` and FR′`: feature-wise IGEOOD+ scores.

for each feature ` ∈ {1, . . . , L} do
// Offline computation
Calculate class conditional means: µ(`)

y ← 1
Ny

∑
i:yi=y

f (`) (xi)

Calculate OOD samples mean: µ(`)′ ← 1
M

∑M
i=1 f

(`) (x′i)

Calculate the diagonal standard deviation matrix from training data:

σ
(`)
jj ←

√
1
N

∑
y∈Y

∑
∀i : yi=y

(
f
(`)
j (xi)− µ(`)

y,j

)2
Calculate the diagonal standard deviation matrix from OOD data:

σ
(`)′
jj ←

√
1
M

∑M
i=i

(
f
(`)
j (x′i)− µ

(`)′
j

)2
// Online computation
Compute the OOD scores for `:

FR`(x)← miny

√∑k
j=1 ρFR

((
µ
(`)
y,j , σ

(`)
jj

)
,
(
f
(`)
j (x), σ

(`)
jj

))2
FR′`(x)← miny

√∑k
j=1 ρFR

((
µ
(`)′
j , σ

(`)′
jj

)
,
(
f
(`)
j (x), σ

(`)
jj

))2
end
return

(
FR1(x),FR′1(x) . . . ,FRL(x),FR′L(x)

)
Note that the calculation of the training logits centroids µy , as well as the latent representations mean vectors
µ(`)
y and standard covariance matrices σ(`) is performed beforehand, prior to inference. In this way, we retrieve

the objects from memory at inference time. Also, we define k as the cardinality of feature `, or |f (`)| and ρFR

as the Fisher-Rao distance between univariate Gaussian distribution given by expression Eq. (6).

B.1 Logits centroids estimation details

In order to obtain the logits centroids given the Fisher-Rao distance in the space of softmax probability
distributions, we designed a simple optimization problem. This problem aims to minimize the average distance
between the class conditional training samples and the centroids as given by Eq. (3). We initialized the C
centroids, where C is the number of classes of a given model, with the identity matrix of size C × C. Note that
the initial centroid for class i is given by the matrix’s line number i. We minimized the expression in Eq. (3)
with a gradient descent optimizer for 100 epochs with a fixed learning rate equal to 0.01 for every DNN model
and in-distribution dataset.

B.2 Feature importance regression details

For both Mahalanobis and IGEOOD methods, we fitted a logistic regression model with cross-validation using
1,000 OOD and 1,000 in-distribution data samples. Each regression parameter multiplies the layer scores outputs
with the objective function of maximizing the TNR at TPR-95%. We set the maximum number of iterations to
be 100.

B.3 Covariance matrix estimation details

We model the latent output probability distributions as Gaussian distributions with diagonal covariance matrix
calculated with expression Eq. (5). We chose this model motivated by a closed form for the FRD and by
observing that the standard covariance matrix for the latent features is often ill-conditioned. The condition
number of a matrix correlates to its numerical stability, i.e., a small rounding error in its estimation may cause a
large difference in its values. So, a matrix with a low condition number is said to be well-conditioned, while
a matrix with a high condition number is said to be ill-conditioned. We calculate the condition number of
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the covariance matrices with the formula κ(Σ) =
∥∥Σ−1

∥∥
∞ ‖Σ‖∞, where ‖ · ‖∞ is the infinity norm. For

each of the four dense blocks outputs of a DenseNet trained on CIFAR-10, we obtained the condition numbers
κΣ = {2.8e10, 3.5e6, 3.1e5, 3.5e21}. While for the diagonal covariance matrix, we obtained smaller values of
condition numbers: κΣD = {1.0e3, 3.0e1, 1.4e1, 7.6e20}. We associate the high value for the last feature due
to the last feature being high dimensional and coarse, i.e., most of the values in the diagonal are close to zero.

C Detailed Experimental Setup

C.1 DNN models and training details

We describe the DNN models used in the experiments:

• DenseNet. Densely Connected Convolutional Networks [16], or DenseNet for short, are compositions
of dense blocks, which are composed of multiple layers directly connected to every other layer in a
feed-forward fashion. In this work, we use the DenseNet-BC-100 architecture. The BC stands for a
model with 1x1 convolutional bottleneck (B) layers and channel number compression (C) of 0.5. The
models have depth L = 100 and growth rate k = 12. We consider the outputs of each dense block
after the transition layer (3 in total) and the first convolutional layer output as the latent features. After
an averaging pooling, the latent features have dimensions F1 = {24, 108, 150, 342}.

