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1 INTRODUCTION

In reinforcement learning (RL), we typically deal with systems with large or continuous states encoded
in an unstructured way. Because it is not possible to represent the value of each state, it is necessary
to learn a structured representation from limited state samples to express the value function in a more
meaningful way. One approach to do so is to endow the set of states with a behavioral metric, such
that two states that are close in the metric space are also close in the space of value functions. While
there exists some notions of state similarity, they are either not amenable to sample-based algorithms
(Ferns et al., 2004; 2005), need additional assumptions (Castro, 2020; Zhang et al., 2020; Agarwal
et al., 2021) or yield limited theoretical guarantees (Castro et al., 2021). In this paper, we present
a new behavioural pseudo-metric, PMiCo, to overcome these shortcomings. PMiCo is based on a
recent sampling-based behavioural distance, MICo (Matching under Independent Couplings; Castro
et al., 2021), but enjoys more interesting theoretical properties, which we also illustrate empirically.

2 BACKGROUND

Reinforcement learning. We consider a Markov decision process (MDP) M = 〈X ,A, r,P, γ〉
(Puterman, 1994) with finite state space X , finite action space A, transition dynamics
P : X × A → P(X ), reward function r : X × A → R, and discount factor γ ∈ [0, 1).
A stationary policy π : X → P(A) is a mapping from states to distributions over actions. We
denote the set of all policies by Π. For any policy π ∈ Π, the value function V π(x) measures the
expected discounted sum of rewards received when starting from state x ∈ X and acting according
to π and satisfies Bellman’s equation V π(x) := Ea∼π(x)

[
rax + γEx′∼Pax [V π (x′)]

]
. In RL, the goal

is to find the optimal policy π∗ = argmaxπ′∈ΠV
π′

(x) for all states x ∈ X from sample interactions
with the environment, which are a sequence of states, actions and rewards (Xt, At, Rt)t≥0.

Bisimulation. The bisimulation metric (Ferns et al., 2004) describes two states as similar if their
immediate rewards are close and they transition to next states which are also considered simi-
lar. More formally, denoting M(X ) = {d ∈ [0,∞)X×X | ∀x, y, z ∈ X , d(x, x) = 0; d(x, y) =
d(y, x); d(x, y) ≤ d(x, z) + d(z, y)} the set of pseudo-metrics 1 on X , the bisimulation metric d∼ is
defined as the unique fixed-point (unicity resulting from Banach Fixed point theorem, see e.g. Ferns
et al., 2005) of the operator TW :M(X )→M(X ), that is the metric d ∈M(X ) for which TW (d) =
d, where TW (d)(x, y) = maxa∈A [|r(x, a)− r(y, a)|+ γWd (P (x, a), P (y, a))]. Here, Wd is the
1-Wasserstein metric (Villani, 2008) and describes the minimal cost of transporting probability mass
from µ ∈P(X ) to ν ∈P(X ). Castro (2020) extended the canonical bisimulation to an on-policy
counterpart. The π-bisimulation dπ∼ is the fixed point of the operator TπW (d)(x, y) =

∣∣rπx − rπy ∣∣ +

γWd

(
Pπx , P

π
y

)
with rπx =

∑
a∈A π(a | x)rax, Pπx =

∑
a∈A π(a | x)P (x, a)(·) for all x ∈ X . V π

(resp. V ∗) is Lipschitz continuous with respect to dπ∼ (resp. d∼), that is |V π(x)− V π(y)| ≤ dπ∼(x, y)
for any x, y ∈ X and any π ∈ Π. However, this metric is computationally expensive and introduces
a bias under sampled transitions (Ferns et al., 2006; Comanici et al., 2012).

To overcome these issues, Castro et al. (2021) introduced the concept of MICo distance Uπ as
the fixed point of the operator TπM : RX×X → RX×X where (TπMU) (x, y) =

∣∣rπx − rπy ∣∣ +
γEx′∼Pπx ,y′∼Pπy [U (x′, y′)] for all U : X × X → R. While it can be learnt from samples, the
MICo operator does not define a pseudo-metric as there exists states x ∈ X such that d(x, x) 6= 0.

1formally, a metric is a pseudo-metric satisfying the additional condition d(x, y) = 0 ⇐⇒ x = y
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DISTANCE SAMPLE-BASED PSEUDO-METRIC V π -LIPSCHITZ CONTINUITY

π-BISIMULATION 7 3 3
MICO 3 7 3

PROJECTED MICO 3 7 7
PMICO 3 3 3

Table 1: Categorization of behavioural distances according to their sample-based definition, pseudo-
metric properties and continuity implications.

Since most algorithmic methods used to measure distances need the property of zero self-distance,
Castro et al. (2021) rely in practice on the projection ΠUπ of the MICo distance, which is algorith-
micly more complex and does not guarantee the same upper bound on the value function as MICo .

