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ABSTRACT

We consider the reinforcement learning problem under partial observability, where
observations in the decision process lack the Markov property. To cope with partial
observability, first we must detect it. We introduce the λ-discrepancy: a measure
of the degree of non-Markovianity of system dynamics. The λ-discrepancy is the
difference between TD(λ) value functions for two different values of λ; for exam-
ple, between 1-step temporal difference learning (TD(0)), which makes an implicit
Markov assumption, and Monte Carlo value estimation (TD(1)), which does not.
We prove that this observable and scalable value-based measure is a reliable signal
of partial observability. We then use it as an optimization target for resolving par-
tial observability by searching for memory functions—functions over the agent’s
history—to augment the agent’s observations and reduce λ-discrepancy. We empir-
ically demonstrate that our approach produces memory-augmented observations
that resolve partial observability and improve decision making.

1 INTRODUCTION

Reinforcement learning (Sutton and Barto, 1998) (or RL) tasks are typically assumed to be well-
modeled as Markov decision processes (or MDPs), where an agent interacting with a task observes
necessary information required to fully describe the state of the task. This assumption—the Markov
assumption—is virtually ubiquitous in RL research, and much of the theoretical framework upon
which RL algorithms are built depends upon it. However, decision processes in the real world are
rarely Markov, and expert effort is typically required to artificially augment real-world observation
spaces to render them Markov. For example, when RL is applied to Atari (Bellemare et al., 2013), the
current observation is stacked with three previous frames to include information about the velocity
and acceleration of sprites (Mnih et al., 2015). Applications from automated HVAC control (Galataud,
2021) to stratospheric balloon navigation (Bellemare et al., 2020) use task-specific state features
hand-engineered to approximate the Markov assumption and incorporate history information. While
these applications are promising, the hand-designed features lack generality across tasks.

General decision-making agents must overcome non-Markovian observations without the benefit of
external intervention. Here, the dominant problem model is the partially observable Markov decision
process (or POMDP), which relaxes the Markov assumption to hold only for unobserved states. The
environment dynamics, reward function, and the agent’s observations all depend on these underlying
states, but observations may not be Markovian themselves, and—in contrast to MDPs—optimal
behavior is usually history-dependent. Memory can reestablish or approximate the Markov property
by summarizing history, but few approaches offer practical guidance on what to remember and when.
Often, the agent’s memory is simply optimized concurrently with the same learning signal as the
value function or policy.

The optimization of value and memory need not be tackled simultaneously: with an appropriate
learning signal, memory can be optimized independently from value and policy. Separating these
objectives adds algorithmic flexibility and allows memory learning to benefit off-policy evaluation
and offline as well as online reinforcement learning. Here we focus solely on memory optimization.
We propose a measure of partial observability in general decision processes that we call the λ-
discrepancy: the difference between two different value functions estimated using the temporal
difference learning procedure TD(λ) (Sutton, 1988). In TD(λ), the parameter λ trades off between
short-term and long-term Bellman backups, where λ = 0 corresponds to 1-step backups, and λ = 1

1



Under review as a conference paper at ICLR 2024

uses infinite backups. The latter case, which is equivalent to estimating the Monte-Carlo (MC) return,
is the only unbiased choice of λ in the partially observable setting. All other choices introduce bias
in the value function fixed-point due to the implicit Markov assumption contained in the Bellman
operator. We show that—for non-Markov decision processes only—this value discrepancy reliably
exists for any two parameter choices λ1 ̸= λ2 and almost all policies. Our work investigates using
this measure to both detect and resolve partial observability.

We make the following contributions:

1. We analyze the sources of partial observability in general decision processes, and introduce
the λ-discrepancy, a measure of non-Markovianity.

2. We prove that the λ-discrepancy can be used to reliably identify non-Markovian reward or
transition dynamics.

3. We then consider a “best-case” optimization scheme that adjusts the parameters of a memory
function to minimize the λ-discrepancy via gradient descent. This approach requires
computing the λ-discrepancy in closed form, and is therefore only feasible in the planning
setting. However, the results demonstrate that minimizing λ-discrepancy reduces partial
observability and improves agent performance across a range of classic POMDPs.

4. Finally, we consider the more realistic setting where the agent only has point estimates
of the λ-discrepancy. We equip the agent with oracle value functions and search for a
λ-discrepancy-minimizing memory function using hill-climbing. The resulting memory
functions achieve nearly the same final performance as the best-case gradient-based method.

Based on our theoretical and empirical analysis, we conclude that the λ-discrepancy is a reliable
and useful measure for detecting and reducing partial observability in decision processes. It is
also practical, since the λ-discrepancy can be computed directly from value functions, which many
reinforcement learners already estimate anyway. Furthermore, since the λ-discrepancy is a function
of only observable quantities in a decision process, it is feasible to apply it in problems where state
information is truly hidden, and where the agent may not even know the full set of possible states.

2 BACKGROUND

In the typical RL model, an agent tries to maximize expected rewards in an MDP (Puterman, 1994).
An MDP is defined by the tuple (S,A,R, T, γ, p0), where S is the state space, A is the action
space, R : S × A → R is the reward function, T : S × A × S → [0, 1] is the transition function,
γ ∈ [0, 1] is the discount factor, and p0 : S → [0, 1] is the start-state distribution. The agent’s
goal is to find a policy π that selects actions to maximize return, Gt, the discounted sum of future
rewards starting from time step t: Gπ

t =
∑∞

i=0 γ
irt+i, where ri is the observed reward at time step

i. We denote the expectation of these returns as value functions Vπ(st) = Eπ[Gt | St = st] and
Qπ(st, at) = Eπ[Gt | St = st, At = at].

A decision process is Markovian if it satisfies two properties, one describing T and one R. In an
MDP, the state st ∈ S and action at ∈ A at time step t together are a sufficient statistic for predicting
state st+1 and reward rt, instead of requiring the agent’s whole history:

T (st+1|st, at) = T (st+1|st, at, . . . , s0, a0); R(st, at) = R(st, at, . . . , s0, a0). (1)

The Markov assumption has several desirable implications. First, the transition and reward functions,
and consequently the value functions Vπ(s) and Qπ(s, a), have fixed-sized inputs and are therefore
easy to parameterize, learn, and reuse. Second, it follows that the optimal policy π∗ : S → A need
only reactively and deterministically map from states to actions. Finally, if the Markov property holds
then so does the Bellman equation:

Vπ(st) = Eπ [Rt + γVπ(St+1)] , (2)

where St+1 and Rt are the state and reward at the respective time steps. Equation 2 defines a
recurrence relation over expected one-step returns. We can unroll this relation to obtain a version for n-
step returns: Vπ(st) = Eπ [Gt:t+n], where Gt:t+n

.
= Rt+γRt+1+γ2Rt+2+· · ·+γnVπ(St+n). The

same equation holds for weighted combinations of such returns, including the exponential average:

V λ
π (st) = Eπ

[
(1− λ)

∞∑
n=1

λn−1Gt:t+n

]
. (3)
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(a) (b)

Figure 1: (a) Bakker’s T-Maze, an example of a non-Markov decision processes. The agent must
navigate through the environment but can only observe the color of the square it is currently in. The
agent will more easily reach the goal (G) and receive positive reward if it can remember at the purple
junction whether it previously saw a blue or a red observation. G and X are terminal states. (b) A
learnt memory function that tests whether a blue or a red observation was observed more recently.

The argument of this expectation is known as the λ-return (Sutton, 1988), and the expectation itself
defines the TD(λ) value function. Due to the Bellman equation, all TD(λ) value functions for a given
MDP and policy share the same fixed point for any λ ∈ [0, 1].

