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ABSTRACT

The scale of parameters in Transformers has expanded dramatically—from
hundreds of millions to several trillion. A key challenge when scaling the model
to trillions is the training instability. Although many practical tricks, such as
learning rate warmup, query-key normalization and better weight initializa-
tion, have been introduced to mitigate the training instability, a rigorous math-
ematical understanding of why such instabilities happen and why the above-
mentioned tricks work well is still unclear. In this paper, we give a theoret-
ical analysis of the initialization, normalization and attention mechanism in
Transformers, and present a set of stabilized designs of the initialization, nor-
malization and attention mechanism, which are thus termed as Stablelnit, Sta-
bleNorm and StableAtten, individually. In experiments, we demonstrate that
each of our stabilized designs, i.e., Stablelnit, StableNorm and StableAtten, ex-
hibits better stability. Furthermore, by putting the stabilized designs together,
we propose a stabilized Transformer, termed Stable-Transformer, and show in
experiments on large model (1B parameters) and deep model (200 layers) that
our proposed Stable-Transformer achieves a more stable training process.

“My work always tried to unite the truth with the beautiful, but when I had to choose one or
the other, I usually chose the beautiful.”

— Hermann Weyl

1 INTRODUCTION

The scale of parameters in Transformers (Vaswani et al.} 2017} Radford et al., 2018;/2019; Brown
et al.}[2020;|Touvron et al.;|2023;|Chowdhery et al.}|2023) has expanded dramatically—from hun-
dreds of millions to several trillion—parallel to significant advancements of hardware capabilities
in the field of deep learning (Goodfellow et al.,|2016;|LeCun et al.}|2015; Bengio et al.},2021). This
exponential growth in model size has been facilitated by equally significant strides in computa-
tional power, enabling deeper and more complex network architectures. As these models have
grown, they have set new benchmarks across a myriad of tasks in various fields such as natural
language processing (Dubey et al.}[2024}|Achiam et al.,[2023), computer vision (Ravi et al.}|2024),
and generation (Peebles & Xie, 2023).

Despite of these significant achievements, training larger models still suffers from an instabil-
ity issue, which is often characterized as the difficulties in convergence, the sensitivity to initial
conditions, and the necessity to finely tuned optimization strategies. Since that the instability
in training process encumbers the deployment and real-world applicability of the sophisticated
models, it is crucial to have a mathematical understanding of why such instability happens and
it is urgent to invent stabilized design of the architecture or training strategies.

To gain a deeper understanding of the instability in training Transformers, it is essential to in-
vestigate the training dynamics of Transformers. To date, there are various studies devoted to
the training process of Transformers from different perspectives, including normalization (Wang
et al., |2019; Xiong et al. [2020; [Liu et al., 2020; Miyato et al., 2018; (Wang et al.} |2022), attention
mechanisms (Henry et al., 2020; [Wortsman et al., [2024), model structures (Bachlechner et al.,
2021;|Qi et al.,|2023b), and initialization strategies (Glorot & Bengio}2010;|/He et al., 2015;/Qi et al.,
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(a) StableGPT versus GPT2. (b) StableViT-Large versus ViT-Large.

FIGURE 1: Except for being more stable during the training, StableGPT (left) also achieves a bet-
ter validation loss (2.827 for StableGPT-S (124M) versus 2.848 for GPT2-S (124M), and 2.569 for
StableGPT-M (350M) versus 2.579 for GPT2-M (350M)), and StableViT-L (right) achieves a better
recognition accuracy (82.4% versus 81.3%) compared to ViT-L under the settings of training 150
or 300 epochs. StableGPT-S can get an even better result (validation loss (2.819) with a higher
learning rate (see Appendix[l}), but here for fairness, we keep all the parameters of the optimizer
in training are the same as the baseline.

2023b). From the perspective of normalization, it has shown that normalization play a critical
role in stabilizing the training of Transformer, e.g, Xiong et al.| (2020) demonstrated that Pre-
LayerNorm (Pre-LN) offers greater stability compared to Post-LayerNorm (Post-LN),Wang et al.
(2022) proposed a DeepNorm and a depth-specific initialization to stabilize Post-LN. From the
perspective of attention, Kim et al.[(2021) showed that the standard dot-product attention is not
Lipschitz continuous and thus introduced an alternative L, attention to address the continuous
issue, QKNorm (Henry et al., 2020; |Dehghani et al.} 2023) proposed to normalize the query and
key matrices in attention mechanisms to improve the stability of the attention module. From the
perspective of initialization, |Zhang et al.| (2019) introduced a fixed-update initialization (Fixup)
to prevent gradient exploding or vanishing at the start of training. This method rescales a stan-
dard initialization and enables stable training of residual networks without the need for normal-
ization. Each of these approaches contributes to a better understanding and improvement of
Transformer training stability, paving the way for more robust and efficient models. [Bachlech-
ner et al.[(2021) demonstrated that a simple architectural modification, i.e., gating each residual
shortcut with a learnable zero-initialized parameter (ReZero), could significantly stabilize the
training of Transformer. Using ReZero, they successfully trained Transformers with up to 120
layers. More recently, |Qi et al.| (2023b) introduced a novel Transformer architecture, called Lips-
Former, which is designed to be Lipschitz continuous (i.e., the gradients are bounded) and has
been shown more stable during the training. The Lipschitz continuity allows for certain theoret-
ical guarantees about the model’s behavior, which is important in reliability or interpretability.

This paper attempts to provide a theoretical understanding of the components that cause train-
ing instability of Transformer. To be specific, our main contributions are highlighted as follows.

* We give a theoretical analysis of the Xavier initialization from the perspective of random matrix
theory, showing that the Lipschitz constant of the linear projection associated to the Xavier
initialization is bounded by 2. Instead, we present a more stable method for initialization,
termed Stablelnit (defined in Eq.[I), for which the Lipschitz constant is bounded by 1.

* We dig into the issue in back-propagation of the normalization by analyzing the Jacobian ma-
trix of the normalization layer and find that the factor v'd will affect the gradient flow signifi-
cantly. As a remedy, we derive a more stable design for the normalization, called StableNorm
(defined in Eq. , in which d* with a € [0,0.5] is adopted to replace v/d in the normalization
layer, and verify that using a smaller « (e.g., 0.475, rather than 0.5) will yield smaller gradients
and thus lead to more stable training.

e We present a new stable form of attention, named StableAtten (defined in Eq., which is built
on our StableNorm and has the advantage that the logit of the attention is not directly related
to the hidden dimension d and thus is robust to the increase of the model scale.
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* By putting together the Stablelnit, StableNorm and StableAtten, we have a stabilized design for
Transformer, termed Stable-Transformer. In experiments, for the single-direction generative
model i.e., GPT (Radford et al., 2018; 2019; Brown et al., [2020), we compile a StableGPT; for
a bi-direction attention model i.e., ViT (Dosovitskiy et al., 2020), we compile a StableViT. We
evaluate StableGPT and StableViT extensively on large model (1B parameters) and deep model
(200 layers) that our proposed Stable-Transformer achieves a more stable training process.

The paper is organized as follows. We first introduce our experimental setups, and then present
our stabilized design of the modules. For each module, we give our mathematical analysis at first
and then show empirical evaluation. There is no an independent section for experiments.

