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Abstract

Figurative and metaphorical language are com-001
monplace in discourse, and figurative expres-002
sions play an important role in communica-003
tion and cognition. However, figurative lan-004
guage has been a relatively under-studied area005
in NLP, and it remains an open question to006
what extent modern language models can inter-007
pret nonliteral phrases. To address this ques-008
tion, we introduce Fig-QA, a Winograd-style009
nonliteral language understanding task consist-010
ing of correctly interpreting paired figurative011
phrases with divergent meanings. We evalu-012
ate the performance of several state-of-the-art013
language models on this task, and find that al-014
though language models achieve performance015
significantly over chance, they still fall short016
of human performance, particularly in zero- or017
few-shot settings. This suggests that further018
work is needed to improve the nonliteral rea-019
soning capabilities of language models.1020

1 Introduction021

All our words are but crumbs that fall down from022

the feast of the mind (Gibran, 1926). When humans023

read such a metaphorical phrase, how do they inter-024

pret it? Conceptual metaphors structure our every-025

day language and are used to map everyday phys-026

ical experiences and emotions onto abstract con-027

cepts (Lakoff and Johnson, 1981). They allow us028

to communicate complex ideas, to emphasize emo-029

tions, and to make humorous statements (Fussell030

and Moss, 2008). However, despite relating words031

in a way that differs from their accepted defini-032

tion, these phrases are readily interpreted by human033

listeners, and are common in discourse (Shutova,034

2011), occurring on average every three sentences035

(Mio and Katz, 1996; Fussell and Moss, 2008)036

The ability to interpret figurative language has037

been viewed as a bottleneck in natural language un-038

derstanding, but it has not been studied as widely as039

1Code is available at https://anonymous.4open.science/r/
metaphor-qa-5083/ under the MIT license.

literal language (Shutova, 2011; Tong et al., 2021). 040

Figurative language often relies on shared common- 041

sense or cultural knowledge, and in some cases may 042

be difficult to solve using language statistics. This 043

presents a challenge to language models (LMs), as 044

strong LMs trained only on text may not be able 045

to make sense of the physical world, nor the social 046

or cultural knowledge that language is grounded in 047

(Bender and Koller, 2020; Bisk et al., 2020). 048

Most previous work on figurative language fo- 049

cuses on metaphor detection, where a model is 050

trained to identify the existence of metaphors in 051

text (Tsvetkov et al., 2014; Stowe and Palmer, 052

2018; Leong et al., 2020), with datasets consisting 053

mostly of conventionalized metaphors and idioms 054

in wide use. However, identifying these common 055

metaphors that already appear often in language 056

may be an easy task for LMs, and not fully test their 057

ability to interpret figurative language. The little 058

work that exists on metaphor interpretation frames 059

it as a task linking metaphorical phrases to literal 060

rewordings, either through paraphrase detection 061

(Bizzoni and Lappin, 2018) or paraphrase gener- 062

ation (Shutova, 2010; Su et al., 2017; Mao et al., 063

2018) (details in § 7) While interesting, this work 064

does not take into account the fact that metaphors 065

are rich with different implications that may vary 066

depending on the context. 067

In this work, we ask whether or not LMs can 068

correctly make inferences regarding creative, rela- 069

tively novel metaphors generated by humans. This 070

task is harder for two reasons: (1) inference is 071

harder than identification or paraphrasing, as it 072

requires understanding the underlying semantics, 073

and (2) the metaphors in our dataset are novel cre- 074

ations, and many may not appear even once in the 075

LMs’ training data. We propose a minimal task 076

inspired by the Winograd schema (Levesque et al., 077

2012), where LMs are tasked with choosing the 078

entailed phrase from two opposite metaphorical 079

phrases. An example of a paired sentence is "Her 080

1

https://anonymous.4open.science/r/metaphor-qa-5083/
https://anonymous.4open.science/r/metaphor-qa-5083/


commitment is as sturdy as (plywood/oak)". The081

correct answer would be either "She was (commit-082

ted/uncommitted)". This can also be seen as an083

entailment task, where input x is the premise, and084

the output y is the hypothesis.2085

We crowdsource a benchmark Fig-QA, consist-086

ing of 10,256 such metaphors and implications087

(§ 2), which can be used to evaluate the nonliteral088

reasoning abilities of LMs or for more broad stud-089

ies of figurative language in general (we provide090

preliminary analyses in § 3). Through extensive091

experiments over strong pre-trained LMs (§ 4), we092

find that although they can be fine-tuned to do rea-093

sonably well, their few-shot performance falls sig-094

nificantly short of human performance (§ 5). An in-095

depth analysis (§ 6) uncovers several insights: (1)096

LMs do not make use of the metaphorical context097

well, instead relying on the probability of interpre-098

tations alone, (2) the task of associating a metaphor099

with an interpretation is more difficult than the re-100

verse, (3) even strong models such as GPT-3 make101

inexplicable errors that are not well-aligned with102

human ones, indicating that further work is needed103

to properly model nonliteral language.104

2 Dataset Creation and Validation105

2.1 Crowdsourcing Task106

We crowdsourced data from workers on Amazon107

Mechanical Turk ( details in Appendix A). Workers108

were asked to generate paired metaphors with dif-109

ferent meanings, as well as literal implications of110

the two metaphors in context. We instructed work-111

ers to try to generate rare or creative metaphors,112

namely “metaphors that would not appear often in113

text on the internet, books, social media, or news114

sites, but that can still be easily understood by peo-115

ple.” Workers were given examples of valid pairs116

that fit the format, and examples of invalid ones117

to discourage errors. Some examples of generated118

pairs are displayed in Table 1.119

In order to help workers, we employ the random-120

ness as genesis and narrow limits of change prin-121

ciples of Cognitive Load Theory (Sweller, 2006).122

To add soft constraints, we generate 3 different ran-123

dom words to be shown to each batch of workers.124

However, workers were not required to use these125

words, as we wanted to encourage maximal diver-126

2The opposing meanings help to avoid ambiguity in the
correct answer, make the task intuitive for human annotators,
and help prevent annotation artifacts that have plagued other
NLI datasets (Gururangan et al., 2018).

