
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IN-PLACE FEEDBACK: A NEW PARADIGM FOR
GUIDING LLMS IN MULTI-TURN REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly studied in the context of multi-
turn reasoning, where models iteratively refine their outputs based on user-
provided feedback. Such settings are crucial for tasks that require complex reason-
ing, yet existing feedback paradigms often rely on issuing new messages. LLMs
struggle to integrate these reliably, leading to inconsistent improvements. In this
work, we introduce in-place feedback, a novel interaction paradigm in which users
directly edit an LLM’s previous response, and the model conditions on this modi-
fied response to generate its revision. Empirical evaluations on diverse reasoning-
intensive benchmarks reveal that in-place feedback achieves better performance
than conventional multi-turn feedback while using 79.1% fewer tokens. Com-
plementary analyses on controlled environments further demonstrate that in-place
feedback resolves a core limitation of multi-turn feedback: models often fail to
apply feedback precisely to erroneous parts of the response, leaving errors uncor-
rected and sometimes introducing new mistakes into previously correct content.
These findings suggest that in-place feedback offers a more natural and effective
mechanism for guiding LLMs in reasoning-intensive tasks.

1 INTRODUCTION

Large language models (LLMs) are increasingly positioned as in multi-turn conversations, where
their effectiveness is measured by how well they generate responses that align with user inten-
tions (Lee et al., 2022; Wang et al., 2025; Nath et al., 2025; Zhou et al., 2025; Kim et al., 2025). An
example from chess demonstrates that a weaker yet cooperative agent can enable a player to outper-
form an opponent who is paired with a stronger but uncooperative agent (Hamade et al., 2024). Such
findings highlight the growing importance of effectively incorporating user guidance in collaborative
LLMs (Wu et al., 2025; Maheshwary et al., 2025).

Building on this perspective, we investigate a core mechanism of collaboration, feedback. In par-
ticular, we study how feedback can be used for error correction in multi-turn reasoning. Users
can provide turn-level feedback through corrections, additional constraints, or supplemental infor-
mation. For example, in a mathematical reasoning task, a user may identify an error in an LLM
response and provide feedback to correct it. Unfortunately, recent studies have shown that LLMs of-
ten fail to incorporate user feedback in multi-turn interactions (Laban et al., 2025; Jiang et al., 2025;
Sirdeshmukh et al., 2025). Expanding on these studies, we observe three failure modes when LLMs
attempt to incorporate feedback: 1) previously correct content becomes incorrect after feedback, 2)
the model disregards the feedback and repeats its earlier output, and 3) feedback is applied, but the
subsequent reasoning steps introduce new errors.

To address these feedback integration failures, we propose in-place feedback, a novel interaction
paradigm that reframes feedback not as a new instruction, but as a direct state repair. In this ap-
proach, user feedback is applied as an edit to the previous output, and the task of LLMs is to con-
tinue the generation from this corrected state. This method not only preserves correct prior reasoning
but also constrains the model to build upon user-validated information. Through empirical evalua-
tion on GPQA (Rein et al., 2024; Chandak et al., 2025), MMLU-pro (Wang et al., 2024; Chandak
et al., 2025), and MATH-hard (Hendrycks et al., 2021) benchmarks, we show that in-place feedback
achieves substantially improved performance and greater token efficiency compared to the standard
multi-turn feedback paradigm.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

There are 5 balls in each of 3 boxes. 2 more balls are added to the total. How many balls are there in total?

1. Adding 2 balls to each box means there are 5 + 2 = 7 balls per box
2. With 3 boxes, the total is 3 * 7 = 21 balls

Your reasoning is wrong. The 2 balls are added to the total, not to each box

There are 4 boxes, each with 5 balls...
The total is (4 * 5) + 2 = 22 balls.

There are 3 boxes, each with 7 balls...
The total is 3 * 7 = 21 balls.

There are 3 boxes, each with 5 balls...
The total is (3 * 5) + 2 = 18 balls.

1. Corrupt correct content 2. Ignore feedback 3. Introduce a new error

1. Adding 2 balls to the total each … balls requires first finding the initial total.

1. Directly edit the targeted span

Multi-turn feedback

Inplace feedback

Multi-turn feedback

In-place feedback (ours)

2. The total in the 3 boxes is 3 × 5 = 15 balls.
3. Now, adding the 2 extra balls to this total gives 15 + 2 = 17 balls.

2. Regenerate the response after the edit

Figure 1: Illustration of common failure cases in multi-turn refinement and in-place feedback. After
in-place feedback, the LLM continues generation from the green word “requires”.

We also conduct a fine-grained analysis of the feedback paradigms on ZebraLogic (Lin et al., 2025),
where reasoning errors and feedback can be extracted in a rule-based manner, to identify the precise
factors underlying the effectiveness of in-place feedback. We observe that in multi-turn interaction,
LLMs become less effective at incorporating feedback as the number of turns increases. In contrast,
in-place feedback integrates corrections more effectively than multi-turn feedback, particularly in
later turns. Moreover, in-place feedback propagates improvements through later reasoning steps,
surpassing multi-turn feedback in overall refinement.

2 IN-PLACE FEEDBACK

2.1 MULTI-TURN REFINEMENT WITH FEEDBACK

We describe how feedback from humans or automated agents is incorporated into LLMs in interac-
tive settings, focusing on multi-turn interactions. Let M be a target LLM. Given a problem x, the
LLM produces an initial response as y0 = M(x). Based on the problem x and the initial response
y0, feedback is then generated to address potential reasoning errors in the initial response. Such
feedback can be formalized by a function F , yielding f0 = F(x, y0). In the subsequent turn, the
target LLM refines its initial response using the feedback and generates the next response condi-
tioned on the problem, the initial response, and the feedback, as y1 = M(x, y0, f0). This illustrates
the refinement process, in which each response is conditioned not only on the problem but also on
the preceding response and its associated feedback.

More generally, the refinement extends to a multi-turn setting, where the LLM iter-
atively produces responses and incorporates feedback across multiple cycles: yt =
M (x, y0, f0, y1, f1, . . . , yt−1, ft−1), where fi = F(x, yi) denotes the feedback associated with
the i-th response. We refer to this process as refinement with standard multi-turn feedback, which
we hereafter simply call multi-turn feedback.

2.2 MOTIVATION: FAILURE CASE OF MULTI-TURN REFINEMENT

Recent work shows that LLMs often fail to reliably integrate user feedback (Laban et al., 2025; Jiang
et al., 2025). Figure 1 illustrates common failure cases of multi-turn refinement. We observe three
recurring failure modes: 1) previously correct content becomes incorrect after the feedback, 2) the
model ignores the feedback and repeats its previous output, and 3) the feedback is applied but causes
errors in subsequent reasoning steps. We hypothesize that these failures stem from regenerating the
entire response from scratch at each turn. This process may overwrite correct reasoning and weaken
the alignment between the feedback and the reasoning context it is meant to correct. We provide
some examples of the failure cases of multi-turn refinement in Appendix D.2.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In how many ways can 6 girls and 2 boys sit in a row if the 2 boys must sit next to each other? (All 8 children are distinct)

Problem

Treat the two boys as a single block with the 6 girls, so there are 7 items to arrange: 7!. Inside the block, the two boys ca n swap: 2!.
Therefore, the total is 7! + 2! = 5042.

Type 1. Simple arithmetic error

… Therefore, the total is 7! x 2! = 10080.

Group the two boys as one block; with the 6 girls, that’s 7 items. Arrange those 7 items in a row to get 7! ways. …

Type 2. Error in intermediate reasoning step

Group the two boys as one block; with the 6 girls, that’s 7!. The boys are distinct, so multiply by the internal permutations
of the block: 2!. Final: 7! × 2! = 5040 × 2 = 10080.

Label seats 1,…,8. List all adjacent seat coordinates: (1,2),(2,3),…,(7,8). That’s 7 ordered left → right placements for B1,B2. Also list …

Type 3. Approach change

Let’s use factorial reasoning. Treat the two boys as a single block with the 6 girls, so there are 7 items to arrange: 7!. Inside
the block, the two boys can swap: 2!.

In-place editing

Previous LLM response

Newly generated LLM response from in-place feedbackFirst note that the two boys can be arranged in 2! ways inside whatever seats they occupy. Now we will try to compute the number of
cases directly. To do this, let’s divide the row into coordinates labeled 1,2, … , 8 and count which adjacent pairs the boys could occupy, then
fill the remaining seats with the 6 girls. The adjacent coordinate pairs are 1, 2 , 2,1 , … , 7,8 , 8,7 … Therefore, the total number of valid
seatings is 14 × 2! × 6 = 14 × 2 × 6 = 168.

First note that the two boys can be arranged in 2! ways inside whatever seats they occupy. Now we will use factorial reasoning. Treat the
two boys as a single block with the 6 girls, so there are 7 items to arrange: 7!. Inside the block, the two boys can swap: 2! . Therefore, the total
is 7! x 2! = 10080.

Treat the two boys as a single

block with the 6 girls, so there are

7 items to arrange: 7!. Inside the

block, the two boys can swap: 2!.

Therefore, the total is 7! + 2! =

5042

Treat the two boys as a single

block with the 6 girls, so there are

7 items to arrange: 7!. Inside the

block, the two boys can swap: 2!.

Therefore, the total is 7! x 2! =

1. Minor error correction 2. Mid-reasoning correction

10080.

3. Major revision of reasoning

Group the two boys as one block;

with the 6 girls, that’s 7 units to

arrange in a row. The 7 units can

be ordered in 7! ways, so the total

number of seatings is 7!=5040.

Group the two boys as one block;

with the 6 girls, that’s 7 units to

arrange in a row. Since the two

boys are distinct, we also need to

account for their internal ordering

by multiplying by 2!.

First note that, … (skip) …, Now we

will try to compute the number of

cases directly, … (skip) …, The

adjacent coordinate pairs are (1, 2),

(2,1),…,(7,8), (8,7)… Therefore, the

total number of valid seatings is

14×2!×6= 168.

First note that, … (skip) …, Now we

will use combinatorial reasoning.

Treat the two boys as a single

block with the 6 girls, so there are 7

items to arrange: 7!. Inside the

block, the two boys can swap: 2!.

Therefore, the total is 7! x 2! =

10080.

The 7 units can be ordered in 7!

ways, so the total number of

seatings is 7!×2!=10080.

In-place edit

Continuation generation

In-place edit

Continuation generation

In-place edit

Continuation generation

Figure 2: Representative examples of in-place feedback on a toy problem. Red marks incorrect rea-
soning, blue indicates the user corrections with in-place feedback, and green shows the subsequent
reasoning based on the corrected context. Additional examples are provided in Appendix D.1.

This hypothesis highlights three requirements for effective refinement. Edits from user feedback
should 1) remain focused on the targeted reasoning step, 2) preserve previously correct content
outside this span, and 3) guide future reasoning from the corrected state rather than an outdated one.
These considerations naturally lead us to ask: Can we mitigate the above failures by letting the user
directly edit the targeted span and constraining the model to continue generation from that point?

2.3 IN-PLACE FEEDBACK

To address this question, we propose in-place feedback, a new multi-turn interaction mode that
treats feedback as a state repair rather than a new instruction. As illustrated in Figure 1, our method
proceeds in two stages. The first, in-place edit, allows the user to directly modify the model’s
previous response. The user then prunes the reasoning context that depends on the corrected span,
while leaving the rest unchanged. In our setting, we assume the user identifies one or two mistakes
in the reasoning and corrects only those parts. The second, continuation generation, regenerates
only what is necessary to continue from the updated context. Together, these stages limit unintended
changes and rebuild reasoning from the correction.

To illustrate how this method works in practice, Figure 2 presents representative cases of in-place
feedback. For example, in math problems, in-place feedback can fix simple arithmetic mistakes or
adjust flawed intermediate steps. In more complex cases, it can realign an incorrect reasoning path
by revising larger portions of the solution.