2 EXPERIMENTAL METHODOLOGY

We evaluate our stabilized components on ViT (Dosovitskiy et al.}|2020) and GPT (Radford et al.,
2018; 2019; Brown et al., 2020). For general training setting, by default, we use the optimizer
Adam [Kingma & Ba (2014) with §; = 0.9, B2 = 0.95 and € = 1078, and the gradient clipping is set
to 1. When using weight decay, we follow AdamW (Loshchilov & Hutter,|2019), for which only the
weight matrix is enforced to the weight matrix but not the 1-d vector (e.g., 7 and 3 in LayerNorm)
and the scalar. We train all models on GPUs A800 in bfloat16 precision using PyTorch (Paszke
etal.,|2019). We use a cosine-decay (Loshchilov & Hutter,[2016) schedule from a preset maximum
learning rate to a preset minimum learning rate.

Experimental setups for ViT (Dosovitskiy et al., 2020) and our StableViT. We use timm Wight-
man, (2019) [H For ViT model, we use two different scales: ViT-Large (ViT-G) and ViT-Huge (ViT-
H). The detailed information about these models are summarized in Table For data augmen-
tation, we use the same data augmentation as Adan (Xie et al.,[2024). Thus our results are aligned
with the results reported in (Xie et al.,|2024).

Experimental setups for GPT2 and our StableGPT. We use nanoGPTE] (Karpathy, 2022), which
is a simple and fast repository for training and fine-tuning the medium-sized GPTs. The GPT2
is implemented in four versions: GPT2-Small (GPT2-S), GPT2-Medium (GPT2-M), GPT2-Large
(GPT2-L) and GPT2-XL. Due to time and computational costs, we only use GPT2-Small (GPT2-
S), GPT2-Medium (GPT2-M).

We align our experiments with the original repository, and use the exactly same training setting
as nanoGPT. Detailed parameters is listed in Table 3] We reproduce the baseline GPT-2 124M
model with the same setup as in nanoGPT, for which the training loss is reduced to 2.848. The
learning curve of the loss matches to the original nanoGPT.

It is worth to note that when evaluating a module (or method), we keep all the same but the
specific module (or method) for fair comparison. To be more specific, when evaluating each of
Stablelnit, StableNorm and StableAtten, we only replace the corresponding module (or method).

3 STABLE-TRANSFORMER AND ITS THEORETICAL JUSTIFICATIONS

In this section, we will present our stabilized initialization method Stablelnit, stabilized normal-
ization module StableNorm, and stabilized attention mechanism StableAtten, individually. More-
over, we will combine them together to build our Stable-Transformer. For each method or mod-
ule, we start with a justification for the instability issue in training and then provide our stabilized
designs with both theoretical justification and empirical evaluation.

3.1 STABLE INITIALIZATION

The Xavier initialization is a remarkable technique that significantly enhances the training of
neural networks by initializing the weights in a way that maintains the variance of activation
across layers, to mitigate the vanishing or exploding gradient problem. In |Glorot & Bengio
(2010), the Xavier initialization is sorted to two types, i.e., Gaussian distribution and uniform

1https ://github.com/huggingface/pytorch-image-models/tree/main
2https://github.com/karpathy/nanoGPT
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distrlbutlon The Xav1er initialization for W e R"i»*"out with Gaussian distribution is defined as:
Wi B4 pr (0, T ) where n;;, and n,,; denote the dimensions of the input and the output.

It is widely used in tralning modern neural networks and is usually as the default initialization
method. Therefore, in the following we will only consider the Xavier initialization with Gaussian
distribution when mentioning it.

Now we will analyze the property of the Xavier initialization with Gaussian distribution. To begin
with, we would like to introduce a theorem from Random Matrix Theory (RMT) (Wigner, |1955;
Tao} |2012;|[Edelman & Rao} [2005). From RMT, we have the theorem about the singular values of a
Gaussian random matrix.

Theorem 1 (Singular Value Bounds of a Gaussian Random Matrlx)
Let W € R™" have i.i.d. standard Gaussian entries, i.e., W; o N(O 1). Foreverym = n,
we have the following inequality

VM= vn <El0min(W)] < El0max(W) < Vm+v/n,

where 0 min(W) and omax(W) denote the minimal and maximal singular values, respec-
tively.

We provide the proof of Theorem [1| via theory from high-dimensional probability (Vershynin,
2010) in the appendix[B| Theorem [l|presents that a random matrix initialized by standard Gaus-
sian distribution V' (0, 1), the expectations of its largest and smallest singular values are bounded.
The expectation of its largest singular value is no more than /m + v/n, and the expectation of its
smallest singular value is no less than /m — /n.

According to Theorem([1} and the definition of Xavier initialization, we have the following lemma.

Lemma 1 (Upper Bound of Weight Matrix Norm of Xavier Inltlahzatlon)
Let W e R""in*"out_hque i.i.d. standard Gaussian entries, i.e., W ~ J\/(O, nmmw

have the following inequality for its maximum singular value, E[0 max(W)] < 2.

). we

We provide a proof of Lemmall|in Appendix[E]

Remark 1. Back to the year 2010 when we still do not have ResNet (He et al.}|2016) and Batch
Normalization (loffe & Szegedy, 2015), the Xavier initialization is a remarkable technique that
enables the researchers to train a network more than 10 layers. Suppose that we have a MLP with
10 linear layers with ReLU (Nair & Hinton,[2010) between two nearby linear layers, with a softmax
in the last linear layer, and using a cross-entropy loss, then the expectation of the largest singular
value of each layer is up to 2 and it means that the Lipschitz constant (Fazlyab et al.}2019; |[Kim
et al., 2021} Qi et al.} 2023a;b) for each linear layer is 2. Therefore, we can compute the Lipschitz
constant of the whole network (assuming that the softmax and the cross-entropy has Lipschitz
constant 1) as 2!° = 1024, which is under control.

Although Xavier initialization is a popular initialization method, it still has some issues. One main
disadvantage in Xavier initialization is that it is sensitive to the increase of the network depth. If the
number of layers is 50, then the Lipschitz cosntant of the above-mentioned whole network will
be extremely huge. To fix this issue, we present a simple and 1-Lipschitz initialization strategy,
which is termed Stablelnit. Precisely, we define it as follows:

iid 1 2
P
Nin+tvNout

where n;, and n,,; are the dimensions of the input and output of the module, respectively. It
is easy to see that with our Stablelnit initialization, we have that E[0pax(W)] < 1. Similar to the
Xavier initialization, we can also consider to multiply a gain on the weight. The gain can be set to
be a smaller value when we use deeper networks. By default, we use 1.0 as the gain.

For clarity, we summarize the following two properties of our Stablelnit initialization.

¢ 1-Lipschitz constant: with our Stablelnit, a linear projection module has a Lipschitz constant
with expectation 1, other than 2 in the original Xavier initialization.
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FIGURE 2: Evaluation of Stablelnit and comparing to the original Xavier initialization. In the
legend, “GPT2-S” denotes GPT2-Small. To compare the stability, we do not use learning rate
warmup in the evaluation.

¢ Less sensitive to depth increase: our Stablelnit is less sensitive to the depth increase compared
to the the original initialization. For a MLP with 10 or 100 linear layers with a ReLU (Nair &
Hinton) 2010) between two linear layers, the Lipschitz constant is 1 under our Stablelnit.

3.1.1 EVALUATION FOR Stablelnit

These properties of our stabilized Xavier initialization will lead to a more stable training com-
pared to the original Xavier initialization because it has a proper Lipschitz constant.