In the general case, where the Markov property does not hold, the resulting decision process is
described by a tuple (Ω, A,R, T, γ). In this setting, the agent receives observations ω ∈ Ω at each
time step t instead of states, and all the relevant functions—transition T and reward R, and therefore
policy π and value functions V and Q—are functions of the agent’s entire history ht. Frequently,
such decision processes are modeled as partially-observable MDPs (POMDPs) (Kaelbling et al.,
1998), where transitions and rewards are defined over an unobserved latent state that generates the
agent’s observations. Rather than define history-dependent T and R, the POMDP model extends the
basic MDP by adding observations Ω and an observation function O(ω|s) representing the probability
of seeing observation ω in latent state s. Typically, observations ω do not contain enough information
to fully resolve states s, and consequently, the Bellman equation no longer holds, and different λ may
have different TD(λ) fixed points. In this work, we seek to characterize this phenomenon, as well as
exploit it to detect and resolve partial observability by measuring differences in the fixed points of
TD(λ) value functions.

3 A MEASURE OF PARTIAL OBSERVABILITY

The two dominant reinforcement learning paradigms, MDPs and POMDPs, start by assuming either
fully or partially observable state information. Rather than adopt one of these two decision making
paradigms wholesale, we instead advocate for inspecting the decision process to detect and resolve
partial observability whenever it affects value. By systematically using memory to better approximate
the Markov assumption, we can enable more effective decision making in general decision processes.

Let us first examine why the Markov property does not hold for observations in general decision
processes. Consider the T-Maze example of Figure 1a. The initial observation (BLUE/RED) indicates
the location of the rewarding goal state G (UP/DOWN, respectively). However, since the agent can
only observe the color of its current grid cell, the gray corridor and purple junction provide no
information about the goal. The agent must use the information in the starting square to select actions
effectively at the junction square.

Recall that under the Markov assumption (Equation 1), additional history does not add precision; the
transition and reward functions need only be conditioned on the current observation and action. If we
try to write down a time-homogeneous Markov transition model for T-Maze, i.e. Tω(ω

′ | ω, a), we
effectively average over all histories consistent with that (ω, a) pair: Tω(ω

′ | ω, a) =
∑

h∈H pπ(h |
ω, a)p(ω′ | ω, a, h). This averages over histories starting with BLUE or RED observations, and thus
predicts that going UP from the junction will only reach the goal half the time. But the environment
does not do any averaging: if the agent initially observed BLUE, going UP from the junction will reach
the goal and DOWN will not. In other words, the agent experiences transition dynamics (and, in general,
rewards as well) that depend on its complete history and that are inconsistent with the Markov model.
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A measure of non-Markovianity must detect when environment dynamics differ from those in the
Markov model. One straightforward way to achieve this is to have the agent build two world models—
one Markov, one not—and compare them. But, the latter model would require variable-length history
inputs, which complicates learning and does not scale with time. Instead, we compare value functions,
exploiting the implicit Markov assumption in TD learning and lack thereof in Monte Carlo estimation.
This has the advantage that both value functions require only fixed-size inputs, and can be learnt with
the same policy.

3.1 VALUE FUNCTION ESTIMATION UNDER PARTIAL OBSERVABILITY

Different value function estimators exhibit different behavior in the partially observable setting. In
particular, TD(λ) estimators no longer share the same fixed points for all λ the way they do in Markov
decision processes. Monte Carlo estimation (equivalent to TD(λ = 1)), forms a value estimate by
directly averaging samples of the return:

Q̂MC
π (ω, a) := Eπ[Gt|ωt = ω, at = a] ≈ 1

N

N∑
i=1

G
(i)
t [ωt = ω, at = a],

where the expectation is approximated by sampling entire trajectories under the policy. Meanwhile,
temporal difference (TD) methods estimate a value function recursively by bootstrapping off of
an existing estimate through successive application of the Bellman equation. For TD(λ = 0) this
amounts to repeatedly updating Q̂TD

π as follows:

Q̂TD
π (ω, a)← Rt + γQ̂TD

π (ω′, a′).

Modeling the decision process as a POMDP allows us to compute the TD(λ) fixed point in closed
form for any parameter λ and reactive policy π:

Qλ
π = W

(
I − γT

(
λΠS + (1− λ)ΦWΠ

))−1

RSA, (4)

where Qλ
π is an Ω× A matrix, and the right hand side is comprised of the following tensors: state

weights W (Ω × S) containing probabilities Pr(s|ω) (see Appendix A for the formal definition);
identity I (an S×A×S×A tensor with Isas′a′ = δss′δaa′ ); latent transition dynamics T (S×A×S);
effective policy over latent states ΠS (S × S ×A; see Appendix A); observation function Φ (S × Ω)
containing probabilities Pr(ω|s); state-action weights WΠ (Ω × S × A) containing probabilities
Pr(s, a|ω); and latent rewards RSA (S × A). Notation: Each product between tensors contracts
one adjacent index, e.g. for tensors A and B, (AB)ijlm =

∑
k AijkBklm, with the exception of the

products involving RSAand T on the right hand side, which contract two indices. This derivation
is given in Appendix A, and follows the Markov version by Sutton (1988). Setting λ = 0 or λ = 1
recovers either the TD or MC value function above, respectively.

Note that the TD estimator replaces Gt with (Rt+γQ̂TD
π (ω′, a′)), which presupposes that condition-

ing on (ω′, a′) is sufficient for characterizing the distribution of future returns. In other words, TD im-
plicitly makes a Markov assumption. TD averages over all trajectories consistent with the observation-
action pair (ω′, a′), regardless of whether they are compatible with the preceding experiences, which
leads to a biased estimate of value. By contrast, the MC estimator computes expected return using the
remainder of the actual, realized trajectory, and is unbiased.1 This analysis extends to TD(λ) as well,
where λ controls the strength or weakness of the model’s Markov assumption. In practice, it is com-
mon to use TD(λ) with a high λ in place of MC, since the MC estimator suffers from high variance.

3.2 λ-DISCREPANCY

We have shown that, under partially observability, there may be a discrepancy between Qλ
π value

functions for two different λ parameters due to the implicit Markov assumption in TD(λ). We call
this difference the λ-discrepancy, and we will use it as a measure of non-Markovianity.

1We visualize this distinction for T-Maze in Figure 3 in Appendix E.3.
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Definition 1 The λ-discrepancy ∆Qλ1,λ2
π is the weighted L2 norm of the difference between two

action-value functions estimated by TD(λ) using different values of λ:

∆Qλ1,λ2

M,π :=
∥∥Qλ1

π −Qλ2
π

∥∥
2,π

where M is the POMDP model, and the norm weighting is as described in Appendix E.2.

In the remainder of the work, we refer to the λ-discrepancy as ∆Qλ1,λ2
π , i.e. without the subscript M ,

unless otherwise noted. A useful property (that we will prove in Lemma 1) is that the λ-discrepancy
is zero in the fully observable setting. However, for it to be a useful measure of non-Markovianity,
we must also show that it is reliably non-zero under partial observability. This leads to the following
theorem:

Theorem 1 For any POMDP and for any fixed λ and λ′, either ∆Qλ,λ′

π ̸= 0 for almost all policies
π or ∆Qλ,λ′

π = 0 for all policies π.

Proof sketch: We formulate the λ-discrepancy as the norm of an analytic function from row-stochastic
matrices, the set of matrices whose rows sum to 1, to the reals to show that either the λ-discrepancy
is zero for all policies or is nonzero for almost all policies. The full proof is given in Appendix B.

If the λ-discrepancy is non-zero for some policy π, then the λ-discrepancy is a measure of partial
observability and could be used as a learning signal to resolve it. This theorem suggests that almost
any stochastic policy in a POMDP will almost always have evidence of partial observability through
a non-zero λ-discrepancy. Even if a POMDP exhibits a zero λ-discrepancy for a particular policy,
this theorem further suggests a way to avoid this case: small perturbations in the policy (for instance,
with an ϵ-greedy policy).

We now consider when the λ-discrepancy is 0 for all policies, and show that these POMDPs are either
Markov or uninteresting.

3.3 WHEN IS THE λ-DISCREPANCY ZERO?

Because norms are positive definite, to analyze the case in Theorem 1 where the λ-discrepancy is 0
for all policies, it suffices to consider the expression inside the norm of Definition 1:

W
(
Aλ1

π −Aλ2
π

)
RSA, where Aλ

π =
(
I − γT

(
λΠS + (1− λ)ΦWΠ

) )−1

. (5)

The only ways for this equation to be zero are when the difference term Aλ1
π −Aλ2

π is zero (which we
will show to be an MDP), or in the special case where this difference term is projected away by the
outer terms W and/or RSA. We first consider when the two inner terms—which are the only terms
that depend on λ—are equal, i.e.:

Aλ1
π = Aλ2

π . (6)

In this case the system is a block MDP, a POMDP / MDP hybrid model featuring Markov observations,
each of which can only be produced by one unique latent state (Du et al., 2019). Block MDPs are
thus Markov over both states and observations.