Benefits of in-place feedback. Standard multi-turn feedback appends new turns to the history,
causing early mistakes to persist and propagate across later reasoning. In-place feedback instead
applies edits directly to the current output. By anchoring unchanged spans and updating only the
edited portion, in-place feedback prevents error propagation. It also maintains global coherence and
preserves a clear trace from the user’s edit to the subsequent reasoning of LLMs.

In-place feedback also benefits from token efficiency. Standard multi-turn feedback accumulates a
lengthy dialogue history and leads the model to regenerate entire reasoning chains, including parts
that are already correct. In contrast, in-place feedback keeps the history compact by editing only the
targeted span and continues generation from a corrected span, avoiding unnecessary regeneration.
As a result, it reduces both input and output tokens, even under repeated feedback.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

GPQA

0 1 2 3 4 5 6 7 8 9
40

50

60

70

80

MMLU-pro

0 1 2 3 4 5 6 7 8 9

20

40

60

80

MATH-hard

Number of turns

Qwen
Gemma
Llama
In-place
Multi-turn

Figure 3: Comparison of in-place and multi-turn accuracies across models in MATH-hard, MMLU-
pro, and GPQA. Across all datasets and LLM models, our in-place feedback approach consistently
outperforms the multi-turn based feedback approach.

3 EMPIRICAL STUDY ON THE EFFECT OF IN-PLACE FEEDBACK

In this section, we evaluate the effectiveness of in-place feedback in multi-turn reasoning. We com-
pare it with standard multi-turn feedback across multiple real-world datasets and LLMs.

3.1 EXPERIMENTAL SETUP

Datasets and evaluation. We conduct experiments on MATH-hard (Hendrycks et al., 2021),
MMLU-pro free-form (Wang et al., 2024; Chandak et al., 2025), and GPQA free-form (Rein
et al., 2024; Chandak et al., 2025). For MATH-hard, we sample 500 level-5 problems from
MATH (Hendrycks et al., 2021). For MMLU-pro and GPQA, we use the free-form subsets in-
troduced by Chandak et al. (2025), which contain only open-ended questions. We evaluate model
answers in two stages. We first attempt exact matching. If it fails, we then apply an LLM judge to
identify semantically equivalent answers expressed in different forms. We use GPT-oss-20b (Ope-
nAI Team, 2025) as the judge model. Details on datasets and judge prompts are provided in Ap-
pendix A.

Feedback function and agent for in-place feedback. For experimental evaluation, it is necessary
to automate the process of generating and applying feedback, which would otherwise require human
intervention. Given a problem, its ground-truth solution, and the reasoning process of the LLM,
the feedback function identifies the earliest critical error and generates a correction. The feedback
function is designed to operate in both multi-turn and in-place settings.

For in-place feedback, a human should apply feedback directly to the previous response of the LLM.
To automate this process in our experiments, we utilize an in-place feedback agent. The agent takes
the feedback and the response of the LLM, identifies the sentence to be replaced, and provides its
replacement. We then substitute the sentence and remove all subsequent text, since it may depend
on the corrected span. We use GPT-5-mini (OpenAI, 2025) for both the feedback function and the
in-place feedback agent. Further details on post-processing steps and prompt templates are provided
in Appendix A.

LLMs and hyperparameters. We use three open-source LLMs: Gemma-3-4b-it (Gemma
Team, 2025), Qwen2.5-7B-Instruct (Qwen Team, 2025), and
Llama-3.1-8B-Instruct (Kassianik et al., 2025). Each model is evaluated for 10 turns with
temperature set to 0. Further experimental settings are provided in Appendix A.

3.2 RESULTS

Task performance. Figure 3 shows how accuracy changes under multi-turn and in-place feedback
as the number of turns increases. Across all datasets and models, in-place feedback consistently
achieves higher accuracy and exhibits faster improvement over turns. On GPQA with Gemma, for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0

2000

4000

6000

8000

10000

In
pu

t t
ok

en
s

GPQA

0

2000

4000

6000

8000

MMLU-pro

0

2500

5000

7500

10000

12500

MATH-hard

0 1 2 3 4 5 6 7 8 9
200

400

600

800

1000

Ge
ne

ra
te

d
to

ke
ns

0 1 2 3 4 5 6 7 8 9
200

400

600

800

0 1 2 3 4 5 6 7 8 9

250

500

750

1000

1250

1500

Number of turns

Qwen
Gemma
Llama
In-place
Multi-turn

Figure 4: Number of input and generated tokens across multiple turns. In-place feedback consis-
tently requires fewer tokens than multi-turn feedback across all datasets and LLMs.

example, in-place feedback achieves 53% accuracy, almost twice the performance of multi-turn
feedback. On MMLU-pro, its accuracy at turn 5 already surpasses the final-turn performance of
multi-turn feedback across all models. These results demonstrate that in-place feedback provides
a more effective way to integrate external corrections into the reasoning of LLMs. We provide the
qualitative examples in Appendix B.

Token efficiency. Beyond task performance, in-place feedback also exhibits superior efficiency
in both input and generated token usage. Figure 4 presents the number of input and generated
tokens across datasets. The result shows that in-place feedback requires substantially fewer tokens
than multi-turn feedback. For input tokens, multi-turn feedback appends new turns to the dialogue
history, causing token usage to grow linearly with the number of turns. In contrast, since in-place
feedback does not accumulate the full dialogue history, the number of input tokens remains at a
stable level. For generated tokens, in-place feedback preserves correct reasoning and revises only
the erroneous parts, whereas multi-turn feedback generates entire reasoning steps from scratch. As a
result, in-place feedback consistently produces shorter generations across turns. Aggregating input
and output tokens, in-place feedback reduces token usage by 79.1% relative to multi-turn feedback,
demonstrating substantially higher efficiency.

4 FEEDBACK EFFECTIVENESS IN CONTROLLED EXPERIMENTS

Prior work has mainly evaluated feedback in multi-turn interactions by measuring whether the final
answer improves after feedback (Jiang et al., 2025; Sirdeshmukh et al., 2025). Such task-level eval-
uation leaves open how feedback actually influences the reasoning process across turns. Without
analyzing turn-level dynamics, it is unclear whether models are using feedback or simply regener-
ating new responses. To address this gap, we design controlled experiments with ZebraLogic (Lin
et al., 2025), where feedback is generated through a rule-based manner. Using this setting, we
compare how multi-turn and in-place feedback incorporate corrections over successive turns and
highlight where in-place feedback provides advantages.

4.1 SETUP FOR CONTROLLED EXPERIMENTS

Task. We conduct experiments on the ZebraLogic (Lin et al., 2025), a collection of 573 logic grid
puzzles designed to evaluate the reasoning capability of LLMs. Each puzzle consists of N houses
and M attributes such as Name, Drink, and Hobby, forming an N ×M grid of cells. Attributes must
take N distinct values under uniqueness constraints, resulting in each cell having a single correct

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

value. A set of natural-language clues specifies additional logical relations, and the task is to assign
values to all cells so that all constraints are satisfied. Details of the dataset are in Appendix A.

Feedback functions. We construct two rule-based feedback functions that differ in the amount of
corrective information they provide: Oracle and Top-k. 1) Oracle reveals every incorrectly predicted
cell along with its correct value. 2) Top-k selects the k cells that most strongly violate logical
constraints, identified using a Z3 solver (De Moura & Bjørner, 2008), and provides their correct
values. For example, if the model predicts Name of house 2 = Alice while the ground truth
is Eric, the feedback specifies Name of house 2 is Eric, not Alice.

In-place feedback agent. The in-place feedback agent simulates a human editor by directly mod-
ifying the LLM’s response during evaluation. In math problems, each reasoning step depends on the
previous one, so a correction usually requires discarding subsequent steps. Zebra puzzles, however,
follow a different structure. They involve parallel reasoning, in which multiple constraints must be
satisfied simultaneously. As a result, later reasoning steps can remain valid even if earlier ones are
incorrect. To handle this, we retain subsequent reasoning steps after in-place feedback is applied.

We first segment the model’s response into the reasoning steps. The agent checks each step against
the received feedback and edits the response when a directly mispredicted attribute value is specified
(e.g., changing Name of House 2 = Alice to Name of House 2 = Eric). If there are
reasoning steps that depend on the mispredicted value identified by the feedback (e.g., reasoning
built on Alice in House 2), those dependent steps are removed to prevent error propagation.
After applying these edits or deletions, the final solution is removed, and the prompt Further
reasoning: is appended to encourage continuation of the reasoning process. We employ GPT-
5-mini as the in-place feedback agent, following the rule prompt in Figure A8.

LLMs and hyperparameters. We use three open-source LLMs, consistent with the previous ex-
periments. We set k = 2 and k = 4 for Top-k feedback. All experiments are run with three seeds.
Detailed experimental settings are provided in Appendix A.

Metrics. We evaluate performance using two classes of metrics. To measure overall task perfor-
mance, we use grid-level and cell-level accuracy. To conduct a more fine-grained analysis of the
multi-turn refinement process, we introduce three complementary metrics that measure correctness
preservation, feedback incorporation, and reasoning-driven self-correction.

• Grid-level accuracy. The proportion of grid puzzles that are solved perfectly, i.e., all cells
match the solution.

• Cell-level accuracy. The average proportion of correctly predicted cells over all puzzles.

• Correctness-Preserving Ratio (CPR). The proportion of cells that are correct in yt and remain
correct in yt+1, relative to the total number of cells that are correct in yt. This metric evaluates
whether the model can retain valid reasoning while applying updates.

• Feedback Acceptance Ratio (FAR). The proportion of cells flagged by feedback ft that are
corrected in yt+1, relative to the total number of feedback-provided cells of yt. This metric
captures the model’s ability to incorporate explicit corrective signals.

• Correction Through Reasoning Ratio (CTRR). The proportion of cells that are incorrect
in yt but corrected in yt+1, relative to the total number of incorrect cells in yt that are not
indicated by feedback ft. This metric measures the extent to which the model can generalize
beyond explicit feedback and improve its reasoning autonomously.

4.2 ANALYSIS OF FEEDBACK UTILIZATION

Task performance. Figure 5 shows grid accuracy and cell accuracy as the number of feedback
turns increases. In-place feedback consistently outperforms multi-turn feedback, as observed in
previous experiments. Interestingly, the gap in cell accuracy is smaller than the gap in grid accuracy.
This suggests that while multi-turn feedback encounters difficulties in correcting the remaining few
cells during iterative refinements, in-place feedback is more effective in addressing these corrections.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00
0.25
0.50
0.75
1.00

Gr
id

 a
cc

ur
ac

y

Qwen

0.00
0.25
0.50
0.75
1.00

Gemma

0.0
0.2
0.4
0.6
0.8

Llama

0 1 2 3 4 5 6 7 8 9

0.4
0.6
0.8
1.0

Ce
ll

ac
cu

ra
cy

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

Number of turns Top-4
In-place

Top-2
Multi-turn

Figure 5: Grid and cell accuracy of LLMs on the Zebralogic dataset. Across both top-2 and top-4
feedback settings, in-place feedback consistently outperforms multi-turn feedback.