We can see that from Figure[2| Stablelnit obtains a more stable training property. With Stablelnit,
the model can be trained longer until diverge. Theoretically, Stablelnit will be more robust than
Xavier initialization for larger model. In experiments, the learning curve of ViT is more jitter
because its supervision signal is more sparse, a batch of tokens of GPT is 0.5M tokens, each token
will provide a signal, but the batch size 1024 in ViT only provides 1024 supervision signals.

3.2 STABLE NORMALIZATION

LayerNorm (Ba et al.,|2016) is a technique widely used in deep learning to stabilize and acceler-
ate the training of neural networks. The original definition of LayerNorm is LN(z) = vo z + 3,

where z = ¥ and y = (I - 2117)z. After adding a smoothing factor, it can also be written

std(y)
Vdy

as, LN(x) =~vo
VIlyl3+e

feature dimension of x, v and 3 are two learnable R? vectors, v and 3 are initialized to 1 and

0. Most recently, some new large language models (Touvron et al., 2023;|Chowdhery et al.,[2023;

Team, |2023) uses RMSNorm (Zhang & Sennrich, 2019) to replace LayerNorm, where RMSNorm

is defined as: RMSN(x) = v o —‘/3”2“ . Compared to LayerNorm, RMSNorm does not use the bias
lEl2+e

term and does not conduct the centering.

+3, and y = (I - 311T)x, where € is the smoothing factor, d is the

The Jacobian matrices of LayerNorm and RMSNorm with respect to « are calculated as follows:

.
o) 0N (L) (1 g
VIyls+e ylp e
ARMSN(x) Vd xx' | .
3 = I- 5 diag(vy).
T Viiz+el  l@ly+e

Let us explain each term a little bit individually. It is easy to prove that the maximal singular value

of (I- éllT) and (I— yy! ) are both 1. We give a proof of o jax (I— yy! ) <1 inAppendix

lyl2+e lyl2+e

Note that o'may (I - 4117) < 1 is a special case of the former.
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vd__ aLé\gw) and —4— in aRNéiN(z)
Vi3 Vi3 +e
equality for the centering transformation.

To analyze and compare , we have the following in-

Theorem 2 (Centering Transformation Inequality)

Lety = (I - $117)x, we have the following inequality: vd o Vd_
VizB+e ~ /lyl3+e

Proof. Centering can be denoted as, y = (- 2117)z =2 — 1 (XL, x;) 1 Then we have,

1(& ! 1(& 1(& 1(d )
lyl3=|z-=|Y xi|1]| |lz-=|YX xi|1|=2"z-2=() x lT:c+—2 Y x| 171
a\is a\iz a\i3 az\i3
Since 1"z =Y%  x;and 171 =d, we get: [ly|% = |zl3- % (Z?zl x,')z. Since the term § (X% | x,-)z

vd o __Vd
Vizi+e ~ \Jlyl3+e
inequality. ]
vd_ j, OLN@) reaches to the maximum value vd when std(x) is 0, but

Viylgre — 0® ve

Vd i ORMSN(x)
in o

, which proves the

is non-negative, we have ||y||§ < ||a:||§. Therefore, we have

We can see that

\/ 5 reaches to 0 if and only if x is equal to 0. Theorem|2means that RMSNorm
lzl2+e

is less likely to obtain the maximum value compared to LayerNorm.

We also observe that in the Jacobian matrices of LayerNorm and RMSNorm, both of them have
aterm \/2, which is the dimension of & and is also called the hidden dimension of the networks
in large language model. With the increase of the hidden dimension d in larger models, there is
a square root ratio effect, and thus may lead to larger gradients. Therefore, it will make it harder
to train larger models. To alleviate this issue, we present a simple but more stable normalization

mechanism as follows:
d%x

JlzlZ+e @

where « is a hyper-parameter, the range of « is [0, 0.5]. By choosing a reasonable a, we can ob-
tain a more stable normalization module. We term our stabilized normalization as StableNorm.
When a = 0.5, StableNorm will be equal to RMSNorm (Zhang & Sennrich} |[2019).

StableNorm(x)=~ ©

It is easy to derive that the Jacobian matrix of StableNorm is

dStableNorm(x) as I xx' diag()
ox Jiz+el  leli+e '

We can see that the maximum value is dj‘;. A reasonable choice for € is 107°. Along with the

increase of the hidden dimension in larger model, we can tune the a to make the normalization
layer more stable. A good strategy is to choose a smaller «a for larger model. To have a more
intuitive understanding, let us see an example. Assume d = 4096, then d* = 64 when a = 0.5
whereas d* ~ 42.22 when a = 0.45, it means that the gradient will be scaled by 4096°4° ~ 42.22
in our StableNorm instead of 4096%° = 64. Similarly, when a = 0.4, the gradient will be scaled
by 40964 ~ 27.85 instead of 64 with a = 0.5. By choosing 0.45 instead of 0.5, we can actually
scale down the gradient by a factor of % = 0.66. Therefore, by choosing a reasonable «, our
StableNorm will help to yield more stable gradients compared to RMSNorm and LayerNorm.

3.2.1 EVALUATION FOR StableNorm

According to our above derivation, different choices of « in Eq. (2) lead to different Jacobian ma-
trix, and thus lead to different gradient flow. Here, we conduct a set of evaluations with different
choices of a. We evaluate five different choices of a, i.e., a € {0.0,0.125,0.25,0.375,0.5}. We con-
duct experiments on GPT and ViT, respectively. The empirical results are shown in Figure[3]
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FIGURE 3: Evaluation of StableNorm and comparison to the original LayerNorm and RM-
SNorm on ViT and GPT, respectively. For instance, “StalbeGPT-S a = 0.5” in the legend denotes
StableGPT-Small model with a set to be 0.5. Where using a@ = 0.5 is reduced to RMSNorm. To
compare the stability, we do not use learning rate warmup.

we can see that from Figure [3] choosing an extremely small @ may lead to gradient vanishing
issue, but choosing a large ¢ may causing training instability. How to choose a good « is an
empirical trick. We note here that some relatively large a can be selected for GPT and some
relatively small @ can be selected for ViT, which may be related to the density and sparsity of
the supervised signal of GPT and ViT. When d is large in some large model, a reasonable choice
is to choose a smaller a (which takes a lot of resources to verify this. We thus do not do it in
this paper). According to our current experiments, we can find that a is a good parameter for
balancing gradient vanishing and exploding.

3.3 STABLE ATTENTION

Before we present our stabilized attention module, we review the self-attention (Vaswani et al.,
2017) and the self-attention with Query-Key normalization (QKNorm) (Henry et al., 2020; De-
hghani et al.,[2023) at first. Rather than showing the QKNorm works as inWortsman et al.| (2024),
we focus on revealing the underlying theoretical reasons. Then we will present our stabilized
module, termed StableAtten.

3.3.1 WHY SELF-ATTENTION WITH QKNORM WORKS?

For an input sequence X € R/, d is the dimension of the feature and [ is the sequence length,
self-attention (Vaswani et al.}[2017) is defined as:

X"W,"W, X
va
in which d; = d/h and h is the number of heads, d, is called as the head dimension, W, Wy

e R4*d W, e R%*4 (in practice, we usually set d; = dy). The size of the output Y € R%xL and

TW. W,
Zi a9 Tk where PW is called the

Var

Y=W, XA A= softmax(P'), where P =

the attention matrix A € R!*!. Therefore, we have PS.) =
logit in (Dehghani et al.,2023; Wortsman et al.,[2024).
Self-attention with QKNorm (Dehghani et al.;, 2023) is defined as:

RMSN(W,z;) " RMSN(W. )

Ja

Note that Dehghani et al.| (2023) use a LayerNorm layer without bias and centering, which is
equivalent to a RMSNorm |Zhang & Sennrich! (2019) layer as defined above.

