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Abstract. A contemporary programming language is a top-down approach in the sense that we know
exactly what a function is to be constructed and we construct the exact function. Learning is a bottom-
up approach in the sense that we don't know how to exactly program a targeted function but we can
program an algorithm that automatically constructs another function that converges to the target by
accepting sample data. Learning can be done not only through statistical methods but also through sym-
bolic computing. While statistical learning methods have their unique positions in many applications
including pattern recognition, symbolic approaches toward learning persist in keeping the realizability
assumption for convergence. In addition to many known symbolic Probably Approximately Correct
(PAC) learnables such as conjunctions of Boolean literals and rectangle learning games, there are other
symbolic computing systems that are PAC learnable as well. In this paper, we show a class of func-
tions that is semantically equivalent to Turing machine is PAC learnable. This learnability is realized
through the Enterprise-Participant (EP) data model, a database language representing such a class of
functions, called bounded functions as they have a �nite co-domain while an in�nite domain. An EP
database is mathematically capable of inventorying all the properties of partial recursive functions with
the hypothesis of in�nite space and time.
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1 Introduction

Statistical algorithms for machine learning, such as latent semantic analysis, Laplacian eigenmaps, and
neural networks with backpropagation, are powerful and dominate contemporary machine learning research
and practice. Symbolic computation is also a way of machine learning as long as it generates a program that is
able to produce more meaningful information that is not originally provided as sample inputs. Conjunctions
of boolean literals and a rectangle learning game are well known examples, [10]. We are interested in symbolic-
base learning because symbolic approaches keeps the realizability assumptions, i.e., always receiving positive
sample data, such that targeted programs can be converged to a level we anticipate with a foreseeable sample
size.

In this paper, we introduce classes of bounded functions that are PAC learnable because an algorithm
exists to construct a database as the program that correctly labels an arbitrary number of fresh inputs
beyond a �nite set of labeled sample inputs. This learnability is supported by the Enterprise-Participant
(EP) data model, a database language system, where an EP database is the constructed program and EP's
reduction system supports predictions of the PAC learnability, precisely symbolic reasoning. As a special
case of the PAC learnability, for example, an algorithm exists to construct an EP database by taking a �nite
set of randomly selected paths as samples: v2 v1 and v1 v2 v3. The two paths represent a directed cyclic
graph with edges: v1 to v2 , v2 to v1, and v2 to v3. The constructed database is: D = {v1 v2 := v2; v2 v1 :=
v1; v2 v3 := v3}, with which EP supports arbitrary number of queries simulating one's walks along the cyclic
graph, i.e., reductions: v1 v2 v3 →D v3, v1 v2 v1 →D v1, v2 v1 v2 ... v1 →D v1, .... (Note that a sequence of
nodes that do not form a path would be reduced to a special value null, e.g., v3 v2 →D null.)

While weights and biases adjustment is the fundamental process in statistical learning that contributes
to prediction, symbolic reasoning in EP is a synonym of the prediction of the statistical learning. Though
the methods coming to prediction are di�erent, the prediction from both symbolic and statistical learn-
ing approaches has the same e�ect: targeted functions can be approximated by constructed programs and
eventually converged with the evolving programs without explicit programming.
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A �ip side of the synonymousness is the precision of predictions. Statistical learning may not have all
sample data labeled correctly. As a result, a constructed program may not converge to its target program.
While such agnostic learning is necessary for certain applications, symbolic learning preserves the full meaning
of the PAC learnability, i.e., sample size amounts to any designed level of precision.

We say that a language, e.g., a programming language, is Turing-complete or Turing-equivalent, if the
language has a �nite representation for a class of partial recursive functions. To measure the signi�cance
of an approximation to a Turing-equivalent language that is generated by a partial computation in the
theory of computability, we also say that the union of the approximations produced by a sequence of partial
computations on the given Turing-equivalent language with in�nite computation steps 1, 2, ..., s, ..., where
s ∈ N, is semantically equivalent to the given language, because the union of all the approximations is equal
to the entire set of the properties the given language has. Because each of the concept classes in a sequence
is (e�ciently) PAC learnable, and because the union of all the concept classes is semantically equivalent
to the Turing machine, we say that the entire sequence of the classes are (e�ciently) PAC learnable in the
sense of the hypothesis that we have in�nite time and space. This conclusion says nothing else but the EP
data model, or the classes of bounded functions, sets up a mathematical bound for program constructions
without programming, at least as far as symbolic learning approach is concerned.

The EP data model was �rst developed to unify programming languages with database management [25],
[24]. It was later found in [23] that the EP data model is rooted at the lambda calculus: an EP database
can be syntactically converted from an approximation to the lambda calculus, further can be expressed in
an extended lambda calculus, and is interpreted as a bounded function. To avoid unnecessary burdens to
many readers who are not familiar with the lambda calculus, we �rst describe the Enterprise-Participant
(EP) data model, the reduction rules, and the corresponding bounded functions in Section 2 and 3, which
are developed independently from approximations to the lambda calculus. In Section 4, we introduce an
enumeration of all possible databases that can be constructed based on the EP database de�nition given in
Section 2. This establishes a foundation for our discussion on PAC learnability in Section 5 because a kind
of concept classes (of bounded functions) is formed from the enumerated databases.

Because EP is type free, we note that the size of a database can grow exponentially in the size of allowed
basic elements of the database. This determines that the corresponding classes of bounded functions cannot
be e�ciently PAC learnable when they are proved PAC learnable in Section 5. To show that a database
size doesn't grow exponentially in practice, we describe another kind of bounded function classes with a
polynomial logarithm of the cardinality in the computation steps of a partial computation to the lambda
calculus and therefore that the classes are e�ciently PAC learnable. The result is presented in Section 5 while
the detail is captured in Appendix E. To facilitate the discussion in Appendix E, we reiterate the material
from [23] regarding the partial computation process to the lambda calculus and the syntactical conversion
process from an approximation to an EP database in Appendix B and C. While the semantic equivalence
of EP with the lambda calculus has been formally proved in [23], Appendix D provides a supplementary
material to formally prove that a class of bounded functions is semantically equivalent to the lambda calculus
as well.

In Appendix F, we give an alternative view in DS-dimensions on the conclusions we made in Section 5
and point out that the DS dimensions for a class of bounded functions is the number of assignments in one
of the largest databases in the class.

In Appendix A, we give supplementary materials for Sections 2 to 5, including proofs for the theories
presented in the sections.

2 EP databases

The Enterprise-Participant (EP) data model is a language system and equivalently a data structure with
which an EP database can be constructed. The idea behind EP is that we treat all objects to be represented
as functions. Given a function f that produces a value m when it is applied to an argument n, denoted as
f (n) = m, let's think of an exercise in which we inventory the properties of f in a database. We can rewrite
f (n) = m as f n := m, reading it as: applying f to n is assigned a value m. The set {f n := m}, called
a database, is an approximation of f . When we apply f to an additional argument n′, we would obtain a
better approximation {f n := m, f n′ := m′} where f (n′) = m′. In addition, m could be another function
such that m (p) = q for a given input p. So we can exhibit more properties of f with the accumulated
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approximation {f n := m, f n′ := m′,m p := q} or equivalently {f n p := q, f n′ := m′}. From the database
{f n := m, f n′ := m′,m p := q}, we can derive: (f (n)) (p) = q.
Definition 2.1 The EP data model is described as a language system (F, ·, (, ),E, :=, D), where

1. F is a set of identi�ers (function names)
2. · is a binary operation that produces a set E such that

m ∈ F =⇒ m ∈ E
m,n ∈ E =⇒ (m · n) ∈ E
Here we simply write (m · n) as (m n) and further m n when (m · n) is implied 1, where m, n, and m n
are called a function, an argument, and the corresponding application. For a x ∈ E, we call x a term.
Given an application term m n, m and n are called proper subterms of m n, and m n is also called a
subterm of itself.

3. := is the Cartesian product E × E, i.e., := ≡ E × E. When a pair (p, q) ∈ :=, we denote it as p := q,
which is called an assignment, where p and q are the assignee and assigner respectively.

4. D, called a database, is a �nite set of terms and a �nite set of assignments, i.e., D ⊂ (E ∪ :=), such that
for each assignment p := q ∈ D, where p, q ∈ E, the following constraints are met:

(a) p has only one assigner, i.e.,

p := q and p := q′ ∈ D =⇒ q ≡ q′

(b) A proper subterm of p cannot be an assignee, i.e.,

p := q ∈ D =⇒ ∀x ∈ SUB+(p) [∀m ∈ E [x := m ̸∈ D]]

(c) q can not be an assignee, i.e.,

p := q ∈ D =⇒ ∀a ∈ E [q := a ̸∈ D]

Identi�ers are the most basic building blocks in EP. Like in programming languages, we can choose
alphanumeric tokens as identi�ers, such as abc123, _abc, and more commonly we take words from a natural
language vocabulary as identi�ers, such as hello, John, sport, law, and person.

