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Abstract

Code-switching, the practice of multilin-
gual speakers switching between two or
more languages within a conversation or
sentence, is commonly observed in multi-
lingual communities. It also poses unique
challenges for natural language process-
ing (NLP) system. While existing NLP
models in the field can detect and pro-
cess code-switched text, they do not pre-
dict switch points at token level. In this
paper, we introduce a token-level predic-
tion framework for identifying upcoming
switch points in Chinese-English conver-
sations. We present two approaches: a
window-based model leveraging BERT em-
beddings and recurrent architectures, and
a transformer-based model using mBERT
and XLM-RoBERTa. Trained and evalu-
ated on the ASCEND dataset, our best
RNN-based model achieves an AUC of 0.91
for Chinese-to-English prediction, while
our transformer-based model (mBERT)
achieves an AUC of 0.98. These results
show promise in the code-switch prediction
task and offer potential to support mixed-
language NLP applications such as conver-
sational Al and machine translation.

1 Introduction

Code-switching is a practice when multilin-
gual speakers alternate between two or more
languages within a conversation or sentence.
This is a common phenomenon in multilingual
communities where speakers interchangeably
navigate between languages based on context,
topic, or social dynamics. Code-switching
shows its linguistics richness, provides a way
for multilingual speakers to express, grasp
complex topics and foster cultural identities.
However, it also introduces significant chal-
lenges for natural language processing (NLP)
tasks that are typically designed for monolin-
gual inputs (Aljoundi, 2013). This becomes

particularly problematic in real-time applica-
tions like voice assistants, chatbots, predictive
keyboards, and machine translation, where
sudden language switches can disrupt down-
stream tasks like tokenization, tagging, or pre-
diction.

Existing research in code-switching has fo-
cused primarily on detecting when a language
switch has already happened. This includes
tasks like identifying the language of each
word, tagging parts of speech, or recogniz-
ing names in mixed-language text (Winata
and et al., 2023). One early attempt by
Solorio and Liu (Solorio and Liu, 2008) used
simple machine learning models to predict
switch points in Spanish-English speech, show-
ing the task was possible. A few studies have
explored detecting switch points directly in
text, such as the work by Yirmibeolu and
Eryiit (Yirmibesoglu and Eryigit, 2018), which
used character-level features and CRFs to iden-
tify Turkish-English switches. However, these
approaches all act after the fact, offering little
utility in real-time systems where we need to
adapt before the switch happens. Our work
in this paper attempts to fill that void. Our
main contributions are as follows:

e We introduce a predictive framework for
identifying upcoming code-switch points
in real time as a token-level classification.

e We evaluate two modeling paradigms:
(1) a window-based model using BERT
embeddings with RNNs, and (2) a
transformer-based approach using pre-
trained multilingual models (mBERT and
XLM-RoBERTa).

¢ We conduct experiments on the ASCEND
dataset, a spontaneous Chinese-English
code-switching corpus, and analyze model



performance across multiple metrics. Our
best results show that transformer-based
and the best RNN-based models achieve
98.0% and 91.0% AUC, respectively.

To the best of our knowledge, this is the
first study to investigate token-level code-
switching prediction for Chinese-English using
deep learning models. These results suggest
that modern NLP systems can be trained not
just to detect language switches after they oc-
cur, but to anticipate them opening the door
to adaptive and responsive multilingual appli-
cations.

2 Related Work

The study of code-switching spans both lin-
guistics and NLP. Linguists have long ex-
amined the structural, semantic, and social
aspects of language switching (Sitaram and
et al., 2020). These studies highlight that code-
switching follows rules and constraints.

In NLP, early work on code-switching fo-
cused on language identification (Winata and
et al., 2023), while recent efforts have intro-
duced benchmarks covering a wider range of
tasks in mixed-language text (Winata and
et al., 2023). For example, (Aguilar et al.,
2020) created the LINCE benchmark using
social media data to evaluate tasks like LID,
POS tagging, NER, and sentiment analysis
across multiple language pairs. Building on
this, (Khanuja et al., 2020) proposed GLUE-
CoS, which included additional tasks, such as
question answering and natural language infer-
ence. Both studies showed that multilingual
models like mBERT benefit from fine-tuning
on code-switched data, though challenges re-
main.