A = softmax(P®), where P(Z)
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For clarity, we write down the formula for the i-th query g; and the j-th key k; in QKNorm (De-
hghani et al.,2023) as follows:

AW, x;
@i = RMSN(W,z)) =74 0 ——— bt VadiWe, = V/d, diag() —————

,/||qui||§+e \/||qul”2+€
Va Wiz

kj = RMSN(W]CSC]') =Yk O —/— =vd dlag(’yk)
nM@mﬂF+e Hﬂ@wﬂb+e

It is easy to see that

.
vy, VAV ( L ) (diagyy)) " diag(y) ——mimte

@ _ qi _ IWa;I3+e Wi 12 +e
Y V dl vV d1
T
W, x;
=d, | ———| diag(v,) diag(yx)

Wkwj
2 / 2.
IWazill; +e€ Wizl +e

We find that when using QKNorm in self-attention, both the logit and the gradients are upper
bounded. Precisely, we have the following theorem.

Theorem 3 (Logit Inequality for Self-attention with QKNorm)
The logit in self-attention with QKNorm, where v, and =, are initialized to 1 and not

learned, is upper bounded, i.e., IPﬁ)I <+\/d.

Proof. We have that when <, and < are initialized to 1, then Pg) =
T

vV dy q%i . kL] — = vV dicos(0) < \/d;, where 6 is the angle between %

VIWezil2ve | \/IWi;12+e IWy,12+e

Wix;
and #jz O
Wil +

On contrary, the logit pl@,) in the original self-attention is not bounded, since that Plgl.) =
wiTWqTWk Tj

— where x;, ; and W, or W might be not bounded. The upper bounded logit
in self-attention with QKNorm is one of the theoretical reasons that QKNorm leads stable train-
ing process. Under a fixed hidden dimension d, we see that increasing the number of heads &
will correspond to decrease the head dimension d;. According to the upper bound, we have that
a smaller d; will stabilize the training process. To verify it, we evaluate the influence of the num-
ber of heads in experiment, and show the results in Figure We can observe that increasing the
number of heads in the attention does stabilize the training process of the original Transformer.

On the other hand, we find that the gradients in self-attention with QKNorm is also upper
bounded. Note that all modules are updated by error back-propagation (Rumelhart et al.,|1986;
LeCun et al., 2002;1989;1998), and computing the gradients in chain is the key. The gradients is
self-attention without or with QKNorm can be calculated as follows:

ap(“ opW aph opW

ij T ij Ty T ij T...T

6wl Wq ka], E:Wk qui» mzztiQI]‘ Wk , a—vvkzwq T Tj.
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FIGURE 4: Evaluation of the number of attention head, and comparison of StableAtten with the
original dot-product self-attention in Transformer using ViT. For instance, “ViT-L Head=8" in the
legend denotes ViT-Large model with 8 attention heads. To compare the training stability, we do
not use learning rate warmup in the evaluation.

) op@

; i i
Let us have a comparison between 3 and 3,

. We have the following observations.

M ap@

. aai],: is not bounded, but dai],: is bounded by

more stable training;
opY opP?
e The value of aa;’i is proportion to O(”WqTWk”), but -, is only proportion to O(||W])).
Generally speaking, the spectral norm of O(|| W||) will increase along with the training process
and will saturate and oscillate when training comes to convergence.

Vd Wyl
e

. The upper bounded gradients lead to

or?
We also notice of a risk in QKNorm, i.e., there is a factor v/d in both Pg) and W”-' Therefore, with

the increase of model size, there is still some potential risk of instability in training.

3.3.2 StableAtten
Based on the above analysis, we present a stabilized attention mechanism, called StableAtten as,

SN(Wyz;) T SN(Wz))

d1205

A =softmax(P®), where PST) = , 3)

where 7 is a temperature coefficient, and SN(-) is a StableNorm parameterized by a. Since
that 7 is likely related to the sequence length N, other than the head dimension d;, thus we
set T = 1.618 -log,(N). When the input sequence length is 512, 7 = 14.562. We have that

N
PO = | Wi\ Giag(y,) diag(y;) ——EZL__.
i ( W13 +e S T W e

The advantage of our stabilized form is that the logit is no longer directly related to the hidden
dimension d. Although d is large in big model, the range of the logit in our StableAtten will not
increase with d. Each StableNorm in query and key normalization will bring in a d%, by dividing
d?® we can remove the influence of d.

3.3.3 EVALUATION FOR StableAtten

Here we will evaluate our StableAtten, as defined in Eq.[3} and compare it with the original dot-
product attention. We evaluate on ViT-Large. The results are shown in Figure[4] We can see that
from Figure[4}

* From the left panel of Figure 4, we see that increasing the number of heads in attention will
improve the stability of the model training;
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i--%L-.%

Stablelnit

FIGURE 5: One block of our Stable Transformer. Our Stable Transformer uses StableNorm to
replace LayerNorm or RMSNorm, use StableAtten to replace the original dot-product attention,
and use Stablelnit to initialize the weights.

* From the right panel of Figure [d} we see that ViT-Large with StableAtten are more stable than
their corresponding counterparts.

3.4 STABLE-TRANSFORMER

Following the architecture of Transformer, we can build a stabilized Transformer. As shown in
Figure [5} we use StableNorm to replace LayerNorm or RMSNorm, use StableAtten to replace the
original dot-product attention, and keep the same FFN module. Moreover, we use Stablelnit to
initialize the weights.

In practice, our Stable-Transformer can lead to two different architectures, i.e., a pure encoder
architecture, i.e., Vision Transformer, and a pure decoder architecture, i.e., GPT. Accordingly, we
name them as StableViT and StableGPT, respectively.

To be more specific, for ViT, we build four variants of StableViT in correspondence with ViT
as detailed in Table 1] in the appendix: StableViT-Large, StableViT-Huge, StableViT-giant, and
StableViT-200 (which scales of parameters range from 307M to 1.44B); for GPT, we build three
variants of StableGPT in correspondence with GPT as detailed in Table |2| in the appendix:
StableGPT-Small, StableGPT-Medium and StableGPT-Large (which scales of parameters range
from 124M to 774M).

3.4.1 EVALUATION FOR Stable-Transformer

To verify the effectiveness of our stabilized architecture, we evaluate different variants of Stable-
ViT and Stable-GPT. The experimental configurations of StableViT and StableGPT are shown in
Table[3]and the experimental results are shown in Figure[I] We find that: our StableGPT can be
trained smoothly, achieving a better validation loss (i.e., 2.827 versus 2.848) compared to the orig-
inal GPT2; our StableViT yields a better recognition accuracy (i.e., 82.4% versus 81.3%) compared
to the original ViT.