0.3 0.6 0.90.7
0.8
0.9
1.0

CP
R

Qwen

0.3 0.6 0.9

Gemma

0.25 0.50 0.75

Llama

0.3 0.6 0.90.5

0.7

0.9

FA
R

0.3 0.6 0.9 0.25 0.50 0.75

0.3 0.6 0.90.0
0.1
0.2
0.3

CT
RR

0.3 0.6 0.9 0.25 0.50 0.75

Cell Accuracy

(a) Top-2 feedback

0.5 1.00.7
0.8
0.9
1.0

CP
R

Qwen

0.5 1.0

Gemma

0.5 1.0

Llama

0.5 1.00.3
0.5
0.7
0.9

FA
R

0.5 1.0 0.5 1.0

0.5 1.00.0
0.1
0.2
0.3
0.4

CT
RR

0.5 1.0 0.5 1.0

Cell Accuracy In-place
Multi-turn

(b) Top-4 feedback

Figure 6: Correctness-Preserving Rate (CPR), Feedback Acceptance Rate (FAR), and Correction
Through Reasoning Ratio (CTRR) for 10-turn conversations of LLMs on the ZebraLogic. The
points with a black border represent the second response of the LLMs (i.e., y1), and the subsequent
responses across turns are connected by lines.

To gain a deeper understanding of this phenomenon, we examine the reasoning dynamics at the turn-
level, focusing on how top-k feedback is incorporated and influences the correction process. We also
provide the results with the Oracle feedback in Appendix B.

Turn-level dynamics of LLM behavior with multi-turn feedback. Before analyzing the effect
of in-place feedback, we first examine how LLMs behave under standard multi-turn feedback set-
tings. This analysis highlights the dynamics when models incorporate feedback across multiple
turns. We observe two distinct phases. In the initial phase, models are generally effective at in-
corporating feedback. However, they also exhibit a systematic tendency to modify portions of the
response that are already correct, thereby compromising previously valid reasoning steps. As the
conversation progresses, the models show increasing resistance to change, which reduces the effec-
tiveness of further feedback. This behavioral shift is illustrated in Figure 6, where we analyze CPR,
FAR, and CTRR alongside cell accuracy.

The capacity to preserve correct answers improves over successive turns, as reflected in the rising
CPR values. In contrast, the ability to incorporate feedback exhibits a steady decline between turns

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0.00
0.25
0.50
0.75
1.00

Gr
id

 a
cc

ur
ac

y

Qwen

0.00
0.25
0.50
0.75
1.00

Gemma

0.0
0.2
0.4
0.6
0.8

Llama

0 1 2 3 4 5 6 7 8 9

0.4
0.6
0.8
1.0

Ce
ll

ac
cu

ra
cy

0 1 2 3 4 5 6 7 8 9

0.4

0.6

0.8

1.0

0 1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

Number of turns Top-4
In-place

Top-2
Multi-turn (w/o)

Figure 7: Grid and cell accuracy of LLMs on the ZebraLogic dataset without accumulated history
compared against the in-place feedback. Multi-turn (w/o) shows the accuracy of responses only on
the previous answer and the feedback, i.e., ỹt+1 = M(x, yt, ft), without accumulated history.

5 and 9, as evidenced by the downward trend in FAR, suggesting that models become less receptive
to feedback and more resistant to revising earlier responses. It is worth noting that the models are
unlikely to generalize beyond the explicit feedback after the first few turns, as evidenced by lower
CTRR. We also observe distinct behavior between different LLMs, despite showing similar overall
trends. Specifically, Llama exhibits a comparatively higher CTRR, yet this comes at the cost of
lower CPR and FAR relative to the other models.

Advantage of in-place feedback. We identify two key advantages of in-place feedback over
multi-turn feedback. First, in-place feedback sustains the ability to incorporate feedback even when
the number of turns increases, yielding higher FAR values than multi-turn feedback in later turns.
This result accounts for the larger improvement observed in grid accuracy. Second, in-place feed-
back facilitates reasoning beyond the explicitly targeted errors, thereby leading to consistently higher
CTRR. We conjecture that this improvement arises since in-place feedback reduces contextual inter-
ference from prior responses, allowing the model to more directly condition on the corrected span.
By discarding subsequent content and regenerating from the point of modification, the model may
better propagate the corrective signal to related parts of the reasoning process, thereby facilitating
improvements even in cells not explicitly mentioned by the feedback.

The relatively lower CPR and FAR observed for in-place feedback during the earlier turns may
reflect the effect of more intensive reasoning compared to multi-turn feedback. Moreover, due to
the characteristics of the parallel reasoning problem, an in-place edited span may contain incorrect
cell-related reasoning inherited from earlier turns under Top-k feedback, which can propagate errors
through subsequent reasoning. In contrast, under oracle feedback, where in-place edits could be
error-free, both CPR and FAR are typically higher than in multi-turn feedback, except for CPR with
Qwen in the first turn (see Figure A2).

4.3 EFFECT OF DIALOGUE HISTORY

As the dialogue progresses with multi-turn feedback, two factors may contribute to the observed
decrease in FAR: 1) the accumulation of dialogue history that the model must condition on in a
multi-turn approach, and 2) the reduction in the number of remaining incorrect cells as refinement
progresses. We disentangle these two effects to better understand their respective contributions.

Influence of accumulated history on feedback incorporation. To investigate the effect of
accumulated history, we refine the response by pruning the accumulated previous history, i.e.,
ỹt+1 = M(x, yt, ft). Figure 7 presents the accuracy of the in-place feedback approach and the
history-pruned variant. The results show that even when the accumulated history is removed, the
feedback is still not properly incorporated in the subsequent turn. It is often suggested that users

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

open a new chat when the response does not align with their intent, yet our findings demonstrate that
this approach does not offer a sufficient remedy. These results demonstrate that directly editing the
LLM’s response constitutes a more reliable and effective means of incorporating user feedback.

1 2 3 4 5 6 7 8 9
Number of wrong cells

0.4

0.6

0.8

1.0

FA
R Qwen

Gemma
Llama

Figure 8: Change of FAR with respect to
the number of incorrect cells. The x-axis
denotes the number of incorrect cells in
the previous LLM response across the en-
tire puzzle, and FAR is measured under
the setting where feedback for up to four
cells is provided.

Effect of the number of remaining incorrect cells on
feedback incorporation. We examine the top-4 feed-
back results in Figure 8, which report FAR together
with the number of incorrect cells. Analyzing feed-
back–response pairs across all turns, we observe that
FAR shows no significant correlation with the number
of incorrect cells. This indicates that LLMs sustain a
comparable level of feedback incorporation regardless
of whether few or many incorrect cells remain.

5 RELATED WORK

Multi-turn interaction of LLMs. Several studies
aim to improve the performance of LLMs in multi-
turn interaction. One line of work focuses on clari-
fying questions, where the LLM generates follow-up
questions when the user’s input is ambiguous (Zhang
& Choi, 2025; Zamani et al., 2020; Aliannejadi et al.,
2019). Zhang & Choi (2025) proposes a framework that
integrates clarifying questions into the response gener-
ation process. Another line of work enhances multi-turn performance through training (Zhou et al.,
2024; Shani et al., 2024; Wu et al., 2025). Wu et al. (2025), for example, fine-tunes LLMs with
reinforcement learning to enhance their effectiveness. Our work focuses on how LLMs can achieve
more effective interaction with users without additional training, while ensuring token efficiency.

Refinement of LLMs. Recent research explores self-refinement, an approach where the LLMs
generate feedback on their own outputs and improve them accordingly. (Madaan et al., 2023; Dhu-
liawala et al., 2024; Shinn et al., 2023a; Nathani et al., 2023). Welleck et al. (2023) trains a separate
model to produce feedback. Han et al. (2025) uses an external LLM agent to provide feedback for
evaluating model performance. Zhang et al. (2025) employs a user simulation model to create inter-
action scenarios in multi-turn, which is closely related to our work. We show turn-level dynamics
of LLMs in refinement with feedback and propose an alternative interaction scheme.

Analysis on multi-turn conversations. Recent studies analyze the performance of LLMs in multi-
turn conversations. Jiang et al. (2025) shows that LLMs fail to reliably incorporate feedback, even
when it is close to the correct answer. Laban et al. (2025) find that accuracy decreases when a single
problem is divided into multiple parts and solved by LLMs in a multi-turn manner. Sirdeshmukh
et al. (2025) analyzes the performance of LLMs in multi-turn conversations across four categories,
including instruction retention and self-coherence. While these studies analyze the performance
of LLMs in the multi-turn setting, they primarily report high-level metrics, such as overall task
accuracy, without analyzing how reasoning evolves across turns or how errors propagate.

6 CONCLUSION

We introduce in-place feedback, an interaction method where users directly edit an LLM’s prior
response, and the model generates an output conditioned on this edited context. This approach
achieves stronger refinement performance on reasoning benchmarks and is more efficient, requir-
ing fewer input and output tokens. Through controlled experiments on ZebraLogic, we show that
in-place feedback mitigates key challenges of multi-turn feedback. While our work focuses on rea-
soning tasks, we expect in-place feedback to be useful for a wide range of applications, such as
document editing and code writing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethical consideration. Our method allows users to edit an LLM response and then continue gener-
ating from that edit. However, such edits can be misused to bypass safety mechanisms. For example,
a user might insert harmful instructions or unsafe text, similar to jailbreak attacks. A straightforward
defense is to run user edits through a safety filter before resuming the generation process. We leave
the design of defenses against such attacks to future work.

Reproducibility statement. We utilize four open-sourced LLMs and one closed-sourced LLM.
All experimental settings and prompts are provided in Section 3.1, Section 4.1, and Appendix A
to ensure reproducibility. For the closed-source LLM, we use the gpt-5-mini-2025-08-07
version.

REFERENCES

Mohammad Aliannejadi, Hamed Zamani, Fabio Crestani, and W Bruce Croft. Asking clarifying
questions in open-domain information-seeking conversations. In International ACM SIGIR Con-
ference on Research and Development in Information Retrieval (SIGIR), 2019.

Nikhil Chandak, Shashwat Goel, Ameya Prabhu, Moritz Hardt, and Jonas Geiping. Answer match-
ing outperforms multiple choice for language model evaluation. arXiv preprint, 2025.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2008.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models. In Findings
of Annual Meeting of the Association for Computational Linguistics (ACL-Findings), 2024.

Gemma Team. Gemma 3 technical report, 2025. URL https://arxiv.org/abs/2503.
19786.

Karim Hamade, Reid McIlroy-Young, Siddhartha Sen, Jon Kleinberg, and Ashton Anderson. De-
signing skill-compatible ai: Methodologies and frameworks in chess. In International Conference
on Learning Representations (ICLR), 2024.

Hojae Han, Seung-won Hwang, Rajhans Samdani, and Yuxiong He. Convcodeworld: Benchmarking
conversational code generation in reproducible feedback environments. In International Confer-
ence on Learning Representations (ICLR), 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In Ad-
vances in Neural Information Processing Systems (NeurIPS), 2021.

Dongwei Jiang, Alvin Zhang, Andrew Wang, Nicholas Andrews, and Daniel Khashabi. Feedback
friction: Llms struggle to fully incorporate external feedback. In Advances in Neural Information
Processing Systems (NeurIPS), 2025.

Paul Kassianik, Baturay Saglam, Alexander Chen, Blaine Nelson, Anu Vellore, Massimo Au-
fiero, Fraser Burch, Dhruv Kedia, Avi Zohary, Sajana Weerawardhena, Aman Priyanshu, Adam
Swanda, Amy Chang, Hyrum Anderson, Kojin Oshiba, Omar Santos, Yaron Singer, and Amin
Karbasi. Llama-3.1-foundationai-securityllm-base-8b technical report, 2025. URL https:
//arxiv.org/abs/2504.21039.

Myeongsoo Kim, Shweta Garg, Baishakhi Ray, Varun Kumar, and Anoop Deoras. Codeassistbench
(cab): Dataset & benchmarking for multi-turn chat-based code assistance. arXiv preprint, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles (SOSP), 2023.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. Llms get lost in multi-turn
conversation. arXiv preprint, 2025.

10

https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2503.19786
https://arxiv.org/abs/2504.21039
https://arxiv.org/abs/2504.21039

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mina Lee, Percy Liang, and Qian Yang. Coauthor: Designing a human-ai collaborative writing
dataset for exploring language model capabilities. In Computer Human Interaction (CHI), 2022.

Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter
Clark, and Yejin Choi. Zebralogic: On the scaling limits of llms for logical reasoning. In Inter-
national Conference on Machine Learning (ICML), 2025.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. In Advances in Neural Information Processing Systems (NeurIPS), 2023.

Rishabh Maheshwary, Vikas Yadav, Hoang Nguyen, Khyati Mahajan, and Sathwik Tejaswi Mad-
husudhan. M2lingual: Enhancing multilingual, multi-turn instruction alignment in large language
models. In Annual Conference of the North American Chapter of the Association for Computa-
tional Linguistics (NAACL), 2025.

Abhijnan Nath, Carine Graff, and Nikhil Krishnaswamy. Let’s roleplay: Examining llm alignment
in collaborative dialogues. arXiv preprint, 2025.

Deepak Nathani, David Wang, Liangming Pan, and William Yang Wang. Maf: Multi-aspect feed-
back for improving reasoning in large language models. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), 2023.

OpenAI. Introducing GPT–5, 2025. URL https://openai.com/index/
introducing-gpt-5/.

OpenAI Team. gpt-oss-120b & gpt-oss-20b model card, 2025. URL https://arxiv.org/
abs/2508.10925.

Qwen Team. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.
15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In Conference on Language Modeling (COLM), 2024.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila
Noga, Orgad Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning with
preference human feedback. In Advances in Neural Information Processing Systems (NeurIPS),
2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflex-
ion: Language agents with verbal reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2023a.

Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: language agents with verbal reinforcement learning. In Neural Information
Processing Systems, 2023b. URL https://api.semanticscholar.org/CorpusID:
258833055.

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean
Lee, Jeremy Kritz, Willow Primack, Summer Yue, and Chen Xing. Multichallenge: A realistic
multi-turn conversation evaluation benchmark challenging to frontier llms. In Findings of Annual
Meeting of the Association for Computational Linguistics (ACL-Findings), 2025.

Jian Wang, Yinpei Dai, Yichi Zhang, Ziqiao Ma, Wenjie Li, and Joyce Chai. Training turn-by-turn
verifiers for dialogue tutoring agents: The curious case of llms as your coding tutors. In Findings
of Annual Meeting of the Association for Computational Linguistics (ACL-Findings), 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In Advances in Neural Information Processing
Systems (NeurIPS), 2024.

11

https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. In International Conference on Learning
Representations (ICLR), 2023.

Shirley Wu, Michel Galley, Baolin Peng, Hao Cheng, Gavin Li, Yao Dou, Weixin Cai, James Zou,
Jure Leskovec, and Jianfeng Gao. Collabllm: From passive responders to active collaborators. In
International Conference on Machine Learning (ICML), 2025.

Hamed Zamani, Susan Dumais, Nick Craswell, Paul Bennett, and Gord Lueck. Generating clarify-
ing questions for information retrieval. In Proceedings of The Web Conference (WWW), 2020.

Michael JQ Zhang and Eunsol Choi. Clarify when necessary: Resolving ambiguity through interac-
tion with lms. In Findings of Annual Conference of the North American Chapter of the Association
for Computational Linguistics (NAACL-Findings), 2025.

Michael JQ Zhang, W Bradley Knox, and Eunsol Choi. Modeling future conversation turns to
teach llms to ask clarifying questions. In International Conference on Learning Representations
(ICLR), 2025.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. In International Conference on Machine Learning
(ICML), 2024.

Yifei Zhou, Song Jiang, Yuandong Tian, Jason Weston, Sergey Levine, Sainbayar Sukhbaatar, and
Xian Li. Sweet-rl: Training multi-turn llm agents on collaborative reasoning tasks. arXiv preprint,
2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTAL DETAILS

A.1 DATASETS

A.1.1 MMLU-PRO AND GPQA FREE-FORM

The MMLU-Pro and GPQA-Diamond datasets are employed to evaluate the knowledge-intensive
reasoning abilities of LLMs in free-form question answering. Both datasets originate from multiple-
choice benchmarks but are adapted for generative evaluation via answer matching.

Motivation for free-form evaluation. Multiple-choice evaluation is efficient, but it has intrinsic
limitations: models can exploit statistical patterns in the answer choices without engaging in critical
reasoning. As a result, multiple-choice accuracy overestimates the model’s ability to generate correct
answers. By removing the choices and requiring free-form responses, models are forced to generate
an answer directly, aligning the evaluation more closely with the capabilities that matter in real-
world use cases.

Selection of questions. MMLU-Pro is derived from the MMLU benchmark and initially includes
approximately 12,000 questions across various domains. To ensure that the questions are answerable
without the provided answer choices, an automatic filtering process is employed. This process uses
a rubric-based grader to narrow down the dataset to about 5,500 questions. From this reduced pool,
questions that are sufficiently specific and have a unique correct answer are selected. After this, 493
questions are manually filtered. This dataset offers comprehensive coverage across various domains,
making it an ideal resource for evaluating general knowledge and reasoning skills.

The GPQA-Diamond dataset comprises 198 graduate-level science questions, designed to be chal-
lenging and test in-depth knowledge and critical reasoning. Similar to MMLU-Pro, a filtering pro-
cess is applied to select questions with clear and specific correct answers, resulting in a final set
of 126 questions. This dataset is more focused and rigorous, emphasizing high-quality scientific
questions that demand deep reasoning.

These preparation steps yield two complementary free-form datasets: MMLU-Pro, which provides
broader coverage across domains with 493 carefully filtered and annotated items, and GPQA-
Diamond, which offers a smaller but more rigorous collection of 126 high-quality scientific ques-
tions. This ensures that free-form evaluations are conducted only on questions with clear, unam-
biguous solutions.

A.1.2 ZEBRALOGIC

The ZebraLogic dataset comprises logic grid puzzles designed to assess the reasoning capabilities
of LLMs. Each puzzle is structured around a grid with a certain number of houses and attributes.
Specifically, each puzzle involves N houses and M attributes, creating an N × M grid that needs
to be filled. The attributes in these puzzles are distinct for each house, where each attribute has N
unique values corresponding to the houses.

The puzzles come with a set of clues that impose logical constraints on the grid. For example, one
clue might specify that “The person who likes milk is Eric”, while another might
state, “The person who drinks water is Arnold”. These clues help guide the reason-
ing process to fill in the grid, ensuring that all constraints are satisfied. Importantly, each puzzle has
a unique solution, which guarantees that any feedback provided for solving the puzzle is definitive
and accurate. This structure ensures that ZebraLogic provides a rigorous framework for evaluat-
ing logical reasoning in models, where the set of clues provided uniquely determines each puzzle’s
solution.

Puzzle generation. Puzzles are generated by first sampling a complete solution, then con-
structing a superset of consistent clues from a fixed inventory. The clue types are as follows:
FOUNDAT, SAMEHOUSE, NOTAT, DIRECTLEFT/RIGHT, SIDEBYSIDE, LEFT/RIGHTOF, and
ONE/TWOBETWEEN. Each clue type provides a constraint by capturing a specific relationship be-
tween variables. A minimal subset of clues is retained through iterative pruning while preserving

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

the uniqueness of the solution. This guarantees that puzzles are neither under-specified nor trivially
over-constrained.

Dataset filtering. The ZebraLogic dataset contains 1,000 puzzles spanning all combinations of
N,M ∈ {2, . . . , 6}. We filter the dataset by puzzle difficulty based on the search space size, which
is defined as the total number of possible configurations that satisfy only the uniqueness constraints
of the puzzle; for a puzzle with N houses and M attributes, the search space size is |S| = (N !)M .
Puzzles with small search spaces (|S| < 103) are excluded, along with those of size 3× 4 and 3× 5,
as well as invalid puzzles (e.g., cases where distinct categories share identical attribute values). This
yields a controlled, reasoning-intensive testbed for analyzing the feedback acceptance of LLMs in
multi-turn settings.

Input and output format. Puzzles are presented in natural language, followed by an instruction
asking the model to fill the N ×M grid. The input template prompt is provided in Figure A6. The
expected output is a structured JSON table. This format enables automatic cell-level evaluation and
the application of fine-grained feedback. We attempt up to 30 re-generations to obtain a syntactically
valid JSON output. If all attempts fail, we treat the instance as wrong and omit it from CPR, FAR,
and CTRR calculations.

For JSON-parsed prediction, we employ a fuzz score from the Python rapidfuzz library to perform
exact-matching evaluation. Specifically, we compute the highest similarity score among the candi-
date attributes, and if the score exceeds 50, we adopt the corresponding attribute as the predicted
value.

Feedback functions. We generate rule-based feedback using a fixed template, as illustrated in
Figure A7. For Llama, we additionally append reasoning guidance to the feedback, since the
model frequently produces only the final JSON-formatted answer without including the corrected
reasoning process.

A.2 PROMPT AND POST-PROCESSING

Empirical experiments. We define answer leakage as any explicit revelation of the ground-truth
answer within feedback or intervention outputs. We prevent answer leakage, following Jiang et al.
(2025). To prevent leakage, we use the prompts in Figure A4 and Figure A5, and apply post-
processing for each agents: (i) after generating feedback, we scan the message and mask any span
that reveals the ground truth; (ii) for the in-place feedback agent, if any part of the message exposes
the solution, we prune those spans before presenting the message to the model.

ZebraLogic. We constrain the in-place feedback agent to avoid introducing reasoning beyond the
scope of the provided feedback. The model’s output is segmented into discrete reasoning steps,
which are then checked for consistency with the provided feedback. In cases of conflict, the cor-
responding step is minimally revised, following the prompt in Figure A8. Notably, the agent does
not have direct access to the puzzle itself, which limits its ability to extend reasoning beyond the
explicitly given feedback.

A.3 HYPERPARAMETERS.

We observed that Llama-3.1-8B-Instruct can be overly verbose, resulting in degradation
of generation quality. To stabilize decoding, we set its repetition penalty to 1.15 for Llama. All
other models use a repetition penalty of 1.0. The maximum generation length is 2048 tokens for all
models and experiments. We use vLLM (Kwon et al., 2023) for efficient inference.

B ADDITIONAL EXPERIMENTAL RESULTS

Figure A1 presents grid and cell accuracy as a function of the number of turns. In-place feedback
converges substantially faster than multi-turn feedback, indicating that it enables the model to in-
corporate feedback more efficiently. Figure A2 illustrates LLM behavior under oracle feedback.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In most cases, in-place feedback achieves higher CPR and FAR compared to multi-turn feedback,
without CPR of the Qwen in the first turn.

0.0

0.5

1.0

Gr
id

 a
cc

ur
ac

y

Qwen

0.0

0.5

1.0
Gemma

0.0

0.5

1.0
Llama

0 1 2 3 4 5 6 7 8 9
0.25

0.50

0.75

1.00

Ce
ll

ac
cu

ra
cy

0 1 2 3 4 5 6 7 8 9
0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9
0.25

0.50

0.75

1.00

Number of turns In-place Multi-turn

Figure A1: Grid and cell accuracy of LLMs on the Zebralogic dataset. In-place feedback consis-
tently outperforms multi-turn feedback under an oracle setting.