Lemma 1 For any POMDP and any λ, λ′, Equation 6 holds if and only if the system is a block MDP.

Proof: See Appendix C.

Now we consider POMDPs where the difference between Aλ
π is projected away by the outer terms

W and RSA. To see how a λ-discrepancy of 0 is possible in this case, we first expand Equation 4 as
a power series,

Qλ
π = WRSA + γWT

(
λΠS + (1− λ)ΦWΠ

)
RSA+

γ2WT
(
λΠS + (1− λ)ΦWΠ

)
T
(
λΠS + (1− λ)ΦWΠ

)
RSA + . . . ,

and consider when Qλ1
π −Qλ2

π is zero. This could occur due to cancellation of the terms between the
two power series. One case of this cancellation occurs when λ = 0 and λ′ = 1. We can group the
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power series expansion by γn coefficients:

Q0
π −Q1

π = γ
(
WTΠSRSA −WTΦWΠRSA

)
+ γ2

(
WTΠSTΠSRSA −WTΦWΠTΦWΠRSA

)
+ . . .

Setting each grouped term to 0, this gives a class of POMDPs with 0 λ-discrepancy, namely those
where the expected reward at each time step equals the expected rewards given Markovian observation
rollouts. Furthermore, this characterization of the λ-discrepancy actually holds for almost all γ:

Lemma 2 For any POMDP, ∆Q0,1
π = 0 if for all initial observations o0 and actions a0, and all

horizons T ,

E(rT |ω0, a0) =
∑

ω1,...,ωT

E(rT |ωT )P(ω1|ω0, a0)

T−1∏
t=1

P(ωt+1|ωt).

Furthermore, the converse holds for almost all choices of the discount factor γ.

Proof: See Appendix D.

In terms of implementation, this implies that if γ is chosen uniformly from some interval in (0, 1),
there is zero probability that the λ-discrepancy is 0 unless it is 0 for all γ.

Through Theorem 1 and analyzing redundant or unlikely cases where λ-discrepancy is 0, we conclude
that the λ-discrepancy is very likely to be a useful measure for detecting and mitigating partial
observability. Theorem 1 also implies that if λ-discrepancy is non-zero, zeroing it with some memory
function will result in memory-augmented observations that are Markov. It is also a promisingly
practical measure, since it relies on the very value functions that form the foundation of most RL
methods and for which many well-developed learning algorithms exist. In the next section, we
demonstrate the efficacy of using the λ-discrepancy to learn memory functions that reduce partial
observability in well-known POMDPs.

4 MEMORY LEARNING WITH THE λ-DISCREPANCY

Since single observations are insufficient for optimal decision making, the agent must augment its
observations with a summary of its past. We formalize this concept as a memory function. If H is
the space of all possible histories, a memory function µ : H 7→ m is a mapping from a variable-
length history ht

.
= (ω0, a0, r0, ..., ωt−1, at−1, rt−1, ωt) ∈ H to a memory state m within a set of

possible memory states M . This definition captures the broadest class of memory functions, but for
practical reasons, we will restrict our focus to recurrent memory functions that use fixed-size inputs
and update their memory state incrementally. A recurrent memory function µ : O ×A×M →M
takes in a previous memory state m (as well as previous observation ω and action a), and outputs
a next memory state m′ = µ(ω, a,m). For example, in the T-Maze environment of Figure 1, one
useful memory function modifies the memory state based on the initial observation (BLUE or RED),
then keeps the memory state fixed until the purple junction. Memory functions naturally lead to
memory-augmented policies πµ : (Ω ×M) → A and value functions Vπ,µ : (Ω ×M) → R and
Qπ,µ : (Ω×M)×A→ R that reflect the expected return under such policies, all expressed in terms
of the newly defined observation space (Ω×M).

4.1 λ-DISCREPANCY FOR MEMORY FUNCTIONS

As currently defined, the λ-discrepancy can identify when we need memory, but it cannot tell us
what to remember. We therefore replace the observation value functions in Definition 1 with their
memory-augmented counterparts:

∆Qλ1,λ2
π,µ := ∆Qλ1,λ2

Mµ,π (7)

where Mµ augments POMDP M with memory function µ as in Appendix E.1, and the right hand side
is the λ-discrepancy defined with respect to a POMDP Mµ as given in Definition 1. The augmented
observations Ω×M constitute a Markov state if the memory is a sufficient statistic of history. In this
section, we set λ1 = 0 and λ2 = 1, which represent the TD(0) and MC value functions respectively.
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Algorithm 1 Memory Optimization with Value Improvement

Input: Randomly initialized policy parameters θπ, where Π = softmax(θπ), randomly initial-
ized memory parameters θµ, POMDP parameters P := (T,RSA, ϕ, p0, γ), number of memory
improvement steps nsteps,M , number of policy iteration steps nsteps,π , learning rate α ∈ [0, 1], and
number of initial random policies n.
// Calculate memoryless optimal policy.
θπ∗ ← policy improvement(θπ,P, nsteps,π)
// Initialize random policies and select policy to fix for memory learning.
{θ0, . . . , θn−1} ← randomly init n policies(n)
θπ ← select argmax lambda discrepancy({θπ∗, θ0, . . . , θn−1})
// Repeat policy over all memory states.
θπµ
← repeat(θπ, |M |)

// Improve memory function.
θµ ← memory improvement(θµ, θπµ

,P, nsteps,M )
// Improve memory-augmented policy over learnt-memory-augmented POMDP
θπµ
← policy improvement(θπµ

,Pθµ , nsteps,π)
return θπµ

, θµ

We test two approaches for learning a memory function by minimizing λ-discrepancy. We begin with
a gradient-based optimization algorithm for memory optimization in the planning setting, where the
algorithm has access to the ground-truth POMDP dynamics (transition dynamics T , reward RSA,
observation function Φ) and can calculate gradients through these quantities. Next, we relax this
assumption and consider a discrete optimization approach that does not necessarily require the ground-
truth POMDP dynamics for updates. It descends the λ-discrepancy with a hill-climbing algorithm.

We show that under both optimization schemes, gradient-based and hill-climbing, minimizing the
λ-discrepancy improves performance over the baseline memoryless policy in a collection of classic
POMDP problems. Together, these results demonstrate the value of λ-discrepancy as a measure of
partial observability, and for solving general decision processes.

4.2 MEMORY OPTIMIZATION WITH GRADIENTS

Our first algorithm calculates and optimizes closed-form gradients of the λ-discrepancy with respect to
a parameterized memory function. We calculate memory-augmented value functions as in Equation 4.
This requires generalizing our definition of memory functions to stochastic memory functions
µ : O × A × M × M → [0, 1], so that the optimization surface is continuous and gradients
exist. Stochastic memory functions are transition functions between memory states that depend
on observables of the POMDP. At every step, the memory function takes as input an observation,
action, and previous memory state, and stochastically outputs the memory state at the next time step.
We then augment the POMDP dynamics and policy by combining the memory function with the
state transition function using a memory Cartesian product operation. Full details of this memory
augmentation procedure are in Appendix E.1, and the practical implementation is in E.4.

Algorithm 1 describes our memory optimization procedure, which reduces λ-discrepancy to learn a
memory function, then learns an optimal memory-augmented policy. The memory improvement
subroutine can be either gradient-based (this section) or hill-climbing (next section). Further algorithm
details are in Appendix E.4.