An early study by Solorio and Liu (Solorio
and Liu, 2008) explored code-switch predic-
tion using Naive Bayes models on a small
Spanish-English dataset. While their results
were encouraging, the approach was limited
by dataset size and use of simple, hand-crafted
features. Our work addresses the same predic-
tion task in a new setting, Chinese-English, us-
ing a larger dataset and deep learning models
to better capture switching behavior.

3 Problem Description

A core challenge in code-switching research is
predicting future switches. Given a sequence
of tokens up to a certain point in an utterance,
predict the likelihood that the next token will
be in a different language (i.e., will constitute
a code-switch). Formally, the input (X) is
a sequence of tokens [wy,ws, ..., wy,], and the
output (V) is a sequence of labels or probabili-
ties [y1, Y2, ..., Yn], where each y; represents the
likelihood (or a binary classification) of a code-
switch occurring after the token w;. Note that,
the prediction is about the next token, which is
not included in the input sequence. The code-
switch prediction task is different from code-
switch detection because it focuses on antici-
pating whether and where a language switch
will occur in upcoming text, whereas detection
focuses on identifying switches that have al-
ready taken place within a given sequence.

3.1 Dataset

For this study, we utilized the ASCEND (A
Spontaneous Chinese-English Dataset) (Love-
nia et al., 2022), a high-quality corpus
of spontaneous, multi-turn conversational
dialogue featuring Chinese-English code-
switching. The dataset contains 10.62 hours
of spontaneous speech comprising ~12.3K
utterances. Fach utterance reflects natural
bilingual interaction between speakers. The
corpus is divided into training, validation,
and test sets using an 8:1:1 ratio, with a bal-
anced gender distribution maintained across
all splits to ensure fair and representative
evaluation. To process the data, we used
NLTK, SpaCy, Jieba, etc. packages.

4 Methodology

In this paper, we present two experimental se-
tups: (1) a window-based approach, both fixed
and flexible, with separate models trained
for Chinese-to-English and English-to-Chinese
code-switching; and (2) a unified approach
with a single multilingual transformer model
(mBERT or XLM-RoBERTa), trained to han-
dle both language directions simultaneously.

4.1 Window Based Approach
We apply two types of context windows:



o Fixed Size Window: A fixed number of
tokens around the switch point.

o Flexible Size Window: A progressively ex-
panding context that begins with the first
token of the switch segment and adds one
token at a time up to the full span of the
switch-triggering portion.

For Chinese-to-English, we consider two
tokenization methods: character-level and
segment-level using Jieba (Sun, 2024). For
English-to-Chinese, we tokenize at the word
level. Each window is then labeled with a 1 or
0 depending on whether a switch happens im-
mediately after. These labeled windows form
the training input for our model.

Next, we implemented an RNN architecture
using pre-trained BERT embeddings (Chinese
and English separately). BERT token em-
beddings are fed into a unidirectional LSTM.
While POS tagging for code-switched text tra-
ditionally presents challenges due to differ-
ent tagsets across languages and ambiguity
at switching boundaries (Vyas et al., 2014),
our approach mitigates these issues by using
a unified tagset and embedding space for both
languages. The POS embeddings are jointly
trained with the model, allowing it to learn
language-specific nuances while maintaining
cross-lingual consistency (Aguilar and Solorio,
2020). This integration enables the model to
leverage syntactic information as an additional
signal for predicting code-switch points with-
out requiring pre-defined rules for handling
cross-lingual POS transitions.