• ResNet. Residual Networks [11], or ResNet, are deep neural networks composed of residual blocks.
Each residual block is composed of layers connected in a feed-forward manner plus a skip connection.
We use the ResNet with 34 layers pre-trained on CIFAR-10, CIFAR-100, and SVHN datasets. We
take the output of every residual block (4 in total) and the first convolutional layer for calculating the
score on the WHITE-BOX setting. After an averaging pooling, the latent features have dimensions
F2 = {64, 64, 128, 256, 512}.

We train each model by minimizing the cross-entropy loss using SGD with Nesterov momentum equal to 0.9,
weight decay equal to 0.0001, and a multi-step learning rate schedule starting at 0.1 for 300 epochs. The
pre-trained models is available at 3. We report their test set accuracy in Table 3 with the softmax function and by
replacing it with the Fisher-Rao distance between the training class-conditional centroids and the test sample
outputs. Also, it is worth noting that one high-end GPU is sufficient for running every experiment presented in
this work.

Table 3: Test set accuracy in percentage for ResNet and DenseNet architectures pre-trained on
CIFAR-10, CIFAR-100 and SVHN.

ResNet-34 DenseNet-BC-100
In-Dataset Softmax Fisher-Rao Softmax Fisher-Rao
CIFAR-10 93.52 93.53 95.20 95.20
CIFAR-100 77.11 77.09 77.62 77.63
SVHN 96.61 96.61 95.16 95.16

C.2 Evaluation metrics

We introduce below standard binary classification performance metrics used to evaluate the OOD discriminators.

• True Negative Rate at 95% True Positive Rate (TNR at TPR-95% (%)). This metric measures
the true negative rate (TNR) at a specific true positive rate (TPR). The operating point is chosen such
that the TPR of the in-distribution test set is fixed to some value, 95% in this case. Mathematically, let
TP, TN, FP, and FN denote true positive, true negative, false positive and false negative, respectively.
We measure TNR = TN/(FP + TN), when TPR = TP/(TP + FN) is 95%.

• Area Under the Receiver Operating Characteristic curve (AUROC (%)). The ROC curve is
constructed by plotting the true positive rate (TPR) against the false positive rate = FP/(FP + TN)
at various threshold values. The area under this curve tells how much the OOD discriminator can
distinguish in-distribution and OOD data in a threshold-independent manner.

• Area Under the Precision-Recall curve (AUPR (%)). The PR curve plots the precision = TP/(TP+
FP) against the recall = TP/(TP + FN) by varying a threshold. For the experiments, in-distribution
data are specified as positives while OOD data as negative.

3http://github.com/igeood/Igeood

13

http://github.com/igeood/Igeood


Note that the TNR at TPR-95% is especially important because we want to identify OOD data and preserve a
sufficiently good performance on identifying in-distribution data, which is not the case for the other metrics.

C.3 Datasets

In our experiments, we use natural image examples from the following image classification and synthetic datasets.
We normalize the test samples with the in-distribution dataset statistics.

• CIFAR-10. The CIFAR-10 [18] dataset is composed of 32× 32 natural images of 10 different classes,
e.g., airplane, ship, bird, etc. The training set is composed of 50,000 images, and the test set is
composed of 10,000 images. The classes are approximately equally distributed (5,000 examples each
label). The CIFAR-10 dataset is under the MIT license.

• CIFAR-100. The CIFAR-100 [18] dataset contains similar natural images to the CIFAR-10 dataset,
but with 90 additional categories. Its set repartition is also 50,000 for training and 10,000 for the test
set. We expect around 500 samples for each class of the training set. It is also under the MIT license.

• SVHN. The SVHN [28] dataset collects street house numbers for digit classification. It contains
73,257 training and 26,032 test RGB images of size 32× 32 of printed digits (from 0 to 9). We take
only the first 10,000 examples of the test set for evaluating the methods to have a balanced dataset of
in-distribution and out-of-distribution data. This dataset is subject to a non-commercial license.

• Tiny-ImageNet. The Tiny-ImageNet [19] dataset is a subset of the large-scale natural image dataset
ImageNet [9]. It contains 200 different classes and 10,000 test examples. We downsize the images
from their original resolution to images of dimension 32× 32× 3.