Experiments. We conduct experiments on a range of classic partially observable decision problems
requiring skills like memorization, uncertainty estimation, and counting. The environments are: T-
Maze (Bakker, 2001), the Tiger problem (Cassandra et al., 1994), Paint (Kushmerick et al., 1995),
Cheese Maze, Network, Shuttle (Chrisman, 1992), and the 4× 3 maze (Russell and Norvig, 1995).
In Figure 2, we compare normalized learning performance between memoryless (blue bars) and k-
bit memory-augmented agents (respectively yellow, orange, and red solid bars, for k ∈ {1, 2, 3}).2
Performance is expected return, normalized to the range between that of a random policy and the
optimal belief-state policy learnt from a POMDP solver (Cassandra, 2003). Policy improvement uses

2Note that k memory bits correspond to 2k memory states.
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Figure 2: Memory optimization increases normalized return of subsequent policy gradient learning.
Solid bars denote gradient-based memory optimization (Grad) and hatched bars denote hill climbing
(HC). Performance is calculated as the average start-state value weighted by the start state distribution,
and is normalized between a random policy (y = 0) and the optimal belief state policy (y = 1) found
with a POMDP solver (Cassandra, 2003). Error bars are standard error of the mean over 30 seeds.

the policy gradient (Sutton et al., 2000) algorithm, since it one of the most effective ways to optimize
stochastic policies in partially observable environments (Sutton and Barto, 2018).3 Full experimental
details are provided in Appendix E.3.

Even with just a single bit of memory, we see large performance gains for all but two of the problems
we test on. As the number of memory bits increases, so does the performance. This suggests that the
λ-discrepancy is a useful objective for learning memory functions to resolve many forms of partial
observability. Additionally, the learnt memory functions are often quite sensible. Figure 1b shows a
visualization of one such memory function learnt for T-Maze. Despite optimizing over stochastic
memories, the function is essentially fully deterministic: it sets the memory state according to the
initial observation, and holds it constant otherwise. This allows the agent to concisely express the
optimal policy in terms of augmented observations.

4.3 MEMORY OPTIMIZATION WITH HILL CLIMBING

Gradient-based optimization is effective at learning memory functions, but requires differentiating—
in closed form—through the quantities Φ, T , and R, which in principle cannot be observed by the
agent. In this section, we consider a more realistic optimization procedure that requires only point-
estimates of the relevant value functions. We employ a hill climbing algorithm based on simulated
annealing (Kirkpatrick et al., 1983) that searches the space of deterministic memory functions to
minimize the λ-discrepancy using these point estimates.

We replace the memory improvement subroutine of Algorithm 1 with simulated annealing, and
define a local search “neighborhood” over discrete memory functions so the algorithm can propose
successors. We run simulated annealing for a fixed number of steps, with random restarts and
hyperparameter resampling to improve robustness. See Appendix E.6 for more details.

For simplicity, and to isolate the effects of memory learning with the λ-discrepancy, we assume the
agent has access to modules for accurate value estimation and effective policy improvement. These
modules could easily be replaced with sampled versions, but using a closed-form implementation
allows us to test our scientific claims about memory optimization without introducing confounding
variables. Here we only seek to show the viability of the λ-discrepancy as a measure of partial
observability and as a training signal for learning memory. We leave an exploration of its interaction
with value and policy learning algorithms for future work.

3See Appendix E.3.4 for a version that uses policy iteration (Howard, 1960) instead.
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Experiments. We repeat the experiments of Section 4.2, this time using hill climbing, and plot
the results side by side with the original results in Figure 2 as hashed bars. Across all environments,
the hill-climbing optimization procedure led to similar levels of final performance as the “best-case”
gradient-based procedure, in some cases even matching the performance of the optimal belief-state
policy. This suggests that in addition to being theoretically interesting, the λ-discrepancy has practical
value for learning memory in general decision processes.

5 RELATED WORK

Algorithms to resolve partial observability for non-Markov decision processes have been studied
extensively. The most popular class of solution methods for POMDPs are belief-state methods, which
have seen substantial success in robotics (Thrun et al., 2005). However, belief-state approaches are
intractable for even small environments where the hidden state space or its dynamics are unknown
(Zhang et al., 2012). Predictive state representations (Littman et al., 2001) resolve partial observability
with tests about the future trajectory. These tests are difficult to construct and only works on
relatively small domains (Zhang et al., 2012). Another approach is to leverage general value functions
(Sutton et al., 2011) (GVFs) to make predictions about the environment that can encompass history
information. GVFs have been shown to help in select non-Markov decision processes (Schlegel et al.,
2021), but discovering the right GVFs for each problem (Veeriah et al., 2019) and their applicability
for history summarization are open, unanswered questions.

Memory-based, history-summarization approaches to solving POMDPs have also been considered
extensively. Meuleau et al. learnt memory via stochastic gradient descent in the parameters of a
policy graph that encoded actions as nodes and observations as edges (Meuleau et al., 1999). Baxter
and Bartlett’s GPOMDP algorithm used a biased gradient estimate to enable policy gradients to
work for POMDPs; GPOMDP can be extended to work with finite sequences of observations or
parameterized belief states as well (Baxter and Bartlett, 2001). Hansen developed policy iteration
and heuristic search finite-state controller methods that improved on previous value iteration-based
approaches. Each node in his controller corresponded to a portion of the value function that then
specified a greedy action choice (Hansen, 1998). McCallum developed algorithms based on the
“utile distinction test” that determines when two histories should be considered usefully distinct and
the “nearest sequence memory” principle, which suggests past experiences should be considered in
estimating value (McCallum, 1996). The methods of Meuleau, Baxter, and Hansen did not make
a distinction between memory function parameters and policy parameters as we do in this work.
MaCallum’s work did consider a role for memory more similar to our work, but while his memory
states could only capture a finite length of past observation history, our memory functions can enable
the agent to remember for an arbitrary length of time.

Finally, most modern approaches use recurrent neural networks (RNNs) trained via backpropagation
through time (BPTT) to tackle non-Markov decision processes. While this method works with many
environments (Lin and Mitchell, 1993; Bakker, 2001; Ni et al., 2021), their success is sensitive to
architecture and hyperparameter choices (Ni et al., 2021), and requires that both value and memory
be learnt simultaneously. Overall, there is a dearth of scalable solution methods that specifically
tackles partial observability.

6 CONCLUSION

We introduce the λ-discrepancy: an observable and minimizable measure of non-Markovianity for
resolving partial observability. The λ-discrepancy is the norm between two TD(λ) fixed-points for
two different values of λs. We motivate and prove several theoretical properties that make the λ-
discrepancy a reasonable optimization objective for learning effective recurrent memory functions.
We empirically test the efficacy of this measure for solving general, non-Markov decision processes
through experiments on a broad range of partially observable environments in two problem settings:
the gradient-based planning setting, and the online sample-based setting. We find that reducing the
λ-discrepancy leads to memory functions that can solve non-Markov decision processes, and scale
with the size of the decision process. We conclude that the λ-discrepancy is a robust measure for
improving decision making in non-Markov decision processes.
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A TD(λ) FIXED POINT

Here we derive the fixed point of the TD(λ) action-value update rule in a POMDP. First, define the
expected return given initial observation ω0 and initial action a0 as

EΠ(G
n|ω0, a0) =

∑
s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
r
P(r0|s0, a0, s1)r0

+ γ
∑

s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
ω1

∑
a1

∑
s2
P(ω1|s1)P(a1|ω1)P(s2|s1, a1)∑

r1
P(r1|s1, a1, s2)r1

+ γ2
∑

s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
ω1

∑
a1

∑
s2
P(ω1|s1)P(a1|ω1)P(s2|s1, a1)

∗
∑

ω2

∑
a2

∑
s3
P(ω2|s2)P(a2|ω2)P(s3|s2, a2)

∑
r2
P(r2|s2, a2, s3)r2

+ . . .