4.2 Transformer-based Approaches

Recent research has demonstrated the strong
performance of transformer-based architec-
tures for sequence labeling tasks across vari-
ous NLP applications (Wu and Dredze, 2019).
In particular, multilingual transformer models
have shown remarkable cross-lingual transfer
capabilities for tasks, like NER, POS tagging,
and syntactic parsing. Their attention mecha-
nisms are particularly well-suited for capturing
long-range dependencies that could be crucial
for identifying code-switching points, which of-
ten depend on both local syntactic patterns
and broader discourse context. Therefore,
we employed multilingual transformer models
(mBERT and XLM-RoBERTa) that predict

switch points directly at token-level (we use
sequences of length ten). Detailed description
of data pre-processing and labeling used for
the future switch prediction task is provided
in the Appendix B.

5 Experiments and Results

Window-based Approach We run each
experiment on an A100 GPU for ~4 hours.
We experimented with hidden layer sizes
of 32, 64, and 128 to determine the op-
timal model capacity over the following
four configurations: 1. Baseline (B): Pre—
trained embedding layer followed by an RNN
layer. 2. B+POS: Adds POS embeddings.
3. B+POS+Dropout: Adds dropout to reduce
overfitting. 4. B+POS+Dropout+LayerNorm:
Adds both dropout and layer normalization.

Table 1 presents the performance of a model
on a code-switching prediction task, broken
down by switch direction and context window
strategy. For Chinese-to -English switches, the
fixed window approach with the 64+POS con-
figuration achieves the best performance of an
accuracy of 0.91, precision of 0.85, recall of
0.45, F1 of 0.59, and AUC of 0.91. In contrast,
the English-to-Chinese direction exhibits lower
overall performance. The flexible window ap-
proach with 128+P0OS+dropout+LN performs
best, with an accuracy of 0.81, precision of
0.62, recall of 0.61, F1 of 0.62, and AUC
of 0.81. Overall, the model performs better
at predicting Chinese-to-English switches than
English-to-Chinese switches, and the window
strategy and hidden layer configuration signif-
icantly impact performance.

Transformer-based Approach We run
each experiment on an A100 GPU for 5
Table 2 presents the performance
of two transformer-based multilingual mod-
els, mBERT and XLM-RoBERTa, over two
training epochs on the code-switch prediction
task. Both models achieve strong performance
across all evaluation metrics, but mBERT con-
sistently outperforms XLM-RoBERTa. Specif-
ically, at Epoch 2, mBERT achieves a higher
accuracy (0.9961 vs. 0.9945), Fl-score (0.9737
vs. 0.9657), and AUC (0.9800 vs. 0.9702).
Precision and recall also show favorable re-
sults for mBERT, suggesting that it is more
effective in identifying code-switch points with

minutes.



Table 1: Window Based Approach — Performance comparison across different window sizes and hidden
layer configurations. RNN + Bert Embeddings were used here.

Switch Direction | Window Size | Hidden Layer Configurations | Accuracy | Precision | Recall | F1 | AUC
Chinese — English | Fixed 64+POS 0.91 0.85 0.45 0.59 | 0.91
Chinese — English | Flex 64+POS~+dropout+LN 0.91 0.70 0.29 0.41 | 0.87
English — Chinese | Fixed 64+POS+dropout 0.88 0.25 0.07 0.11 | 0.55
English — Chinese | Flex 128+POS+dropout+LN 0.81 0.62 0.61 0.62 | 0.81
Table 2: Transformer-based Approach — Results of mBERT and XLM-RoBERTa Models.
Model Epoch | Training Loss | Validation Loss | Accuracy | Precision | Recall | F1 AUC
mBERT 1 0.0578 0.0128 0.9966 0.9977 0.9567 | 0.9768 | 0.9783
mBERT 2 0.0239 0.0128 0.9961 0.9867 0.9610 | 0.9737 | 0.9800
XLM-RoBERTa | 1 0.1016 0.0254 0.9938 0.9943 0.9305 | 0.9613 | 0.9650
XLM-RoBERTa | 2 0.0382 0.0222 0.9945 0.9915 0.9412 | 0.9657 | 0.9702

fewer false positives and false negatives. No-
tably, XLM-RoBERTa shows slightly higher
precision (0.9915) at Epoch 2, but this comes
at the cost of slightly lower recall and F1, in-
dicating a tendency to be more conservative
in its predictions. In conclusion, while both
transformer models demonstrate strong capa-
bilities for this task, mBERT shows slightly
better and more balanced performance, mak-
ing it a more suitable choice for code-switch
prediction in this setting.