sity. In order to ensure that the random words were 127

metaphorically rich, we selected them based on 128

metaphorical frames in Lakoff and Johnson (1981). 129

2.2 Data Validation 130

The dataset was manually validated by three au- 131

thors of this paper. Each author covered roughly 132

one-third, evenly split between training, validation, 133

and test. Examples were excluded if they (a) did 134

not make sense given the figurative expression, (b) 135

had grammar or spelling errors that rendered them 136

unintelligible, or (c) did not follow the format of the 137

task. Examples of excluded samples are included 138

in Appendix B. We collected 13,324 sentences and 139

interpretations from the crowdsourcing task, and 140

10,256 sentences remained after filtering. 141

2.3 Final Dataset 142

The release version of our dataset contains the 143

named data splits in Table 2. The medium train, 144

dev, and test splits were generated from partitioning 145

the first stage of data collected. The large train split 146

additionally contains all the new examples from the 147

second collection stage, and the small train split is 148

a small random sample. 149

3 Figurative Language Typologies 150

In this sample, we perform an analysis of the col- 151

lected data to demonstrate its trends and categorize 152

examples for further error analysis. Specifically, 153

we examine (a) subjects, objects, and relations, and 154

(b) types of common-sense knowledge needed to 155

interpret the metaphor. 156

3.1 Figurative Language Structure 157

We note that most metaphors and similes can 158

be characterized by three components, (S,R,O), 159

where S is a subject, R is a relation, and O is an ob- 160

ject. For instance, "Her commitment is as sturdy as 161

plywood" can be written (Her commitment, sturdy, 162

plywood). Interpretation involves inferring an at- 163

tribute of the subject by extracting a relational at- 164

tribute from the object (Fauconnier and Turner, 165

2003). In a simile, R is explicit, whereas it is usu- 166

ally implicit in a metaphor. The most common 167

subjects, relations, and objects in the medium train 168

dataset are shown in Figure 1. These were obtained 169

by first segmenting the phrases with syntactic pat- 170

terns constructed from observation, followed by 171

lemmatization and removal of punctuation and de- 172

terminers "the", "an", "a" and "that". There are 441 173
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Paired sentences Possible answers
The pilot flew like a ballet dancer The pilot flew in a (restrained way | creative way)

The pilot flew like a modern dancer The pilot flew in a (restrained way | creative way)

The meteor was as bright as New York City The meteor was (very bright | not bright at all)
The meteor was as bright as coal The meteor was (very bright | not bright at all)

The atom is like a solar system Electrons (orbit the nucleus | are in probability densities)
The atom is like a cloud Electrons (orbit the nucleus | are in probability densities)

He hustles like rent was due three days ago He (hustles hardcore. | doesn’t hustle at all.)
He hustles like he’s a billionaire’s son. He (hustles hardcore | doesn’t hustle at all)

Life is as easy as kindergarten for a high school senior Life is (basic | beyond comprehension)
Life is as easy as kindergarten for a newborn Life is (basic | beyond comprehension)

Table 1: Example sentences from the dataset

Train Dev TestS M L

200 1,458 8,016 1,094 1,146

Table 2: Examples in each data split

Figure 1: Visualization of 25 most frequent subjects,
relations, and objects in the medium train set.

unique subjects, 646 unique relations, and 1,198174

unique objects in the medium training set.175

3.2 Common-sense Knowledge Types176

Next, we examined the test set to determine177

the types of commonsense knowledge needed to178

interpret metaphors. Through thematic analy-179

sis, we devised 4 categories based on common-180

sense knowledge, which are not mutually exclu-181

sive: common-sense object knowledge, visual 182

metaphors, common-sense social understanding, 183

and cultural knowledge. The same 3 paper authors 184

annotated the test set for these categories, with an- 185

notators responsible for separate categories. 186

Common-sense object knowledge consisted of 187

metaphors that made reference to properties of com- 188

mon objects and animals, such as volume, height or 189

mass of objects, or properties of materials. 68.35% 190

of the test-set was found to require common-sense 191

object knowledge. 192

Visual metaphors were a subset of common- 193

sense object metaphors, primarily relying on the 194

visual modality, including attributes such as bright- 195

ness or colour. Some visual metaphors also 196

sketched a vivid visual scene. These examples 197

comprised 14.73% of the test set. 198

Common-sense social understanding exam- 199

ples required knowing about how humans would re- 200

act in different circumstances, or required knowing 201

about human emotions. These examples comprised 202

27.55% of the test set. 203

Cultural metaphors required knowing cultural 204

traditions, works of art/artefacts, or religion. Due 205

to crowdworkers being recruited from the US, these 206

are centered around US culture. These examples 207

comprised 16.56% of the test set. 208

4 Baseline Models and Evaluation 209

4.1 Auto-regressive Language Models 210

Auto-regressive LMs generate a probability distri-
bution of the next token given all preceding tokens.
As such, we can directly compute the probability
of a sentence by multiplying the conditional proba-
bility of each token at every time step.