A term is either an identi�er x ∈ F or an application x y ∈ E where x, y ∈ E, such as x x, (a b c) (d e a (d t a))
are legitimate terms where x, a, b, c, d, e, t ∈ F.

Given a term, e.g., m0 m1, . . . ,mi for an i ∈ N , we call all the leftmost subterms of the term, i.e.,
m0,m0 m1, . . . ,m0 m1. . .mi a leftmost subterm, denoted as lms. Given a term t, we use |t| to denote the
size of the term, e.g., |m0 m1 . . . mi| = i + 1, and LMS(t) to denote the set of all lmss in t. (Then we
have t ∈ LMS(t). If m n ∈ LMS(t), so is m.) We further use LMS+(t) to denotes all the proper lmss
in t, i.e., LMS+(t) = LMS(t) \ t. We further use SUB(p) to denote all the subterms of a term p, i.e.,
given p ≡ m n, then m,n,m n ∈ SUB(p). We use SUB+(p) to denote all the proper subterms of p, i.e.,
SUB+(p) = SUB(p)\{p}.

See Appendix A.2 for more information including sample EP terms and databases.

3 EP database reductions and bounded functions

We are ready to introduce a reduction system over E. First, we identify a special identi�er null ∈ F that
has the default reduction rule: null m →D null for any m ∈ E. Because we explicitly single out the special
identi�er null from F, we further restrict that a lms of an assignee cannot be null in a database. Before
providing the full set of reductions rules, let's �rst de�ne the notation of EP normal form.
Definition 3.1 Given a database D, a term n ∈ E is an EP normal form (or normal form in brief) if and
only if

1. n is null, i.e, n ≡ null; or

1 When a combination of two terms m n is given without surrounding parentheses, we consider the term is parsed
by the preference of left association and therefore (m n) is implied. For example, a b c always implies ((a b) c). If
one needs to express (a (b c)), then it has to be written explicitly like a (b c).
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2. n is a term in D and not an assignee, i.e., n ∈ D and ∀b ∈ E [n := b ̸∈ D].

We use NF (D) to denote the set of all the normal forms under a database D.
Most terms in E are not normal forms given a database D, For example, x x and x x x are not normal

forms in the sample database {x x := x}. We now de�ne a set of rules to reduce an arbitrary term to a
normal form.
Definition 3.2 Given a database D, we have one-step reduction rules, denoted as ⇒:

1. An assignee is reduced to the assigner, i.e., a := b ∈ D =⇒ a ⇒ b
2. An identi�er not in the database is reduced to null, i.e., a ∈ F, a ̸∈ D =⇒ a ⇒ null
3. If a and b are normal forms and a b ̸∈ D, then a b is reduced to null, i.e., a, b ∈ NF (D), a b ̸∈ D =⇒

a b ⇒ null
4. a ⇒ a′, b ⇒ b′ =⇒ a b ⇒ a′ b′

Definition 3.3 Let a ⇒ a0, a0 ⇒ a1, . . . , an−1 ⇒ an for a number n ∈ N. We say that a is e�ectively, i.e.,
in �nite steps, reduced to an, denoted as a →D an.
Definition 3.4 A term a has a normal form b if b is in normal form and a →D b.

See Appendix A.3 for a few sample reductions against the databases provided in Appendix A.2.
Any term m ∈ E has one and only one normal form and the reduction system is strongly normalizing,

i.e., there is another term n ∈ NF (D) such that m →D n (Theorem 4.5 in [23]).
The set of all the normal forms NF (D) is �nite, i.e., |NF (D)| ≤ s for a given s ∈ N, e.g., s could be the

number of partial computation steps from which D is transformed (Lemma 4.6 in [23]).
There exists a function Y (D) : E →D NF (D), where Y (D) = {(m,n) |m ∈ E, n ∈ NF (D), and m →D

n}, and Y (D) is bounded because it has an in�nite domain while only having a �nite co-domain (Theorem
4.7 and Theorem 4.8 in [23]). A function f : X → Y has a �nite support if and only if X is an arbitrary set
of objects and Y is a �nite set of objects, and there exists a �nite set A ⊂ X and a unique member a ∈ Y
such that

f(x) = b, where b ∈ Y and b ̸= a, if x ∈ A

= a if x ∈ X\A

A function f : X → Y is bounded if and only if X is an arbitrary set of objects and Y is a �nite set of
objects. (Such a bounded function is always recursive, i.e., the computation on f(x) terminates and f(x) ∈ Y
for any x ∈ X.) In this article, we simply call a function �nite if it has a �nite support. A �nite function is
bounded, but a bounded function may not be �nite.

By saying a function being bounded, we mean that under a given database D, potentially an in�nite
number of terms m ∈ E are meaningful, i.e., reducible to a �nite set of normal forms NF (D) (excluding
null). The ability of mapping in�nite objects to �nite objects is both the symptom and the pre-condition of
the learnability, i.e., one object in the co-domain is represented by multiple objects in the domain, or saying
di�erently one object in the co-domain is derivable from others. Denoting m n̄ as the term m n1 . . . nk ∈ E
for k ≥ 0 and denoting |n| as the size k, we show that if there exists a sequence of assignments a0 n0 :=
a1, a1 n1 := a2, . . . , ai−1 ni−1 := ai ∈ D for some i ≥ 1 such that ai ∈ LMS+(a0 n̄0), then Y (D) is not
�nite but bounded. For example, Y (D) = {(x, x), (x x, x), (x x x, x). . . } is not �nite but bounded for the
database D = {x x := x}.

Even if Y (D) is �nite for a given D, Y (D) may provide derivable information beyond what are de�ned
in D. For example, the database D = {a b := c; c d := e} allows the reduction (derivation): a b d →D e,
which is not de�ned in D. Lastly, an EP database may not have any derivable information, e.g., D = {a b :=
c; e e := f}. Such databases without derivable information have nothing to do with learnability.

When a term m is reduced to null under a database D, i.e., m →D null or Y (D)(m) = null, m or
Y (D)(m) is in a correspondence to "unde�ned" or "I don't know" in partial recursive functions. Given a
partial recursive function, e.g., f : X → Y , we say an instance f(x) is unde�ned if x ̸∈ X. When f(x) doesn't
halt, or may halt eventually but doesn't terminate within a given number of computation steps, we say "I
don't know" on f(x) regarding its value, [23].

It has been shown in [23] that the EP data model is semantically equivalent to the lambda calculus, so
is a class of bounded functions that are represented by a sequence of EP databases (Appendix D).



Classes of bounded functions that are semantically equivalent to Turing-machine are PAC learnable 5

4 Concept classes dimension growing exponentially

In this section, we develop classes of databases (and bounded functions) that grows exponentially in its
dimension, i.e., the logarithm of their cardinalities [13]. Although such an exponentially growing database
cannot be practically constructed in general and the corresponding class of bounded functions cannot be
e�ciently PAC learnable, it provides the upper bound cardinality of various classes of bounded functions
that can be practically constructed in an EP database.

During the construction, we consider two parameters: identi�ers from F\{null} and the size of a term,
i.e., the number of identi�ers |t| in a term t ∈ E. The goal is to construct all possible databases from a given
number of identi�ers and a maximum size of a term allowed to be in the databases. We set an upper bound
k ∈ N for the number of identi�ers and at the same time for the number of identi�ers in a term that a
database is allowed to contain. Further, we restrict a term without parenthesis, i.e., given a term m0, ...,mj ,
each mi is an identi�er, where 0 < j ≤ k and 0 ≤ i ≤ j. Provided that the databases with a bound k
are constructed, we can continue to �nd additional databases with the bound k + 1, where the bounds of
the identi�ers and the size of a term in a database are increased by 1. We use a pair [F, k] (and sometimes
denoted as [Fk, k]) to denote the set of the databases generated with a k such that |F | = k and |t| ≤ k
for all terms t ∈ E and t ∈ [F, k], where F ⊂ F\{null}, k ∈ N. For a given [F, k], we use [[F, k]] to denote
the corresponding bounded function sets, i.e., [[F, k]] = {Y (D) | D ∈ [F, k]}. We use |[F, k]| and |[[F, k]]| to
denote the cardinalities of the database set and the function sets, and actually we have |[F, k]| = |[[F, k]]|.

A database set [F, k] is a simpli�ed version of databases that can grow based on its de�nition given in
De�nition 2.1.4. Taking [{a, b, c}, 3] for an example, we only consider a term like a b c, but not term like
a (b c). A term like a null c is not considered either until in Appendix F. The simpli�ed version has a smaller
cardinality, but it is su�cient to show its exponential growth to support our discussion in the DS dimensions
later.