Discussion The results reveal a perfor-
mance gap between Chinese-to-English and
English-to-Chinese switch prediction. One
likely explanation is the nature of the AS-
CEND dataset itself, which is more Chinese-
dominant, containing a larger proportion of
Chinese tokens and utterances. Additionally,
English insertions in Chinese speech may fol-
low more predictable discourse patterns or lex-
ical cues, such as topic shifts or borrowed ter-
minology. The fixed window strategy generally
outperforms the flexible window in Chinese-
to-English prediction. This could be because
fixed windows offer more consistent, compact
context, whereas the flexible window might in-
troduce noisy or redundant information that
dilutes predictive cues.  While our label-
ing approach defines code-switches based on
broad token categories, the high performance
of mBERT and XLM-RoBERTa demonstrates
their strong ability to identify fundamental
language transitions at the token level. This
success underscores the power of their multi-
lingual pre-training providing a solid founda-
tion for future work exploring the prediction
of more linguistically nuanced code-switching

phenomena using richer annotation schemes.

6 Conclusion and Future Direction

This study introduces a novel token-level ap-
proach for predicting code-switching points in
bilingual Chinese-English conversations, inves-
tigating both window-based RNNs and power-
ful multilingual transformer models. Our find-
ings robustly demonstrate that transformer-
based architectures, particularly mBERT, ex-
cel at identifying upcoming language switches,
achieving high scores across accuracy, preci-
sion, recall, and AUC. While mBERT con-
sistently outperformed XLM-RoBERTa in our
experiments on the ASCEND dataset, sev-
eral promising avenues for future work remain.
These include expanding our approach to han-
dle multilingual contexts involving more than
two languages and rigorously testing the gen-
eralizability of our models on diverse code-
switching datasets with different language
pairs and conversational domains. A signifi-
cant next step involves enhancing the predic-
tive capability to not only anticipate a switch
but also to determine the target language of
the upcoming code-switch, which holds sub-
stantial potential for advancing multilingual
NLP applications. Another direction worth
exploring is whether the optimal window size
should differ by language. Since Mandarin
characters might carry more information per
token than English words, models might ben-
efit from shorter context windows for Man-
darin and longer ones for English. A win-
dow size sweep could help uncover language-
specific patterns that improve prediction.



7 Limitations

We now discuss a few limitations of our work.
First, we only tested our models on the AS-
CEND dataset. It’s unclear how well the mod-
els would perform on other language pairs or
on written code-switched text. Second, code-
switches are relatively rare, creating data im-
balance that makes models struggle to learn
and predict switches, especially from English-
to-Chinese. Lastly, our models rely solely on
text-based features while prosodic, syntactic,
or speaker-level information may carry impor-
tant cues. The high performance of mBERT
and XLM-RoBERTa is largely attributable
to their ability to recognize transitions be-
tween broad token categories (defined by sim-
ple rules) that align closely with their subword
tokenization. While effective at this simplified
task, the models’ ability to predict more nu-
anced, linguistically motivated code-switches
in real-world scenarios remains to be estab-
lished. Future research should investigate per-
formance on datasets with more linguistically
rich annotations.

8 Ethics Statement

We use only publicly available datasets and
pre-trained models in this study, all of which
are accessed and utilized strictly for research
purposes. The use of these resources complies
with their original licenses and terms of access.
No personally identifiable or sensitive informa-
tion is present in any of the data used.

Our code will be released under the MIT
license to support transparency and repro-
ducibility.
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A Input Processing and Labeling
for Future Code-Switch
Prediction

Here’s an example of how the input is pro-
cessed and labeled for the future code-switch
prediction task, along with the expected out-
put.

Example Input

Let’s say our input sentence is:
" AR¥F hello world F "
And the corresponding languages are:

"zh en en zh"

!

Where "zh" represents Chinese and "en’
represents English.