P̃ (w1...wN ) = p(w1)
N∏
i=2

p(wi|w1...wi−1)

3



Type of knowledge required Paired sentences
Common-sense (objects) The new mattress is just as comfortable as sleeping on a (cloud/rocks outside)

Visual The professor’s argument had the clarity of a (crystal glass/marine fog)

Common-sense (social) She is as embarrassed as a kid that (forgot homework/got an A)

Cultural The construction was as disastrous as the (1981 musical Cats/The 2019 film based on the musical Cats)

Table 3: Metaphor types based on types of knowledge required (not mutually exclusive)

The ability to directly extract probabilities en-
ables the zero-shot reasoning of these LMs. For a
pair of metaphorical expressions x1 and x2 with
two corresponding interpretations y1 and y2, we
feed in the concatenation of the metaphor and the
interpretation to the pretrained model without fine-
tuning. We define “forward” and “backward” prob-
abilities assigned to interpretations and figurative
language expressions, respectively. For the for-
ward probability, for figurative phrase xi and cor-
rect answer yi, we take

P (yi|xi) =
P (xi, yi)

P (xi, yi) + P (xi, yj)

since there are only two answer options. From
this, we can calculate accuracy when we taking
the indicator of P (yi|xi) > 0.5. Similarly for the
backward probability (predicting phrase based
on answer), we take

P (xi|yi) =
P (xi, yi)

P (xi, yi) + P (xj , yi)

with analogous backward accuracy.3211

We examine three state-of-the-art large212

transformer-based LMs of this category: GPT-2213

(with 117M parameters, trained on 40GB of text),214

GPT-neo (with 1.3B parameters, trained on 800GB215

of text) and GPT-3 (4 variants between 350M216

and 175B parameters, trained on 45TB on text)217

(Radford et al., 2019; Black et al., 2021; Brown218

et al., 2020). We also examine the performance219

of these models after finetuning on the training220

data. GPT-2 and GPT-neo were trained with a221

batch size of 8, with early stopping on the medium222

dataset with a patience of 1 epoch, and a minimal223

hyperparameter search was done with learning224

rates 1e-5 to 5e-5. GPT-3 was trained with the225

default parameters of the GPT-3 finetuning API.226

3In actuality, we use the length-normalized probability
that a model assigns to a sentence as a heuristic for the to-
tal probability, to minimize the effect that the length of a
sentence has on the decision (though this is not the prob-
ability of the sequence in a strict sense): P (w1...wN ) =

exp(− 1
N

log P̃ (w1...wN )). Initial experimentation showed
marginal differences in accuracy when using these two meth-
ods, so we used normalized probabilities by default.

4.2 Masked Language Models 227

We also evaluate the performance of masked LMs 228

on this task. Unlike auto-regressive LMs, masked 229

LMs cannot directly output the probability of a 230

sentence, so it is not possible to directly test the 231

zero-shot performance of these models. Instead, 232

we test the transfer performance by first finetun- 233

ing them in two ways: on WinoGrande, which 234

is also a binary choice task based on common- 235

sense reasoning, and on several NLI datasets, in- 236

cluding SNLI, MNLI, FEVER-NLI and ANLI 237

(Nie et al., 2020; Sakaguchi et al., 2020). The 238

input to the model trained on WINOGRANDE 239

is formatted as [CLS][metaphor][SEP] 240

[answer1][SEP][answer2], and we use an 241

extra linear layer on the [CLS] token embedding 242

to perform the classification. In addition to the 243

transfer performance, we also use contrastive fine- 244

tuning by feeding in each metaphor along with both 245

answer choices, and training the model with our 246

dataset to classify which answer is correct. For the 247

NLI model, we examine accuracy using all three 248

labels the model was originally trained with (entail- 249

ment, neutral, and contradiction), as well as using 250

a forced binary choice paradigm in which the log- 251

its for the contradiction label are subtracted from 252

the logits for the entailment label, and the higher 253

"entailment score" is the ending the model pre- 254

dicts. We treat these two conditions as the analog 255

of “zero-shot" for these models. 256

We examine two masked LMs that are com- 257

monly used as baselines on many NLP tasks: 258

BERT (Devlin et al., 2019), a transformer-based 259

LM jointly trained on the masked LM and next 260

sentence prediction objectives, and RoBERTa (Liu 261

et al., 2019), an improved variant of BERT which 262

consistently outperforms BERT across most tasks. 263

We use the large variant of both models (350M pa- 264

rameters). BERT and RoBERTa were finetuned on 265

the medium dataset for 8 epochs with batch size 266

8, following the setting in (Sakaguchi et al., 2020). 267

A hyperparameter search was done with learning 268

rates 5e-6 to 2e-5. Both BERT and RoBERTa were 269

used for the Winogrande experiments, while only 270
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Model Zero-shot Tuned (L) Tuned (XL)

GPT-2 53.93 54.80 62.65
GPT-neo 1.3B 56.89 69.98 72.00

GPT-3 Ada 59.08 69.17 73.56
GPT-3 Babbage 62.91 73.97 77.31

GPT-3 Curie 65.35 79.04 81.94
GPT-3 Davinci 68.41 - -

BERT 58.14 83.16 85.69
RoBERTa 66.184 89.22 90.32

Human 94.42 - -
Human (confident) 95.39 - -

Table 4: Zero-shot and finetuned test accuracies (%),
finetuned is averaged across 5 seeds.