The class of zero-identi�er databases [{}, 0} has only the empty database {}. The class of one-identi�er
databases, e.g., [{a}, 1], consists of two databases without an assignment, e.g., {{}, {a}}. The size of the
databases is 2, i.e, |[{a}, 1]| = 2. The class of two-identi�er databases [{a, b}, 2], where a, b ̸≡ null, is
constructed as:

1. The allowed identi�ers are a, b.
2. The allowed terms with 2 as the maximum size are a, b, a a, b b, a b, b a.
3. There are a total of 8 allowed assignments, such as a a := a, a a := b, and a b := a.
4. There are a total of 81 allowed databases, including one empty database , 8 one-assignment databases, 24

two-assignment databases, 32 three-assignment databases, and 16 four-assignment databases. Therefore,
the cardinality of the corresponding concept class of the bounded functions is 81 as well.

See Appendix A.4 for a listing of all the databases in [{a, b}, 2].
Certainly, we have [Fk, k] ⊂ [Fk+1, k + 1], where Fk+1 has one more identi�er on the top of Fk:

Proposition 4.1 (Theorem 7.5 of [23]) [Fk, k] ⊂ [Fk+1, k + 1].
In the rest of the paper, we will heavily rely on Theorem 2.2 of [10] and Theorem 5 of [13] to relate

the PAC learnability with the cardinalities of various concept classes, i.e., if a concept class C is e�ciently
PAC learnable, then the logarithm of the cardinality of a concept class, called the dimension of C in [13] and
denoted as dim(C) = log |C|, must be polynomial.
Proposition 4.2 The size of the largest databases in [F, k] and dim([[F, k]]) are exponential in k. (See the
proof in Appendix A.4.)

Because the growing speed of the size of a database is too fast to be constructed in practice and because
dim([[F, k]]) is exponential, the class [[F, k]] for k ∈ N is ine�cient even it is PAC learnable.
Theorem 4.3 The class [[F, k]] for k ∈ N is ine�ciently PAC learnable.
Proof It is PAC learnable (shown in Section 5). The learnability is not e�cient according to Theorem 2.2
of [10] and Theorem 5 of [13]. ~

Fortunately, there are concept classes that have their cardinalities growing polynomially. One kind of such
classes are generated with constraints from the partial computation process for generating approximations
to the lambda calculus. Such classes are denoted as Ys, will be discussed in Appendix E, and the result
Theorem E.5 is presented in Section 5. Even without the constraints from the partial computation, there are
classes that grow polynomially. A graph is an example:
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Theorem 4.4 a class of graphs Gn for a n ∈ N, precisely the corresponding class of bounded functions, is
e�ciently PAC learnable. (See the proof in Appendix A.4.)

5 A class of bounded functions is PAC learnable

Regardless of the growing speeds of the concept classes of bounded functions in dimension, we show in this
section a class of bounded functions is PAC learnable using the de�nition of the PAC learnability, [10], [17].
It is essentially determined by the size of the largest databases in a class of databases, where the size of a
database determines the cardinality of the class of bounded functions.

Instead of denoting a class as a speci�c one such as [[F, k]] as given in Section 4 and Ys as to be given
in Appendix E, we use Yk to denote a general bounded function class over an instance space Xk and Dk to
denote the corresponding database class for any k ∈ N in the following discussion of this section. We will
also use these notations in Appendix F.

5.1 A learning algorithm

When we say that Yk for a given k ∈ N is e�ciently (or ine�ciently) PAC learnable, we are saying for any
unknown Dc ∈ Dk (and therefore Y (Dc) ∈ Yk), there exists an algorithm A such that:

1. Y (Dc) is the target function (concept) for A to accumulate assignments into a database, denoting the
accumulation process as a sequence of databases D0, D1, ..., Dm where Di ∈ Dk+1 for all 0 ≤ i ≤ m,
such that Y (D0), Y (D1), ..., Y (Dm) approximates and converges to Y (Dc) when it receives a sequence of
sample pairs (a0, Y (Dc)(a0)), (a1, Y (Dc)(a1)), ..., (am, Y (Dc)(am)) that are selected from Y (Dc), with
a arbitrary probability distribution P.

2. The approximation and convergence mentioned above are precisely de�ned as: for every distribution P
on Xs, and for all 0 < ϵ < 1/2 and 0 < δ < 1/2, as A is given access to EX(Y (Dc),P) that produces the
sequence (a0, Y (Dc)(a0)), (a1, Y (Dc)(a1)), ..., (am, Y (Dc)(am)) and is given inputs ϵ and δ, then with
probability at least 1− δ, A outputs Y (Dm), called a hypothesis, satisfying

error(Y (Dm)) = Pra∈P [Y (Dc)(a) ̸= Y (Dm)(a)] ≤ ϵ

This probability is taken over the random examples drawn by calls to EX(Y (Dc),P), and any internal
randomization of A.

3. A takes time polynomial (or exponential) in k, |Dc|, 1/ϵ, and 1/δ when learning the target concept
Y (Dc) ∈ Ys.

4. Y (Dc) takes time polynomial (or exponential) in k and |Dc| in calculating Y (Dc)(a) for any a ∈ E.
5. When k = ∞, Y is e�ciently PAC learnable in a sense of the hypothesis that A is given in�nite time

and space to learn.

We �rst de�ne the learning algorithm A by assuming a number m exists such that after m calls to
EX(Y (Dc),P), we have at least 1 − δ con�dence to ensure that the error(Y (Dm)) ≤ ϵ for given ϵ and δ.
We will show what m is later.
Definition 5.1 The learning algorithm A: we �rst initiate an empty database D = {}. While the number of
the calls to EX(Y (Dc),P) has not reached m, call EX(Y (Dc),P) to get a pair (a, b) and search D to �nd
if a and b have already been served as the assignee and the assigner of an assignment in D.

1. if (a, b) has been in D already, do nothing.
2. if there are other assignments a′ := b′ in D such that a is a lms of a′, i.e., a′ ≡ a q1 . . . qi for some i > 0,

then add a := b to D, and for each a′ := b′, we truncate a′ with the following steps:
(a) delete a′ := b′ from D.
(b) for the pair (b q1 . . . qi, b

′), we recursively call Step 1 above.
3. if there is an assignment a′ := b′ in D such that a′ is a lms of a, i.e., a ≡ a′ q1 . . . qi for some i > 0,

then add one assignments b′ q1 . . . qi := b.
4. if there is not an assignment a′ := b′ in D such that a is a lms of a′ or a′ is a lmf of a, then we create

a := b into D.
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The algorithm above follows the constraints posted on an EP database, which are given in De�nition
2.1.4. As an example, we take a database {a b := b; b a := a} for a graph as the target database Dc and
the �rst sample data A receives from EX(Y (Dc),P) is (a b a, a). Because the database D to be constructed
is still empty, A would have to create an assignment a b a := a and D becomes {a b a := a}. Later on,
when A receives another sample data (a b, b), then A will remove a b a := a and add two more assignments
a b := b; b a := a according to Step 2. When we say that the assignment a b a := a is removed from D, we
also say that the assignee a b a is "truncated" through the discussion in the rest of the paper, because it is
"shortened" by two terms b a and a b in the database D.

For Step 3, suppose the database D has already had an assignment a b := q, and A receives another
sample data (a b o, p), then A will create another assignment q o := p while keeping a b := q unchanged.

In Section 5.2 and 5.3 as attached in Appendix A.5, we identify those terms a ∈ E that err Y (D) by
analyzing how D could deviate from Dc. In the section 5.4 as attached in Appendix A.5, we calculate the
number m of calls to EX(Y (Dc),P) that is needed to reach a con�dence at least (1− δ) of saying that the
probability that the resulting database D gives a wrong answer (e.g., Y (D)(a) ̸= Y (Dc)(a))) for a term a
drawn from E in the probability distribution P that has been applied to EX(Y (Dc),P) is less than ϵ. The
number m is determined as:
Lemma 5.2 The number m of calls to EX(Y (Dc),P) that the algorithm A has to make is at least

(|Dc|/ϵ)(ln(|Dc|) + ln(1/ϵ))

such that with probability at least 1− δ the resulting bounded function Y (D) will have error at most ϵ with
respect to Y (Dc) and P. (See Appendix A.5 for the proof.)

In Section 5.5 as attached in Appendix A.5, we show A runs in polynomial time in |D|, 1/ϵ, and 1/δ.
Lemma 5.3 The complexity of running the algorithm A is at most

2k|Dc|3(ln(|Dc|) + ln(1/ϵ))/ϵ

(See Appendix A.5 for the proof.)
Lemma 5.4 The running time for Y (D(a)) for a ∈ E is at most 3|a||Dc|.(See Appendix A.5 for the proof.)

We have proved the result below:
Theorem 5.5 The concept class Yk for any k ∈ N is e�ciently PAC learnable if the target database size
|Dc| is linear or polynomial in k. Otherwise, it is ine�ciently PAC learnable.

Before ending this section, we present the result from Appendix E regarding Ys, the concept classes from
the partial computation process for generating approximations to the lambda calculus:
Theorem E.5 The concept class Ys for any s ∈ N is e�ciently PAC learnable.

6 Related work

A class of approximations to a n-ary number-theoretic partial recursive function is not learnable. The dif-
ference in learnability between the approximations to a n-ary number-theoretical partial recursive functions
and to the lambda calculus can be clearly described by the de�nition of an e�cient (α, β)-Occam algorithm
([10]), which says that a consistent learning algorithm is e�cient only if the size of a constructed program is
signi�cantly smaller than the sample size m.