Moreover, we note that our StableViT and StableGPT can also tolerate larger learning rate. More
empirical results and details are provided in Appendix[]]

4 CONCLUSION

We have presented a theoretical analysis for the initialization, normalization and attention mod-
ule of Transformer from the perspective of training stability. Specifically, we derived an upper
bound and a lower bound for the expectations of the maximum and the minimum of the singu-
lar values of weight matrix obtained from Xavier initialization, found the reason why increas-
ing hidden dimension can make the normalization layer likely leading to training instability
from the Lipschits constant of the Jacobian matrix of the normalization layer, and also pointed
out the theoretical mechanism why the hidden dimension can bring instability issue to affect
self-attention module. Accordingly, we proposed three stabilized counterpart designs, i.e., Sta-
blelnit, StableNorm and StableAtten, and by putting them together, we also proposed a Stable-
Transformer. We compiled our stabilized components and Stable-Transformer with GPT and ViT,
and demonstrated that our stabilized methods can improve the training stability, leading im-
proved performance. We hope that our work can benefit the deployment of larger deep models,
especially the large language models, in varied application scenarios.

10
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A NOTATIONS

We primarily follow the notations used in the renowned deep learning book (Goodfellow et al.,
2016). We use bold symbol to denote a column vector or a matrix, and use non-bold symbol
to denote scalar. For instance y = W, where  and y are two column vectors and W is a
projection matrix. We use denominator layout[ﬂ the Jacobian matrix of y with respect to x is
aI(;V:c W, and we have 2% 6;:/Va: = (W + W T)z. Using the denominator layout, for a chain
function o = f(g(h(x))), where y = h(x), z = g(y), and o = f(z). we have the Jacobian matrix of

o with respect to x as go = Y 0z 90

B PROOF OF THEOREM 1

Our proof of Theorem I]is based on references (Vershynin, [2018;[2010; Mei, [Spring 2022). Let us

first clarify our problem, we have W € R™*", where W; Id ar (0,1), we need to prove v/m —

V1 < E[0min(W)] < Elomax(W)] < vm + /1. To prove Theorem we need to prove two parts,
i.e, E[omax(W)] < vVm+v/nand vm — v/n < E[0min(W)]. To prove the first part, we need to first
introduce Sudakov-Fernique inequality.

Theorem 4 (Sudakov-Fernique inequality.)
Let (As 1) ses,reT and (Bs,1) ses,teT be two zero mean Gaussian processes. Assume that for all
s,,S2€Sandty, e T, we have

E [(Atlrsl - Atzvsz)z] <E [(Btlvsl - Btzysz)z] .
Then we have

E| sup As:|=<E

seS,teT

seS, teT

Here, we do not provide the proof of Theorem[4] You can find the proof in (Vershynin}2018). The
Sudakov-Fernique inequality will be used in our following proof of E[0 max(W)] < vVm + /1.

Let us define Ay = (Wu,v) =v' Wu forue $" ! and v € S"1, where W Id A70,1). We
define

Buw=(u,g)+@wh) =Y wigi+ vigj, & -SNOD,h 2L NO,D.
i=1 j=1

For any (u,v),(q, 2) € (8" 1 x §™~1) let us consider that:

E [(Au,v —Agz2)?| =E [((Wu,v) - <Wq,z>)2]
2
=E (Z Wij(ujvi - CljZi))

=Y (ujvi—qg;z)* (byindependence, W; 4 A0,1)
ij

= Juv’ —qz"I%
<lu- qllg +lv— zllg. (see the following proof.)
We need to prove the following inequality:

luv’ — gz IIF lu - q||2+llv ZIIZ,

where u, g € "~ ! and v,z € ™!, and §”~! denotes the unit sphere in R”.

Shttps://en.wikipedia.org/wiki/Matrix_calculus
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Proof. First, recall that IIWIIfE =tr[WTW|, we have:
luv’ —qz" ||12D =tr [(uvT —qz") (o' - qu)] .
=tr[(vu’ —2¢")(uwv' —qz")].
=tr [v(uTu)vT —vw' @z  —z(@ wo' + z(qTq)zT] .
=trov’ —vz'q u-zu'q v+22"].
= tr('v'vT) + tr(zzT) - tr(vaun) - tr(zuTqu).
From the definition of the trace, we have:

T):

tr(vv ||v||§, tr(zzT) = ||Z||§, tr(UquTu) = (sz)(un), tr(zuTqu) = (ZT’U) (uTq).

Thus, we have:
luv” —qz" 1% = [vl3lluls + 1 z12lql5 - 2@ 2)(u' g).

Since u,q € S"1and v,z e §™ 1, we have |lul, = lqll =1and ||vi2 = | zll2 = 1, simplifying to:
lol3lul3 +1z131gl3 -2 ) @ =1+1-20w" 2) (" g).
:2—2(sz)(uTq).
Now, consider the right-hand side:

lu—ql3+llv - z15. = (lul3 —2u’ g+ lIql3) + (w5 - 20"z +|z]3).
:1—2uTq+l+l—2'uTz+ 1.
=2-2u'q)+2-2("'2).
= 4—2(uTq) —2(sz).

let us assume ¢ = uTq and d = v z. Since u,q € S"landv,ze §™ 1 weknowc<1,d<1,and
(4-2u"@)-2w'2) - 2-2w @ 2)=2(1-c)1-d) = 0.
Similarly, we have,
[E[(BW, —Bq,z)z] -F [(<g,u—q> + <h,v—z>)2]
=E[(g,u— q>z] +E[(h,v- z)z] (by independence, mean 0)

=|lu- qllg +|lv - zll%. (since g, h are standard normal).

Thus, we have
E[Auo ~ Ag.z]* <E[(Buw—Bqz)].

Now, applying the Sudakov-Fernique inequality, we have

E sup Wu,v)| <E sup ((u,g) + (v,h))]
(u,v)eS"1xgm-1 (u,v)eS""1xgm-1
=E sup (u,g) | +E sup (v,h)

(w,v)eS"1x§m-1
=E[lgll2] + ElllRl2]
<E[lgl31" +EllRI3)M?
=vn+vm.

This completes the proof of the first part of Theorem([1]

(u,v)eSn"1xgm-1
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To prove the second part, we need to introduce Gordon’s Inequality.

Theorem 5 (Gordon’s Inequality.)
Let (As,1) ses,ceT and (Bs,t)ses,reT be two Gaussian processes with E[As ] = E[Bs ] = 0, and
suppose that

E[(As, 1, — As,1,)°] = E[(Bg 1y — B, 1,)°] Vo, eT,s€S,
IE[(Asl,tl - ASz,tz)z] = [E[(le,tl - BSg,tz)z] VS] # $ € Sr h,be T.
Then
E|supinfAs;| <E|supinfB;;|.
seg rer” seg teT s,t]

Same as above, we do not provide the proof of Gordon’s ineqaulity. The proof can be found
in (Vershynin[2018). We will directly use it to help our proof of Theorem][}

Proof. Let By, = (g,u) + (h,v). Check that Ay, and By, satisfy the conditions in the theorem.

Then we have

~Elomin(W)]=E| sup —[|Wwol>

vesn-1

=E| sup inf (u,-Wwo)

vesn-1 uesm-1

<E| sup infl(g,u>+(h,'u>
sm=

pes§n-l1uUe

=E| sup <h,v)|+E

vesn-1
=EllRl2]-Ellgll2]

=VvVn—vym.

inf 1(g, u)] (since g, h are standard normal.)
ueSm-

Therefore, we have

Elomin(W)] 2 \/ﬁ_ \/ﬁ

This completes the proof of the second part of Theorem][} (|

I vy’
— g | <
C PROOF OF Umax( ”y”§+€) <1

T
Proof. Let M = (I - ”yy”%%), to prove that the maximum singular value of the matrix M is 1, we
2

need to analyze the properties of this matrix.