RoBERTa was used for the NLI experiment.271

4.3 Human Performance272

To estimate the expected human performance on273

this task, we ran a benchmark on the test set with 10274

human volunteers who were not authors of the pa-275

per. The human annotators were not shown any276

training examples, so this would be equivalent277

to the zero-shot setting for models. Participants278

ranged from 20 to 29 years old, and there were 5279

male and 5 female participants. 5 each were native-280

and non-native English speakers respectively. Par-281

ticipants were mainly graduate student volunteers.282

We shuffled the test set and split it into 10 parti-283

tions of ≈115 examples for each annotator. Due to284

differences in vocabulary or cultural background,285

we instructed participants to mark examples where286

they weren’t confident, such as those that contained287

words or cultural references they didn’t understand.288

5 Results289

5.1 Inference Results290

The first question is whether strong LMs can in-291

terpret metaphors at all when presented with292

two opposing meanings, in zero-shot or super-293

vised settings. These results are presented in Ta-294

ble 4. The results for masked language models295

are higher than those for autoregressive language296

models, and fine-tuning significantly improves per-297

formance for all models.298

Zero-shot Performance For the zero-shot set-299

ting, we examine the test accuracy based on zero-300

shot forward probabilities for the GPT models, and301

4This is the accuracy score when transferring from Wino-
grande. Pretrained NLI results were 50.47 when using original
labels (entailment/contradiction/neutral), and 66.32 when forc-
ing a binary decision.

the pseudo "zero-shot" transfer performance for 302

BERT and RoBERTa using models pretrained on 303

the WinoGrande task (Sakaguchi et al., 2020). As 304

shown, the GPT-3 models outperform the GPT-2 305

and GPT-neo models. Among the GPT-3 mod- 306

els, there is a clear correlation between model size 307

and performance, with the largest model (GPT-3 308

Davinci) achieving the highest zero-shot test ac- 309

curacy. BERT and RoBERTa achieve accuracies 310

within the range of GPT-3 models. While our mod- 311

els mostly perform much better than chance in the 312

zero-shot setting, there is still a large gap of 26 per- 313

centage points between our best model and human 314

level performance. 315

Fine-tuned Performance For the fine-tuned set- 316

ting, all listed models are fine-tuned on the small 317

dataset split. GPT models were trained with lan- 318

guage modeling loss, whereas BERT and RoBERTa 319

are trained with contrastive loss. We did not eval- 320

uate fine-tuning of GPT-3 Davinci due to bud- 321

get. Overall, fine-tuning improved accuracy sig- 322

nificantly for all models, with GPT-3 models uni- 323

formly improving by about 13 percentage points, 324

and BERT/RoBERTa improving by about 25 points. 325

Our best model after fine-tuning is RoBERTa, 326

which reaches within 5% of our human perfor- 327

mance. 328

Prompting We also experiment with prompting 329

methods. Firstly, we use a simple suffix prompt- 330

ing method, where we simply append the phrase 331

"that is to say" between the metaphor and the in- 332

terpretation, which we hypothesized may "explain" 333

to the LM that the previous statement is figura- 334

tive. We also evaluate the effectiveness of the ex- 335

amples method, by appending k random correct 336

metaphor/interpretation pairs before the actual pair 337

we are testing. The results of these experiments 338

can be seen in Figure 2. We found that the suf- 339

fix method provided a small (1-2%) improvement 340

over the baseline, while the example method was 341

generally ineffective. 342

Backward accuracies Note the accuracies re- 343

ported in this section are for the forward direc- 344

tion, and the backward direction is reported in Ap- 345

pendix C. Backward accuracies are lower, with 346

GPT-3 Curie for example having a 7% reduction 347

in accuracy in the zero-shot case. This suggests 348

that selecting a metaphorical expression to match a 349

literal phrase is more challenging than the reverse 350

for LMs. 351
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Figure 2: Comparison of prompting methods with au-
toregressive models