Traditional database technologies do not have a PAC learning ability. Transitive relations exist in tra-
ditional databases, but explicit queries, i.e., functions with type and variables, must be de�ned to retrieve
transitive relational data.

While a partial recursive function with �nite representation cannot be learned theoretically, the PAC
learnability of a class of bounded functions says that partial properties from the partial recursive function
can be learned.

Statistical machine learning has unique strengths in pattern recognition, for which there is not a known
and e�ective symbolic approach. On the other hand, a symbolic approach like EP has its strength in knowl-
edge representation and reasoning, for which there is not a known and e�ective statistical approach (though
many attempts have been made, but the result practically and theoretically is not a satisfaction [19], [3],
[14], [1]).
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Programming language requiring initial design of classes (data structure) and traditional database man-
agement system requiring initial design of data schema are top-down approaches toward software develop-
ment. Machine learning is a bottom-up approach toward software development by learning from sample data.
EP, a type and variable free language, is a bottom up approach.

The learnability of the classes of bounded functions is about multiclass classi�cation. A multiclass classi-
�cation for a non-statistic learning algorithm can be reduced to binary one by "All-vesus-all" or "All-pair"
([17]). In addition, we have a third reduction method for a class of bounded functions. Given a bounded
function Y (D) = {(m,n) | m ∈ E, n ∈ NF (D), and m →D n}, we can rewrite it as:

1. H(D)(m,n) = 1, if m ∈ E, n ∈ NF (D), and m →D n; or
2. H(D)(m,n) = 0, if m ∈ E, n ∈ NF (D), and m ̸→D n.

Note when m ∈ E and n ̸∈ NF (D), (m,n) is not in the instance space of H(D)(m,n).
Since the learning algorithm in this paper is not statistical but symbolic, a reduction, in any one of the

three methods, does not impact the learning performance in convergence.

7 Conclusions

The main contributions presented in this paper include: 1) the process of using the EP data model (structure)
to accumulate data is a process of e�ectively PAC learning; 2) with the hypothesis of in�nite time and space,
the entire properties of a partial recursive function is e�ciently PAC learnable, which says nothing but the
capacity of reasoning or predicting with a better precision is maximized.

The e�cient PAC learnability of a class of bounded functions introduces an opportunity to improve the
performance of integrating symbolic approach, particularly embedding graphs into an Euclidean space, with
statistic approaches in machine learning [19], [14], [1], [16], [8], [7]). It also renews the e�ort of using symbolic
computations for natural language processing [12], [15], [20], [22], [21].

Acknowledgement Prof. Anselm Blumer, Prof. Gautam Kamath and many other reviewers, including those
from COLT 2025, provided valuable inputs to previous versions of this manuscript, including suggestions on
improving the presentation with materials related to the lambda calculus.
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Appendix A - Supplementary materials for Sections 2 to 5

A.2 Continuation to Section 2 - EP databases

A term alone without an assignment is allowed to be in a database. When a term is in a database, its
subterms are considered in the database as well.

By terms alone (without the reduction rules to be introduced in Section 3), we can represent con-
tainment relationships. For example, the hierarchical structure of geographical locations can be expressed:
Florida Miami; France Paris; the United States of America (New Y ork City)Manhattan (Water Street 55).
The terms embed transitive relations, such as we can infer Miami is part of the United States of America
because Miami is part of Florida and Florida is part of the United States of America.

The rules in De�nition 2.1.4 to form an EP database re�ect the constraints to eliminate derivable (re-
dundant) data when an approximation is syntactically transformed to an EP database, as given in Theorem
C.4 in Appendix C. The algorithm to be introduced in Section 5 follows these rules to construct learned
databases.

In addition to the example database discussed in Section 1, we list a few more sample databases here:

� {x x := x}, for a graph with a single vertex x, counting a vertex having a directed loopback edge

� {a b c := d; d (e f) := a b; }, for a random database.

� {college John major := college math; college math math100 (college John) grade := A}, for a college
administration database.

� {person (V erb drive) home := person (V erb arrive) (Prop at home) (Prop by car)}, for an English
paraphrase in a symbolic approach to natural language processing [22]

A.3 Cont. to Section 3 - EP reductions and bounded functions

Here are a few sample reductions to their normal forms under the example databases provided in Appendix
A.2:

x x . . . x →D x

a b c →D d

a b c (e f) →D a b

d (e f) c →D d

college John major math100 (college John) grade →D A

person (V erb drive) home →D person (V erb arrive) (Prop at home) (Prop by car)
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A.4 Cont. to Section 4 - Concept classes dimension growing exponentially

The pseudo cube for [F, 2] The subset S = {a a, b b, a b, b a} that is DS-shattered by the class of the
bounded functions, a pseudo cube, de�ned by the set of databases [a, b, 2] is given in Figure 1 (which is
automatically shifted to the end of the document by Latex).

Proposition 4.2 The size of the largest databases in [F, k] and dim([[F, k]]) are exponential in k.

Proof Given a k ∈ N, we can count the numbers of terms allowed in a database:

1) Instance space. Given a term m0, ...,mi, where mj ∈ F and 0 ≤ j ≤ i for a given i such that 0 ≤ i ≤ k,
we have a total of ki terms with the exact size of i. When i = k, we have a total kk unique terms with the
exact size of k.

One of the largest database for a given k consists of all the assignees with the exact size of k, i.e., the
number of assignees and therefore assignments in such a database is kk. This proved that the size of the
largest databases in [F, k] is exponential in k. (The constraints on a database as given in De�nition 2.1.4
and also Theorem C.4 do not allow a term with a size less than k to join a largest database as an assignee
to make the database even bigger. For example, when a b c with the size of k = 3 has already been in one
of the largest databases, a term with a size of 2, such as a b, cannot be an assignee in the same database
because a proper lms of an assignee cannot be an assignee simultaneously in a database. )

In [F, k], there are databases with a size less than kk. These databases includes all [Fi, i] where 0 ≤ i < k,
and also include those in which the assignees have di�erent sizes ranging from 1 to k. Nevertheless, the
largest databases with the size of kk dominant [F, k] because the number of the largest databases is larger
than the sum of all other databases with size less than kk. Therefore, we conclude with an estimation:
|[F, k]| < (k + 1)k+1.

2) Normal forms. With more than kk assignees allowed in a database for a given [F, k], we need to �nd all
normal forms that can be assigners. In a database where the size of all the assignees is k, the allowed normal
forms are those terms with the size less than k. There are a total of k + k2 + ... + k(k−1) normal forms in
[F, k].

3) [[F, k]]′s cardinality: (k + k2 + ... + k(k−1))k
k

< |[F, k]| = |[[F, k]]| < (k + k2 + ... + k(k−1))(k+1)k+1

. The
dimension of the class is exponential: dim([[F, k]]) = (k + 1)k+1 log(k + k2 + ...+ k(k−1)). ~

Graph learnability Let Gn = {V,E} to denote a complete (fully connected) undirected graph, where V ,
also denoted as Gn.V , is a set of nodes with a total number of nodes |V | = n. Each node in V is uniquely
tagged with an identi�ers, e.g., V = {v1, ..., vn}. E, also denoted as Gn.E, is the set of edges that fully connect

the nodes with the number of edges l = n×(n−1)
2 . we use (i, j) to represent an edge such that, i.e., (i, j) ∈ E.

We de�ne a set of graphs, denoted as Gi
n for 0 ≤ i ≤ l such that each graph in Gi

n is a subgraph of Gn, i.e.,
Gi

n.V = Gn.V , G
i
n.E ⊆ Gn.E, and i = |Gi

n.E|. For a given Gi
n, there are a total of

(
l
i

)
subgraphs. We further

de�ne a sequence of such sets of subgraphs Gn = {G0
n, ...,G

l
n}, where |Gn| =

∑
0≤i≤l

(
l
i

)
= 2l = 2

n×(n−1)
2 .

Clearly we have Gl
n ≡ Gn.

Now let a subgraph G ∈ Gi
n for a given 0 ≤ i ≤ l be represented in a database, denoted as DG. Then we

have

DG =
⋃

(i,j)∈G.E;i̸=j

{vi vj := vj} ∪ {vj vi := vi}

Because each subgraph in Gn has a database representation, the total number of the databases for Gn

is 2
n×(n−1)

2 , so is the number of the corresponding bounded functions. Instead of giving separate notations
for the databases representing the sets of subgraphs and for the corresponding bounded functions, we simply
say that a class of graphs Gn for a n ∈ N is e�ciently PAC learnable:

Theorem 4.4 a class of graphs Gn for a n ∈ N, precisely the corresponding class of bounded functions, is
e�ciently PAC learnable.

