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Abstract001

Code-switching, the practice of multilin-002
gual speakers switching between two or003
more languages within a conversation or004
sentence, is commonly observed in multi-005
lingual communities. It also poses unique006
challenges for natural language process-007
ing (NLP) system. While existing NLP008
models in the field can detect and pro-009
cess code-switched text, they do not pre-010
dict switch points at token level. In this011
paper, we introduce a token-level predic-012
tion framework for identifying upcoming013
switch points in Chinese-English conver-014
sations. We present two approaches: a015
window-based model leveraging BERT em-016
beddings and recurrent architectures, and017
a transformer-based model using mBERT018
and XLM-RoBERTa. Trained and evalu-019
ated on the ASCEND dataset, our best020
RNN-based model achieves an AUC of 0.91021
for Chinese-to-English prediction, while022
our transformer-based model (mBERT)023
achieves an AUC of 0.98. These results024
show promise in the code-switch prediction025
task and offer potential to support mixed-026
language NLP applications such as conver-027
sational AI and machine translation.028

1 Introduction029

Code-switching is a practice when multilin-030

gual speakers alternate between two or more031

languages within a conversation or sentence.032

This is a common phenomenon in multilingual033

communities where speakers interchangeably034

navigate between languages based on context,035

topic, or social dynamics. Code-switching036

shows its linguistics richness, provides a way037

for multilingual speakers to express, grasp038

complex topics and foster cultural identities.039

However, it also introduces significant chal-040

lenges for natural language processing (NLP)041

tasks that are typically designed for monolin-042

gual inputs (Aljoundi, 2013). This becomes043

particularly problematic in real-time applica- 044

tions like voice assistants, chatbots, predictive 045

keyboards, and machine translation, where 046

sudden language switches can disrupt down- 047

stream tasks like tokenization, tagging, or pre- 048

diction. 049

Existing research in code-switching has fo- 050

cused primarily on detecting when a language 051

switch has already happened. This includes 052

tasks like identifying the language of each 053

word, tagging parts of speech, or recogniz- 054

ing names in mixed-language text (Winata 055

and et al., 2023). One early attempt by 056

Solorio and Liu (Solorio and Liu, 2008) used 057

simple machine learning models to predict 058

switch points in Spanish-English speech, show- 059

ing the task was possible. A few studies have 060

explored detecting switch points directly in 061

text, such as the work by Yirmibeolu and 062

Eryiit (Yirmibeşoğlu and Eryiğit, 2018), which 063

used character-level features and CRFs to iden- 064

tify Turkish-English switches. However, these 065

approaches all act after the fact, offering little 066

utility in real-time systems where we need to 067

adapt before the switch happens. Our work 068

in this paper attempts to fill that void. Our 069

main contributions are as follows: 070

• We introduce a predictive framework for 071

identifying upcoming code-switch points 072

in real time as a token-level classification. 073

• We evaluate two modeling paradigms: 074

(1) a window-based model using BERT 075

embeddings with RNNs, and (2) a 076

transformer-based approach using pre- 077

trained multilingual models (mBERT and 078

XLM-RoBERTa). 079

• We conduct experiments on the ASCEND 080

dataset, a spontaneous Chinese-English 081

code-switching corpus, and analyze model 082
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performance across multiple metrics. Our083