5.2 Generation Results352

Next, we examine if models can generate sensible353

interpretations for metaphors. Given the diffi-354

culty of evaluating text generation, compounded by355

the difficulty of figurative language, we opted for356

manual evaluation of one tenth of the test dataset357

using generations of the strongest auto-regressive358

model: GPT-3 Davinci (≈175B parameters).359

The metaphor was given as input to the model,360

and 4 completions were generated for each361

metaphor, with a maximum length of 100 tokens.362

Suffix prompting was also used because of the lack363

of context, with "That is to say, " appended to each364

metaphor. Only the first sentence of the output was365

evaluated. The temperature parameter was deter-366

mined through grid search through values [0.2, 0.4,367

0.6, 0.8, 1] on a small separate set of metaphors. A368

human annotator inspected the generated comple-369

tions and found that a temperature of 0.4 produced370

the most correct results.371

Three paper authors labelled completions gener-372

ated by GPT-3 Davinci as either correct, incorrect,373

or literal. In some cases, there were valid inter-374

pretations that were not the same as the answer375

given by crowdworkers, which were also marked376

correct. If the model simply restated the metaphor377

with no interpretation, the completion was marked378

as literal. Because some metaphors are ambiguous379

when presented without context, those examples380

were not counted. The inter-rater reliability was381

moderate due to differing standards for correctness382

(Krippendorff’s α = 0.5567). The majority vote383

was taken between annotators’ judgments.384

GPT-3 Davinci’s accuracy, counting literalized385

metaphors as incorrect, was 50.8%. Not count-386

ing literalized metaphors, accuracy was 63.9%. In387

37.7% of cases, GPT-3 generated contradictory388

completions among the 4 completions. There was389

at least one correct completion for 78.1% of the 390

metaphors, but only 19.3% of metaphors had all 391

completions correct. Examples of annotated gener- 392

ations can be found in Appendix F. 393

6 Performance and Error Analysis 394

With these results in mind, we examine what kinds 395

of errors models make, and what factors make 396

the task difficult.. This is covered in § 6. We find 397

that autoregressive models rely on the probability 398

of each answer by itself to predict the answer, and 399

that this holds true for all models, before and af- 400

ter training. We find that models have difficulty 401

in interpreting "sarcastic" metaphors, and some- 402

times inexplicably interpret very simple metaphors 403

wrong. We also examine error typology according 404

to the commonsense typology of § 3.2 and find 405

that models improve significantly on object, visual 406

and social commonsense when trained, but not on 407

cultural commonsense. 408

6.1 Reliance on Probability of Answers 409

We find that models often rely solely on the prob- 410

ability of answers y1 and y2 to make their predic- 411

tions, regardless of the context. This led models to 412

make the same prediction for the paired sentences 413

in many cases. Figure 3 and Table 5 show that this 414

trend improves with fine-tuning, and that GPT-3 is 415

best able to disentangle the probability of yi and the 416

probability of P (yi|xi), but all three models show 417

a heavy tendency to predict based on the relative 418

probability of an answer alone. 419

We hypothesize that this may be one reason why 420

BERT and RoBERTa achieve the best finetuned per- 421

formance; they use a contrastive finetuning strategy 422

providing both the correct and incorrect options as 423

input to the model. On the other hand, the GPT 424

models were finetuned with only the correct option, 425

making the comparison unfair. One way to fine- 426

tune GPT models contrastively is to include both 427

options into a cleverly engineered prompt, but we 428

leave this as a direction for future work. 429

6.2 Other Factors Influencing Correctness 430

We also examined the influence of several other fac- 431

tors on correctness. The point-biserial correlation 432

between length of the context phrase and the bi- 433

nary correctness value was -0.1544 with a p-value 434

of 1.50× 10−7, indicating that longer phrases are 435

harder to interpret correctly. The point-biserial cor- 436

relation between answer probability and binary cor- 437
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Model r p

Untrained

GPT-2 0.8128 6.700× 10−136

GPT-neo 0.7891 6.075× 10−123

GPT-3 0.7392 4.329× 10−100

Trained

GPT-2 0.6765 6.700× 10−78

GPT-neo 0.6689 1.456× 10−75

GPT-3 0.4157 2.598× 10−25

Table 5: Spearman r-values and p-values between
P (yi|xi) and P (yi)

Figure 3: Models over-rely on probability of the answer
to do their predictions. y-axis is probability of the first
interpretation (answer) given metaphor while x-axis is
log odds of the first interpretation.

rectness was 0.1840, with a p-value of 3.50×10−10,438

indicating that examples where the answer was439

already more probable were more likely to be an-440

swered correctly, in line with our findings that mod-441

els tended to predict the answer that was already442

more plausible alone.443

Furthermore, we conducted an analysis on sub-444

jects, objects, and relations as defined in § 3.1. We445

examined accuracy by part of speech patterns in446

each part of the metaphor, as well as by wordnet447

hypernyms present in each part of the metaphor.448

This is detailed in Appendix D and Appendix E449

(Fellbaum, 1998). We used NLTK for POS tagging450

(Loper and Bird, 2002).451

6.3 Qualitative Analysis of Error Trends 452

Common Sense Knowledge We first examine 453

the error tendencies by the type of common sense 454

knowledge described in § 3.2. Table 6 summa- 455

rizes accuracies for these types of commonsense 456

questions compared to humans. 457

Model Obj Vis Soc Cul

Untrained

GPT-2 52.17 52.07 55.38 58.42
GPT-neo 56.38 55.62 56.01 62.10

GPT-3 Curie 75.00 71.00 72.47 78.42

Trained

GPT-2 53.57 51.48 57.91 57.37
GPT-neo 70.15 72.78 68.67 70.00

GPT-3 Curie 87.50 84.62 83.86 83.16
BERT 87.37 92.31 84.18 77.37

RoBERTa 91.20 94.08 89.56 83.68

Human 95.41 96.45 93.99 90.00

Table 6: The performance of models across different
commonsense categories, in terms of accuracy on ex-
amples annotated with that category (%). The strongest
category of each model is highlighted.