Proof It is PAC learnable because it has a correspondence with a class of bounded functions (shown in Section
5). The learnability is e�cient because the dimension of the class of the bounded functions is polynomial:

log 2
n×(n−1)

2 ≈ n×(n−1)
2 according to Theorem 2.2 of [10] and Theorem 5 of [13].~
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A.5 Cont. to Section 5 - A class of bounded functions is PAC learnable

As a continuation of Section 5, we identify those terms a ∈ E that err Y (D) by analyzing howD could deviate
from Dc in Section 5.2 and 5.3. In the section 5.4, we calculate the number m of calls to EX(Y (Dc),P) that
is needed to reach a con�dence at least (1− δ) of saying that the probability that the resulting database D
gives a wrong answer (e.g., Y (D)(a) ̸= Y (Dc)(a))) for a term a drawn from E in the probability distribution
P that has been applied to EX(Y (Dc),P) is less than ϵ. In Section 5.5, we show A runs in polynomial time
in |D|, 1/ϵ, and 1/δ.

Section 5.2 A learned database is a subset of target database When the resulting database D
after m calls to EX(Y (Dc),P) is constructed with assignments exactly from Dc, i.e., D ⊆ Dc, we have
Y (D) ⊆ Y (Dc). This would happen when all the sample terms S = {a0, a1, ..., am} from the sequence
(a0, Y (Dc)(a0)), (a1, Y (Dc)(a1)), ..., (am, Y (Dc)(am)) that EX(Y (Dc),P) generated are truncated to the
corresponding assignees in Dc by Step 2 of A.

Now let's see the terms that deviate their behaviors in D because some assignments in Dc are missing
from D. If an assignment (z, v) ∈ Dc is not made into D, then any term a ∈ E where z ∈ SUB(a) and
Y (Dc(a)) ̸= null 2 will most likely have a di�erent result in Y (D), i.e., Y (D)(a) ̸= Y (Dc(a)). This is
because most likely we have z →D null and Y (D)(a[null/z]) →D null while Y (Dc)(a) ̸→D null. (Note the
expression a[null/z] is denoted as an substitution of all instances z with "null" in term a.) For example,
if z := c ∈ Dc and c ̸≡ null but z := c ̸∈ D, then if a term a ≡ b z →Dc d for d ̸≡ null, it will make
Y (D)((b z)[null/z]) ̸= Y (Dc(a)) as Y (D)((b z)[null/z]) →D null.

On the other hand, there is a chance that Y (D)(a[null/z]) = Y (Dc(a)) when (z, v) is missing from D,
which causes z →D null 3. For example, if z := null ∈ Dc but not in D, then if a term a ≡ b z →Dc

c
for c ̸≡ null, it will make Y (D)((b z)[null/z]) = Y (Dc(b z)) = c. If that's the case, we consider Y (D)(a) ̸=
Y (Dc(a)), i.e., we count it as an error even though it is actually not an error. This treatment is conservative
in calculating the sample size m.

The situation where (z, v) ∈ Dc but (z, v) ̸∈ D causes Y (D) to err only on those terms a in which
a ̸→D null. It is also exactly such terms a that would have caused A to add (z, v) into D. We use U(z) to
denote all such terms a and express it as:

U(z) = {a | z ∈ SUB(a); ∃q[z := q ∈ Dc];Y (Dc(a)) ̸= null;∀q[z := q /∈ D]}

Section 5.3 A learned database with assignments not in target database After having m calls to
EX(Y (Dc),P), A may end up with a database D with some assignments in D but not in Dc. In this case,
there is an assignment in Dc, e.g., z1 := v1 ∈ Dc, there is another assignment in D, e.g., z2 := v2 ∈ D,
z2 := v2 ̸∈ Dc, and z1 ∈ LMS+(z2). We observe any terms z between z1 and z2, i.e., z1 ∈ LMS(z) and
z ∈ LMS+(z2), Y (D)(z) ̸= Y (Dc)(z), but Y (D)(z2) = Y (Dc)(z2) and Y (D)(z0) = Y (Dc)(z0) for any
z0 ∈ LMS+(z1). For example, when (a b a := a) ∈ D and {a b := b; b a := a} ⊆ Dc, we have (a b) →D a b
and (a b) →Dc

b. (This scenario is the reason that in Section 5.1, we allowed a learned database Di to be in
Dk+1 even it is targeting a database Dc ∈ Dk.)

Let a ∈ E and z ∈ SUB(a), we summarize another set V (z) in which the terms a having z as a subterm
err Y (D):

V (z) = {a | ∃z1[z1 ∈ LMS(z); ∃q1[z1 := q1 ∈ Dc]; ∃z2[z ∈ LMS+(z2)]; ∃q2[z2 := q2 ∈ D]]; z ∈ SUB(a)}

Section 5.4 - Sample size An assignment z := v that is either in D or Dc but not both can cause Y (D)
to err on those terms a with z as a subterm. In Section 5.2 and 5.3, we summarized all such terms a with z
as a subterms as U(z) and V (z). Let p(z) denote the total probability of such terms a under the distribution
P, that is,
2 It is a trivial case when Y (Dc(a)) = null because Y (D(a)) will be reduced to null as well.
3 This case happens from both practice and the partial computations to the lambda calculus. For example, we can
have (I Ω,Ω) ∈ [Λ0]+s .
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p(z) = Pra∈P{U(z) ∨ V (z)} ≤ Pra∈P(U(z)) +Pra∈P(V (z))

Since every error of Y (D) can be caused by at least one assignment that is either in D or Dc but
not both, by the union bound we have error(Y (D)) ≤

∑
z:=v∈D p(z). We say that an assignment z := v

in either Dc or D but not both is bad if p(z) ≥ ϵ/|Dc| 4. If Y (D) contains no bad assignments, then
error(Y (D)) ≤

∑
z:=v∈D p(z) ≤ |D|(ϵ/|Dc|) = ϵ. Now it's time to �nd the upper bound for the probability

that a bad assignment will appear in Y(D).

For any �xed bad assignment z := v, the probability that this assignment is not added to D or its assignee
z is not truncated to a proper lms which is an assignee in Dc after m calls of A to EX(Y (Dc),P) is at most
(1 − ϵ/|Dc|)m, because the probability the assignment z := v is added or z is truncated by a single call to
EX(Y (Dc),P) is p(z) (which is at least ϵ/|Dc| for a bad assignment). From this we may conclude that the
probability that there is some bad assignment that is not added to D or its assignee is not truncated after m
calls is at most |Dc|(1− ϵ/|Dc|)m, where we have used the union bound over the |Dc| possible assignments.

Thus to complete our analysis we simply need to solve for the value of m satisfying |Dc|(1−ϵ/|Dc|)m ≤ δ,
where 1 − δ is the designed con�dence. Using the inequality 1 − x ≤ e−x, it su�ces to pick m such that
|Dc|e−mϵ/|Dc| ≤ δ, which yields m ≥ (|Dc|/ϵ)(ln(|Dc|) + ln(1/ϵ)). We have proved the Lemma below:

Lemma 5.2 The number m of calls to EX(Y (Dc),P) that the algorithm A has to make is at least

(|Dc|/ϵ)(ln(|Dc|) + ln(1/ϵ))

such that with probability at least 1− δ the resulting bounded function Y (D) will have error at most ϵ with
respect to Y (Dc) and P.

Section 5.5 - Run time In Section 5.2 and 5.3 as attached in Appendix A.5, we identify those terms a ∈ E
that err Y (D) by analyzing how D could deviate from Dc. In Section 5.4 as attached in Appendix A.5, we
calculates the number m of calls to EX(Y (Dc),P) that is needed to reach a con�dence at least (1 − δ) of
saying that the probability that the resulting database D gives a wrong answer (e.g., Y (D)(a) ̸= Y (Dc)(a)))
for a term a drawn from E in the probability distribution P that has been applied to EX(Y (Dc),P) is less
than ϵ. The number m is determined as:

Lemma 5.3 The complexity of running the algorithm A is at most

2k|Dc|3(ln(|Dc|) + ln(1/ϵ))/ϵ

Proof For each loop in the algorithm with an input (a, b) as de�ned in De�nition 5.1, the time complexity
to search the term a is in the worst case |Dc| 5, so does the time for b. In other words, we need 2|Dc| time
to identify the term a b.

We assume the worst case in Step 2 that all the assignees in the database need to be truncated. Then we
need |Dc| inner loops in running the algorithm A. For each inner loop, the learning algorithm may need to
recursively search the database again following Step 2 for investigating the pair (b q1 . . . qi, n

′). The number
of the recursive calls may at the worst case reach the size of the term b q1 . . . qi, i.e., |n q1 . . . qi| ≤ k. Then
we have the total time complexity O(2|Dc| × |Dc| × k) = O(2k|Dc|2) for each outer loop. Multiplying the
time in each outer loop with the number of total outer loops m, we get 2k|Dc|2× (|Dc|/ϵ)(ln(|D|)+ ln(1/ϵ))
= 2k|Dc|3(ln(|Dc|) + ln(1/ϵ))/ϵ. ~

Lemma 5.4 The running time for Y (D(a)) for a ∈ E is at most 3|a||Dc|.
Proof Given an application term m n ∈ E, the time to �nd m and n is at the worst case |Dc| for each 6.
The time to reduce m n to another is at worst case |Dc|. Therefore, the time to evaluate an application m n
is 3|Dc|. The time to evaluate a term a with the length |a| is at worst case 3|a||Dc|. ~

4 here |Dc| is the number of assignments in Dc. We choose |Dc| as the divisor because one assignment in Dc but
not in D and another assignment in D but not in Dc independently (and further we assume equally) contribute to
error(Y (D)).