0.7
0.8
0.9
1.0

CP
R

Qwen Gemma Llama

0.0 0.5 1.00.00
0.25
0.50
0.75
1.00

FA
R

0.0 0.5 1.00.0 0.5 1.0

Cell Accuracy
In-place
Multi-turn

Figure A2: Correctness-Preserving Rate (CPR), Feedback Acceptance Rate (FAR), and Compar-
ison of Correction Through Reasoning Ratio (CTRR) for 10-turn conversations of LLMs on the
ZebraLogic. The Oracle feedback function is used. The points with a black border represent the
second response of the LLMs (i.e., y1), and the subsequent responses across turns are connected by
lines.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PERFORMANCE COMPARISION

C.1 TASK PERFORMANCE

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 55.0 68.4 73.8 76.6 79.2 81.6 83.8 85.0 85.8 86.2
Reflexion 55.0 62.6 66.2 69.2 71.2 72.8 74.2 75.0 76.4 77.4
In-place 55.0 71.4 76.6 81.2 85.2 88.8 90.4 91.8 92.4 92.8

Gemma-3-4B
Multi-turn 49.2 60.6 68.4 73.0 76.0 77.6 79.2 80.4 82.0 82.8
Reflexion 49.2 60.4 65.0 68.0 70.6 72.6 74.6 76.4 77.2 78.0
In-place 49.2 62.6 70.8 74.8 77.8 81.4 82.8 85.0 86.6 87.6

Llama-3.1-8B
Multi-turn 14.8 34.0 45.8 56.4 59.8 64.4 67.4 71.2 73.4 75.6
Reflexion 14.8 29.4 40.0 47.0 52.8 57.2 62.2 65.6 67.6 69.8
In-place 14.8 36.6 48.0 59.8 66.8 74.4 76.8 80.6 82.8 84.0

Table A1: Performance comparison with Reflexion (Shinn et al., 2023b) on the Math-hard dataset.

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 56.2 68.0 72.6 75.1 77.3 78.1 79.1 79.3 80.1 80.5
Reflexion 56.2 67.1 70.8 73.4 75.7 77.7 78.5 79.7 80.7 80.9
In-place 56.2 69.8 78.5 80.1 81.9 83.0 83.8 84.6 85.0 85.4

Gemma-3-4B
Multi-turn 41.4 54.0 60.0 65.9 68.4 69.8 71.2 72.0 72.8 73.4
Reflexion 41.4 52.9 57.2 63.5 66.3 68.0 69.6 70.4 71.6 72.2
In-place 41.4 59.4 65.5 69.6 73.6 76.1 77.7 79.5 80.7 81.3

Llama-3.1-8B
Multi-turn 42.2 55.8 61.5 65.7 69.0 71.2 72.0 73.4 74.8 75.1
Reflexion 42.2 57.0 63.9 68.6 71.2 74.0 75.9 77.3 78.3 78.7
In-place 42.2 59.4 68.2 74.2 76.5 79.7 81.3 82.8 84.2 84.8

Table A2: Performance comparison with Reflexion (Shinn et al., 2023b) on the MMLU-Pro dataset.

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 10.3 17.5 27.8 38.1 40.5 42.9 43.7 43.7 43.7 46.0
Reflexion 10.3 19.0 27.0 29.4 34.9 36.5 37.3 38.1 38.1 38.9
In-place 10.3 25.4 36.5 48.4 51.6 57.9 63.5 64.3 66.7 69.0

Gemma-3-4B
Multi-turn 5.6 9.5 11.9 14.3 15.1 19.0 22.2 23.0 24.6 27.0
Reflexion 5.6 8.7 10.3 13.5 15.9 17.5 18.3 22.2 22.2 23.8
In-place 5.6 11.9 27.8 33.3 38.9 42.9 46.0 46.0 47.6 53.2

Llama-3.1-8B
Multi-turn 4.0 8.7 19.0 24.6 27.0 31.0 34.1 38.1 42.1 43.7
Reflexion 4.0 8.7 15.1 20.6 23.0 27.8 31.7 34.1 37.3 40.5
In-place 4.0 15.1 26.2 35.7 43.7 47.6 53.2 55.6 61.1 61.9

Table A3: Performance comparison with Reflexion (Shinn et al., 2023b) on the GPQA dataset.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 TASK PERFORMANCE OF LARGE-SCALE LLMS

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 31.2 52.6 63.2 71.0 74.6
Reflexion 31.2 51.6 62.2 67.0 72.4
In-place 31.2 53.6 64.6 71.8 76.8

Gemma-3-27B
Multi-turn 78.2 86.6 89.2 90.4 91.0
Reflexion 78.2 86.2 87.8 89.8 90.8
In-place 78.2 87.2 89.6 91.0 92.4

Table A4: Performance comparison with Reflexion (Shinn et al., 2023b) on the MATH-Hard dataset.

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 54.8 70.2 75.3 77.1 77.9
Reflexion 54.8 68.8 76.5 78.5 80.2
In-place 54.8 70.6 77.7 79.1 81.3

Gemma-3-27B
Multi-turn 61.3 73.4 76.3 79.3 80.5
Reflexion 61.3 74.6 78.7 80.3 81.4
In-place 61.3 74.4 79.3 81.7 83.4

Table A5: Performance comparison with Reflexion (Shinn et al., 2023b) on the MMLU-Pro dataset.

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 18.3 29.4 42.1 46.0 50.8
Reflexion 18.3 30.2 40.5 46.6 50.8
In-place 18.3 31.8 42.9 46.8 53.2

Gemma-3-27B
Multi-turn 17.5 34.1 42.9 48.4 51.6
Reflexion 17.5 33.3 39.7 44.4 47.6
In-place 17.5 34.9 43.7 49.2 58.7

Table A6: Performance comparison with Reflexion (Shinn et al., 2023b) on the GPQA dataset.

C.3 OUTPUT TOKEN LENGTH

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 810.9 925.4 1072.1 1186.2 1276.7 1349.3 1360.0 1408.0 1469.4 1525.9
Reflexion 810.9 850.7 945.5 987.7 1011.2 1020.3 1033.4 1031.4 1050.0 1071.5
In-place 810.9 403.1 320.2 277.7 283.0 232.6 224.2 172.0 166.8 185.7

Gemma-3-4B
Multi-turn 1078.3 1092.7 1041.6 1011.4 1001.7 1023.5 998.8 1028.6 1025.2 1059.6
Reflexion 1078.3 907.0 961.6 986.1 987.7 984.3 999.7 1041.3 1013.6 992.2
In-place 1078.3 983.2 788.2 699.4 708.3 699.5 636.8 573.4 523.8 552.7

Llama-3.1-8B
Multi-turn 395.2 504.4 587.3 661.0 730.8 734.3 792.9 809.8 852.6 923.6
Reflexion 395.2 479.1 588.1 647.8 696.7 705.3 743.1 790.1 844.8 861.5
In-place 395.2 294.1 307.8 331.9 328.6 351.5 373.8 388.6 364.8 432.4

Table A7: Output token length on the Math-Hard dataset.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 456.1 614.2 689.3 757.0 813.6 851.4 860.8 907.1 919.7 943.1
Reflexion 456.1 597.1 678.3 721.4 736.5 780.6 766.5 794.5 847.6 833.7
In-place 456.1 280.4 305.4 265.8 269.9 289.9 336.0 298.2 320.2 308.2

Gemma-3-4B
Multi-turn 504.2 518.1 514.7 531.9 548.0 571.1 578.8 596.0 622.1 621.1
Reflexion 504.2 564.8 600.9 593.8 614.2 655.1 664.4 667.3 688.2 696.4
In-place 504.2 454.4 425.5 421.8 357.2 373.2 349.3 406.4 358.9 342.1

Llama-3.1-8B
Multi-turn 381.4 432.4 477.4 480.0 499.4 537.3 537.0 514.7 518.2 546.3
Reflexion 381.4 429.7 515.0 574.6 603.1 627.7 617.2 650.2 662.3 642.3
In-place 381.4 236.2 236.7 206.9 214.0 212.8 188.0 249.9 223.5 253.1

Table A8: Output token length on the MMLU-Pro dataset.

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 715.5 751.6 832.8 860.5 946.8 964.7 1040.5 1035.5 1067.5 1068.6
Reflexion 715.5 709.6 787.0 824.5 847.2 853.0 835.1 815.3 837.1 850.9
In-place 715.5 399.5 332.2 270.9 272.5 275.7 245.1 253.2 247.8 192.1

Gemma-3-4B
In-place 810.3 610.4 497.5 515.1 491.7 446.4 359.6 441.3 306.9 364.7
Multi-turn 810.3 795.9 739.2 716.3 755.4 718.7 773.2 786.6 791.7 803.5
Reflexion 810.3 796.5 797.6 774.2 815.5 837.2 816.6 835.6 823.3 815.7

Llama-3.1-8B
Multi-turn 665.7 644.4 659.2 683.2 721.5 699.2 697.8 689.6 697.8 690.8
Reflexion 665.7 614.8 671.1 678.5 667.1 673.4 660.3 646.5 651.6 627.4
In-place 665.7 421.3 351.0 283.8 312.3 297.0 292.7 306.9 241.3 266.8

Table A9: Output token length on the GPQA dataset.

C.4 OUTPUT TOKEN LENGTH OF LARGE-SCALE LLMS

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 279.8 380.0 482.5 522.4 593.4
Reflexion 279.8 434.3 555.5 615.1 592.4
In-place 279.8 249.2 239.0 315.2 300.5

Gemma-3-27B
Multi-turn 927.4 1134.5 1238.2 1154.2 1098.9
Reflexion 927.4 969.4 1134.5 1222.9 1204.4
In-place 927.4 807.4 731.0 879.4 756.5

Table A10: Output token length on the Math-Hard dataset.

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 310.1 385.4 423.6 467.4 477.6
Reflexion 310.1 432.1 515.1 575.7 623.8
In-place 310.1 153.9 160.8 166.7 147.7

Gemma-3-27B
Multi-turn 420.3 511.5 561.6 561.3 605.3
Reflexion 420.3 586.8 680.9 712.1 723.7
In-place 420.3 291.5 297.5 327.8 324.0

Table A11: Output token length on the MMLU-Pro dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 597.8 549.2 508.2 515.6 571.9
Reflexion 597.8 574.9 607.8 600.5 620.3
In-place 597.8 280.1 229.7 232.3 259.7

Gemma-3-27B
Multi-turn 738.9 641.1 643.1 666.4 679.0
Reflexion 738.9 683.3 728.2 751.3 749.8
In-place 738.9 417.1 330.4 292.9 315.6

Table A12: Output token length on the GPQA dataset.

C.5 INPUT TOKEN LENGTH

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 159.6 1288.6 2538.6 3838.7 5235.0 6806.2 8368.0 9977.5 11671.0 13434.7
Reflexion 159.6 1364.8 858.4 1134.3 1100.5 1144.9 1153.2 1160.6 1095.7 1125.5
In-place 159.6 734.7 950.6 1088.9 1135.6 1250.6 1302.8 1392.1 1439.3 1464.7

Gemma-3-4B
Multi-turn 185.8 1764.0 3117.7 4440.7 5591.1 6843.3 8062.8 9342.5 10515.5 11818.4
Reflexion 185.8 1898.6 1537.5 1712.3 1717.8 1737.9 1712.2 1744.5 1739.2 1720.0
In-place 185.8 767.0 1019.0 1286.6 1306.8 1329.0 1401.7 1594.1 1639.5 1691.5

Llama-3.1-8B
Multi-turn 159.6 1288.6 2538.6 3838.7 5235.0 6806.2 8368.0 9977.5 11671.0 13434.7
Reflexion 159.6 826.2 1073.4 1319.3 1361.2 1414.1 1413.2 1468.8 1515.9 1566.9
In-place 159.6 734.7 950.6 1088.9 1135.6 1250.6 1302.8 1392.1 1439.3 1464.7

Table A13: Input token length on the Math-Hard dataset.