We find that both humans and trained models 458

tend to find object commonsense and visual com- 459

monsense metaphors easier to interpret. We find 460

that as models improve, most of the performance 461

gain comes from the object, visual and social com- 462

monsense categories. Interestingly, the untrained 463

models do quite well on cultural examples, but do 464

not improve much on the culture category when 465

trained. This makes sense, as the cultural examples 466

tend to be quite disparate, so training would not 467

help as much with other examples. 468

Sarcastic Metaphors For both humans and LMs, 469

many of the errors are "sarcastic" metaphors, such 470

as saying "the girl was as bubbly as still water" to 471

mean "the girl was bland", rather than "the girl was 472

vivacious". These sentences can be difficult if the 473

model or human focuses on simple word associa- 474

tion (bubbly with vivacious) without reading the 475

entire sentence to understand the sarcasm. 476

Inexplicable Errors We examined the errors 477

made by GPT-3 Curie (trained) and found that there 478

was little overlap with mistakes made by humans. 479

Of the 64 human errors, 13 were also errors made 480

by GPT-3. GPT-3 made many more "obvious" er- 481

rors, such as predicting "The ball is a big red sun" 482

to mean "the ball is small" rather than "the ball is 483

big and red" This is in contrast to the sentences in 484

7



which humans made errors, which often contained485

rare vocabulary or unfamiliar cultural references.486

7 Related work487

7.1 Figurative Language Identification488

Most existing work focuses on identifying figura-489

tive language at the word level. The VU Amster-490

dam Metaphor Corpus (VUA) is the largest avail-491

able corpus of metaphorical language, annotated by492

humans (Steen et al., 2010). Two shared tasks on493

metaphor identification have been run (Leong et al.,494

2018, 2020). Both have utilized the VUA corpus,495

and the latter also introduced the TOEFL corpus,496

sampled from essays written by non-native English497

speakers (Leong et al., 2020; Beigman Klebanov498

et al., 2018). Most participants in the shared tasks499

used neural models, notably BERT, RoBERTa, and500

Bi-LSTMs (Leong et al., 2020; Bizzoni and Gha-501

nimifard, 2018; Gao et al., 2018; Pramanick et al.,502

2018). These models are generally improved when503

augmented with semantic data, such as concrete-504

ness, and multimodal information.505

Despite the utility of these tasks and datasets,506

they have drawbacks. Most of the metaphor use is507

conventional, so this task does not capture novel508

metaphors well. The word-level annotation also509

does not lend itself well to capturing extended con-510

ceptual metaphors. Finally, metaphor interpretation511

may be a more difficult, although less studied, task.512

7.2 Figurative Language Interpretation513

Recent studies mostly focus on metaphor para-514

phrases, either through identification (Bizzoni and515

Lappin, 2018) or generation (Shutova, 2010; Su516

et al., 2017; Mao et al., 2018). However, there has517

not been as much work done on interpretation as518

on detection, and framing metaphor interpretation519

as a paraphrase task may not capture the emergent520

meaning of metaphors, such as the intended emo-521

tion, or the interaction of subject, relation and ob-522

ject in the metaphor (Tong et al., 2021; Mohammad523

et al., 2016).524

Other work has focused on interpreting figurative525

language in narratives in context, based on plau-526

sible continuations of figurative language such as527

idioms and similes from stories (Chakrabarty et al.,528

2021) or dialogues (Jhamtani et al., 2021). This rep-529

resents a promising direction, and our work focuses530

on expanding our understanding of LMs’ ability to531

interpret non-conventionalized metaphors.532

7.3 Human Language Processing 533

Humans typically do not have any more difficulty 534

processing metaphorical statements in context com- 535

pared to literal statements (Fussell and Moss, 2008; 536

Glucksberg, 2003). This may be because certain 537

words serve as a dual reference, which is to say they 538

refer simultaneously to a physical referent and an 539

abstract superordinate category (Glucksberg, 2003). 540

For instance, "shark" may refer to literal sharks, as 541

well as anything that is considered vicious, leading 542

to utterances such as "that lawyer is a shark". 543

Metaphorical language processing has also been 544

studied in second-language learners, in the case of 545

idioms. In most cases, the meaning of an unfamiliar 546

idiom is inferred from the context or from word 547

association (Cooper, 1999; Carston and Wearing, 548

2011; Wolff and Gentner, 2000). 549

As LMs excel at word-association based tasks, 550

this is an encouraging finding. However, there is 551

still a gap between LM and human performance 552

even in our task, in which one answer is obviously 553

wrong when the input is correctly understood. 554

8 Conclusion 555

We present a Winograd-like benchmark task to test 556

the ability of LMs to reason about figurative lan- 557

guage, based on large-scale collection of creative 558

metaphors written by humans. We find a large gap 559

between LM zero-shot and human performance on 560

this dataset, but show that models can be fine-tuned 561

to perform well on this particular task. 562

We hope that this work will encourage further 563

study of nonliteral reasoning in LMs, especially 564

in few-shot settings. Given that metaphorical rea- 565

soning may play a role in problem-solving and 566

linguistic creativity, the development of models, 567

training methods, or datasets that enable metaphor- 568

ical reasoning may improve models’ abilities to 569

reason creatively and draw analogies between sit- 570

uations that may appear to be different on the sur- 571

face. One avenue we hope to investigate is multi- 572

modal metaphors, as this dataset currently includes 573

only text-based metaphors. Nonliteral expres- 574

sions also remain understudied cross-linguistically, 575

but further work on identifying and interpreting 576

metaphors in other languages may also improve 577

the abilities of multilingual models. 578
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9 Ethical Considerations579