• LSUN. The LSUN [44] dataset, which has equally 10,000 test examples, is used for the large-scale
scene classification of different scene categories (e.g., bedroom, bridge, kitchen, etc.). Similarly, we
resize the images following the same procedure for the Tiny-ImageNet dataset. LSUN is under the
Apache 2.0 license.

• iSUN. The iSUN [43] dataset consists of selected natural scene images from the SUN [41] dataset.
The test set has 8925 images, which we downsample to 32× 32× 3. We use this dataset as a source
of OOD for validation purposes as an independent dataset from the test OOD data.

• Textures. The Describable Textures Dataset (DTD) [7] is a collection of textural pattern images
observed in nature. It contains 47 categories totaling 5640 images of various sizes, which are resized
and center cropped to fit into the input size of 32× 32.

• Chars74K. The Chars74K dataset [8] contains 74,000 samples of 62 classes of characters found in
natural images, handwritten text, and synthesized from computer fonts. We used as OOD data only
the EnglishImg dataset split, which contains 7705 characters from natural scenes. We resized and
center-cropped the images.

• Places365. The Places365 dataset [46] contains images of 365 natural scenes categories. We used the
small images validation split as OOD data in our experiments. It contains 36,500 RGB images which
were downsampled from 256× 256 to 32× 32.

• Gaussian. For the Gaussian dataset, we generated 10,000 synthetic RGB images from 2D Gaussian
noise, where each RGB pixel is sampled from an i.i.d Gaussian distribution with mean 0.5 and variance
1.0. The pixel values are clipped to [0, 1] interval. This synthetic data was introduced in previous work
as an easy benchmark [13].

C.4 Adversarial data generation

We generate adversarial samples from the in-distribution dataset using the fast gradient sign method (FGSM).
This method works by exploiting the gradients of the neural network to create a non-targeted adversarial attack.
For an input image xi, the method computes the sign of the gradients of the loss function J with respect to
the input image to create a new image xadv

i that maximizes the loss as given by expression Eq. (26). This
fabricated image is called an adversarial image, which we use for tuning the hyperparameters of the OOD
detection methods in the WHITE-BOX case. Mathematically,

xadv
i = xi + εadv � sign(∇xiJ(θ,xi, yi)), (26)

where εadv > 0 is the additive noise magnitude parameter. Table 4 shows the resulting L∞ mean perturbation
and classification accuracy on adversarial samples.

C.5 Mahalanobis distance-based confidence score

The Mahalanobis-based method in [20] fits the DNN training data features as class-conditional Gaussian
distributions. These use the outputs of every DNN latent block to leverage useful information for discrimination.
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Table 4: The L∞ mean perturbation used to generate adversarial data with FGSM algorithm and
classification accuracy on adversarial samples for the DNN models and in-distribution datasets.

CIFAR-10 CIFAR-100 SVHN
L∞ Acc. L∞ Acc. L∞ Acc.

DenseNet-100 0.21 19.5% 0.20 4.45% 0.32 54.7%
ResNet-34 0.21 23.7% 0.20 12.49% 0.25 50.0%

For a test sample x, the confidence score from the `-th feature is calculated based on the Mahalanobis distance
between f (`)(x) and the closest class-conditional distribution:

M`(x) = max
y
−
(
f (`)(x)− µ̂(`)

y

)>
Σ̂−1
`

(
f (`)(x)− µ̂(`)

y

)
, (27)

where f (`)(x) is the `-th latent feature output, and µ̂(`)
y and Σ̂` are, respectively, the empirical class mean and

covariance matrix estimates. The covariance matrix is often not full rank, so the pseudo-inverse is calculated
instead of the inverse. In addition, input pre-processing and feature ensemble are also used to boost performance.
A logistic regression model learns the multiplicative weights α` for each layer score, which predicts 1 for
in-distribution and 0 for OOD examples from a mixture validation dataset. Finally, the Mahalanobis-based
discriminator is given by thresholding expression

∑
` α`M`(x).

D Additional Out-Of-Distribution detection results

Table 5 shows compares IGEOOD to the current literetaure in the setup where no OOD data is available for
tuning. We show in Tables 6 and 7 additional results referring to the right-hand column and left-hand column of
Table 1, respectively.

Table 5: TNR at TPR-95% (%) performance in a WHITE-BOX setting considering the original results
from [20, 34, 15, 47] without access to OOD samples for hyperparameter tuning.