We can define the n-step bootstrapped update rule from this given a value matrix Q by replacing part
of the term with coefficient γn with a Q value, e.g. for the n = 2 case, we get

Q(ω0, a0)←
∑

s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
r
P(r0|s0, a0, s1)r0

+ γ
∑

s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
ω1

∑
a1

∑
s2
P(ω1|s1)P(a1|ω1)P(s2|s1, a1)∑

r1
P(r1|s1, a1, s2)r1

+ γ2
∑

s0
P(s0|ω0)

∑
s1
P(s1|s0, a0)

∑
ω1

∑
a1

∑
s2
P(ω1|s1)P(a1|ω1)P(s2|s1, a1)

∗
∑

ω2

P(ω2|s2)
∑

a2

P(a2|ω2)Q(ω2, a2)

Translating these expressions into matrix notation, we have

EΠ(G
n|ω0, a0) =

∑
s0
Wω0,s0

∑
s1
Ts0,a0,s1Rs0,a0

+ γ
∑

s0
Wω0,s0

∑
s1
Ts0,a0,s1

∑
ω1

∑
a1

∑
s2
Φs1,ω1πω1,a1Ts1,a1,s2Rs1,a1

+ γ2
∑

s0
Wω0,s0

∑
s1
Ts0,a0,s1

∑
ω1

∑
a1

∑
s2
Φs1,ω1

πω1,a1
Ts1,a1,s2

∗
∑

ω2

∑
a2

∑
s3
Φs2,ω2

πω2,a2
Ts2,a2,s3Rs2,a2

+ . . .

where the terms W , T , and R, are as in Equation 4, and π is the Ω × A policy. In particular,
Wω,s = P(s|ω), which averages P(st|ωt) over all timesteps, weighted by visitation probability
and discounted by γ. This is a well-defined stationary quantity, and it can be computed as follows.
First solve the system Ax = b to find the discounted state occupancy counts x = c(s), where
A = (I − γ(Tπ)⊤) accounts for the policy-dependent state-to-state transition dynamics Tπ, and
b = p0 is the initial state distribution over s. Then P(s|ω) ∝ c(s) ∗ P(ω|s), so we can just multiply
these terms together and renormalize. For the bootstrapped update rule, we have

Q(ω0, a0)←
∑

s0
Wω0,s0

∑
s1
Ts0,a0,s1Rs0,a0

+ γ
∑

s0
Wω0,s0

∑
s1
Ts0,a0,s1

∑
ω1

∑
a1

∑
s2
Φs1,ω1

πω1,a1
Ts1,a1,s2Rs1,a1

+ γ2
∑

s0
Wω0,s0

∑
s1
Ts0,a0,s1

∑
ω1

∑
a1

∑
s2
Φs1,ω1

πω1,a1
Ts1,a1,s2

∗
∑

ω2

Φs2,ω2

∑
a2

Πω2,a2
Q(ω2, a2)

Therefore, the n-step update rule given a matrix of action-values Q is

Q← Qn(Q) := W

(∑n−1

k=0
(γTΠS)kRSA + γ(γTΠS)n−1TΦΠQ

)
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where Π is an Ω×Ω×A representation of the Ω×A policy π with Πω,ω′,a = δω,ω′πω,a, ΠS , the
effective policy over latent states, is likewise an S×S×A representation of the matrix Φ · π, and
RSA

s,a =
∑

s′Ts,a,s′R
SAS
s,a,s′ .

Notation: We use non-standard notation here for tensor contractions to avoid being overly verbose.
Unless otherwise noted, all contractions contract 1 index except those involving RSA and T on the
right hand side and those with WA on the left hand side, which contract 2 indices.

We also have the standard definition of the TD(λ) update rule as Q←(1−λ)
∑∞

n=1λ
n−1Qn(Q). We

are concerned with the fixed point of this update rule, which we refer to as Qλ:

Qλ = (1− λ)
∑∞

n=1
λn−1W

(∑n−1

k=0
(γTΠS)kRSA + γ(γTΠS)n−1TΦΠQλ

)
.

Separating this into a reward part with factor RSA and a value part with factor Qλ, we find that the
value part is

(1− λ)W
(∑∞

n=1
(λγTΠS)n−1

)
γTΦΠQλ

= (1− λ)W (I − λγTΠS)−1γTΦΠQλ,

and for the reward part, we have the coefficients of RSA in the table below for values of n and k

k = 0 1 2 . . .
n = 1 1 . . .
2 λ λγTΠS . . .
3 λ2 λ2γTΠS λ2(γTΠS)2 . . .
...

...
...

...
. . .

where each term is multiplied by (1− λ)W in front. We can then see by summing over rows before
columns that the reward part is:

(1− λ)W
∑∞

k=0

1

1− λ
(λγTΠS)kRSA

= W (I − λγTΠS)−1RSA.

So we rewrite Qλ as follows:

Qλ = W
((

I − λγTΠS
)−1 (

RSA + (1− λ)γTΦΠQλ
))

.

Now let WA = W⊗IA,A and
(
WΠ

)
ijk

= ΠWA. Here, ⊗ means the Kronecker product. This
essentially repeats the W matrix A times to incorporate actions into the tensor. Note that for any
S×A tensor G, WAG = WG. This is because (WAG)ij =

∑
k,lW

A
ijklGkl, and the only nonzero

terms in this sum are those such that j = l. For these indices, WA
ijkl = Wik, so

∑
k,lW

A
ijklGkl =∑

kWikGkj = (WG)ij .

Also, let F =
(
I − λγTΠS

)−1
. Then we find:

Qλ = WA
((

I − λγTΠS
)−1 (

RSA + (1− λ)γTΦΠQλ
))

= WA
(
F
(
RSA + (1− λ)γTΦΠQλ

))
= WAFRSA +WAF (1− λ)γTΦΠQλ

At which point we can subtract the second term on the right hand side from both sides, factor out Qλ

on the right, and multiply by
(
I − (1− λ)γWAFTΦΠ

)−1
on the left of both sides to obtain:

Qλ =
(
I − (1− λ)γWAFTΦΠ

)−1
WAFRSA

= WA
(
I − (1− λ)γFTΦΠWA

)−1
FRSA

= W
(
I − (1− λ)γFTΦWΠ

)−1
FRSA

= W
(
F + (1− λ)γFTΦWΠF + . . .+ (1− λ)kγkFTΦWΠFTΦWΠF + . . .

)
RSA,
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where the last equality follows from expanding the geometric series. Now we use the identity
(A−B)−1 =

∑∞
k=0(A

−1B)kA−1 to find:

Qλ = W
(
F−1 − (1− λ)γTΦWΠ

)−1
RSA

= W
(
I − γT

(
λΠS + (1− λ)ΦWΠ

))−1
RSA.

To recap our previous definitions, W is an Ω×S tensor, I is an S×A×S×A tensor, T is an S×A×S
tensor, ΠS is an S×S×A tensor, Φ is an S×Ω tensor, WΠ is an Ω×S×A tensor, and RSA is an
S×A tensor. Thus, the operation between W and the tensor inverse is a single summation over the
last index of W and the first index of the inverse. Operations within the matrix inverse are likewise
tensor dot products (single index contractions), and the operation between the tensor inverse and
RSA is a tensor double contraction.

Lastly, we briefly note that one can get the V values by replacing W in the above equation with WΠ

and changing the operation involving it on the right from a dot product to a double contraction. We
can confirm that Vo =

∑
a πo,aQo,a, by rewriting the expression on the right as follows:∑

a

πo,aQo,a =
∑
a

πo,a

∑
s,a′

WA
o,a,s,a′Bs,a′

=
∑
a

πo,a

∑
s

WA
o,a,s,aBs,a

=
∑
a

πo,a

∑
s

Wo,sBs,a

=
∑
s,a

πo,aWo,s︸ ︷︷ ︸
WΠ

o,s,a

Bs,a

= Vo,

where B =
(
I − γT

(
λΠS + (1− λ)ΦWΠ

))−1
RSA is an S ×A tensor.
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B PROOF OF THEOREM 1 (ALMOST ALL)

In this section we prove Theorem 1, that there is either a λ-discrepancy for almost all policies or for
no policies. Fix λ and λ′. Recall that we define the λ-discrepancy as follows:

∆Qπ :=
∥∥∥Qλ

π −Qλ′

π

∥∥∥
2,π

=
∥∥∥(WΠ

(
Aλ

π −Aλ′

π

)
RSA

)
· wπ

∥∥∥
2

where Aλ
π =

(
I − γT

(
λΠS + (1− λ)ΦWΠ

) )−1

and wπ is a weight vector of probabilities
dependent on π defined as wπ(ω, a) = (1, π(a|ω)). Let U be the largest open set in the space of
stochastic Ω×A matrices, considered as a subset of RΩ(A−1). Now consider the lambda discrepancy
as a function of the policy π. In other words, we define

∆Q : U → R

π 7→ Qλ
π −Qλ′

π

Let U be an open subset of Rn. We say that a function f : U → R is real analytic on U if for all x ∈ U ,
f can be written as a convergent power series in some neighborhood of x. For this proof, we will utilize
the following facts: 1) the composition of analytic functions is analytic (Krantz and Parks, 2002), 2)
the quotient of two analytic functions is analytic where the denominator is nonzero, 3) a real analytic
function on a domain U is either identically 0 or only zero on a set of measure 0 (Mityagin, 2020).