9.1 Potential Risks580

Figurative language has the potential to be used in581

a harmful way, especially against minority and his-582

torically disadvantaged groups. Such language is583

often emotionally charged or used to insult others,584

so we took care to remove any examples that were585

potentially offensive, especially toward protected586

groups. We acknowledge that this was based on587

our own judgment, and generically insulting lan-588

guage (for instance, a metaphor that implies that589

someone is ugly) was not removed because it was590

not insulting toward any particular individual.591

All examples from this dataset are also in En-592

glish, as it is the language that all authors speak,593

and this was a preliminary dataset, being the first594

of its type. However, figurative language is not just595

important in English, and we leave investigation596

of figurative language in other languages as future597

work.598

9.2 Terms of Use of Artefacts Used599

Additional datasets we used were the Winogrande600

dataset, SNLI, MNLI, FEVER-NLI and ANLI.601

Winogrande is licensed under the Apache 2.0 li-602

cense, which allows modification and distribution,603

fitting our use case. SNLI is licensed under a Cre-604

ative Commons Attribution ShareAlike 4.0 Interna-605

tional license, which allows us to share and adapt606

the work as long as we give attribution. The ma-607

jority of MNLI is licensed under OANC, which608

allows free use. The fiction section of this dataset609

consists mostly of works in the public domain, but610

several stories are licensed: Seven Swords is avail-611

able under a Creative Commons Share-Alike 3.0612

Unported License, while Living History and Pass-613

word Incorrect are available under Creative Com-614

mons Attribution 3.0 Unported Licenses. These615

licenses allow sharing and adaptation with attri-616

bution. FEVER-NLI is licensed under an MIT617

license, which also allows modification, distribu-618

tion, and reuse. ANLI is licensed under Creative619

Commons Attribution-NonCommercial 4.0 Inter-620

national, which also allows sharing and reuse as621

long as we give attribution.622

Models used were GPT-2, GPT-neo, GPT-3,623

BERT and RoBERTa. GPT-2 and GPT-neo are624

licensed under an MIT license, which does not625

place any restrictions on its use. BERT is licensed626

under an Apache License 2.0, which allows modifi-627

cation and distribution. RoBERTa is licensed under628

a GNU General Public License v2.0. This fits our 629

use case as we are only running and studying the 630

model. GPT-3 is licensed by Microsoft, and we 631

used the public API to receive output. 632

9.3 Computational Infrastructure and 633

Computing Budget 634

To run our computational experiments, we had ac- 635

cess to a compute cluster, but minimal compute is 636

needed to run the experiments in this paper. We 637

generally did not use more than 2 GPUs at a time. 638

The only models that required GPU parallelism 639

were the GPT-neo models. An estimated 20 GPU 640

hours are required. 641

Our computing budget was roughly 100USD, of 642

which 50USD came from a free coupon for cloud 643

services. We also used roughly 20USD on credits 644

for the GPT-3 API. 645
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A Crowdsourcing Details 843

We crowdsource metaphorical expressions and 844

their interpretations through Amazon Mechanical 845

Turk. Workers were recruited from the United 846

States and were limited to those who had a > 98% 847

approval rating on the platform, and who had also 848

completed more than 1000 Human Intelligence 849

Tasks (HITs). Data collection was split into two 850

stages: in the first stage, 1458 train examples, and 851

all the dev and test examples were collected. In the 852

second stage, the remaining 6558 training examples 853

were collected. We identified some workers who 854

created especially good examples in the first stage, 855

and recruited them back for more examples in the 856

second stage. Workers were paid $0.33 for each 857

pair of sentences and were asked to generate 3 pairs 858

at a time. An author of this paper wrote an initial 859

pilot set of sentences, and timed themselves while 860

writing some sentences. They found that each pair 861

took around 1 minute to write, though this varied 862

(less creative examples took less time, while more 863

creative examples took more time). This extrap- 864

olates to an hourly rate of 19.80 USD, which is 865

above the minimum wage in all US states, where 866

workers were located. 867

Our HIT task was structured as follows: At the 868

top of the page, the workers are shown the follow- 869

ing instructions: "Your task is to generate three 870

pairs of sentences with opposite or very differ- 871

ent meanings, both of which contain rare/creative 872

metaphors, which means metaphors that would not 873

appear often in text on the internet, books, social 874

media or news sites, but that can still be easily un- 875

derstood by people. For each metaphor, you should 876

also provide a literal (non-metaphorical) sentence 877

with the same meaning." Then, we display one ex- 878

ample of a valid sentence pair. There is a button that 879

opens a modal with more detailed instructions and 880

some more valid/invalid examples for reference. 881

Below that, we display three random words, which 882

workers are encouraged to use in their sentences 883

if they get stuck. Finally, we display three sets of 884

5 text fields for workers to fill in: one for the start 885

phrase, two for each metaphorical phrase, and two 886

for each literal interpretation. As the user types 887

in each start phrase, we prepend a copy of their 888

phrase before the corresponding metaphor fields in 889

the UI using some embedded JavaScript, which we 890

found helped reduce confusion and resulted in less 891

improperly formatted responses. 892

We launched many batches of these HITs until 893
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we had collected the desired quantity of data. Then,894

we converted the form responses into sentence pairs895

and validated each pair by hand before adding it to896

our dataset.897

B Invalid Examples898

Figurative language examples collected from899

crowdworkers were excluded if they (a) did not900

make sense given the meaning and the metaphori-901

cal expression, (b) had grammar or spelling errors902

that rendered them unintelligible, or (c) did not903

follow the format specified by the task template.904

Examples are given below:905

1. Do not make sense given the meaning and the906

metaphorical expression

Paired sentences Possible answers

He was resourceful like toilet paper He was very resourceful.
He was resourceful like a mess He wasn’t resourceful at all

The night was as long as a spool of thread The night is long
The night was as long as a winding road The night dragged on

the concert of the lession is a main and a major we concert everyone
the concert of the lession features we concert our loved one

Table 7: Examples that were rejected due to being non-
sensical.

907

2. Significant grammar or spelling errors

Paired sentences Possible answers

fallten data are very much trusted fallten are nice
fallten data are very valuable flatten are safe

CAR IS BIRD FEATHEAR CAR SITE IS ROUGH
CAR IS COTTON CAR SITE IS HARD

Inflation is as natural as Minnesota rainfall in June Inflation is perfectly natural
Inflation is as natural as Minnesota snowfall in June Patient is in a natural result of other things

Table 8: Examples that were rejected due to having
significant spelling or grammar errors.