T
Let A = ngyzﬂ, the matrix A is a rank-1 matrix with one non-zero eigenvalue. The non-zero
2

eigenvalue is

lyl3

A= T 5
lyl2+e

The eigenvalues of M are 1 — A 4 and 1 with multiplicity n—1:

Iyl e
lyls+e llyl+e
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All other eigenvalues are 1. The singular values of M are the absolute values of its eigenvalues:

o1(M) =1, (with multiplicity n—-1)

€
o2(M)=——5—.
lyll; +e€
The maximum singular value of M is the largest eigenvalue in absolute value, which is 1. Thus,
T
the maximum singular value of the matrix (I - ”Z”szre) is 1. ]
2

D QKNORM DERIVATIONS

Here, we list all the partial derivations for the QKNorm.

ap? N7 W.x: (W.x:)" Wox:
. . kT
P IWmil+e IWoilly +e Wil +e
op? vd Wex: (Wex )" W.x:
kT kT . . Z
ek W, T(I -#ﬂ))dlagm) diag(yg) ———me,
Ti W12 +e Wiz, +e VIW,i|2 +e
op® N7 W.x: (W.x)" W
. . kT
W, (I_ z}vl( : ; )dlag(w)dlag(w—’wﬂ
@\ IWil? +e IWazill; +e W12 +e
ap®? vd Wz (Wex: T Wz,
kT kT . . Z
GWZ/{ = (I— ]( 5 ]) )dlag('yk)dlag('yq)#azj?
ko IWij13 +e Wizl +€ VIWmil%+e
@ p®@
When considering «v4 and -y are set to be 1, 0# is only proportion to O(IIWqII) and aVil/]q < \/7?'

E PROOF OF LEMMA 1

Proof. To prove E[omax(W)] < 2, it is equivalent to prove 4/ m(‘/”i" + /Toyy) < 2 for any
n;n and ngyy;. Note that:

2
( / - fn T+ m)) _ 2(vNin+ v nout)2 _ 2(nin+ Noyr) +4y/NinNour _ 2+4\/ NinNout <4
in out

Nip+ Noyt Nin+ Nout Nin+ Nout

Thus, we have (, / ninfnout (V/Min + ,/n,,ut)) <2. O

F MODEL AND TRAINING CONFIGURATION

Model Configurations. We list some basic configurations of our StableViT and StableGPT in
Table[Mland Table[2l

Training Configurations. We list the training configurations of our StableGPT and StableViT in
Table[3] For StableGPT, we fully follow the experimental configurations of nanoGPT (Karpathy,
2022), all parameters are same as GPT2 (Radford et al.,2019). All experiments are conducted on
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TABLE 1: Model configuration for StableViT. The StableViT is similar with the original ViT
[vitskiy et al.,2020).

Model Card Params. Blocks Embed.dim. MLP dim. Heads Epochs Peak LR
StableViT-L-16 ~ 307M 24 1024 4096 16 150 or 300 le-3
StableViT-H-14 632M 32 1280 5120 16 150 or 300 le-3
StableViT-g-14 1011M 40 1408 6144 16 150 or 300 le-3
StableViT-200  1439M 200 768 3072 12 150 or 300 le-3

TABLE 2: Model configuration for StableGPT. The StableGPT is similar with the original
GPT2 (Radford et al)} [2019). We do not include larger models as in nanoGPT (Karpathy} 2022)
because training larger models will cost much more computational resource.

Model Card  Params. Blocks Embed. dim. Heads Trainsteps PeakLR Minimum LR
StableGPT-S 124M 12 768 12 600K 6e-4 6e-5
StableGPT-M 350M 24 1024 16 600K 3e-4 3e-5
StableGPT-L 774M 36 1280 20 600K 2.5e-4 2.5e-5

A800 GPU cluster. For instance, it takes around 3 days to train StableGPT-Small on a GPU server
with 8 A800 GPUs. StableGPT-Medium will take around 7.5 days. Note that in the original ViT,
we use 60 epochs’ learning rate warmup, but in our StableViT, we do not use warmup. We do not
include some new optimizer or learning schedule (Defazio et al.}[2024) to further

improve the performance of the models.

TABLE 3: Training configurations for StableGPT and StableViT.

(a) Training configurations for StableGPT.

(b) Training configurations for Stable-ViT.

training config StableGPT-S/M/L  training config StableViT-L/H/g/200 (2242)
weight init Stablelnit weight init Stablelnit
optimizer AdamW optimizer AdamW
baseline learning rate 0.0006 base learning rate le-3
weight decay 0.1 weight decay 0.1
optimizer momentum B1,B2=0.9,0.95 optimizer momentum B1,B2=0.9,0.99
warmup 2,000 batch size 1024
tokens seen each update 500,000 training epochs 300 or 150 or 60
max iters 600,000 learning rate schedule cosine decay
batch size 480 warmup epochs 0
sequence length 1024 randaugment (9,0.5)
dropout 0.0 mixup 0.8
bfloat16 True cutmix 1.0
gradient clipping 1.0 random erasing 0

label smoothing 0.1

stochastic depth 0.5/0.5

gradient clip None

exp. mov. avg. (EMA) no
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G DEMONSTRATION CODE

To help the audience understand the details of the introduced modules, we list our demonstra-
tion codes.

CoODE 1: Stable-Transformer Implementation Demonstration.

import torch
import torch.nn as nn
import math

def StableInit (module: nn.Module, name: str = ’’) —-> None:
if isinstance (module, nn.Linear):
n_in, n_out = module.weight.shape[0], module.weight.shape[l]
init_std = 1.0/ (math.sqgrt (n_in)+math.sqgrt (n_out)
torch.nn.init.normal_(module.weight, mean=0.0, std=init_std)
if module.bias is not None:
nn.init.zeros_ (module.bias)

class StableNorm(nn.Module) :
def __init__ (self, ndim: int, alpha: float = 0.0, eps: float = le-8):
super (). _init__ ()
self.alpha = alpha
self.ndim = ndim
self.eps = eps
self.weight = nn.Parameter (torch.ones (ndim))

def forward(self, input):
x_norm = torch.norm(input, dim=2, keepdim=True) + self.eps
x = math.pow(self.ndim, self.alpha)*input/x_norm
y = self.weight.unsqueeze (0) .unsqueeze (0) xx
return y

class StableAtten (nn.Module) :

def __init__ (self, dim: int, num_heads: int = 8, gkv_bias: bool = False,
attn_drop: float = 0., proj_drop: float = 0.,
norm_layer: nn.Module = StableNorm,
temperature: float = 1.0, sequence_length: int=0) -> None:
super () .__init__ ()
assert dim % num_heads == 0,
self.num_heads = num_heads

self.head_dim = dim // num_heads

self.scale = self.head_dim ** -0.5

self.gkv = nn.Linear (dim, dim x 3, bias=gkv_bias)
self.g norm = norm_layer (self.head_dim)
self.k_norm = norm_layer (self.head_dim)

norm_alpha = 2 % self.g norm.alpha

self.tau = 1.618+math.log(sequence_length, 2) «temperature
self.scale = self.head _dim*x (-norm_alpha) *self.tau
self.attn_drop = nn.Dropout (attn_drop)

self.proj = nn.Linear (dim, dim)

self.proj_drop = nn.Dropout (proj_drop)

def forward(self, x: torch.Tensor) -> torch.Tensor:
B, N, C = x.shape
gkv = self.gkv(x) .reshape(B,N,3,self.num _heads, self.head_dim)
gkv = gkv.permute(2,0,3,1,4)
g, k, v = gkv.unbind(0)
g, k = self.q norm(q), self.k _norm(k)
g = g » self.scale
attn = g @ k.transpose (-2, -1
attn = attn.softmax (dim=-1
attn = self.attn_drop (attn)
X = attn @ v