best results show that transformer-based084

and the best RNN-based models achieve085

98.0% and 91.0% AUC, respectively.086

To the best of our knowledge, this is the087

first study to investigate token-level code-088

switching prediction for Chinese-English using089

deep learning models. These results suggest090

that modern NLP systems can be trained not091

just to detect language switches after they oc-092

cur, but to anticipate them opening the door093

to adaptive and responsive multilingual appli-094

cations.095

2 Related Work096

The study of code-switching spans both lin-097

guistics and NLP. Linguists have long ex-098

amined the structural, semantic, and social099

aspects of language switching (Sitaram and100

et al., 2020). These studies highlight that code-101

switching follows rules and constraints.102

In NLP, early work on code-switching fo-103

cused on language identification (Winata and104

et al., 2023), while recent efforts have intro-105

duced benchmarks covering a wider range of106

tasks in mixed-language text (Winata and107

et al., 2023). For example, (Aguilar et al.,108

2020) created the LINCE benchmark using109

social media data to evaluate tasks like LID,110

POS tagging, NER, and sentiment analysis111

across multiple language pairs. Building on112

this, (Khanuja et al., 2020) proposed GLUE-113

CoS, which included additional tasks, such as114

question answering and natural language infer-115

ence. Both studies showed that multilingual116

models like mBERT benefit from fine-tuning117

on code-switched data, though challenges re-118

main.119

An early study by Solorio and Liu (Solorio120

and Liu, 2008) explored code-switch predic-121

tion using Naive Bayes models on a small122

Spanish-English dataset. While their results123

were encouraging, the approach was limited124

by dataset size and use of simple, hand-crafted125

features. Our work addresses the same predic-126

tion task in a new setting, Chinese-English, us-127

ing a larger dataset and deep learning models128

to better capture switching behavior.129

3 Problem Description 130

A core challenge in code-switching research is 131

predicting future switches. Given a sequence 132

of tokens up to a certain point in an utterance, 133

predict the likelihood that the next token will 134

be in a different language (i.e., will constitute 135

a code-switch). Formally, the input (X) is 136

a sequence of tokens [w1, w2, ..., wn], and the 137

output (Y ) is a sequence of labels or probabili- 138

ties [y1, y2, ..., yn], where each yi represents the 139

likelihood (or a binary classification) of a code- 140

switch occurring after the token wi. Note that, 141

the prediction is about the next token, which is 142

not included in the input sequence. The code- 143

switch prediction task is different from code- 144

switch detection because it focuses on antici- 145

pating whether and where a language switch 146

will occur in upcoming text, whereas detection 147

focuses on identifying switches that have al- 148

ready taken place within a given sequence. 149

3.1 Dataset 150

For this study, we utilized the ASCEND (A 151

Spontaneous Chinese-English Dataset) (Love- 152

nia et al., 2022), a high-quality corpus 153

of spontaneous, multi-turn conversational 154

dialogue featuring Chinese-English code- 155

switching. The dataset contains 10.62 hours 156

of spontaneous speech comprising ∼12.3K 157

utterances. Each utterance reflects natural 158

bilingual interaction between speakers. The 159

corpus is divided into training, validation, 160

and test sets using an 8:1:1 ratio, with a bal- 161

anced gender distribution maintained across 162

all splits to ensure fair and representative 163

evaluation. To process the data, we used 164

NLTK, SpaCy, Jieba, etc. packages. 165

4 Methodology 166

In this paper, we present two experimental se- 167

tups: (1) a window-based approach, both fixed 168

and flexible, with separate models trained 169

for Chinese-to-English and English-to-Chinese 170

code-switching; and (2) a unified approach 171

with a single multilingual transformer model 172

(mBERT or XLM-RoBERTa), trained to han- 173

dle both language directions simultaneously. 174

4.1 Window Based Approach 175

We apply two types of context windows: 176

2



• Fixed Size Window: A fixed number of177

tokens around the switch point.178

• Flexible Size Window: A progressively ex-179

panding context that begins with the first180

token of the switch segment and adds one181

token at a time up to the full span of the182

switch-triggering portion.183

For Chinese-to-English, we consider two184

tokenization methods: character-level and185

segment-level using Jieba (Sun, 2024). For186

English-to-Chinese, we tokenize at the word187