908

3. Do not follow format

Paired sentences Possible answers

This attack is as weak as a feather The attack is useless
This attack is as weak as a breeze The attack doesn’t work

My car motor is dusty like old cave Car motor is very rusty
My car motor is dusty like abandon building car motor is very dusty

the writer is stuck between a rock And another hard place He is just stuck doesnt have a choice
the writer is stuck between a rock And a pebble The writer can get over the pebble

Table 9: Examples that were rejected due to not follow-
ing the specified format.

909

Efforts were made to ensure that the final dataset910

contains no offensive content or personally iden-911

tifiable information. WorkerID and other poten-912

tailly personally identifying information were not913

included.914

C Backward accuracies 915

Model Zero-shot Fine-tuned (L)

GPT-2 52.18 52.00
GPT-neo 1.3B 54.36 63.44
GPT-3 Curie 58.46 74.83

Table 10: Zero-shot and finetuned backward auto-
regressive model accuracies on the test set

D Accuracy breakdown by 916

Part-of-Speech 917

D.1 Subject 918

Part of speech Accuracy Frequency

NN 0.8569 538
PRP 0.8526 156

PRP$ NN 0.9 110
NN NN 0.8889 63
DT NN 0.8182 44

NN NN NN 0.9375 32
JJ NN 0.9167 12

Table 11: Accuracy breakdown and frequency of parts
of speech in metaphor subjects. Only part-of-speech
patterns with greater than 10 occurrences are shown.

D.2 Relation 919

Part of speech Accuracy Frequency

VBZ NN IN 0.8421 152
VBD RB JJ IN 0.8904 146
VBZ RB JJ IN 0.8889 99

VBZ 0.8352 91
VBD NN IN 0.8806 67

VBD 0.9180 61
VBN IN 0.9545 22
NN IN 0.8636 22

VBD JJ IN 0.9048 21
NNS IN 0.8889 18
VBD IN 0.8462 13
VBZ IN 1.0 13

VBD RB VBN IN 0.8182 11

Table 12: Accuracy breakdown and frequency of parts
of speech in metaphor relations. Only part-of-speech
patterns with greater than 10 occurrences are shown.
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D.3 Object920

Part of speech Accuracy Frequency

NN 0.8788 429
NN NN 0.8992 129
JJ NN 0.8352 91

NN IN NN 0.8372 43
JJ NN NN 0.8710 31

NN NN NN 0.9130 23
VBG NN 0.9545 22

NN IN JJ NN 0.6154 13
PRP$ NN 1.0 11

JJ 0.6364 11
NN IN NN NN 0.8182 11

Table 13: Accuracy breakdown and frequency of parts
of speech in metaphor objects. Only part-of-speech
patterns with greater than 10 occurrences are shown.

E Accuracy breakdown by hypernyms921

E.1 Subject922

Synset Accuracy Frequency

adult.n.01 0.8736 182
male.n.02 0.8684 152

woman.n.01 0.7391 46
female.n.02 0.9130 46
show.n.03 0.875 24

product.n.02 0.8636 22
motor_vehicle.n.01 0.9048 21

activity.n.01 0.8421 19
emotion.n.01 0.6667 18

publication.n.01 0.8333 18
feline.n.01 0.9375 16
being.n.01 0.7143 14

performer.n.01 0.8333 12
canine.n.02 12

body_covering.n.01 0.8333 12
vessel.n.03 0.8333 12
sound.n.01 1.0 12

domestic_animal.n.01 0.9167 12
person.n.01 0.8 10
scheme.n.01 0.9 10

contestant.n.01 1.0 10

Table 14: Accuracy breakdown and frequency of Word-
Net hypernyms in metaphor subjects. Only hypernyms
with 10 or greater occurrences are shown.

E.2 Object 923

Synset Accuracy Frequency

time_period.n.01 0.85 20
natural_object.n.01 0.8947 19

person.n.01 0.8824 17
large_integer.n.01 0.9286 14

adult.n.01 1.0 14
solid.n.01 0.9167 13
male.n.02 1.0 13
child.n.02 0.8333 12

body_of_water.n.01 0.75 12
body_covering.n.01 0.8333 12

digit.n.01 0.9167 12
region.n.01 0.8182 11

beverage.n.01 0.8182 11
juvenile.n.01 0.8182 11
container.n.01 0.9 10

rodent.n.01 0.9 10
feline.n.01 0.7 10

building.n.01 0.8 10
time_unit.n.01 0.9 10

travel.v.01 0.7 10

Table 15: Accuracy breakdown and frequency of Word-
Net hypernyms in metaphor objects. Only hypernyms
with 10 or greater occurrences are shown.

F Generation examples 924

Generation examples can be found in Table 16. 925
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Startphrase Completion Label

His temper was a marshmallow. That is to say, he was very easily angered, and once he was, he was very hard to cool down Incorrect

He’s got the swimming ability of a pack of dolphins. That is to say, he’s got none Incorrect

The villain is as beautiful as the Joker. That is to say, he’s not Correct

The child has the energy of a sloth. That is to say, he is lazy Correct

The girl moved as fast as a turtle. That is to say, she moved at a turtle’s pace Literal

The sadness of her death was a flea.That is to say, It was a flea that was a sadness Literal

Table 16: Examples of completions generated by GPT-3 Davinci.
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