We will also use the fact that for A an invertible matrix, each entry A−1
ij is analytic in the entries

of A where the entries of A yield a nonzero determinant. We can prove this by first writing
A−1 = det(A)

−1
adj(A) = det(A)

−1
CT where adjA is the adjugate of A and C is the cofactor

matrix of A. Each entry of the cofactor matrix is a cofactor that is polynomial in the entries of A, and
is therefore analytic in them. Therefore, each entry of A−1 is the quotient of two analytic functions
and is therefore analytic except where detA = 0.

Next, we will show that ∆Q is an analytic function. Note that the variable terms in the equation are
W , WΠ, RSA, T , ΠS , and Φ. RSA, T , and Φ are constant with respect to π. ΠS

ilj =
∑

k δilΦikπkj ,
so each entry of ΠS is analytic on U in the entries of π. Likewise, Pij =

∑
k,a ΦikπkaTiaj is analytic

on U . Therefore, the state-occupancy counts c = µ0+γPTµ0+γ2(PT )2µ0+· · · = (I−γPT )−1µ0

are the composition of analytic functions and thus analytic on U . Wij =
Φjicj∑
k Φkick

is analytic on U

for the same reason, and the denominator of Wij ,
∑

k Φkick, is nonzero for all observations able to
be observed with nonzero probability. Finally, ∆Q is then a composition of analytic functions on U
and thus analytic itself.

To handle the norm weighting, we note that wπ is analytic in π as wπ = (1, π(a|ω)), and the dot
product of wπ with ∆Q is also analytic. Now, we use the fact mentioned above that the zero set of a
nontrivial analytic function is of measure zero. Therefore, the zero set of ∆Q · wπ is either zero for
all policies or zero only on a set of measure zero. To finish, we note that because norms are positive
definite, ∆Qπ = 0 if and only if ∆Q · wπ = 0, so this result extends to the normed λ-discrepancy as
well.

15



Under review as a conference paper at ICLR 2024

C PROOF OF LEMMA 1 (BLOCK MDP)

In this section, we prove Lemma 1 concerning when the system is a Block MDP. Recall that in

Eq. equation 5 we define Aλ
π =

(
I − γT

(
λΠS + (1− λ)ΦWΠ

) )−1

. Suppose Aλ
π = Aλ′

π . Then

γT
(
λΠS + (1− λ)ΦWΠ

)
= γT

(
λ′ΠS + (1− λ′)ΦWΠ

)
as matrix inverses are unique. We can

rewrite this as (λ− λ′)ΠS − (λ− λ′)ΦWΠ = (λ− λ′)(ΠS − ΦWΠ) = 0. This implies that either
λ = λ′ or ΠS = ΦWΠ.

Writing ΠS = ΦWΠ out in terms of probability, this implies that for all i, j, k,
∑

ωP(ω|si)P(ak|ω) =∑
ωP(ω|si)P(ak|ω)P(sj |ω) if i = j, and

∑
ωP(ω|si)P(ak|ω)P(sj |ω) = 0 if i̸=j.

We will first consider the latter case. For all observations ω, there exists some k′ such that P(ak′ |ω) >
0. We then have that for all i ̸= j,

∑
ωP(ω|si)P(ak′ |ω)P(sj |ω) = 0. Because each term in the sum is

nonnegative, this is equivalent to the statement that for all i ̸= j and all ω, P(ω|si)P(ak′ |ω)P(sj |ω) =
0. Because P(ak′ |ω) is positive, this implies that for all i ̸= j and for all ω, P(ω|si)P(sj |ω) = 0.
This means that if state si produces an observation o, then ω cannot be produced by any other
reachable state sj ̸= si, where two states are reachable if there exists a sequence of actions sampled
from the policy that enable the agent to reach state si from sj with nonzero probability. In other
words, we are in a Block MDP for each component of the state space.

The former case doesn’t add anything new. We have that for all i, k,
∑

ωP(ω|si)P(ak|ω)(1 −
P(si|ω)) = 0. Because each term is nonnegative, this is equivalent to P(ω|si)P(ak|ω)(P(si|ω)−1) =
0. Because we again have that for all observations there exists an action ak′ with nonzero probability,
this means we can choose k = k′ to find P(ω|si) = 0 or P(si|ω) = 1 for all ω, si. This means that
either the state si does not produce an observation ω, or the observation ω uniquely determines which
state the agent is in.

Lastly, by going backwards through the proof, we see that the converse is also true. If the system is a
Block MDP, then ΠS = ΦWΠ and so Aλ

π = Aλ′

π .
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D PROOF OF LEMMA 2 (ZERO λ-DISCREPANCY)

In this section, we prove Lemma 2, deriving a condition for the λ-discrepancy to vanish.

Let Aλ =
(
I − γT

(
λΠS + (1− λ)ΦWΠ

))−1
. Qλ = Qλ′

iff W (Aλ −Aλ′
)RSA = 0. Expanding

Aλ and Aλ′
into power series, we have

0 = (WRSA + γWT
(
λΠS + (1− λ)ΦWΠ

)
RSA+

γ2WT
(
λΠS + (1− λ)ΦWΠ

)
T
(
λΠS + (1− λ)ΦWΠ

)
RSA + . . .)

− (WRSA + γWT
(
λ′ΠS + (1− λ′)ΦWΠ

)
RSA+

γ2WT
(
λ′ΠS + (1− λ′)ΦWΠ

)
T
(
λ′ΠS + (1− λ′)ΦWΠ

)
RSA + . . .)

We observe that it is potentially possible to get cases of zero λ-discrepancy from pairs of terms in this
equation cancelling out. Concretely, this means

WT
(
λΠS + (1− λ)ΦWΠ

)
RSAWTΠSRSA −WTΦWΠRSA = 0

WTΠSTΠSRSA −WTΦWΠTΦWΠRSA = 0

. . .

This can occur in one particularly nice way if λ = 0 and λ′ = 1. In this case, there is no λ-discrepancy
precisely when

0 =
(
WRSA + γWTΠSRSA + γ2WTΠSTΠSRSA + . . .

)
−
(
WRSA + γWTΦWΠRSA + γ2WTΦWΠTΦWΠRSA + . . .

)
= γ

(
WTΠSRSA −WTΦWΠRSA

)
+ γ2

(
WTΠSTΠSRSA −WTΦWΠTΦWΠRSA

)
+ . . .

(8)

This occurs when each pair of n-step return terms cancel, or

WTΠSRSA −WTΦWΠRSA = 0

WTΠSTΠSRSA −WTΦWΠTΦWΠRSA = 0

. . .

Interpreting this in terms of probabilities, this says that for all initial observations ω0, initial actions
a0, and horizons T ,

E(rT |ω0, a0) =
∑

ω1,...,ωT
E(rT |ωT )P(ω1|ω0, a0)

T−1∏
t=1

P(ωt+1|ωt) (9)

In particular, this applies when RSA is a constant matrix, as in this case, the expected rewards are all
equal. Therefore, when RSA is constant, Q1 = Q0.

Next, we prove that the converse holds for almost all γ. Consider what happens if γ is not fixed with
the POMDP, but is instead allowed to vary. In that case, we have that the function f from γ to the
λ-discrepancy is an analytic function of γ:

f : γ 7→γ
(
WTΠSRSA −WTΦWΠRSA

)
+ γ2

(
WTΠSTΠSRSA −WTΦWΠTΦWΠRSA

)
+ . . .