3 THE PMICO PSEUDO-METRIC

As an alternative to the above distances, we introduce a new (pseudo) metric, inspired by the MICo
distance, which we call PMiCo (Pseudo-metric Matching under independent Couplings). This metric
is desirable because it can be learnt from transition samples and yields strong theoretical guarantees.
Given π ∈ Π, the PMiCo update operator TπP : RX×X → RX×X is

(TπPU)(x, y) = |rπ(x)− rπ(y)|+ 1[x 6=y]γEx′∼Pπx ,y′∼Pπy [U(x′, y′)] (1)

where 1 is the indicator function. The PMiCo distance between two distinct points is always positive,
making it an appealing candidate for function approximation, without the need of a projection.
Theorem 1. The PMiCo operator TπP is a contraction mapping on RX×X w.r.t. L∞ norm and its
fixed point UπP is a pseudo-metric.

One question that naturally arises is what are the guarantees of a representation induced by the PMiCo
metric. Similarly to the MICo distance, we have the following on-policy guarantee for PMiCo.
Theorem 2. For any policy π ∈ Π and states x, y ∈ X , |V π(x)−V π(y)| ≤ UπP (x, y) ≤ Uπ(x, y).

We provide all proofs in Appendix A and summarize the properties of the various distances in Table 1.
-bisimulation MICo projected MICo PMiCo

Figure 1: Gap between the difference
in values and various distances for Gar-
net MDPs with 3 actions. Shaded areas
represent 95 % confidence intervals.

We now conduct an empirical evaluation to illustrate the
correctness of Theorem 2. Following Castro et al. (2021),
we use Garnet MDPs (Archibald et al., 1995; Piot et al.,
2014). For a fixed number of states and actions, we sample
100 stochastic policies {πi} and measure the average
signed gap 1

100|X |2
∑
i

∑
x,y d(x, y)−|V πi(x)− V πi(y)|.

We consider four distances: the PMiCo metric, the MICo
and projected MICo distances and the π-bisimulation.
Figure 1 clearly shows that the PMiCo metric yields
a tighter bound than its sample-based counterpart, the
MICo distance, on average. While the bound from
the π-bisimulation and projected MICo distances is
tighter, unlike PMiCo, the π-bisimulation is biased when
approximated using only sampled transitions and the
projected MICo can be negative and may not upper bound the value differences.

4 DISCUSSION

In this paper, we presented PMiCo, a novel sample-based pseudo-metric. We saw it supports the
Lipschitz continuity of the value function and induces a more coarse representation on the state
space than the previously introduced MICo distance (Castro et al., 2021), suggesting it can lead
to better generalization (Le Lan et al., 2021). Our experiments on Garnet MDPs show the tighter
bound yielded by the PMICo metric. In deep RL, behavioural metrics are often incorporated into
the learning process as auxiliary tasks, to help shape the representation learnt by the agent (Gelada
et al., 2019; Agarwal et al., 2021; Zhang et al., 2020; Castro et al., 2021). As such, training a network
on auxiliary predictions such that the distance between two latent states corresponds to PMICo could
be a simple and effective auxiliary task for deep RL.
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A PROOFS FOR SECTION 3

Lemma 1. The PMiCo operator TπP is a contraction mapping on RX×X with respect to the L∞
norm.

Proof. Let U,U ′ ∈ RX×X . Then, by definition of the PMiCo pseudo-metric, it follows that for any
x, y ∈ X ,

|(TπPU)(x, y)− (TπPU
′)(x, y)| =

∣∣∣γ1[x 6=y]Ex′∼Pπx ,y′∼Pπy (U − U ′)(x′, y′)
∣∣∣ ≤ γ‖U − U ′‖∞ .

Theorem 1. The PMiCo operator TπP is a contraction mapping on RX×X w.r.t. L∞ norm and its
fixed point UπP is a pseudo-metric.

Proof. The first part of Theorem 1 follows from Lemma 1.

By application of Banach’s fixed-point theorem and by the completeness of RX×X under the L∞
norm, it follows that the PMiCo operator has a unique fixed point UπP ∈ RX×X and applying TπP
repeatedly to an initial function U ∈ RX×X converges to UπP .

It it easy to see that UπP is symmetric, non-negative and has zero self-distance (∀x ∈ X , UπP (x, x) =
0).

To prove the triangle inequality, we adapt the proof of proposition 4.10 from Castro et al. (2021) and
rely on a proof by induction.

We define a sequence of iterates (Uk)k≥0 in RX×X by U0(x, y) = 0 for all x, y ∈ X , and Uk+1 =
TπMUk for each k ≥ 0.