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 144.8 918.2 1809.5 2724.6 3698.0 4786.0 5804.9 6891.6 7984.2 8977.5
Reflexion 144.8 947.4 1125.8 1282.0 1318.7 1333.7 1367.8 1345.4 1415.4 1449.1
In-place 144.8 519.4 625.5 764.1 794.8 833.9 807.9 861.3 886.9 882.1

Gemma-3-4B
Multi-turn 165.1 931.1 1666.3 2384.0 3163.0 3895.5 4602.5 5360.0 6149.4 6980.5
Reflexion 161.1 1005.2 1078.5 1191.2 1210.4 1217.3 1256.2 1272.8 1267.5 1285.5
In-place 161.1 198.4 212.0 218.6 222.9 227.4 230.2 233.8 236.7 237.7

Llama-3.1-8B
Multi-turn 165.1 800.4 1473.2 2164.4 2871.0 3594.4 4274.1 4962.2 5578.6 6248.8
Reflexion 165.1 829.6 973.4 1157.5 1209.8 1224.9 1256.0 1237.0 1249.4 1279.0
In-place 165.1 422.1 487.9 534.0 592.6 625.2 665.1 638.6 677.9 670.8

Table A14: Input token length on the MMLU-Pro dataset.

Model Method Number of turns
0 1 2 3 4 5 6 7 8 9

Qwen-2.5-7B
Multi-turn 203.6 1079.9 2013.6 2982.9 4127.7 5304.3 6395.3 7570.8 8763.9 9987.4
Reflexion 203.6 1109.2 1258.6 1484.6 1521.4 1541.4 1544.0 1519.1 1511.7 1525.8
In-place 203.6 553.7 678.3 771.6 759.5 766.1 847.4 848.5 876.1 966.4

Gemma-3-4B
Multi-turn 185.8 1764.0 3117.7 4440.7 5591.1 6843.3 8062.8 9342.5 10515.5 11818.4
Reflexion 185.8 1898.6 1537.5 1712.3 1717.8 1737.9 1712.2 1744.5 1739.2 1720.0
In-place 185.8 767.0 1019.0 1286.6 1306.8 1329.0 1401.7 1594.1 1639.5 1691.5

Llama-3.1-8B
Multi-turn 159.6 1288.6 2538.6 3838.7 5235.0 6806.2 8368.0 9977.5 11671.0 13434.7
Reflexion 159.6 826.2 1073.4 1319.3 1361.2 1414.1 1413.2 1468.8 1515.9 1566.9
In-place 159.6 734.7 950.6 1088.9 1135.6 1250.6 1302.8 1392.1 1439.3 1464.7

Table A15: Input token length on the GPQA dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C.6 INPUT TOKEN LENGTH OF LARGE-SCALE LLMS

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 231.0 715.1 1373.4 2070.4 2902.1
Reflexion 231.0 740.4 1059.7 1301.0 1340.6
In-place 231.0 378.0 472.7 534.1 610.2

Gemma-3-27B
Multi-turn 177.9 1833.3 3527.8 4934.1 6250.7
Reflexion 177.9 1897.3 1769.4 1958.0 2020.5
In-place 177.9 1008.8 1425.0 1540.9 1731.2

Table A16: Input token length on the Math-Hard dataset.

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 165.1 747.6 1342.3 1987.7 2608.3
Reflexion 165.1 776.8 954.3 1187.8 1210.4
In-place 165.1 451.9 515.8 560.3 595.4

Gemma-3-27B
Multi-turn 149.0 894.6 1672.0 2454.1 3209.8
Reflexion 149.0 924.6 1117.7 1315.8 1314.0
In-place 149.0 473.6 553.6 642.9 649.5

Table A17: Input token length on the MMLU-Pro dataset.

Model Method Number of turns
0 1 2 3 4

Llama-3.1-70B
Multi-turn 224.1 998.2 1720.3 2405.4 3099.9
Reflexion 224.1 1027.5 1138.1 1309.9 1307.2
In-place 224.1 585.9 636.0 694.4 752.2

Gemma-3-27B
Multi-turn 205.0 1085.9 1903.6 2754.2 3606.0
Reflexion 205.0 1115.9 1230.8 1380.2 1414.2
In-place 205.0 555.0 692.9 756.2 783.1

Table A18: Input token length on the GPQA dataset.

D QUALITATIVE EXAMPLES

D.1 IN-PLACE FEEDBACK EXAMPLE

Figure A9, Figure A10, Figure A11, and Figure A12 are the qualitative examples of in-place feed-
back on the three benchmarks.

D.2 MULTI-TURN FEEDBACK FAILURE EXAMPLE

We observe failure cases of multi-turn feedback, and present the instances in Figure A13, Fig-
ure A14, and Figure A15.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

LLM-as-a-judge prompt for MATH-hard

SYSTEM PROMPT
You are a mathematical equivalence judge.
Given a question, a correct answer, and a model’s prediction, determine if they are mathematically
equivalent even if they have different formatting or representation.
Respond with ONLY ‘YES’ if they are equivalent, or ‘NO’ if they are not.
If the model’s prediction is correct, but the formatting is wrong, please respond with ‘YES’.
DO NOT RESPOND WITH ANYTHING ELSE.

USER PROMPT
Question: {QUESTION}
Correct answer: {CORRECT ANSWER}
Model prediction: {PREDICTION}
Are these equivalent? Answer YES or NO.

(a) Prompt format used in MATH-hard.

LLM-as-a-judge prompt for MMLU-pro free-form and GPQA free-form

SYSTEM PROMPT
You are a strict and impartial judge for evaluating model predictions.
Given a question, a correct answer, and a model’s prediction, decide whether the prediction is
equivalent to the correct answer.
Respond with ONLY ‘YES’ or ‘NO’. Never output anything else.

Judgment Criteria
1. The prediction must fully answer the question and cannot be vague.
2. Ignore differences in formatting, punctuation, capitalization, or spacing.
3. For numeric answers:
- Compute the relative error = |prediction − ground truth| / mean(prediction, ground truth).
- The prediction is correct if the relative error < 1%.
- If the ground truth is a single numeric value but the prediction is a range, treat it as incorrect (even if
the range contains the ground truth).
- If the ground truth is a single value but the prediction is a range, output ‘NO’.
4. If the prediction is correct in substance but expressed in a different format, respond ‘YES’.

Final Rule: Output must be exactly ‘YES’ or ‘NO’. No explanations, no extra words.

USER PROMPT
Question: {QUESTION}
Correct answer: {CORRECT ANSWER}
Model prediction: {PREDICTION}
Are these equivalent? Answer YES or NO.

(b) Prompt format used in MMLU-pro free-form and GPQA free-form.

Figure A3: Prompt format used for LLM-as-a-judge in MATH-hard, MMLU-pro free-form, and
GPQA free-form.

E THE USE OF LARGE LANGUAGE MODELS

We used an LLM assistant as a writing tool for grammar checking and paraphrasing. In addition,
since our experiments required carefully designed prompts, we employed the assistant to refine
prompts.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Prompt format used for feedback agent

SYSTEM PROMPT

You are a rigorous verifier of LLM answers.
Your task: Given a question, the model’s full answer, and the correct answer, identify the first and
most critical reasoning flaw that causes the error.
You MUST NOT reveal or speculate about the correct final answer.
- Note that the options in previous questions might have been switched in each different attempt.

Your output must follow the structure below:
Explain in (maximum 2–3) precise sentences why that step is incorrect. Be specific in your critique.
Give short and specific actionable advice to fix it.

Constraints:
You may only give feedback on one reasoning error at a time — the earliest critical one.
If the model’s answer is correct in logic but wrong in formatting, your feedback should address the
formatting issue.
You DO NOT leak and mention the correct final answer.
DO NOT SOLVE THE PROBLEM, JUST PROVIDE FEEDBACK WITHOUT MENTIONING
THE CORRECT ANSWER
Your output strictly starting with “Your output is wrong because” and then followed by the explanation.

Do not output anything else.

USER PROMPT

Your goal is to identify the earliest and most critical logical flaw in the model’s reasoning
DO NOT provide or hint at the correct final answer.
- Note that the options in previous questions might have been switched in each different attempt.

Problem
{PROBLEM}

Most Recent Model Answer
{MODEL ANSWER}

Correct Final Answer
{GROUND TRUTH}

Based on this, provide feedback on the single most important error in the model’s answer.
Do not leak and mention the correct final answer and do not add any extra commentary.

Figure A4: Prompt format used for feedback agent in MATH-hard, MMLU-pro free-form, and
GPQA free-form.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Prompt format used for in-place feedback agent

SYSTEM PROMPT
You are a helpful assistant who INTERVENES in a math solution based on user feedback.
Your job is to produce a JSON object for a single in-place replace operation:
- Identify the shortest unique substring (SUS) from the original solution that must be edited to apply
the feedback.
- Produce the revised text for that exact span.
- Do NOT change anything before the flaw, and do NOT continue solving the problem beyond where
the feedback applies.
- Preserve all whitespace, punctuation, LaTeX, and casing exactly as in the original solution for the
target substring.
- The target must be a contiguous substring that occurs exactly once in the original solution. If not
unique, minimally extend the span (e.g., include adjacent tokens or punctuation) until it becomes
unique.
- Return ONLY valid JSON with UTF-8 and proper escaping (no trailing commas, no extra commen-
tary).

Return JSON with this schema (single edit only):

{
“target sentence”: “< exact shortest unique substring copied from the original>”,
“edit sentence”: “<the revised substring after applying the feedback>”

}

Constraints:
- Output must be a single-line or multi-line JSON object; do not include any extra text.
- Do not normalize quotes/hyphens/spaces; copy exactly from the original for target sentence.
- Do not introduce additional edits beyond the specified span.
- Do not provide a reasoning process beyond the feedback.

USER PROMPT
<The Start of Answer>
{ANSWER}
<The End of Answer>
<The Start of Original Solution>
{ORIGINAL SOLUTION}
<The End of Original Solution>
<The Start of User Feedback>
{USER FEEDBACK}
<The End of User Feedback>
<The Start of Instructions>
Write the JSON according to the following:
- Apply ONLY the given feedback to the original solution.
- Identify the shortest unique substring in the original that must change to satisfy the feedback; this
must appear exactly once.
- If the obvious sentence occurs multiple times, minimally extend the span (e.g., prepend/append one
or two nearby tokens or punctuation) until uniqueness holds.
- Put the original substring in “target sentence” (copied verbatim from the original, including whites-
pace/newlines).
- Put the corrected version in “edit sentence”.
- If the feedback is sentence-like, keep it within three sentences in the edited span.
- STRICTLY FOLLOW:
- Do not solve the problem beyond where the feedback applies.
- Stop right after applying the feedback.
- Return ONLY valid JSON with keys “target sentence” and “edit sentence”.

Figure A5: Prompt format used for in-place feedback agent in MATH-hard, MMLU-pro free-form,
and GPQA free-form.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Prompt format used for ZebraLogic

SYSTEM PROMPT
You are a helpful assistant that solves zebra puzzles.
Given a puzzle and a json template, you need to solve the puzzle and fill in the json template.
You need to fill in the json template with the correct attributes.

USER PROMPT
Example Puzzle

There are 3 houses, numbered 1 to 3 from left to right, as seen from across the street. Each house is
occupied by a different person.
Each house has a unique attribute for each of the following characteristics:
- Each person has a unique name: ‘Peter’, ‘Eric’, ‘Arnold’.
- Each person has a unique favorite drink: ‘tea’, ‘water’, ‘milk’

Clues for the Example Puzzle

1. Peter is in the second house.
2. Arnold is directly left of the one who only drinks water.
3. The one who only drinks water is directly left of the person who likes milk.

Answer to the Example Puzzle

{{
“solution”: {{

“House 1”: {{
“Name”: “Arnold”,
“Drink”: “tea”

}},
“House 2”: {{

“Name”: “Peter”,
“Drink”: “water”

}},
“House 3”: {{

“Name”: “Eric”,
“Drink”: “milk”

}}
}}

}}

Puzzle to Solve

{PUZZLE}

Instruction

Now please solve the above puzzle. Present your reasoning and solution in the following json format:
{JSON TEMPLATE}

Figure A6: Input template used for ZebraLogic.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Feedback template for Gemma and Qwen in ZebraLogic

Your answer is incorrect. Please revise your solution based on the following feedback.
- ‘{CATEGORY}’ of the ‘{HOUSE}’ is ‘{GROUND TRUTH}’, not ‘{PREDICTION}’.
- · · ·

(a) Feedback template for Gemma and Qwen.