OOD
dataset

CIFAR-10 CIFAR-100 SVHN
Mahalanobis / Gram Matrix / DeConf-C / Res-Flow / IGEOOD / IGEOOD+

D
en

se
N

et

iSUN 94.3/99.0/99.4/ - /94.5/95.8 84.8/95.9/98.4/ - /93.8/92.2 99.9/99.4/ - / - /98.2/98.6
LSUN 97.2/99.5/99.4/98.1/96.4/97.2 91.4/97.2/98.7/95.8/95.1/94.4 100/99.5/ - /100/97.3/97.0
TinyImgNet 94.9/98.8/99.1/96.1/93.4/94.5 87.2/95.7/98.6/91.5/94.3/94.0 99.9/99.1/ - /99.9/98.1/96.8
SVHN/C-10 89.9/96.1/98.8/86.1/94.3/95.7 62.2/89.3/95.9/48.9/90.1/90.6 90.0/80.4/ - /90.0/89.5/86.6
average 94.1/98.3/99.2/93.4/94.6/95.8 81.4/94.5/97.9/78.7/93.3/92.8 97.4/94.6/ - /96.6/95.8/94.8

R
es

N
et

iSUN 96.8/99.3/88.8/ - /95.3/95.0 87.9/94.8/75.3/ - /89.4/91.0 100/99.4/ - / - /99.8/99.9
LSUN 98.1/99.6/90.9/99.1/97.7/97.7 56.6/96.6/76.8/70.4/88.6/93.9 99.9/99.6/ - /100/99.8/100
TinyImgNet 95.5/98.7/81.4/98.0/94.3/94.2 70.3/94.8/76.5/77.5/86.2/90.1 99.2/99.3/ - /99.9/99.6/99.6
SVHN/C-10 75.8/97.6/89.5/91.0/98.2/97.7 41.9/80.8/55.1/74.1/75.2/78.5 94.1/85.8/ - /96.6/96.7/97.3
average 91.5/98.8/87.6/96.0/96.3/96.2 64.2/91.7/71.0/74.0/84.8/88.4 98.3/96.0/ - /98.8/99.0/99.2

E Histograms

Figures 3 and 2 display histograms for the OOD detection score for IGEOOD and [20] in the WHITE-BOX with
adversarial validation and WHITE-BOX with OOD data validation, respectively.
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Table 6: WHITE-BOX extended results. Validation on OOD data.
In-dist.
(model)

OOD
dataset

TNR at TPR-95% AUROC AUPR

Mahalanobis [20] / IGEOOD+

CIFAR-10
(DenseNet)

Chars 91.3/99.4 97.5/99.9 97.7/99.9
CIFAR-100 21.4/56.6 67.3/90.7 64.4/90.8
TinyImgNet 96.9/99.8 99.3/99.9 99.3/99.9

LSUN 98.2/99.9 99.5/100 99.5/100
Places365 18.1/80.2 72.7/95.7 72.8/95.4

SVHN 90.1/99.9 97.3/100 97.3/100
Textures 84.1/97.4 95.6/99.5 94.7/99.5
Gaussian 100/100 100/100 100/100

iSUN 97.3/99.8 99.4/100 99.4/100
average 77.5±31/92.6±14 92.1±12/98.4±3.0 91.7±13/98.4±3.0

CIFAR-100
(DenseNet)

Chars 62.9/97.5 94.0/99.4 95.8/99.4
CIFAR-10 9.1/22.7 60.8/80.7 60.1/83.0

TinyImgNet 87.1/99.5 97.4/99.9 97.4/99.9
LSUN 91.1/99.9 97.8/100 98.1/100

Places365 5.9/58.2 54.8/90.0 54.7/89.2
SVHN 79.0/99.6 96.8/99.9 94.1/99.9

Textures 70.3/90.2 91.4/98.1 94.3/98.2
Gaussian 100/100 100/100 100/100

iSUN 86.4/99.7 96.8/99.9 97.7/99.9
average 67.7±28/90.2±21 87.8±13/97.7±5.0 88.0±12/97.8±5.0

SVHN
(DenseNet)

Chars 78.7/92.2 96.1/98.4 98.9/98.5
CIFAR-10 91.6/98.3 98.0/99.6 99.4/99.6
CIFAR-100 92.9/95.3 98.2/99.1 99.4/99.2
TinyImgNet 99.9/99.9 99.8/99.9 99.9/99.9