5 The time complexisty to search a is actually O(log(|Dc|)) when EP terms are sorted in a database.
6 Again the actual time complexity is improved by implementing index.
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Appendix B - Approximations to the lambda calculus

To show that the EP data model is semantically equivalent to the lambda calculus (in the hypothesis of
in�nite time and space), a partial computation process, by taking one index mapping function that maps a
closed lambda term to a unique integer, i.e., # : Λ0 → N, was developed in [23] to produce a sequence of
approximations to the lambda calculus, that in turn are converted to a sequence of databases D0, D1, ..., and
a sequence of bounded functions Y (D0), Y (D1), .... In this section, we reiterate this process to further observe
what an approximation is and how fast the size of an approximation grows when the partial computation
steps increase. This discussion because essential when we extend the partial computation from a single index
mapping function # to in�nite index mapping functions #0,#1, ..., from which we develop a sequence of
bounded function classes: Y0,Y1, ..., where each element Ys for a s ∈ N is a target class that is proved to
be e�ciently PAC learnable in Appendix E.

Given a n-ary number-theoretic partial recursive function ϕe : Nn → N, e.g., in the form of Kleene's
systems of equations [11], [5], and a number s ∈ N, i.e., {0, 1, . . . }, we have a partial computation that
produces a �nite approximation, denoted as ϕe,s, of ϕe such that:

ϕe,s(x1, x2, . . . , xn) = y if x1, . . . , xn, y ≤ s and ϕe(x1, x2, . . . , xn) ↓s y

where ϕe(x1, x2, . . . , xn) ↓s y denotes that ϕe(x1, x2, . . . , xn) converges within s steps and the resulting value
is y. The approximation ϕe,s can be rewritten as a �nite set of ordered pairs:

ϕe,s = {< (x1, x2, . . . , xn), y > | x1, . . . , xn, y ≤ s and ϕe(x1, x2, . . . , xn) ↓s y}

and the union of all such approximations is semantically equivalent to ϕe itself, i.e., ϕe = ∪s∈N ϕe,s, where

ϕe = {< (x1, x2, . . . , xn), y > | x1, . . . , xn ∈ N and ϕe(x1, x2, . . . , xn) ↓ y for y ∈ N}

For a given ϕe, a n and a number of computation steps s ∈ N, the instance space of ϕe,s is {y0, y1, ..., ys}{x0,x1,...,xn}

with the size of sn, where xi, yj ≤ s, 0 ≤ i ≤ n, 0 ≤ j ≤ s. Although the exponential growth of the instance
space, the actual cardinality of an approximation is bounded by s, i.e., |ϕe,s| ≤ s.

In this section, we develop a partial computation of the lambda calculus by mimicking the partial com-
putation of n-ary number-theoretic partial recursive functions. We note that many adjustments are required.

B.1 The properties of closed λ terms

Given a term M0 ∈ Λ0, where Λ0 denotes the set of all closed lambda terms, we would like to have a partial
computation forM0. Instead of a �xed number n in the n-ary number-theoretical approximation approach, we
need to consider all the terms that haveM0 as a leftmost subterm (lms), i.e.,M0,M0M1, ...,M0M1. . .Mn, . . .
for all M1,M2, . . .Mn, . . . ∈ Λ0 when we enumerate the properties for M0:

[M0] = {(M0 M1. . .Mn, Q) |M1, . . . ,Mn, Q ∈ Λ0;M0 M1. . .Mn →β Q;n ∈ N} (1)

where →β is meant reductions in the β-reduction rule with the leftmost reduction strategy of the lambda
calculus ([2]), and [M0] denotes all the properties M0 has, i.e., pairs (M0 M1. . .Mn, Q) for any n ∈ N and
any Mi ∈ Λ0 where 0 < i ≤ n. In the set (1) above, a term M0 can be any of the following:

1. A closed term having normal form, i.e., M0 →β R where R is a normal form (cannot be further reduced,
abbreviated as nf). We use NF to denote all terms having a normal form.

2. A closed term having head normal forms (hnf), i.e., there is a term M0 M1 ... Mi →β I where i ≥ 0 and
I ≡ λx.x. We use HNF to denote all terms having hnf . (Note that NF ⊂ HNF .). Example: λx.IxΩ,
where Ω ≡ (λx.xx)(λx.xx), has no nf but a hnf λx.xΩ. We can �nd a term (λx.xΩ)(λxy.y)I →β I.

3. A closed term having weak head normal forms (whnf), i.e., M0 →β R where R is an abstraction. We use
WHNF to denote all terms having whnf. (Note that HNF ⊂ WHNF .). Example, λx.Ω doesn't have
a hnf but is an abstraction.

4. A closed zero term, i.e., a term that don't have a whnf. We use Λ0\WHNF to denote the entire set of
the zero terms. Example: Ω is a zero term.
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The set (1) above gives the properties for a single closed term M0, we would like to de�ne a set for the
properties of the entire set of the closed lambda terms:

[Λ0]full = {(M0 M1. . .Mn, Q) | M0,M1, . . . ,Mn, Q ∈ Λ0;M0 M1. . .Mn →β Q;n ∈ N} (2)

To develop an approximation to the lambda calculus, we will consider all the terms having a whnf . We
do not consider closed zero terms because applying any term to a zero term either yields the zero term itself,
e.g., Ω →β Ω, or yields a term with a size 7 longer than the given zero term, i.e., Ω3 →β Ω3(λx.xxx) where
Ω3 ≡ (λx.xxx)(λx.xxx). With these said, we give the following de�nitions:

[Λ0]
′
= {(M0 M1. . .Mn, Q) |M0,M1, . . . ,Mn, Q ∈ Λ0;M0 M1. . .Mn →β Q;M0 M1. . .Mn ̸≡ Q;n ∈ N} (3)

where ̸≡ is meant not identical. Any zero terms that are β-reduced to themselves, like Ω, are �ltered out
from the set above.

To further �lter out the zero terms with their size growing along with β-reductions, we de�ne the following
with a reference to [Λ0]

′
:

[Λ0] = {(M0 . . . Mn, Q) | (M0 . . . Mn, Q) ∈ [Λ0]
′
; ∃(P,R) ∈ [Λ0]

′
[Q ∈ SUB+(P )]} (4)

Here, we use SUB(P ) to denote all the subterms of a term P , i.e., given P ≡ M N, then M,N,M N ∈
SUB(P ). We use SUB+(P ) to denote all the proper subterms of P , i.e., SUB+(P ) = SUB(P )\{P} 8.

The set [Λ0] says that (M0 . . . Mn, Q) ̸∈ [Λ0] unless the size of Q is controlled (limited). If the size |Q| of
Q is not under control, i.e., growing as long as it could go, say in�nite, the term P with (P,R) ∈ [Λ0]

′
in which

Q is a subterm would be even longer, too long to spell them out. To control |Q|, we must not allow a zero term
with a growing size to be M0 in a (M0 . . . Mn, Q) ∈ [Λ0]. It has been proved that (M0 . . . Mn, Q) ∈ [Λ0] if
and only if M0 is a whnf (Corollary 6.3 and 6.4 in [23]). Let I = λx.x, for example, the pair (I I, I) will be in
the set (4). As another example, λx.Ω can be a M0 such that ((λx.Ω)N,Ω) for any N ∈ Λ0 is in [Λ0]. While
a zero term cannot be M0, it may be a Mi where 0 < i ≤ n in (M0 . . . Mn, Q) ∈ [Λ0]. For example, we can
have (I Ω,Ω) and ((λxy.y) Ω,λy.y) ∈ [Λ0] while Ω is the second element of the pair ((λx.Ω) N,Ω) ∈ [Λ0].

Another characteristic of the set [Λ0] is that given a term M0, all the terms M0 M1, ...,M0 M1 ... Mn, ...
are considered to be further β-reduced even when a term M0 M1 ... Mn has been reduced with a result Q,
i.e., (M0 . . . Mn, Q) ∈ [Λ0]. Recall that a term M0 has a hnf if and only if there exists M1, . . . ,Mn ∈ Λ0,
where n ≥ 0, such that M0 M1 . . . Mn has a normal form (or reduced to I). If a term M0 M1 . . . Mn with a
�xed n doesn't have a normal form, it doesn't mean that the term M0 M1 . . . Mn Mn+1 . . . Mn+i doesn't
have a normal form for a i > 0. Even if a normal form has been found for a term M0 M1 . . . Mn, we continue
to enumerate terms M0 M1 . . . Mn Mn+1 . . . Mn+i for i > 0 to explore potentially additional normal forms.
For example, all the pairs (I I,I), (I I I,I), . . . are in [Λ0]. Clearly, some elements in [Λ0] are derivable from
others (or we call some elements redundant). A reduction process to eliminate such derivable (redundant)
terms is repeatedly used in de�ning EP databases and a learning algorithm later.