X = x.transpose(l, 2).reshape(B, N, C)

x = self.proj(x)
x = self.proj_drop (x)
return x

H DISCUSSION ABOUT INITIALIZATION IMPLEMENTATION IN NANOGPT

We observe that, in some popular open-sourced project, e.g., nanoGPT, they use an initialization
implementation as code below. Let us consider a model with hidden dimension 768. Suppose
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we have a linear layer projecting a 768-d feature into a new 768-d feature. For such a linear layer,
the used standard variance is math.sqrt(m) =~ 0.036. For StableNorm, the used standard

variance is Wlsqrt(m& =~ 0.018. In the following code, the used standard variance is 0.02. It

works. However, when we train a GPT-3 175B model with hidden dimension 12288, the standard

variance 0.02 is too large. For a GPT-3 175B model with hidden dimension 12288, For StableNorm,
. . 1 -

the used standard variance is 5 omarzres) = 0-0045.

CODE 2: Initilization Implementation in nanoGPT.

def _init_weights(self, module) :
if isinstance (module, nn.Linear):
torch.nn.init.normal_ (module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_ (module.bias)
elif isinstance (module, nn.Embedding) :
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

In conclusion, this implementation works for small model, but it will make training unstable or
harder to train when the model is large, e.g., GPT-3 13B or GPT-3 175B.

I ABLATION STUDY

StableGPT can tolerate larger learning rate. To further validate the stability of our algorithm, we
used larger learning rates (1.2e-3, 1.8e-3, 2.4e-3) to test our model. As shown in Figure[6} we found
that our model can tolerate higher learning rates while maintaining good stability. Meanwhile,
we can see that StableGPT-S using 1.2e-3 learning rate achieves a better performance than 6e-4
(2.819 verse 2.827).

OpenWebText Val Loss

3.20
—— GPT2-S (Baseline)
—— StableGPT-S Ir=6e-4
315 StableGPT-S Ir=1.2e-3
StableGPT-S Ir=2.4e-3
3.10 StableGPT-S Ir=4.8e-3
3.05
%]
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<}
—3.00
5
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0ok 100k 200k 300k 400k 500k 600k
Step

FIGURE 6: StableGPT can tolerate larger learning rate.

StableGPT is robust to the temperature coefficient in StableAtten. We conducted an evaluation
of the parameter 7 in the StableAtten, using values of T = 0.8091og, N, T = 1.618log, N, and 7 =
3.236log, N, the used learning rate here is 6e-4 for all comparisons. We found that our algorithm
is relatively robust to this parameter, with performance remaining stable across these values.
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OpenWebText Val Loss
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FIGURE 7: Evaluation of temperature coefficient in StableAtten.

About StableViT-Huge. We also conducted evaluations and comparisons on larger StableViT
models, as shown in Figure[8] Compared to ViT-Huge, our algorithm demonstrates better per-
formance, 81.8 (StableViT-Huge) versus 80.5 (ViT-Huge). We also noticed that Model StableViT-
Huge is not as good as Model StableViT-Large, which may be mainly due to two aspects: 1).
Insufficient data leading to a certain degree of overfitting, 2). Inadequate data augmentation,
although we have adopted data augmentation methods similar to those in previous papers

letal)}[2024).
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FIGURE 8: Evaluation of StableViT-Huge.

J EXPERIMENT OF 1B STABLEVIT

To further evaluate the effectiveness of our method at a larger scale, we assessed StableViT with
1B parameters, we term it as StableViT-g where “g” means giant. The model architecture consists
of 40 layers with a hidden dimension of 1408, 16 attention heads, and an MLP dimension of 6144.
The total parameter count is 1011M, around one billion parameters. We conducted a compar-
ative study between StableViT-g and ViT-g, where ViT-g was evaluated under two settings: with
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and without learning rate warmup. Our StableViT-g does not use warmup. In StableViT, we use
an a value of 0.25. The comparison results are presented in Figure[9]and Figure[I0}

Figure [9]shows that ViT-g crashes after only a few training steps when running without warmup.
While the use of warmup enables ViT-g to complete training, our StableViT-g not only achieves
stable training without warmup but also demonstrates superior performance. Meanwhile, from
Figure[10] we can also observe that the loss of StableViT-g has no spike, but ViT-g even with learn-
ing rate warmup has a spike.

ImageNet Validation Accuracy

— ViT-g
8001 __ ViT-g wo warmup
StableViT-g
60.0

Accuracy
S
o
o

20.0
0.0 /
0 20 40 60 80 100 120 140 160
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FIGURE 9: Accuracy of StableViT-g compared with ViT-g.
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-
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1.0
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FIGURE 10: Loss curve of StableViT-g compared with ViT-g.

K EXPERIMENT OF 0.77B STABLEGPT

We also evaluated the effectiveness of StableGPT at a larger scale, termed as StableGPT-large.
The model architecture consists of 36 layers with a hidden dimension of 1280 and 20 attention
heads. The total parameter count is 774M. Our experimental setup strictly follows the nanoGPT
configuration, including all learning rate settings. It is important to note that training StableGPT-
large is computationally intensive, requiring two weeks to train 600K steps on 16 A800 GPUs.
To reduce the training time, we limited our training to 100K steps instead of the full 600K steps.
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The comparison results are presented in Figure[I1} We can see from Figure[I1} StableGPT-large
obtains a better validation loss, 2.523 versus 2.536, than its counterpart, GPT2-large.
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FIGURE 11: Evaluation of StableGPT-Large compared with CPT2-Large.

L EXPERIMENT OF 200 LAYERS’ STABLEVIT WITH 1.44B PARAMETERS

To further verify the stability of our Stable-Transformer, we conduct an experiment of super deep
StableViT that has 200 layers. The model architecture consists of 200 layers with a hidden di-
mension of 768, 12 attention heads, and an MLP dimension of 3072. The total parameter count
is 1439M, around 1.4B. We term our model as StableViT-200. Finally, StableViT-200 has 1.44B
parameters. The « in StableNorm is set to be 0.25. We compare StableViT-200 with ViT-200.
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FIGURE 12: Accuracy of StableGPT-200 compared with ViT-200.
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ImageNet Validation Loss
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FIGURE 13: Loss curve of StableGPT-200 compared with ViT-200.

From Figure with learning rate warmup, ViT-200 has a smoothing loss curve in the early
stage, but the loss spikes around at 56th epochs. But StableViT-200, without using learning rate
warmup, can converge stably. It fully verify the stability of StableViT in very deep Transformer.

M DISCUSSION ABOUT LIPSCHITZ CONSTANT OF STABLENORM

Lipschitz continuity of the network is a very important condition for a stable training. Actually
the principle behind StableNorm can also be explained by its Lipschitz constant. Note that the
Jacobian matrix of StableNorm is defined as

dStableNorm(x) da* ( I xx' J diag()
ox fIz2 +e Izl +e

and the Jacobian matrix of RMSNorm is defined as

ORMSNorm(z)  d°®

(I v’ )diag(v)
oz izl lelz+e

By choosing a smaller a, e.g., a < 0.5, the Lipschitz constant of StableNorm will less than that
of RMSNorm. For example, if d = 1024, when we choose a = 0.475, the Lipschitz constant of
StableNorm is only around 84% of that of RMSNorm. This explains why StableNorm has a better
stability than RMSNorm.