Feedback template for Llama in ZebraLogic

Please revise your step-by-step reasoning based on the following feedback, and then provide a solution
in the following json format.
Do not just provide the final solution, but also provide the reasoning process.

- ‘{CATEGORY}’ of the ‘{HOUSE}’ is ‘{GROUND TRUTH}’, not ‘{PREDICTION}’.
- · · ·

(b) Feedback template for Llama.

Figure A7: Rule based feedback template in ZebraLogic.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Prompt format used for in-place feedback agent in ZebraLogic

SYSTEM PROMPT
You are an in-place patcher. Given a reasoning step and feedback items, decide if the step conflicts
with the feedback. If so, produce the minimally edited step that preserves all non-conflicting content
and enforces the feedback exactly.

LOCKED CLUE SPANS
- Any substring beginning with ‘Clue’ and ending at the first period is read-only. Do not alter or delete
it.
- If a step contains locked span(s), edit only after the last locked span.
- If formatted as “Clue N: - editable text”, edit only after the first ‘ - ’. If editable text is deleted,
remove the dangling ‘ - ’.

REFERENCE ATTRIBUTES
{CATEGORY}
- Use this only as a reference to detect conflicts and apply equivalence normalization. Do not generate
new information beyond feedback.

EDIT RULES
- Feedback is always given in positive-only form, e.g., ‘attr’ of the ‘house i’ is ‘A’.
- Always overwrite the attribute with the provided value A.
- Modify only attributes mentioned in the feedback.
- Do not add new reasoning, deductions, constraints, or explanations.
- Do not insert additional sentences beyond the minimal correction.
- Do not add new information, negations, or style fixes.
- Equivalence normalization:
* ‘name’ of house i is X ↔ X is in House
* ‘musicgenre’ of house i is Y, The Y house is House i
* Apply the same for other attributes.
- Rewrite conflicts to the positive corrected assignment. Never use negations.

CONFLICT CRITERIA
A statement conflicts only if it:
- Mentions the same (house, attribute) with a contradictory value, or
- Assigns a feedback value to the wrong house by equivalence.

DEPENDENCY PRUNING
- If a sentence depends on a premise that is corrected or negated by the feedback and cannot be
minimally rewritten, delete that sentence only.
- Do not delete the entire reasoning step.
- Never alter or delete locked clue text.

OUTPUT
- If no conflict: “conflict”:“no”
- If conflict: “conflict”:“yes”,“replacement”:“...”
where replacement is the fully patched step, including unchanged locked clues.

RULES
- Make the smallest edits necessary.
- Preserve capitalization, spacing, and order.
- Never output empty replacement if a locked clue exists.
- Absolutely never add new reasoning, deductions, or commentary not present in the original.

USER PROMPT
Reasoning step
{REASONING STEP}
Feedback
{FEEDBACK}

Figure A8: Prompt format used for in-place feedback agent in ZebraLogic.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

In-place feedback example - MATH-hard

Problem
Express the infinite series 3

206
+ 9

2·1032 + 27
2·1033 + · · · as a terminating decimal.

Model response
Let S = 3

206
+ 9

2·1032 + 27
2·1033 + · · · . We can rewrite this as

S =

∞∑
n=1

3n

2 · 103n+1
=

1

2

∞∑
n=1

3n

103n+1
=

1

2

∞∑
n=1

3n

103 · 103n =
1

2 · 103

∞∑
n=1

(
3

103

)n

The sum
∑∞

n=1

(
3

103

)n is a geometric series with first term 3
103

and common ratio 3
103

. Since
∣∣ 3
103

∣∣ <
1, the series converges to

∞∑
n=1

(
3

103

)n

=
3

103

1− 3
103

=
3

103
103−3
103

=
3

103
100
103

=
3

100

Therefore, S = 1
2·103 · 3

100
= 3

20600
Now we need to express 3

20600
as a terminating decimal. We can

divide 3 by 20600: 3
20600

= 0.00014645 . . . We can write 3
20600

= 3
206·100 = 3

206
· 1

100
. We have

3
206

≈ 0.01464539. Then 3
20600

= 3
206

· 1
100

≈ 0.01464539 · 1
100

= 0.0001464539. We can also
write 3

20600
= 3

206·100 = 3
206

· 1
100

. We can divide 3 by 206 to get 0.01464539.... Then we multiply
by 1

100
to get 0.0001464539.... We can write 3

20600
= 0.0001464539... The decimal representation

is 0.0001464539.... We want to express this as a terminating decimal. We have S = 3
20600

. Dividing
3 by 20600, we get 3 ÷ 20600 = 0.0001464539... Since we want a terminating decimal, we need to
find a common denominator. We have 20600 = 23 · 52 · 103. So 3

20600
= 3

23·52·103 . We can write
3

20600
= 0.0001464539... The decimal representation is 0.0001464539.... Final Answer: The final

answer is 0.000146

1) In-place edit
Let S = 3

206
+ 9

2·1032 + 27
2·1033 + · · · . We can rewrite this as S =

∑∞
n=1

3n

2·103n = 1
2

∑∞
n=1

(
3

103

)n
2) Continuation generation
This is a geometric series with first term a = 3

103
and common ratio r = 3

103
. Since |r| = 3

103
< 1,

the series converges and its sum is given by
∞∑

n=1

(
3

103

)n

=
3

103

1− 3
103

=
3

103
103−3
103

=
3

103
100
103

=
3

100

Therefore, S = 1
2
· 3

100
= 3

200
To express this as a terminating decimal, we divide 3 by 200: 3

200
=

3
2·100 = 3

2·102 = 3
2
· 1

100
= 1.5 · 0.01 = 0.015 Alternatively, we can directly divide 3 by 200:

3
200

= 0.015 Thus, the infinite series is equal to 0.015

Figure A9: In-place feedback example for the MATH-hard dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

In-place feedback example - MATH-hard

Problem
Dr. Zaius invests $10, 000 in a CD with an annual interest rate of 4% that compounds semi-annually
(twice a year). After six months, he rolls over the CD into another CD with an annual interest rate of
5% that also compounds semi-annually. After six months in the second CD, how much does Dr. Zaius
have, in dollars?

Model response
First, we need to calculate the amount after the first six months with the first CD. The principal is
10000, the annual interest rate is 4%, and the interest compounds semi-annually. So the interest rate per
period is 4%/2 = 2% = 0.02. The number of periods is 6/2 = 3. The formula for compound interest
is A = P (1+r)n, where A is the amount after n periods, P is the principal, and r is the interest rate per
period. In this case, P = 10000, r = 0.02, and n = 3. So, A = 10000(1+0.02)3 = 10000(1.02)3 =
10000(1.061208) = 10612.08. After six months, Dr. Zaius rolls over the CD into another CD with an
annual interest rate of 5% that also compounds semi-annually. The principal is 10612.08. The annual
interest rate is 5%, so the interest rate per period is 5%/2 = 2.5% = 0.025. The number of periods is
6/2 = 3. Using the same formula, A = P (1 + r)n, we have P = 10612.08, r = 0.025, and n = 3.
So, A = 10612.08(1 + 0.025)3 = 10612.08(1.025)3 = 10612.08(1.076890625) ≈ 11418.53.
Therefore, after six months in the second CD, Dr. Zaius has approximately 11418.53

1) In-place edit
First, we need to calculate the amount after the first six months with the first CD. The principal is
10000, the annual interest rate is 4%, and the interest compounds semi-annually. So the interest rate
per period is 4%/2 = 2% = 0.02. The number of periods is 1.

2) Continuation generation
The amount after six months is P (1 + r)n = 10000(1 + 0.02)1 = 10000(1.02) = 10200. Then,
Dr. Zaius rolls over the CD into another CD with an annual interest rate of 5% that also compounds
semi-annually. The principal is 10200, the annual interest rate is 5%, and the interest rate per period
is 5%/2 = 2.5% = 0.025. The number of periods is 1. The amount after six months in the second
CD is 10200(1 + 0.025)1 = 10200(1.025) = 10200 + 10200 × 0.025 = 10200 + 255 = 10455.
So, after six months in the second CD, Dr. Zaius has 10455

Figure A10: In-place feedback example for the MATH-hard dataset.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

In-place feedback example - GPQA free-form

Problem
Consider an isolated system of 13 identical particles each with charge 2e and negligible mass. 12 of
these charges are constrained to stay at 2 m from a point P. The 13th charge is fixed at P. What is the
minimum energy (in Joules) of this system correct to three decimals?

Model response
Let q be the charge of each particle, and r be the distance of the 12 particles from the point P. The 13th
charge is at the point P. The Coulomb force between two charges q1 and q2 separated by a distance r
is given by F = kq1q2

r2
, where k = 1

4πϵ0
is the Coulomb constant. [omitted for brevity...]

The potential energy of the system is given by

U =

12∑
i=1

kq2

ri

where ri is the distance from the i-th charge to the point P. Since all 12 charges are at a distance of 2
m from P, ri = 2 for all i. U = 12 · kq2

2
= 6kq2 [omitted for brevity...]

The total energy is U = 6kq2. U = 6 · 1
4πϵ0

(2e)2 = 6·4e2
4πϵ0

= 6e2

πϵ0
≈ 6(1.602×10−19)2

π(8.854×10−12)
≈

6(2.5664×10−38)

π(8.854×10−12)
≈ 15.40×10−38

2.783×10−11 ≈ 5.57 × 10−27J . The minimum energy is approximately

5.570e− 27J

1) In-place edit
Let q be the charge of each particle, and r be the distance of the 12 particles from the point P. The 13th
charge is at the point P. The Coulomb force between two charges q1 and q2 separated by a distance r
is given by F = kq1q2

r2
, where k = 1

4πϵ0
is the Coulomb constant. [omitted for brevity...]

The potential energy of the system is given by

U =
∑
i<j

kqiqj
rij

2) Continuation generation
which includes the 12 central–outer terms and the 66 outer–outer pairwise terms; the outer–outer
distances rij depend on the arrangement of the 12 charges on the sphere of radius 2, so one must
evaluate this pairwise sum for the energy-minimizing configuration before computing any numeric
value. [omitted for brevity...]

The minimum energy is U = 13
2

kq2

r
= 13

2

1
4πϵ0

(2e)2

2
= 13e2

4πϵ0
≈ 13(1.602×10−19)2

4π(8.854×10−12)
≈ 2.82× 10−26J .

2.820e− 26J

Figure A11: In-place feedback example for the GPQA free-form dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

In-place feedback example - MMLU-pro free-form

Problem
A particle of mass m and velocity u1 makes a head-on collision with another particle of mass 2m at
rest. If the coefficient of restitution is such to make the loss of total kinetic energy a maximum, what
are the velocities v1 after the collision?

Model response
Let m1 = m and v1 = u1 be the mass and initial velocity of the first particle. Let m2 = 2m
and v2 = 0 be the mass and initial velocity of the second particle. Let v′1 and v′2 be the velocities
of the first and second particles after the collision, respectively. The initial total kinetic energy is
Ki =

1
2
m1u

2
1 + 1

2
m2(0)

2 = 1
2
mu2

1. The final total kinetic energy is Kf = 1
2
m1v

′
1 + 1

2
m2v

′
2.The

loss of kinetic energy is ∆K = Ki −Kf = 1
2
mu2

1 − 1
2
mv′1 − 1

2
(2m)v′2. [omitted for brevity...]

To maximize ∆K, we need to minimize v′2. Since v′2 = 1
2
v′1, we have v′2 = 1

2
v′1. Then v′1 = 2v′2.