(10)
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Therefore, following an approach similar to Appendix B, we know that either f is everywhere 0, or it
is nonzero almost everywhere. This means that either

1. The λ-discrepancy is 0 for all values of γ.
2. The λ-discrepancy is nonzero for almost all values of γ.

If f is identically 0, then each coefficient of γ in the power series expansion of the λ-discrepancy
must be 0, which implies Condition 9. Therefore, the condition is equivalent to the λ-discrepancy
being 0 in this case.

If f is nonzero almost everywhere, then the λ-discrepancy can only be zero on a set of γ of measure
0. Therefore, for almost all γ, the condition holds if and only if the λ-discrepancy is actually 0.
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E MEMORY OPTIMIZATION DETAILS

E.1 MEMORY-AUGMENTED POMDP

As referenced in Section 4.2, here we will explain how to define a memory-augmented POMDP from
a base POMDP (S,A, T,R,Ω,Φ, γ). Given a set of memory states M , we will augment the POMDP
as follows:

SM = S ×M

AM = A×M

ΩM = Ω×M

TM : SM ×AM × SM → [0, 1], (s0,m0)× (a0,m1)× (s1,m2) 7→ T (s0, a0, s1)δm1m2

RM : SM ×AM → [0, 1], (s0,m0)× (a0,m1) 7→ R(s0, a0)

ΦM : SM × ΩM → [0, 1], (s0,m1)× (ω0,m2) 7→ Φ(s0, ω0)δm1m2

γM = γ

This augmentation scheme uses the memory states M in three ways: as augmentations of states,
actions, and observations. The state augmentation concatenates the environment state S with the
agent’s internal memory state M . Meanwhile, the action augmentation AM provides the agent
with a means of managing its internal memory state. Together, these augmentations allow writing
the augmented transition dynamics TM , which are defined so as to preserve the underlying state-
transition dynamics T while allowing the agent full control to select its desired next memory state.
The observation augmentation ΩM provides the agent with additional context with which to make
policy decisions, and the observation function ΦM preserves the original behavior of the observation
function Φ while giving the agent complete information about the internal memory state.

We define an augmented policy π as follows:

π : ΩM ×AM → [0, 1],

which we decompose into two parts, an action policy and a memory function:

π(a,m′|ω,m) = πA(a|ω,m)µ(m′|a, ω,m),

πA : Ω×M ×A→ [0, 1],

µ : Ω×M ×A×M → [0, 1].

Note that the memory policy µ has the same function signature as—and is equivalent to—the state-
machine formulation of memory functions introduced in Section 4. This definition of memory
functions is convenient because it allows us to express a memory-augmented POMDP as a new
POMDP using simple Cartesian products.

Now we can define the value function over the Cartesian product of observations and memories:

Qλ
πM

= WM

(
I − γTM

(
λΠS + (1− λ)ΦWΠ

M

))−1

RM , (11)

where all quantities (including WM and WΠ
M ) have been modified to handle the augmented states

and observations. We provide pseudocode for taking this memory-Cartesian product of a POMDP in
Appendix E.4, Algorithm 3.

E.2 LAMBDA DISCREPANCY NORM WEIGHTING

The λ-discrepancy as introduced in Definition 1, and expanded on in Equation 7, contains a weighted
norm over the observations and actions of the decision process. There are many choices of norm and
weighting scheme. We use an L2 norm to highlight the connection to mean-squared action-value
error. For the weighting scheme, we weight actions according to the policy for each observation, and
we weight observations uniformly. More precisely, the weighting assigns the (ω, a) entry the weight
(1, π(ω|a)). We also considered weighting observations according to their discounted visitation
frequency, but found that this led to worse performance during memory optimization.
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Figure 3: Visualizations of value functions computed using MC (left) and TD (right). MC averages
over entire trajectories, so it can associate the blue observation with the upward goal. By contrast, TD
computes value by bootstrapping; its value estimates for subsequent observations ignore any prior
history.

E.3 ENVIRONMENTS AND EXPERIMENTAL DETAILS

E.3.1 T-MAZE DETAILS

We use T-maze with corridor length 5 as an instructive example. The environment has 15 underlying
MDP states: one initial state for each reward configuration (reward is either up or down), five for
each corridor, one for each junction, and finally the terminal state. There are 5 observations in this
environment - one for each of the initial states, a corridor observation shared by all corridor states, a
junction observation shared by both junction states, and a terminal observation. The action space is
defined by movement in the cardinal directions. If the agent tries to move into a wall, it remains in
the current state. From the junction state, the agent receives a reward of +4 for going north, and −0.1
for going south in the first reward configuration. The rewards are flipped for the second configuration.
The environment has a discount rate of γ = 0.9.

This environment makes it easy to see the differences between MC and TD approaches to value
function estimation. We visualize these differences in Figure 3. MC computes the average value
for each observation by averaging the return over all trajectories starting from that observation. By
contrast, TD averages over the 1-step observation transition dynamics and rewards, and bootstraps
off the value of the next observation. For a policy that always goes directly down the corridor and
north at the junction, this leads to an average (undiscounted) return for the blue observation of +4
with MC and (4− 0.1)/2 = 1.95 with TD.

E.3.2 OTHER POMDP DETAILS

All other POMDPs used in the experiments Section 4.2 were taken from pre-defined POMDP
definitions (Cassandra, 2003). The only exception is the Tiger environment, where we preserve the
underlying environment behavior, but adapt the domain specification to match our formalism such
that observations are only a function of state.

The original Tiger domain used a hand-coded initial belief distribution that was uniform over the two
states L/R, and did not emit an observation until after the first action was selected. Thereafter, the

Figure 4: Visualizations of the Tiger POMDP. In the original version (left) the observation function
was action-dependent, whereas in our modified version (right) observations only depend on state. The
state color for the domain on the right represents the distinct state-dependent observation functions:
purple states use the initial observation, while the other states are biased towards either left
(blue) or right (red) observations with probability 0.85.
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observation function was action-dependent, with state-action pair (L,listen) emitting observations
left and right with probability 0.85 and 0.15 respectively, and other actions (L,*) emitting
uniform observations and returning to the initial belief distribution. Since our agent does not have
access to the set of states, it cannot use an initial belief distribution. To achieve the same behavior,
we modified the domain by splitting each state L/R into an initial state L1/R1 that always emits an
initial observation, and a post-listening state L2/R2 that uses the 0.85/0.15 probabilities. We
visualize these changes in Figure 4. This type of modification is always possible for finite POMDPs
and does not change the underlying dynamics.

E.3.3 ANALYTIC MEMORY LEARNING AND VALUE IMPROVEMENT ALGORITHM

In Algorithm 1, the policy improvement function can be any function which improves a pa-
rameterized policy. We consider both the policy gradient (Sutton et al., 2000) algorithm and policy
iteration (Howard, 1960). The randomly init n policies function returns n randomly initial-
ized policies, and the select argmax ld function picks the one with the largest λ-discrepancy.
The memory improvement function is defined in Appendix E.3.5 for gradient-based optimization
and Appendix E.6 for hill climbing.

We have noticed that larger λ-discrepancy tends to lead to better memory functions. Although
sampling random policies for memory improvement is highly likely to reveal a λ-discrepancy, it
may not be a particularly large λ-discrepancy. For this reason, we consider many random policies
(n = 400), and we also consider a memoryless optimal policy (learnt using the chosen policy
improvement algorithm), and then use the policy which had maximum λ-discrepancy as the basis for
memory optimization.

E.3.4 POLICY ITERATION EXPERIMENTS
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Figure 5: Memory optimization increases normalized return of subsequent policy iteration learning
as well. Solid bars denote gradient-based memory optimization (Grad) and hatched bars denote hill
climbing (HC). Performance is also normalized between a random policy and belief-state optimal.
Error bars are standard error of the mean over 30 seeds.