N STABLEATTEN COMPARED WITH Ly SELF-ATTENTION

We further compared our StableAtten with L, self-attention [2021). As shown in (Kiml
[2021), a necessary condition to guarantee its Lipschitz continuity is W, = Wy, thus we
evaluate two versions of L, self-attentions: a) using tied W, and Wy, i.e., W, = W} and b) using
two separate W, and Wy, i.e, W, # W}.. We conduct experiments to compare the two versions
of L, self-attention methods with StableGPT-large, where the same training settings as the exper-
iments in Appendix[K]are used, and show in Figure [14] the validation losses of our StableGPT-g
and ViT-g with L, self-attention.

We can see from Figurethat, StableGPT-L with StableAtten achieves better validation loss than
that of using the L; self-attention methods. Note that the performance degenerates notably when
using the L, self-attention with tied W, and W.
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FIGURE 14: The curve of validation loss of StableGPT-g compared to ViT-g with L, self-

attention (Kim et al.}[2021) under two settings.

O ROBUSTNESS TO DISTRIBUTION SHIFT

We further conduct a set of experiments to compare the robustness between StableViT-small and
ViT-small against to the distribution shift on CIFAR-100. The protocol in experiments is to train
both models on the original dataset CIFAR-100 for 200 epochs, with a batch size 512, a learning
rate le-3, and a weight decay of le-4, and then to evaluate the trained models on the original
test images of CIFAR-100 and the corrupted test images of CIFAR-100, respectively. Experimental
results are reported in Table[d]

TABLE 4: Evaluation (Accuracy) of robustness of StableViT against to distribution shift.

Models CIFAR-100 CIFAR-100-C
ViT-small 67.3 51.5
StableViT-small 69.9 53.4

We can see that from TableEl StableViT-small obtains a better accuracy than ViT-small, and im-
proves the accuracy from 67.3% to 69.9%. On the corrupted CIFAR-100-C dataset, StableViT-
small also shows a better robustness to corruption from 51.5% to 53.4%.

P RELATED WORK

Initialization. Xavier Initialization does the most groundbreaking work in model Initialization. it
sets the weights to ensure the variance of activations remains constant across layers, relieving the
vanishing and exploding gradient problems. Sutskever et al.|(2013) investigates the importance of
initialization and momentum (Nesterov} [1983;/1998) in deep learning. Kaiming Initialization (He]
et al., [2015), builds on Xavier Initialization by scaling the weights for ReLU activations (Nair &
Hinton[ L Admin introduces an adaptive initialization method that dy-
namically adjusts the initialization parameters based on the network’s depth and width.
introduce an orthogonal initialization, which further optimizes the initial parameter
distribution to boost training outcomes. also investigates the orthogonal ini-

tialization. |Huang et al.| d2020|) propose to scale decoder by (9L)_% and scale encoder by 0.67L71 ,
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this initialization method can be seen as a depth-aware initialization. Different from the above-
mentioned methods, our Stablelnit is built on Random Matrix Theory, can promise the weight
initialized by Stablelnit has Lipschitz constant approximately 1.

Normalization. LayerNorm (Ba et al., 2016), different from BatchNorm (loffe & Szegedy,
2015), normalizes across the features for each data point, making it effective for recurrent and
transformer-based architectures. Wang et al.|(2019) discuss the influence of Pre-Norm and Post-
Norm on the training deep transformer. Xiong et al.| (2020) further discuss the influence of
pre-norm and post-norm on the training stability. RMSNorm (Zhang & Sennrich} 2019) is a
variant of LayerNorm that uses root mean square statistics, offering computational efficiency.
DeepNorm (Wang et al., [2022) extends normalization strategies to deep transformer networks.
WeightNorm (Salimans & Kingma, 2016) reparameterizes weight vectors to decouple the magni-
tude from the direction, facilitating smoother optimization. CenterNorm (Qi et al.}[2023b) only
conducts the centering but does not scaling the feature. ScaleNorm (Nguyen & Salazar, 2019)
normalizes only by the scale of the feature vectors, simplifying the normalization process. RM-
SNorm and ScaleNorm can be seen as a special case of our StableNorm where a = 0.5 and a = 0.
By choosing a better a, our StableNorm can obtain a better training stability.

Attention. Attention mechanism (Bahdanau et al., 2014) is firstly introduced to neural machine
translation. Scaled dot-product attention, used in the Transformer architecture, calculates the at-
tention weights using the scaled dot-product of query and key vectors, providing an efficient way
to capture dependencies. L2 distance attention employs the Euclidean distance between queries
and keys to compute attention scores. Attention with QK-Norm (Henry et al.}2020) normalizes
the query and key vectors before computing attention, improving stability and performance. De-
hghani et al.| (2023) scale the model to 22B via bringing QKNorm into attention. Wortsman et al.
(2024) further experimentally evaluate the value of QKNorm on small-scale models. However,
these three papers do not mathematically explain why QKNorm works. [Liu et al.[(2022) intro-
duce to use a Scaled Cosine Attention (SCA) for Transformer. Meanwhile, |Qi et al.| (2023a) also
propose to use scaled cosine similarity attention (SCSA) to compute attention weights. Different
from|Liu et al.|(2022), SCSA (Qi et al.,2023a) multiply a temperature coefficient instead of divid-
ing a temperature coefficient. Cosine similarity attention and attention with QK-Norm share the
similar idea, except that the former uses a scalar as a scale, but the latter uses a vector «, SCSA
also normalizes the values but the latter does not. StableAtten, the logit of the attention will not be
directly related to the hidden dimension d, and thus it is robust to the increase of the model scale.

Neural Network Stability. To obtain a better training stability, ReZero (Bachlechner et al., 2021)
introduces a simple yet effective mechanism where residual connections start as zero, allowing
networks to learn identity mappings more easily and stabilize training. Admin (Liu et al., 2020)
not only offers an initialization scheme but also contributes to network stability by dynamically
adjusting learning rates and weight decay. DeepNorm (Wang et al.,[2022) extends its benefits to
network stability by adjusting normalization parameters dynamically to accommodate deeper
networks. Lipsformer (Qi et al.}{2023a) introduce a Lipschitz continuity constraint to ensure sta-
bility in transformer networks, addressing the issue of exploding gradients. |Large et al.| (2024)
introduces a modular norm strategy for scalable optimization. The modular norm normalizes
the weights and their updates in the forward and the backward individually. They prove that
the gradient of the network is Lipschitz-continuous in the modular norm with the Lipschitz con-
stant that admits a simple recursive formula. The modular norm introduces a new possible di-
rection for future deep neural network optimization. However, a problem is that it cannot be
directly plugged into current Transformer framework. All components in Transformer needs to
be re-adapted. Our Stable-Transformer is built on our stabilized components, i.e., Stablelnit, Sta-
bleNorm and StableAtten. It roots on solid theoretical justification.

Some other great works also investigate the feature learning or representation learning (Yang,
2019; Yang & Hu, 2021} Yang et al.,2022) and learning stability (Bernstein et al., 2020), we would
like to recommend them to the readers although they are not directly related to this paper.
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