1. Tokenization

The first step is tokenization, where the sen-
tence is split into tokens. The tokenizer
might split the sentence into the following to-
kens. For simplicity, let’s assume the tokenizer
doesn’t further split these tokens:

I:n {{T{ﬁ%”y ”he].].o”, ”WOI"ld", n %
L]

2. Labeling for Future Switch
Prediction

For the future switch prediction task, the goal
is to predict whether the next word will be a
code-switch. We create labels for each token
(except the last one) to indicate this.

o " {R#F" (zh): The next word is "hello”
(en), so this is a switch. Label: 1

o "hello” (en): The next word is "world”
(en), so this is not a switch. Label: @

o "world” (en): The next word is " F "
(zh), so this is a switch. Label: 1

o " F " (zh): There is no next word.
Label: -100 (This special label tells the
model to ignore this position in the loss
calculation).

So, the labels are: [1, @, 1, -100]

3. Input to the Model
The input to the model will be:

e Tokens: The tokenized sequence, con-
verted to numerical IDs by the tokenizer.

o Attention Mask: A mask indicating
which tokens are 'real" and which are
padding (used to handle variable-length
sequences).

e Labels: The sequence [1, @, 1, -100].

4. Model Output

The model will output a probability distribu-
tion for each token (except the padded ones).
For each token, the model predicts the proba-
bility of the next token being a code-switch (@
or 1).

Example:

For the token " #£#", the model might out-
put [0.1, ©.9]. This means:

e Probability of the next word not being a
switch: 0.1

The model made correct predictions in
this example. Metrics like accuracy, preci-
sion, recall, and Fl-score are used to quan-
tify the model’s performance. Below are the
model training parameters used for both XL.M-
RoBERTa (base-sized model) and Multilin-
gual BERT (M-BERT).

training_args = TrainingArguments(
output_dir="./results”,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=2,
learning_rate=2e-5,
eval_strategy="epoch”,
save_strategy="epoch”,
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
weight_decay=0.01,
report_to="none",
max_seq_length=10,

B Data Description

Ascend Dataset includes the following informa-
tion:

e id

e path




e audio

e transcription

e duration

e language

e original_speaker_id
e session_id

e topic

Language Distribution in Transcriptions

27.8%

mixed

Figure 1: Language Distribution in Transcriptions.
Here Mixed indicates the transcription includes
both English and Chinese words, Zh indicates only
Chinese and En indicates only English.

Topic Distribution in Mixed Transcriptions.
Among the transcriptions labeled as code-
mixed, topics related to Technology and Ed-
ucation appear to exhibit the most frequent
instances of language switching.

Topic Distribution for Mixed-Language Examples

N
&
<& ¢ &

Figure 2: Topic Distribution in Transcriptions la-
beled as Mixed. Technologies and Education seem
to be the topic where people switch between lan-
guages frequently.

C Character and Segment Level
Tokenization

windowed_text_char language switch_flag

0 Fealal mixed 0
0 RIRAIFF mixed 0
0 RIFF5E mixed 1
1 ] mixed 1
1 gkt mixed 0

Figure 3: Tokenized Input for Character-level

windowed_text_segment language switch_flag

0 HNIRIF o8 mixed 1
1 =} mixed 1
1 EHEF mixed 0
1 =Y mixed 0
1 AFM SR mixed 0

Figure 4: Tokenized Input for Segment-level

D Full Results for Window Based
Approach

The full experiments result of the Window
Based Approach is shown in Table 3 and Ta-
ble 4.



Table 3: Results of RNN + BERT (Chinese-to-English Flow)

— is missing value.