level. Each window is then labeled with a 1 or188

0 depending on whether a switch happens im-189

mediately after. These labeled windows form190

the training input for our model.191

Next, we implemented an RNN architecture192

using pre-trained BERT embeddings (Chinese193

and English separately). BERT token em-194

beddings are fed into a unidirectional LSTM.195

While POS tagging for code-switched text tra-196

ditionally presents challenges due to differ-197

ent tagsets across languages and ambiguity198

at switching boundaries (Vyas et al., 2014),199

our approach mitigates these issues by using200

a unified tagset and embedding space for both201

languages. The POS embeddings are jointly202

trained with the model, allowing it to learn203

language-specific nuances while maintaining204

cross-lingual consistency (Aguilar and Solorio,205

2020). This integration enables the model to206

leverage syntactic information as an additional207

signal for predicting code-switch points with-208

out requiring pre-defined rules for handling209

cross-lingual POS transitions.210

4.2 Transformer-based Approaches211

Recent research has demonstrated the strong212

performance of transformer-based architec-213

tures for sequence labeling tasks across vari-214

ous NLP applications (Wu and Dredze, 2019).215

In particular, multilingual transformer models216

have shown remarkable cross-lingual transfer217

capabilities for tasks, like NER, POS tagging,218

and syntactic parsing. Their attention mecha-219

nisms are particularly well-suited for capturing220

long-range dependencies that could be crucial221

for identifying code-switching points, which of-222

ten depend on both local syntactic patterns223

and broader discourse context. Therefore,224

we employed multilingual transformer models225

(mBERT and XLM-RoBERTa) that predict226

switch points directly at token-level (we use 227

sequences of length ten). Detailed description 228

of data pre-processing and labeling used for 229

the future switch prediction task is provided 230

in the Appendix B. 231

5 Experiments and Results 232

Window-based Approach We run each 233

experiment on an A100 GPU for ∼4 hours. 234

We experimented with hidden layer sizes 235

of 32, 64, and 128 to determine the op- 236

timal model capacity over the following 237

four configurations: 1. Baseline (B): Pre– 238

trained embedding layer followed by an RNN 239

layer. 2. B+POS : Adds POS embeddings. 240

3. B+POS+Dropout: Adds dropout to reduce 241

overfitting. 4. B+POS+Dropout+LayerNorm: 242

Adds both dropout and layer normalization. 243

Table 1 presents the performance of a model 244

on a code-switching prediction task, broken 245

down by switch direction and context window 246

strategy. For Chinese-to -English switches, the 247

fixed window approach with the 64+POS con- 248

figuration achieves the best performance of an 249

accuracy of 0.91, precision of 0.85, recall of 250

0.45, F1 of 0.59, and AUC of 0.91. In contrast, 251

the English-to-Chinese direction exhibits lower 252

overall performance. The flexible window ap- 253

proach with 128+POS+dropout+LN performs 254

best, with an accuracy of 0.81, precision of 255

0.62, recall of 0.61, F1 of 0.62, and AUC 256

of 0.81. Overall, the model performs better 257

at predicting Chinese-to-English switches than 258

English-to-Chinese switches, and the window 259

strategy and hidden layer configuration signif- 260

icantly impact performance. 261

Transformer-based Approach We run 262

each experiment on an A100 GPU for 5 263

minutes. Table 2 presents the performance 264

of two transformer-based multilingual mod- 265

els, mBERT and XLM-RoBERTa, over two 266

training epochs on the code-switch prediction 267

task. Both models achieve strong performance 268

across all evaluation metrics, but mBERT con- 269

sistently outperforms XLM-RoBERTa. Specif- 270

ically, at Epoch 2, mBERT achieves a higher 271

accuracy (0.9961 vs. 0.9945), F1-score (0.9737 272

vs. 0.9657), and AUC (0.9800 vs. 0.9702). 273

Precision and recall also show favorable re- 274

sults for mBERT, suggesting that it is more 275

effective in identifying code-switch points with 276
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Table 1: Window Based Approach – Performance comparison across different window sizes and hidden
layer configurations. RNN + Bert Embeddings were used here.

Switch Direction Window Size Hidden Layer Configurations Accuracy Precision Recall F1 AUC
Chinese → English Fixed 64+POS 0.91 0.85 0.45 0.59 0.91
Chinese → English Flex 64+POS+dropout+LN 0.91 0.70 0.29 0.41 0.87
English → Chinese Fixed 64+POS+dropout 0.88 0.25 0.07 0.11 0.55
English → Chinese Flex 128+POS+dropout+LN 0.81 0.62 0.61 0.62 0.81

Table 2: Transformer-based Approach – Results of mBERT and XLM-RoBERTa Models.