The set [Λ0] is the entire properties of the closed lambda terms in the lambda calculus, and we call it
the semantics of the lambda calculus that have a correspondence with EP databases and bounded functions
later. In the coming section, we �rst describe a partial computation process that produce approximations to
the set [Λ0].

B.2 Partial computations for approximations

To give a partial computation process to produce approximations to the lambda calculus, precisely [Λ0], we
assume (and we know it is possible) that all the terms in Λ0 are enumerated in a sequence. We assume a
speci�c sequence in this section (we will talk about other sequences later). Given M ∈ Λ0, we use #M to

7 the size of a term t, denoted as |t|, is the number of the symbols in t, [2].
8 Later, we use LMS(P ) to denotes the set of all leftmost subterms of P for a P ∈ Λ0. (Then we have P ∈ LMS(P ).
If M N ∈ LMS(P ), so is M .) Further LMS+(P ) denotes all the proper leftmost subterms of P , i.e., LMS+(P ) =
LMS(P )\{P}. (Clearly, LMS(P ) ⊆ SUB(P )).
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denote its index in the sequence. Using Cantor's diagonal method, we give the following set for a number of
computation steps s ∈ N in a correspondence to the set [Λ0]

′
:

[Λ0]
′

s = {(M0 . . . Mn, Q) | n,#M0, . . . ,#Mn,#Q ≤ s; M0 . . . Mn →(β,s) Q; M0 . . . Mn ̸≡ Q} (5)

where →(β,s) is meant β-reductions that are performed within s computation steps. The set [Λ0]
′

s is the

result of the partial computations toward [Λ0]
′
that are performed within s steps. The size of the set is

�nite, i.e., |[Λ0]
′

s| ≤ s ≪ |[Λ0]
′ |.

With a reference to [Λ0]
′

s, we de�ne another set in a correspondence to the set [Λ0]:

[Λ0]s = {(M0 . . . Mn, Q) | (M0 . . . Mn, Q) ∈ [Λ0]
′

s; ∃(P,R) ∈ [Λ0]
′

s [Q ∈ SUB+(P )]} (6)

Alternatively, we rewrite it as:
Definition B.1 An approximation to the lambda calculus is de�ned as the following set for a given number
of partial computation steps s ∈ N:

[Λ0]s = {(M0 . . . Mn, Q) | n,#M0, . . . ,#Mn,#Q ≤ s;M0 . . . Mn ↓s Q} (7)

where M0 . . . Mn ↓s Q denotes that M0 . . . Mn is β-reduced to Q within s steps using the leftmost reduction
strategy, M0 . . . Mn ̸≡ Q, and there exists a pair (P,R) ∈ [Λ0]

′

s such that Q ∈ SUB+(P ).
As an approximation to [Λ0], the set [Λ0]s for a given s ∈ N is �nite as its size is limited by s:

Proposition B.2 (Theorem 2.5 in [23])

1. [Λ0]s is �nite, i.e., |[Λ0]s| ≤ s.
2. [Λ0]s ⊆ [Λ0]s+1

3. [Λ0] = ∪s∈N[Λ0]s

The conclusion |[Λ0]s| ≤ s comes from the assumption that a computation step makes only one β-reduction
and adds at most one property pair into [Λ0]s.

Given a pair (P,R) ∈ [Λ0]s for a s ∈ N, we call P a s-redex and Q a s-reduct in [Λ0]s, where P is called
a �s-redex� because it is reducible in s steps of the partial computations and Q is called �s-reduct� because it
is a reduction result after s steps of the partial computations. The set [Λ0]s retains all the pairs of s-redexes
and s-reducts that we are interested in. This set as an approximation will be transformed to an EP database
in the coming section.

Appendix C - EP databases from the approximations

With a �nite set [Λ0]s, we move our attention away from the reduction process of lambda terms and focus
on relationships among the terms available in the set [Λ0]s. Without the β-reduction rule, a term in [Λ0]s
no longer represents what it is originally represented with the β-reduction rule. Instead, it barely serves as
a name representing one of its approximations speci�ed in [Λ0]s and the occurrences of the name in [Λ0]s
establish relationships with other terms. Further, the relationships among the terms in [Λ0]s are preserved
even if the closed terms Λ0 are syntactically substituted with another set of identi�ers. The set

[Λ0]s = {(I I, I); (I W,W); (W I, I)}

where I ≡ λx.x and W ≡ λx.xx, for example, is equivalent to the set

{a a := a; a b := b; b a := a}

We say that the two sets are equivalent because they give the same relationships between two objects,
represented by I and W in the �rst set or by a and b in the second set.

Before formally introducing a notion of database, we exclude some pairs that are derivable from others
in [Λ0]s, based on the characteristic of the partial computation that some functions may be enumerated
multiple times. We alternatively use the word �redundant� in the place of �derivable� in this article. The
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same redundant term elimination process is reused when a learning algorithm is introduced to prove the
learnability of a concept class of bounded functions later.

In Section 2, we allowed two terms sharing the same lms to be s-redexes in [Λ0]s, i.e., for some i > 0:

(M0 M1 . . . Mn, Q) ∈ [Λ0]s (8)

(M0 M1 . . . MnMn+1 . . . Mn+i, Q′) ∈ [Λ0]s (9)

The lambda calculus tells us that there exists a third expression Q Mn+1 . . . Mn+i such that it can be
reduced to Q′. Therefore we may have a third pair in [Λ0]s, i.e.,

(Q Mn+1 . . . Mn+i, Q′) ∈ [Λ0]s (10)

For example, When we have both (I I ... I, I) and (I I, I) in [Λ0]s, we only need the latter and we can
completely remove the former pair. Therefore, we exclude the second pair (9) from [Λ0]s and the resulting
set is denoted as [Λ0]+s :
Definition C.1 For an s ∈ N, a set, denoted as [Λ0]+s , is de�ned as

[Λ0]+s = {(M0 . . . Mn, Q) | n,#M0, . . . ,#Mn,#Q ≤ s;M0 . . . Mn ↓s Q; ∀P ∈ SUB+(M0 . . . Mn)[P ↑s]}
(11)

where P ↑s for a P ∈ [Λ0] denotes that there is not a R ∈ Λ0 such that (P,R) ∈ [Λ0]+s .
The set [Λ0]+s will be soon called an EP database right after we substitute its lambda term elements with

independent identi�ers (or function names). Before we start this process, we would like to see the e�ect of
removing elements like the second pair (9) from [Λ0]+s : the size of the s-redex P in each pair (P,R) ∈ [Λ0]+s is
most likely reduced but not necessarily all the time. (We do this analysis because the size of a term impacts
the cardinality of the database sets that can be produced from the partial computations to the lambda
calculus as discussed in Section 5.) The size of a term is de�ned as the number of symbols in the term [2].
For a convinence, we can roughly view the size of a lambda term to be the number of its lmss, i.e., given
a lambda term M N , its size |M N | = |M | + 1. Recall that the partial computation starts with a given
term M0 and subsequently evaluates all applications, M0 M1, ..., M0 M1 M2 ... Mn for n ≤ s. Also recall a
pair (M N,Q), where M N →β Q, will be in [Λ0]

′

s as long as M N ̸≡ Q. Would the size of the term M be
always 2 for all (M,Q) ∈ [Λ0]+s ? Many terms in [Λ0]+s , such as (I I, I), will have size 2. However, the answer
in general is no. When a pair (M N,Q) is calculated through a partial computation within computation
steps s, where M N ̸≡ Q, the pair cannot be in [Λ0]s if there doesn't exist another pair (P,R) ∈ [Λ0]

′

s and
Q ∈ SUB+(P ). Let R ≡ λxyz.z, for example, when R R is being calculated, R R →β (λyz.z)R, where

(λyz.z)R has not appeared in [Λ0]+s (or [Λ0]
′

s), then (R R, (λyz.z)R) ̸∈ [Λ0]
′

s. When the partial computation
process continue to evaluate R R R, since R R R →β R, we have (R R R,R) to be quali�ed to be in
[Λ0]+s .