LSUN 99.9/99.9 99.8/100 99.7/100
Places365 94.7/98.3 98.3/99.6 98.4/99.7
Textures 98.2/98.5 99.4/99.6 99.9/99.6
Gaussian 100/100 100/100 100/100

iSUN 99.9/99.9 99.8/99.9 99.9/99.9
average 95.1±8.0/98.0±2.0 98.8±1.0/99.6±0.1 99.5±1.0/99.6±0.1

CIFAR-10
(ResNet)

Chars 93.6/99.3 98.6/99.8 99.1/99.8
CIFAR-100 44.9/51.3 87.4/90.9 87.8/91.7
TinyImgNet 96.8/99.6 99.4/99.9 99.4/99.9

LSUN 98.3/99.9 99.6/100 99.6/100
Places365 45.8/77.6 88.1/95.6 88.1/95.5

SVHN 96.1/99.8 99.0/99.9 98.1/99.9
Textures 84.3/97.0 97.3/99.4 98.6/99.4
Gaussian 100/100 100/100 100/100

iSUN 97.2/99.9 99.4/100 99.5/100
average 84.1±23/91.6±16 96.5±4.0/98.4±3.0 96.7±4.0/98.5±3.0

CIFAR-100
(ResNet)

Chars 63.8/97.8 94.0/99.5 96.0/99.5
CIFAR-10 18.0/30.8 76.6/85.3 76.4/87.8

TinyImgNet 90.1/99.6 97.9/99.9 98.0/99.9
LSUN 92.4/100 98.3/100 98.5/100

Places365 23.5/59.1 76.8/91.2 76.0/91.4
SVHN 88.4/99.7 97.7/99.9 95.2/99.9

Textures 71.6/90.7 93.9/98.2 96.6/98.1
Gaussian 100/100 100/100 100/100

iSUN 89.4/99.8 97.7/99.9 98.0/99.9
average 70.8±30/86.4±23 92.5±10/97.1±5.0 92.7±10/97.4±4.0

SVHN
(ResNet)

Chars 84.9/92.4 97.0/98.4 99.0/98.5
CIFAR-10 98.0/99.7 99.2/99.9 99.7/99.9
CIFAR-100 98.3/99.1 99.3/99.7 99.8/99.8
TinyImgNet 99.9/99.9 99.9/100 100/100

LSUN 99.9/99.9 99.9/100 100/100
Places365 98.4/99.6 99.3/99.9 99.8/99.9
Textures 99.0/99.9 99.7/99.9 99.9/99.9
Gaussian 100/100 100/100 100/100

iSUN 100/100 99.9/100 100/100
average 97.6±6.0/98.9±2.0 99.4±1.0/99.7±0.1 99.8±1.0/99.8±0.1

Avg. and std. of avg. values 82.1±11/92.9±4.0 94.5±4.0/98.5±1.0 94.7±4.0/98.6±1.0
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Table 7: WHITE-BOX extended results. Validation on adversarial (FGSM) data.
In-dist.
(model)

OOD
dataset

TNR at TPR-95% AUROC AUPR

Mahalanobis [20] / IGEOOD

CIFAR-10
(DenseNet)

Chars 88.5/87.3 97.7/97.7 98.3/98.3
CIFAR-100 21.5/26.4 68.0/77.7 66.3/75.5

TinyImageNet 93.9/93.4 98.6/98.7 98.6/98.7
LSUN 96.3/96.4 99.1/99.2 99.1/99.2

Places365 17.8/23.2 70.0/77.9 40.1/76.3
SVHN 87.0/94.3 97.2/98.7 93.7/97.3

Textures 83.6/86.0 95.8/97.2 97.3/98.2
Gaussian 100/100 100/100 100/100

iSUN 94.3/94.5 98.8/98.9 98.9/99.0
average 75.9±30/77.9±29 91.7±12/94.0±9.0 88.0±20/93.6±10

CIFAR-100
(DenseNet)