Model Epoch Training Loss Validation Loss Accuracy Precision Recall F1 AUC
mBERT 1 0.0578 0.0128 0.9966 0.9977 0.9567 0.9768 0.9783
mBERT 2 0.0239 0.0128 0.9961 0.9867 0.9610 0.9737 0.9800
XLM-RoBERTa 1 0.1016 0.0254 0.9938 0.9943 0.9305 0.9613 0.9650
XLM-RoBERTa 2 0.0382 0.0222 0.9945 0.9915 0.9412 0.9657 0.9702

fewer false positives and false negatives. No-277

tably, XLM-RoBERTa shows slightly higher278

precision (0.9915) at Epoch 2, but this comes279

at the cost of slightly lower recall and F1, in-280

dicating a tendency to be more conservative281

in its predictions. In conclusion, while both282

transformer models demonstrate strong capa-283

bilities for this task, mBERT shows slightly284

better and more balanced performance, mak-285

ing it a more suitable choice for code-switch286

prediction in this setting.287

Discussion The results reveal a perfor-288

mance gap between Chinese-to-English and289

English-to-Chinese switch prediction. One290

likely explanation is the nature of the AS-291

CEND dataset itself, which is more Chinese-292

dominant, containing a larger proportion of293

Chinese tokens and utterances. Additionally,294

English insertions in Chinese speech may fol-295

low more predictable discourse patterns or lex-296

ical cues, such as topic shifts or borrowed ter-297

minology. The fixed window strategy generally298

outperforms the flexible window in Chinese-299

to-English prediction. This could be because300

fixed windows offer more consistent, compact301

context, whereas the flexible window might in-302

troduce noisy or redundant information that303

dilutes predictive cues. While our label-304

ing approach defines code-switches based on305

broad token categories, the high performance306

of mBERT and XLM-RoBERTa demonstrates307

their strong ability to identify fundamental308

language transitions at the token level. This309

success underscores the power of their multi-310

lingual pre-training providing a solid founda-311

tion for future work exploring the prediction312

of more linguistically nuanced code-switching313

phenomena using richer annotation schemes. 314

6 Conclusion and Future Direction 315

This study introduces a novel token-level ap- 316

proach for predicting code-switching points in 317

bilingual Chinese-English conversations, inves- 318

tigating both window-based RNNs and power- 319

ful multilingual transformer models. Our find- 320

ings robustly demonstrate that transformer- 321

based architectures, particularly mBERT, ex- 322

cel at identifying upcoming language switches, 323

achieving high scores across accuracy, preci- 324

sion, recall, and AUC. While mBERT con- 325

sistently outperformed XLM-RoBERTa in our 326

experiments on the ASCEND dataset, sev- 327

eral promising avenues for future work remain. 328

These include expanding our approach to han- 329

dle multilingual contexts involving more than 330

two languages and rigorously testing the gen- 331

eralizability of our models on diverse code- 332

switching datasets with different language 333

pairs and conversational domains. A signifi- 334

cant next step involves enhancing the predic- 335

tive capability to not only anticipate a switch 336

but also to determine the target language of 337

the upcoming code-switch, which holds sub- 338

stantial potential for advancing multilingual 339

NLP applications. Another direction worth 340

exploring is whether the optimal window size 341

should differ by language. Since Mandarin 342

characters might carry more information per 343

token than English words, models might ben- 344

efit from shorter context windows for Man- 345

darin and longer ones for English. A win- 346

dow size sweep could help uncover language- 347

specific patterns that improve prediction. 348
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7 Limitations349

We now discuss a few limitations of our work.350

First, we only tested our models on the AS-351

CEND dataset. It’s unclear how well the mod-352

els would perform on other language pairs or353

on written code-switched text. Second, code-354

switches are relatively rare, creating data im-355

balance that makes models struggle to learn356

and predict switches, especially from English-357

to-Chinese. Lastly, our models rely solely on358

text-based features while prosodic, syntactic,359

or speaker-level information may carry impor-360

tant cues. The high performance of mBERT361

and XLM-RoBERTa is largely attributable362

to their ability to recognize transitions be-363

tween broad token categories (defined by sim-364

ple rules) that align closely with their subword365

tokenization. While effective at this simplified366

task, the models’ ability to predict more nu-367

anced, linguistically motivated code-switches368

in real-world scenarios remains to be estab-369

lished. Future research should investigate per-370

formance on datasets with more linguistically371

rich annotations.372

8 Ethics Statement373

We use only publicly available datasets and374

pre-trained models in this study, all of which375

are accessed and utilized strictly for research376

purposes. The use of these resources complies377

with their original licenses and terms of access.378

No personally identifiable or sensitive informa-379

tion is present in any of the data used.380

Our code will be released under the MIT381

license to support transparency and repro-382

ducibility.383
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A Input Processing and Labeling458