∆K = 1
2
mu2

1 − 2m 1
2
v′1 = 1

2
mu2

1 −mv′1. Final Answer: The final answer is 0

1) In-place edit
Let m1 = m and v1 = u1 be the mass and initial velocity of the first particle. Let m2 = 2m
and v2 = 0 be the mass and initial velocity of the second particle. Let v′1 and v′2 be the velocities
of the first and second particles after the collision, respectively. The initial total kinetic energy is
Ki =

1
2
m1u

2
1 +

1
2
m2(0)

2 = 1
2
mu2

1. The final total kinetic energy is Kf = 1
2
m1v

′2
1 + 1

2
m2v

′2
2 .

2) Continuation generation
The loss of kinetic energy is ∆K = Ki −Kf = 1

2
mu2

1 − 1
2
m1v

′2
1 − 1

2
m2v

′2
2 . We want to maximize

∆K. The coefficient of restitution is e =
v′
2−v′

1
u1−v′

2
. Since it’s a head-on collision, we can use the

conservation of momentum: m1u1 +m2(0) = m1v
′
1 +m2v

′
2 mu1 = mv′1 + 2mv′2 u1 = v′1 + 2v′2

v′2 =
u1−v′

1
2

[omitted for brevity...]

To maximize ∆K, we take the derivative with respect to v′1 and set it to zero. However, we are given
that the loss of kinetic energy is maximized. This occurs when ∆K is maximized. For maximum loss
of kinetic energy, we want e to be as small as possible, i.e., e = 0. If e = 0, then v′1 = u1(1−0)

0+3
= u1

3
.

Then v′2 =
u1−v′

1
2

=
u1−

u1
3

2
=

2u1
3
2

= u1
3

. v′1 =
u1

3

Figure A12: In-place feedback example for the MMLU-pro free-form dataset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Failure example of multi-turn refinement - 1) corrupting correct content

Problem
In convex hexagon ABCDEF , all six sides are congruent, ∠A and ∠D are right angles, and ∠B,
∠C, ∠E, and ∠F are congruent. The area of the hexagonal region is 2116(

√
2 + 1). Find AB.

Model response
To solve for AB in the given convex hexagon ABCDEF , we will follow these steps:

1. Identify the properties of the hexagon:
- All six sides are congruent.
- ∠A and ∠D are right angles.
- ∠B, ∠C, ∠E, and ∠F are congruent.

2. Determine the measure of the congruent angles:
- Since the sum of the interior angles of a hexagon is (6− 2)× 180◦ = 720◦.
- Let ∠B = ∠C = ∠E = ∠F = x.
- We have ∠A = 90◦ and ∠D = 90◦.
- Therefore, 4x+ 180◦ = 720◦.
- Solving for x: 4x = 540◦ =⇒ x = 135◦

3. Visualize the hexagon: - Place the hexagon on a coordinate plane with A at (0, 0) and D at (a, 0).
- Since ∠A = 90◦ and ∠D = 90◦, the hexagon can be divided into a rectangle and two right triangles.

4. Divide the hexagon into simpler shapes:
- The hexagon can be divided into a rectangle ABCD and two right triangles ABE and CDF .

Since the problem asks for AB, and we have determined that AB = s, the final answer is: 23

Feedback
Your output is wrong because you assumed without justification that the hexagon “can be divided
into a rectangle and two right triangles” and then treated ABCD as a rectangle (even as a
square) with both width and height equal to s; right angles at A and D alone do not imply
AB ∥CD or BC ∥AD, so ABCD need not be a rectangle and the triangle legs need not equal s.

Fix it by producing a correct partition justified by the given angles (for example, draw and justify
specific diagonals such as BF and CE), use the 135° measure of the other four angles to deduce the
shapes and side relationships of the pieces, and compute the area from that valid decomposition rather
than assuming a rectangle/square.

Model response
Let’s re-evaluate the problem step-by-step, ensuring we correctly decompose the hexagon based on
the given angles and properties.

1. Identify the properties of the hexagon:
- All six sides are congruent.
- ∠A = 90◦ and ∠D = 90◦.
- ∠B = ∠C = ∠E = ∠F = 135◦.

2. Visualize the hexagon:
- Place the hexagon on a coordinate plane with A at (0, 0) and D at (s, 0).

3. Draw and justify specific diagonals:
- Draw diagonal BF and CE. These diagonals will help us decompose the hexagon into simpler
shapes.

4. Analyze the resulting shapes:
- Diagonal BF splits ∠B and ∠F into two angles each: ∠ABF = ∠FBD = 45◦.
- Similarly, diagonal CE splits ∠C and ∠E into two angles each: ∠BCE = ∠ECD = 45◦.

Since the problem asks for AB, and we have determined that AB = s, the final answer is: 23

Figure A13: Failure example of multi-turn refinement on the MATH-hard free-form dataset: cor-
rupting correct content.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Failure example of multi-turn refinement - 2) ignoring feedback

Problem
A container weighs 3.22 lb force when empty. Filled with waterat 60°F the mass of the container and
its contents is 1.95 slugs. Find the weight of the water in the container and its volume in cubic feet.
Assume density of water= 62.4 lb force/ft3.

Model response
Let Wc be the weight of the empty container in lb force, which is given as Wc = 3.22 lb. Let m be
the mass of the container and its contents in slugs, which is given as m = 1.95 slugs. Let ρ be the
density of water in lb force/ft3, which is given as ρ = 62.4 lb/ft3. We want to find the weight of the
water in the container, Ww, and the volume of the water in the container, V in cubic feet.

First, we find the weight of the container and its contents due to gravity. We know that weight
W = mg, where m is mass and g is the acceleration due to gravity. We can use the given mass in
slugs and the standard value of g = 32.2 ft/s2. W = m · g = 1.95 slugs · 32.2 ft/s2 = 62.19 lb.

The weight of the container and its contents is also the sum of the weight of the empty container and
the weight of the water. Wc +Ww = 62.19 lb 3.22+Ww = 62.19Ww = 62.19− 3.22 = 58.97 lb.

Now we can find the volume of the water in the container using the density formula: ρ = W
V

, where
W is the weight of the water and V is the volume. V = W

ρ
= 58.97 lb

62.4 lb/ft3 ≈ 0.9455 ft3.

Therefore, the weight of the water is 58.97 lb and the volume of the water is approximately 0.9455 ft3.

Weight of water = 58.97 lb,Volume = 0.9455 ft3

Feedback
Your output is wrong because you miscomputed the total weight: you evaluated W = m · g
incorrectly (you used 1.95·32.2 = 62.19), which led to an incorrect water weight. Recompute W =
m · g with the correct product, then subtract the empty container weight to get the water weight and
divide that by the given density to obtain the volume.

Model response
Let Wc be the weight of the empty container in lb force, which is given as Wc = 3.22 lb. Let m be
the mass of the container and its contents in slugs, which is given as m = 1.95 slugs. Let ρ be the
density of water in lb force/ft3, which is given as ρ = 62.4 lb/ft3. We want to find the weight of the
water in the container, Ww, and the volume of the water in the container, V in cubic feet.

First, we find the weight of the container and its contents due to gravity. We know that weight
W = mg, where m is mass and g is the acceleration due to gravity. We can use the given mass in
slugs and the standard value of g = 32.2 ft/s2. W = m · g = 1.95 slugs · 32.2 ft/s2 = 62.19 lb.

The weight of the container and its contents is 62.19 lb. The weight of the empty container is 3.22
lb. The weight of the water is the difference between the total weight and the weight of the empty
container: Ww = 62.19− 3.22 = 58.97 lb.

Now we can find the volume of the water in the container using the density formula: ρ = W
V

, where
W is the weight of the water and V is the volume. V = W

ρ
= 58.97 lb

62.4 lb/ft3 ≈ 0.9455 ft3.

Therefore, the weight of the water is 58.97 lb and the volume of the water is approximately 0.9455 ft3.

Weight of water = 58.97 lb,Volume = 0.9455 ft3

Figure A14: Failure example of multi-turn refinement on the MMLU-pro free-form dataset: ignoring
feedback.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Failure example of multi-turn refinement - 3) introducing a new error

Problem
A 125/250-volt three-wire system has a load on the positive side of 500 amp, on the negative side
of 450 amp, the neutral current therefore being 50 amp. If each machine of the balancer set has an
efficiency of 86 percent, calculate the current for each of these machines and for the main generator.

Model response
Here’s a step-by-step solution to the problem:

1. Calculate the total power in the positive phase:
Ppos = Vpos × Ipos = 125V × 500A = 62500W
2. Calculate the total power in the negative phase:
Pneg = Vneg × Ineg = 125V × 450A = 56250W
3. Calculate the total power in the neutral phase:
Pneutral = Vneutral × Ineutral = 125V × 50A = 6250W
4. Calculate the total system power:
Ptotal = Ppos + Pneg + Pneutral = 62500W + 56250W + 6250W = 125000W
5. Determine the number of balancer sets:
The problem states each balancer set has an efficiency of 86%, which implies that there are two
balancer sets. [omitted for brevity...]

The balancer sets are designed to correct the imbalance. The generator provides 1000A. The imbalance
is 500A - 450A = 50A. The balancer sets must provide 50A. Since each set has 86% efficiency, the
current each set provides is I = 50

0.86
≈ 581.39A. So, I1 = I2 = 581.39A.

Igenerator = 1000, Iset1 = 581.39, Iset2 = 581.39

Feedback
Your output is wrong because you infer there are two balancer sets from the 86% efficiency —
efficiency does not determine the number of machines, so splitting total power by two is an
unjustified non sequitur that corrupts all subsequent calculations. To fix it, do not assume a
quantity: either use the actual number of machines stated in the problem or introduce a variable n,
first compute the required balancing current from the load imbalance (or neutral current), then divide
that required output among n machines and account for each machine’s 86% efficiency by dividing the
required output current/power by 0.86 to obtain the input/current for each machine.

Model response
Okay, you are absolutely correct. My apologies for the flawed reasoning. Let’s redo the calculation
with the correct approach.

1. Calculate the total power:
Ptotal = 62500W + 56250W + 6250W = 125000W
2. Calculate the imbalance:
The imbalance is the difference between the positive and negative currents: 500A − 450A = 50A.
This is the current the balancer sets need to correct.
3. Determine the number of balancer sets:
The problem doesn’t explicitly state the number of balancer sets. Let’s denote the number of balancer
sets as n.
4. Calculate the required current per balancer set:
Each balancer set needs to provide 50A.
5. Calculate the current required from each balancer set, accounting for efficiency:
Current per set = (Required current) / (Efficiency) = 50A/0.86 = 581.395A (approximately)
Igenerator = 1000, Iset1 = 58.14, Iset2 = 58.14

Figure A15: Failure example of multi-turn refinement on the MMLU-pro free-form dataset: intro-
ducing a new error.

33

	Introduction
	In-place Feedback
	Multi-turn Refinement with Feedback
	Motivation: Failure Case of Multi-Turn Refinement
	In-Place Feedback

	Empirical Study on the Effect of In-place Feedback
	Experimental Setup
	Results

	Feedback effectiveness in controlled experiments
	Setup for Controlled Experiments
	Analysis of Feedback Utilization
	Effect of Dialogue History

	Related Work
	Conclusion
	Experimental Details
	Datasets
	MMLU-pro and GPQA free-form
	ZebraLogic

	Prompt and post-processing
	Hyperparameters.

	Additional Experimental Results
	Performance Comparision
	Task Performance
	Task Performance of Large-Scale LLMs
	Output Token Length
	Output Token Length of Large-Scale LLMs
	Input Token Length
	Input Token Length of Large-Scale LLMs

	Qualitative Examples
	In-place Feedback Example
	Multi-turn Feedback Failure Example

	The Use of Large Language Models