CIFAR-10 1.1/5.7 43.5/62.6 46.7/62.6
Chars 53.9/59.6 92.2/92.0 94.5/93.9

TinyImageNet 86.4/94.3 97.4/98.8 97.5/98.9
LSUN 88.6/95.1 97.6/98.9 97.9/98.9

Places365 5.5/13.0 56.6/71.0 57.5/71.0
SVHN 56.1/90.1 91.8/98.0 85.4/96.2

Textures 67.5/86.7 91.2/97.4 94.4/98.4
Gaussian 100/100 100/100 100/100

iSUN 84.8/93.8 97.2/98.7 97.6/98.8
average 60.4±34/70.9±35 85.3±19/90.8±13 85.7±19/91.0±13

SVHN
(DenseNet)

CIFAR-10 90.6/89.5 97.7/97.8 99.1/99.2
CIFAR-100 91.8/88.4 98.0/97.7 99.2/99.1

Chars 72.3/70.5 95.2/94.5 98.5/98.3
TinyImageNet 99.5/98.1 99.6/99.3 99.5/99.8

LSUN 99.9/97.3 99.8/99.1 99.9/99.7
Places365 94.3/91.9 98.3/98.2 98.1/99.3
Textures 95.3/97.1 98.8/99.3 99.6/99.8
Gaussian 100/100 100/99.9 100/100

iSUN 99.9/98.2 99.8/99.3 99.9/99.8
average 93.7±8.0/92.3±9.0 98.6±1.0/98.3±2.0 99.3±1.0/99.4±0

CIFAR-10
(ResNet)

CIFAR-100 36.5/21.5 84.5/63.3 84.3/58.1
Chars 82.0/90.9 96.9/98.3 97.7/98.7

TinyImageNet 96.2/94.3 99.2/98.0 99.2/96.7
LSUN 98.2/97.7 99.5/99.2 99.5/98.9

Places365 34.8/15.9 85.0/60.1 84.2/24.4
SVHN 81.0/98.2 96.6/99.3 93.7/97.5

Textures 81.7/81.6 96.7/93.4 98.2/94.3
Gaussian 100/100 100/100 100/100

iSUN 96.8/95.3 99.3/98.6 99.3/98.1
average 78.6±24/77.3±32 95.3±6.0/90.0±15 95.1±6.0/85.2±25

CIFAR-100
(ResNet)

CIFAR-10 3.0/5.0 61.0/59.6 63.7/60.6
Chars 39.9/55.1 85.6/90.4 88.1/92.5

TinyImageNet 88.7/86.2 97.6/97.3 97.6/97.3
LSUN 91.3/88.6 98.0/97.8 98.3/98.0

Places365 8.0/8.6 67.9/63.0 66.8/61.7
SVHN 31.6/75.2 82.9/95.8 68.8/92.7

Textures 65.9/78.1 91.9/95.6 95.2/97.6
Gaussian 100/100 100/100 100/100

iSUN 87.9/89.4 97.4/97.8 97.6/97.7
average 57.4±36/65.1±33 86.9±13/88.6±15 86.2±14/88.7±15

SVHN
(ResNet)

CIFAR-10 97.1/96.7 99.1/99.2 99.7/99.7
CIFAR-100 97.5/96.2 99.1/99.1 99.7/99.6

Chars 75.4/55.1 95.3/89.1 98.5/96.0
TinyImageNet 99.9/99.6 99.9/99.9 99.9/99.9

LSUN 100/99.8 99.9/99.9 100/100
Places365 98.1/97.0 99.2/99.2 99.2/99.0
Textures 98.9/98.4 99.6/99.6 99.9/99.9
Gaussian 100/100 99.9/100 100/100

iSUN 100/99.8 99.8/99.9 99.9/100
average 96.3±8.0/93.6±14 99.1±1.0/98.4±3.0 99.6±0/99.3±1.0

Avg. and std. of avg. values 77.0±15/79.5±10 92.8±5.4/93.4±3.9 92.3±5.9/92.9±5.2
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(a) DenseNet on CIFAR-10.

(b) DenseNet on CIFAR-100.

(c) DenseNet on SVHN.

(d) ResNet on CIFAR-10.

(e) ResNet on CIFAR-100.

(f) ResNet on SVHN.

Figure 2: WHITE-BOX setup with adversarial data validation. TinyImageNet as OOD dataset.
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(a) DenseNet on CIFAR-10.

(b) DenseNet on CIFAR-100.

(c) DenseNet on SVHN.

(d) ResNet on CIFAR-10.

(e) ResNet on CIFAR-100.

(f) ResNet on SVHN.

Figure 3: WHITE-BOX setup with validation on OOD data. TinyImageNet as OOD dataset.
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