for Future Code-Switch459

Prediction460

Here’s an example of how the input is pro-461

cessed and labeled for the future code-switch462

prediction task, along with the expected out-463

put.464

Example Input465

Let’s say our input sentence is:466

" 你好 hello world 再见"467

And the corresponding languages are:468

"zh en en zh"469

Where "zh" represents Chinese and "en"470

represents English.471

1. Tokenization472

The first step is tokenization, where the sen-473

tence is split into tokens. The tokenizer474

might split the sentence into the following to-475

kens. For simplicity, let’s assume the tokenizer476

doesn’t further split these tokens:477

[" 你好", "hello", "world", " 再478

见"]479

2. Labeling for Future Switch480

Prediction481

For the future switch prediction task, the goal482

is to predict whether the next word will be a483

code-switch. We create labels for each token484

(except the last one) to indicate this.485

• " 你好" (zh): The next word is "hello"486

(en), so this is a switch. Label: 1487

• "hello" (en): The next word is "world"488

(en), so this is not a switch. Label: 0489

• "world" (en): The next word is " 再见"490

(zh), so this is a switch. Label: 1491

• " 再见" (zh): There is no next word.492

Label: -100 (This special label tells the493

model to ignore this position in the loss494

calculation).495

So, the labels are: [1, 0, 1, -100]496

3. Input to the Model 497

The input to the model will be: 498

• Tokens: The tokenized sequence, con- 499

verted to numerical IDs by the tokenizer. 500

• Attention Mask: A mask indicating 501

which tokens are "real" and which are 502

padding (used to handle variable-length 503

sequences). 504

• Labels: The sequence [1, 0, 1, -100]. 505

4. Model Output 506

The model will output a probability distribu- 507

tion for each token (except the padded ones). 508

For each token, the model predicts the proba- 509

bility of the next token being a code-switch (0 510

or 1). 511

Example: 512

For the token " 你好", the model might out- 513

put [0.1, 0.9]. This means: 514

• Probability of the next word not being a 515

switch: 0.1 516

The model made correct predictions in 517

this example. Metrics like accuracy, preci- 518

sion, recall, and F1-score are used to quan- 519

tify the model’s performance. Below are the 520

model training parameters used for both XLM- 521

RoBERTa (base-sized model) and Multilin- 522

gual BERT (M-BERT). 523
524

training_args = TrainingArguments( 525
output_dir="./results", 526
per_device_train_batch_size=16, 527
per_device_eval_batch_size=16, 528
num_train_epochs=2, 529
learning_rate=2e-5, 530
eval_strategy="epoch", 531
save_strategy="epoch", 532
load_best_model_at_end=True, 533
metric_for_best_model="f1", 534
greater_is_better=True, 535
weight_decay=0.01, 536
report_to="none", 537
max_seq_length=10, 538

) 539540

B Data Description 541

Ascend Dataset includes the following informa- 542

tion: 543

• id 544

• path 545
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• audio546

• transcription547

• duration548

• language549

• original_speaker_id550

• session_id551

• topic552

Figure 1: Language Distribution in Transcriptions.
Here Mixed indicates the transcription includes
both English and Chinese words, Zh indicates only
Chinese and En indicates only English.

Topic Distribution in Mixed Transcriptions.553

Among the transcriptions labeled as code-554

mixed, topics related to Technology and Ed-555

ucation appear to exhibit the most frequent556

instances of language switching.

Figure 2: Topic Distribution in Transcriptions la-
beled as Mixed. Technologies and Education seem
to be the topic where people switch between lan-
guages frequently.

557

C Character and Segment Level 558

Tokenization 559

Figure 3: Tokenized Input for Character-level

Figure 4: Tokenized Input for Segment-level

D Full Results for Window Based 560

Approach 561

The full experiments result of the Window 562

Based Approach is shown in Table 3 and Ta- 563

ble 4. 564
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Table 3: Results of RNN + BERT (Chinese-to-English Flow)
– is missing value.