Window Size | Hidden Layer Configurations Accuracy | Precision | Recall | F1 | AUC
Fixed 32 Baseline 0.92 0.90 0.43 | 0.59 | 0.88
Fixed 32 POS 0.91 0.92 0.35 | 0.51 | 0.90
Fixed 32 POS-+dropout 0.86 - - - 0.78
Fixed 32 POS+dropout+LN 0.92 0.88 0.45 | 0.59 | 0.88
Fixed 64 Baseline 0.92 0.88 0.46 | 0.60 | 0.88
Fixed 64 POS 0.91 0.85 0.45 | 0.59 | 0.91
Fixed 64 POS+dropout 0.92 0.89 0.44 | 0.59 | 0.90
Fixed 64 POS-+dropout+LN 0.86 - - - 0.60
Fixed 128 Baseline 0.92 0.87 0.45 | 0.60 | 0.90
Fixed 128 POS 0.92 0.89 0.43 | 0.58 | 0.90
Fixed 128 POS-+dropout 0.92 0.87 0.46 | 0.60 | 0.89
Fixed 128 POS+dropout+LN 0.92 0.90 0.44 | 0.59 | 0.89
Flex 32 Baseline 0.89 - - - 0.43
Flex 32 POS 0.90 0.62 0.31 | 0.41 | 0.63
Flex 32 POS+dropout 0.89 - - - 0.52
Flex 32 POS-+dropout+LN 0.89 - - - 0.60
Flex 64 Baseline 0.91 1.00 0.13 | 0.23 | 0.84
Flex 64 POS 0.91 1.00 0.12 0.22 | 0.74
Flex 64 POS+dropout 0.91 1.00 0.13 | 0.23 | 0.86
Flex 64 POS+dropout+LN 0.91 0.70 0.29 | 0.41 | 0.87
Flex 128 Baseline 0.91 0.74 0.24 | 0.36 | 0.86
Flex 128 POS 0.90 0.82 0.05 | 0.10 | 0.81
Flex 128 POS+dropout 0.91 0.71 0.27 | 0.39 | 0.85
Flex 128 POS+dropout+LN 0.91 0.72 0.27 | 0.39 | 0.86




Table 4: Results of RNN + BERT (English-to-Chinese Flow)

— is missing value.

Window Size | Hidden Layer Configurations Accuracy | Precision | Recall | F1 | AUC
Fixed 32 Baseline 0.90 0.57 0.09 | 0.16 | 0.53
Fixed 32 POS 0.89 0.33 0.05 | 0.08 | 0.48
Fixed 32 POS+dropout 0.89 0.33 0.05 | 0.08 | 0.50
Fixed 32 POS+dropout+LN 0.90 0.67 0.05 | 0.09 | 0.49
Fixed 64 Baseline 0.89 0.33 0.02 | 0.04 | 0.52
Fixed 64 POS 0.87 0.21 0.09 | 0.13 | 0.53
Fixed 64 POS+dropout 0.88 0.25 0.07 | 0.11 | 0.55
Fixed 64 POS+dropout+LN 0.88 0.25 0.05 | 0.08 | 0.54
Fixed 128 Baseline 0.89 - - - 0.63
Fixed 128 POS 0.89 0.33 0.07 | 0.12 | 0.49
Fixed 128 POS+dropout 0.89 - - - 0.52
Fixed 128 POS+dropout+LN 0.88 0.30 0.07 | 0.11 | 0.48
Flex 32 Baseline 0.80 0.60 0.56 | 0.58 | 0.79
Flex 32 POS 0.79 0.56 0.63 | 0.59 | 0.80
Flex 32 POS+dropout 0.79 0.56 0.62 | 0.59 | 0.79
Flex 32 POS-+dropout+LN 0.81 0.62 0.62 | 0.62 | 0.80
Flex 64 Baseline 0.80 0.60 0.60 | 0.60 | 0.80
Flex 64 POS 0.80 0.60 0.54 | 0.57 | 0.78
Flex 64 POS+dropout 0.79 0.57 0.58 | 0.57 | 0.80
Flex 64 POS+dropout+LN 0.80 0.58 0.63 | 0.61 | 0.80
Flex 128 Baseline 0.80 0.59 0.60 | 0.60 | 0.80
Flex 128 POS 0.80 0.59 0.59 | 0.59 | 0.80
Flex 128 POS+dropout 0.79 0.58 0.60 | 0.59 | 0.79
Flex 128 POS-+dropout+LN 0.81 0.62 0.61 | 0.62 | 0.81
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