The base case of the inductive argument is clear from the choice of U0.
For the inductive step, assume that for some k ≥ 0, Uk(x, y) ≤ Uk(x, z) + Uk(z, y) for all
x, y, z ∈ X . For x, y, z ∈ X ,
Case I. If z = x or z = y, we have Uk+1(x, y) = Uk+1(x, z) + Uk+1(z, y) by zero self-distance
argument.
Case II. If x = y, we have Uk+1(x, y) = 0 ≤ Uk+1(x, z) + Uk+1(z, y) by non-negativity of Uk+1.
Case III. If x 6= y 6= z, we have

Uk+1(x, y) = |rπ(x)− rπ(y)|+ γEx′∼Pπx ,y′∼Pπy [Uk(x′, y′)] because x 6= y

≤ |rπ(x)− rπ(z)|+ |rπ(z)− rπ(y)|+ γEx′∼Pπx ,y′∼Pπy ,z′∼Pπz [Uk(x′, z′) + Uk(z′, y′)]

=
(
|rπ(x)− rπ(z)|+ γEx′∼Pπx ,z′∼Pπz [Uk(x′, z′)]

)
+
(
|rπ(z)− rπ(y)|

+γEz′∼Pπz ,y′∼Pπy [Uk(z′, y′)]
)

= Uk+1(x, z) + Uk+1(z, y) because x 6= z, z 6= y

as required. Hence, for any k ≥ 0, Uk+1 satisfy the triangle inequality. Uk → UπP (using lemma 1),
so by taking limits on either side of the inequality, we recover that UπP itself satisfies the triangle
inequality.

Lemma 2. For any policy π ∈P(A)X and states x, y ∈ X , we have |V π(x)−V π(y)| ≤ UπP (x, y).

Proof. We adapt the proof of proposition 4.8 from Castro et al. (2021) and apply a coinductive
argument (Kozen, 2006) to show that if

|V π(x)− V π(y)| ≤ U(x, y) for all x, y ∈ X , (2)

for some U ∈ RX×X symmetric in its two arguments, then we also have

|V π(x)− V π(y)| ≤ (TπMU)(x, y) for all x, y ∈ X .
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Since the hypothesis holds for the constant function

U(x, y) =

{
2Rmax/(1− γ), for x 6= y

0, for x = y

}
(3)

and TπP contracts around UπP , the conclusion then follows.
Case I. If x = y, V π(x)− V π(y) = 0 = (TπPU)(x, y).
Case II. If x 6= y, suppose Equation 2 holds. Then we have

V π(x)− V π(y) = rπx − rπy + γ
∑
x′∈X

Pπx (x′)V (x′)− γ
∑
y′∈X

Pπy (y′)V (y′)

≤ |rπx − rπy | + γ
∑

x′,y′∈X
Pπx (x′)Pπy (y′)(V π(x′)− V π(y′))

≤ |rπx − rπy | + γ
∑

x′,y′∈X
Pπx (x′)Pπy (y′)U(x′, y′) by the inductive hypothesis

= |rπx − rπy | + 1[x 6=y]Ex′∼Pπx ,y′∼Pπy U(x′, y′) because x 6= y

= (TπPU)(x, y) .

By symmetry, V π(y)− V π(x) ≤ (TπPU)(x, y), as required.

Theorem 2. For any policy π ∈ Π and states x, y ∈ X , |V π(x)− V π(y)| ≤ UπP (x, y) ≤ Uπ(x, y).

Proof. The left hand side of the inequality follows by application of lemma 2.

To prove the right hand side, we use a proof by induction. To do so, we define a sequence of iterates
(Uk)k≥0 and (Ok)k≥0 in RX×X by U0(x, y) = O0(x, y) = 0 for all x, y ∈ X , and Uk+1 = TπPUk
and Ok+1 = TπMOk for each k ≥ 0.

For k = 0, U0(x, y)−O0(x, y) ≤ 0.

Assume that there exists k > 0 such that Uk(x, y) ≤ Ok(x, y). Then for any x, y ∈ X

Uk+1(x, y)−Ok+1(x, y) = γEx′∼Pπx ,y′∼Pπy [1[x 6=y] [Uk(x′, y′)−Ok(x′, y′)]

≤ Ex′∼Pπx ,y′∼Pπy [Uk(x′, y′)−Ok(x′, y′)] because 1[x 6=y] ≤ 1

≤ 0 because Uk(x′, y′)−Ok(x, y) ≤ 0

TπP ( resp. TπM ) are contraction mappings with respect to the L∞ norm by Lemma 1 (resp. by
corollary 4.3 in Castro et al. (2021)), so as k →∞, Uk → UπP and Ok → Uπ . By taking limit on the
left hand side of the above inequality, we recover that UπP (x, y) ≤ Uπ(x, y).
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