In this ablation study, we conduct experiments with policy iteration (Howard, 1960) as the policy
improvement algorithm. In this setting we also see improved performance over the memoryless
policy, and in some cases by a larger margin than the results in Figure 2. Using policy gradient as the
policy improvement algorithm improves performance for both memoryless and memory-augmented
agents, as compared to using policy iteration. The differences between these results and those of
Figure 2 reflect the fact that policy gradient is better able to optimize over stochastic policies, and
such policies tend to perform better under partial observability (Sutton and Barto, 2018).
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E.3.5 MEMORY IMPROVEMENT ALGORITHM

In this section we provide pseudocode for the memory-learning algorithm described in Section 4.2
and used in Algorithm 2. This function takes as input a POMDP P and memory parameters θµ,
and minimizes the λ-discrepancy as defined in Equation 7. This minimization is achieved through a
gradient descent update computed using the auto-differentiation package JAX (Bradbury et al., 2018).

Algorithm 2 Memory Improvement (Gradient-Based)

Input: Fixed policy parameters θπ, where Π = softmax(θπ), memory parameters θµ, POMDP
parametersP := (T,RSA, ϕ, p0, γ), number of improvement steps nsteps,µ, learning rate α ∈ [0, 1]
for i = 0 to nsteps,M − 1 do

// Augment MDP with memory parameters θµ
Pθµ ← expand over memory(P, θµ)
// Calculate MC (no memory augmentation) and TD (with memory augmentation) value functions.

Q1
π = W

(
I − γTΠS

)−1

RSA, Q0
πµ

= WM

(
I − γTMΦMWΠ

M

)−1

RM

// Map Ω×M -space value function back to Ω-space with p(m | o),∀o ∈ Ω

Q̂0
π =

∑
m∈M p(m|·)Q0

πµ

// Calculate the λ-discrepancy
Qλ

πµ
= ||Q̂0

πµ
−Q1

π||πθ,2

// Calculate the gradient of Qλ
πµ

w.r.t. θM , update memory parameters
θµ ← update params(α, θµ,∇θµQ

λ
πµ
)

end for
return θµ

Here, update params() is any gradient-descent-like update, such as stochastic gradient descent,
Adam, etc. As a note, all parameters θ in these experiments are initialized with a Gaussian distribution,
with mean 0 and standard deviation 0.5.

E.4 MEMORY CARTESIAN PRODUCT

In this section, we define the memory-Cartesian product function, expand over memory(), used
by Algorithm 2. This function computes the Cartesian product of the POMDP P and the memory
state space M , as described in Appendix E.1.

Algorithm 3 Memory Cartesian Product (expand over memory)

Input: Memory parameters θM (with corresponding memory function M ), POMDP parameters
P := (T,RSA, O, p0, γ), number of memory states |M |
// Repeat reward function for each state over each memory m ∈M .
RSA

M ← repeat over states(RSA, |M |)
// Calculate transition function cross product.
TO
M ← einsum(′ij, jklm→ iklm′, O,M)

TM ← einsum(′iljk, lim→ lijmk′)
// Calculate observation function cross product. I|M | is the identity function over |M |.
OM ← kron(O, I|M |)
// Finally, calculate the initial state distribution.
p0,M=0 ← p0
return (TM , RSA

M , OM , p0,M , γ)

Note that einsum is the Einstein summation, and kron is the Kronecker product.
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E.5 GRADIENT-BASED EXPERIMENT DETAILS

E.5.1 GRADIENT-BASED MEMORY OPTIMIZATION EXPERIMENT DETAILS

For all experiments in Section 4.2, we run memory optimization on the suite of POMDPs with the
following hyperparameters. We optimize memory for nsteps,M = 20K steps and run policy iteration
for nsteps,π = 10K steps. For all gradient-based experiments, we use the Adam optimizer (Kingma
and Ba, 2015).

For the belief-state baselines, solutions were calculated using a POMDP solver from the
pomdp-solve package (Cassandra, 2003). The performance of the belief-state optimal policy was
calculated by iterating all potential initial observations, calculating their corresponding belief states,
and taking the dot product between this belief state and the maximal alpha vector for that belief state.
This returns a metric comparable to the initial state distribution weighted value function norm, which
we use as a performance metric for our memory-augmented agents.

The belief-state solution for the 4× 3 maze was solved using an epsilon parameter of ϵ = 0.01, due
to convergence issues with the environment when utilizing POMDP solvers.

E.6 HILL CLIMBING IMPLEMENTATION DETAILS

Algorithm 4 Memory Improvement (Simulated Annealing)

Input: Fixed policy parameters θπ, where Π = softmax(θπ), starting memory parameters θ0µ,
TD(λ) parameters λ and λ′, value oracle Q(Π, λ, θµ), number of annealing steps nsteps, number of
random restarts nrestarts, annealing temperature bounds [tmin, tmax]
θµ ← θ0µ
∆← ∥Q(Π, λ, θµ)−Q(Π, λ′, θµ)∥
θ∗µ ← θµ
∆∗ ← ∆
for j = 0 to nrestarts − 1 do
θµ ← θ0µ
tstart, tend ∼ Uniform([tmin, tmax]) s.t. tstart ≥ tend
ρ ∼ Uniform([0.1, 0.9])
α← DecayRate(tstart, tend, ρ, nsteps)
∆← ∥Q(Π, λ, θµ)−Q(Π, λ′, θµ)∥
for i = 0 to nsteps − 1 do

θ′µ ∼ Uniform(LocalSearchNeighborhood(θµ))
∆′ ← ∥Q(Π, λ, θ′µ)−Q(Π, λ′, θ′µ)∥
if ∆′ ≤ ∆ then

θµ ← θ′µ
∆← ∆′

else
c ∼ Uniform(0, 1)
T ← TemperatureSchedule(tstart, tend, α, nsteps, i)

if c < exp
(

−(∆′−∆)
T

)
then

θµ ← θ′µ
∆← ∆′

end if
end if
if ∆ < ∆∗ then

θ∗µ ← θπ
∆∗ ← ∆

end if
end for

end for
return θ∗µ
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The hill climbing algorithm performs standard simulated annealing over the state space of discrete
memory functions in which the energy function to be minimized is defined as the λ-discrepancy for a
given memory function.

Similar to the gradient-based optimization scheme, the initial policy is selected to be the one with the
largest λ-discrepancy from among a set of candidate policies. See Appendix E.3.3 for details.

We define the local search neighborhood for a given deterministic memory function µ as the set of
memory functions that differ from µ by exactly one edit to the next-memory-state transition table.
An edit can modify: either a single observation ωi or all observations; either a single action aj or all
actions; either a single memory state mk or all memory states. We sample uniformly at random from
among the set of edits, which, for |Ω| observations, |A| actions, and |M | memory states, amounts to
(|Ω|+ 1) · (|A|+ 1) · (|M |+ 1) possible edits. The initial memory function θ0µ is set to the identity
function, which always retains the current memory state.

We perform nsteps steps of annealing, then restart the optimization process with a different random
seed, for a total of nrepeats trials. Each trial samples temperature parameters tstart and tend from
within the range [tmin, tmax] with tstart ≥ tend, as well as a decay rate for exponentially decaying the
temperature. The decay rate α is calculated as:

α
.
=

log(tmax/tmin)

nsteps · (1− progress fraction at tmin)
,

where progress fraction at tmin is sampled uniformly from the range [0.1, 0.9]. The
optimization process outputs the memory parameters that led to the lowest λ-discrepancy across all
annealing steps and random repeats.
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F CORRELATION WITH VALUE ERROR

Minimizing λ-discrepancy reduces the value error due to partial observability. To provide additional
evidence for this claim, we show in Figure 6 that λ-discrepancy is positively correlated with value
error in every domain we considered.

Here, value error is computed in the following way:

1. Compute V (s) and V (ω) for the memory-augmented POMDP.
2. Expand V (ω) to be over s, by running the observation function in reverse: V (ω) @ ϕT ,

where @ is a matrix product that contracts the ω dimension. This averages the values of
multiple observations if they can be emitted by the same state.

3. Compute the squared difference between the result and V (s), which is a function over s.
4. Compute a weighting over s. This can be either uniform or occupancy-weighted. In Fig. 6

we use uniform. The Q version is a weighting over (s, a) and is policy-dependent.
5. Value error is the weighted sum of squared differences.

Note that when ω = s everywhere, value error will be zero.

Figure 6: Positive correlation of λ-discrepancy with value error.
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