Window Size Hidden Layer Configurations Accuracy Precision Recall F1 AUC
Fixed 32 Baseline 0.92 0.90 0.43 0.59 0.88
Fixed 32 POS 0.91 0.92 0.35 0.51 0.90
Fixed 32 POS+dropout 0.86 – – – 0.78
Fixed 32 POS+dropout+LN 0.92 0.88 0.45 0.59 0.88
Fixed 64 Baseline 0.92 0.88 0.46 0.60 0.88
Fixed 64 POS 0.91 0.85 0.45 0.59 0.91
Fixed 64 POS+dropout 0.92 0.89 0.44 0.59 0.90
Fixed 64 POS+dropout+LN 0.86 – – – 0.60
Fixed 128 Baseline 0.92 0.87 0.45 0.60 0.90
Fixed 128 POS 0.92 0.89 0.43 0.58 0.90
Fixed 128 POS+dropout 0.92 0.87 0.46 0.60 0.89
Fixed 128 POS+dropout+LN 0.92 0.90 0.44 0.59 0.89
Flex 32 Baseline 0.89 – – – 0.43
Flex 32 POS 0.90 0.62 0.31 0.41 0.63
Flex 32 POS+dropout 0.89 – – – 0.52
Flex 32 POS+dropout+LN 0.89 – – – 0.60
Flex 64 Baseline 0.91 1.00 0.13 0.23 0.84
Flex 64 POS 0.91 1.00 0.12 0.22 0.74
Flex 64 POS+dropout 0.91 1.00 0.13 0.23 0.86
Flex 64 POS+dropout+LN 0.91 0.70 0.29 0.41 0.87
Flex 128 Baseline 0.91 0.74 0.24 0.36 0.86
Flex 128 POS 0.90 0.82 0.05 0.10 0.81
Flex 128 POS+dropout 0.91 0.71 0.27 0.39 0.85
Flex 128 POS+dropout+LN 0.91 0.72 0.27 0.39 0.86
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Table 4: Results of RNN + BERT (English-to-Chinese Flow)
– is missing value.

Window Size Hidden Layer Configurations Accuracy Precision Recall F1 AUC
Fixed 32 Baseline 0.90 0.57 0.09 0.16 0.53
Fixed 32 POS 0.89 0.33 0.05 0.08 0.48
Fixed 32 POS+dropout 0.89 0.33 0.05 0.08 0.50
Fixed 32 POS+dropout+LN 0.90 0.67 0.05 0.09 0.49
Fixed 64 Baseline 0.89 0.33 0.02 0.04 0.52
Fixed 64 POS 0.87 0.21 0.09 0.13 0.53
Fixed 64 POS+dropout 0.88 0.25 0.07 0.11 0.55
Fixed 64 POS+dropout+LN 0.88 0.25 0.05 0.08 0.54
Fixed 128 Baseline 0.89 – – – 0.63
Fixed 128 POS 0.89 0.33 0.07 0.12 0.49
Fixed 128 POS+dropout 0.89 – – – 0.52
Fixed 128 POS+dropout+LN 0.88 0.30 0.07 0.11 0.48
Flex 32 Baseline 0.80 0.60 0.56 0.58 0.79
Flex 32 POS 0.79 0.56 0.63 0.59 0.80
Flex 32 POS+dropout 0.79 0.56 0.62 0.59 0.79
Flex 32 POS+dropout+LN 0.81 0.62 0.62 0.62 0.80
Flex 64 Baseline 0.80 0.60 0.60 0.60 0.80
Flex 64 POS 0.80 0.60 0.54 0.57 0.78
Flex 64 POS+dropout 0.79 0.57 0.58 0.57 0.80
Flex 64 POS+dropout+LN 0.80 0.58 0.63 0.61 0.80
Flex 128 Baseline 0.80 0.59 0.60 0.60 0.80
Flex 128 POS 0.80 0.59 0.59 0.59 0.80
Flex 128 POS+dropout 0.79 0.58 0.60 0.59 0.79
Flex 128 POS+dropout+LN 0.81 0.62 0.61 0.62 0.81

9


	Introduction
	Related Work
	Problem Description
	Dataset

	Methodology
	Window Based Approach
	Transformer-based Approaches

	Experiments and Results
	Conclusion and Future Direction
	Limitations
	Ethics Statement
	Input Processing and Labeling for Future Code-Switch Prediction
	Data Description
	Character and Segment Level Tokenization
	Full Results for Window Based Approach