Now we are ready to transform [Λ0]+s to an EP database. We �rst introduce a set (precisely a sequence)
of in�nitely many identi�ers, denoted as F. In F, a given identi�er, e.g., a, always has a �xed index number
denoted as #a. When the closed lambda terms Λ0 is ordered in a sequence by a index mapping function #,
F is bijective with Λ0 under #. For m ∈ F and M ∈ Λ0,m is said to the identi�er for the lambda term M
if #M = #m. Through the article, we use capital letters to represent closed lambda terms, e.g., M ∈ Λ0,
and small letters to represent identi�ers, e.g., m ∈ F. Given a letter with di�erent cases, e.g., m and M , we
imply that #M = #m.
Definition C.2 For a set of ordered pairs of closed lambda terms S, a new set, denoted as S(F/Λ0), is
obtained by replacing closed terms in S with their corresponding identi�ers in F and rewriting a pair as an
assignment, that is

S(F/Λ0) = {m0 . . . mi := q | (M0 . . . Mn, Q) ∈ S}

A set S in the de�nition above can be [Λ0], [Λ0]s, or [Λ
0]+s . We rewrite them as

[Λ0](F/Λ0) = {m0 . . . mn := q | n,#m0, . . . , #mi,#q ≥ 0;M0 . . . Mn ↓ Q}
[Λ0]s(F/Λ

0) = {m0 . . . mn := q | n,#m0, . . . , #mi,#q ≤ s;M0 . . . Mn ↓s Q}
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[Λ0]+s (F/Λ
0) = {m0 . . . mn := q | n,#m0, . . . , #mi,#q ≤ s;M0 . . . Mn ↓s Q; ∀P ∈ SUB+(M0 ... Mn)[P ↑s

]}
We take a closer look at the structure of the set [Λ0]+s (F/Λ

0) for a s ∈ N, which we call a database. In
[Λ0]+s , an element is an ordered pair, separated by �,�, to demonstrate that the �rst element is reduced to
the second element. In [Λ0]+s (F/Λ

0), an element is an ordered pair, separated by �:=�. We call such a pair
an assignment to demonstrate that the assignee is assigned with the assigner as a value. With the de�nition,
assignee, assigner, and their sub expressions in a correspondence inherit the structure of s-redex, s-reduct,
and their subterms in [Λ0]+s . To be able to construct databases without referencing the lambda calculus, we
de�ne them independently.
Definition C.3 Based on the set F, we introduce a set of expressions, denoted as E, that is de�ned induc-
tively as follows

x ∈ F =⇒ x ∈ E

x, y ∈ E =⇒ (x y) ∈ E

We call a member of E an Enterprise-Participant (EP) term, or brie�y a term whenever we can tell
the di�erences between a lambda term and an EP term. Clearly, the assignees, the assigners, and their sub
expressions in De�nition C.3 are EP terms. Also note that E and Λ0 are bijective too, i.e., each m in E has
a corresponding M in Λ0, and each M in Λ0 has a corresponding m in E.

We adopt all applicable notations of the lambda calculus for EP terms, e.g., (proper) subterm, (proper)
leftmost subterm (lms), and omitting parentheses whenever possible when considering a term being parsed
by the preference of left association, and |m n| = |m|+ 1.

The set [Λ0]+s (F/Λ
0) for a s ∈ N has a constrained structure as following, which becomes the constraints

for EP databases (see Theorem 3.4 in [Xu 2017] for the proof):
Theorem C.4 Given a set [Λ0]+s (F/Λ

0), renamed as D:

1. D is �nite, i.e., a �nite set of assignments.
2. Each assignee has only one assigner, i.e.,

p := q1 and p := q2 ∈ D =⇒ q1 ≡ q2

3. A proper subterm of an assignee cannot be an assignee, i.e.,

p := q ∈ D =⇒ ∀x ∈ SUB+(p)[∀m ∈ E [x := m /∈ D]]

4. An assigner must be a proper subterm of an assignee. i.e.,

p := q ∈ D =⇒ ∃c, d ∈ E [c := d ∈ D and q ∈ SUB+(c)]

Note that an application in De�nition C.3 can be mapped in di�erent ways. Suppose that M and N are
mapped to m and n in De�nition C.3, where m,n ∈ F and therefore #m and #n are de�ned (and #(m n) is
not de�ned since (m n) is not in F). We have two options to map the application M N . One is to map it to
m n and the other is to map it to a p ∈ F such that #p = #(M N). Nevertheless, it makes no di�erence in
choosing either m n or p in [Λ0]+s (F/Λ

0), as long as all the occurrences of M N in [Λ0]+s are converted in the
same manner. The reason is that the semantics of p and m n converge to be identical when the computation
steps s approaches in�nity.
Definition C.5 A database D is a set of assignments p := q, where p ∈ E and q ∈ E , such that the set
meets the properties described in Theorems C.4.1, C.4.2, C.4.3, and C.4.4.

When an assignment p := q is in a database D, denoted as p := q ∈ D, we also say that a subterm m of
p or q is in the database D, denoted as m ∈ D.

Appendix D: The class Y is equivalent to Z

It was shown that the EP data model is semantically equivalent to the lambda calculus in [23]. The proof
was done via a another function Z(Di) for all i ≥ 0, where

⋃
i∈N Z(Di) is semantically equivalent to the
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lambda calculus (Theorem 7.2 in [23]). In this section, we relate Y (Di) closely together with Z(Di) and show
that the sequence of Y (D0), Y (D1), ... is semantically equivalent to the lambda calculus as well.

For any sequence of normal forms m0, . . . ,mk ∈ NF (D) and k ≥ 0 under a given database D, there
exists a normal form q ∈ NF (D) such that m0 . . . mk →D q. That is, the set of all such pairs is:

Z(D) = {(m0 . . . mk, q) | m0, . . . ,mk, q ∈ NF (D); k ≥ 0;m0 . . . mk →D q}

The set Z(D), from Corollary 4.9 in [23], was the key notion that allows an EP database to be expressed
in a λ-term with whnf and therefore leads the proof that the EP data model is semantically equivalent
to the lambda calculus in the hypothesis of in�nite time and space in [23]. In the rest of the section, we
show that Y (D) and Z(D) are semantically equivalent and therefore the in�nite sequence (class) of bounded
functions Y (D0), Y (D1), ..., where the sequence of databases D0, D1, ... are converted from a sequence of
approximations [Λ0]0, [Λ

0]1, ..., is semantically equivalent to the lambda calculus.
Lemma D.1 Given a database D, Z(D) is a proper subset of Y (D), i.e., Z(D) ⊂ Y (D).
Proof The function Y (D) : E → NF (D) is de�ned as:

Y (D) = {(m,n) | m ∈ E, n ∈ NF (D), and m →D n}

The set (actually a function) Z(D) is de�ned as

Z(D) = {(m0 . . . mk, q) | m0, . . . ,mk, q ∈ NF (D); k ≥ 0;m0 . . . mk →D q}

1. For any pair (p, q) ∈ Z(D), the pair (p, q) is in Y (D) as well, i.e., (p, q) ∈ Y (D). This is because
that m0, . . . ,mk, q ∈ NF (D) implies m0, . . . ,mk, q ∈ E, as NF (D) ⊂ E, and because of the strong
normalization of the EP reduction rules: any EP term is e�ectively reduced to one and only one normal
form (Theorem 4.5 of [23]). Therefore, we conclude Z(D) ⊆ Y (D).

2. There are some elements in Y (D) that are not in Z(D). Some terms that have null as the normal form
are not considered in the set Z(D). If m null n := q ∈ D and p ̸∈ D, for example, we have m p n →D q
according to De�nition 4.2.2, but (m p n, q) ̸∈ Z(D). Therefore, Z(D) ⊂ Y (D). ~

Lemma D.1 states that the set Y (D) is a true enumeration of a database D. The set Z(D) is not an
enumeration of a database D but Z(D) is more essential than Y (D), i.e., Y (D) can be derived from Z(D):
Lemma D.2 Given a database D, there is an enumeration process that produces Y (D) from Z(D).
Proof For any m ≡ m0 m1 ... mk ∈ E for a k ∈ N, we check individual terms m0,m1, ...,mk against the
�nite set of the normal forms NF (D) in a given database D. If a term mi for 0 ≤ i ≤ k is not a normal
form, i.e., mi ̸∈ NF (D), we reduce it into a normal form, say m

′

i ∈ NF (D) and replace mi ∈ NF (D) with

m
′

i ∈ NF (D) in m. The resulting term, i.e., m′ ≡ m[m
′

0/m0,m
′

1/m1, ...,m
′

k/mk], is the element in Z(D)
from which m can be derived such that m →D m′. ~

Because Z(D) is a proper subset of Y (D), by Lemma D.1, and because Y (D) can be derived from Z(D),
by Lemma D.2, we conclude that Y (D) and Z(D) are semantically equivalent:
Theorem D.3 1) Given a database D, Y (D) and Z(D) are semantically equivalent.
2) The sequence (class) of bounded functions Y (D0), Y (D1), ..., where the sequence of databases D0, D1, ...
are converted from a sequence of approximations [Λ0]0, [Λ

0]1, ..., is semantically equivalent to the lambda
calculus.
Proof 1) by Lemmas D.1 and D.2. ~
2) Because the sequence Z(D0), Z(D1), ... is semantically equivalent to the lambda calculus, where D0, D1, ...
are converted from a sequence of approximations [Λ0]0, [Λ

0]1, ... by Theorem 7.2 of [23], so is the sequence
of Y (D0), Y (D1), ... according to Theorem D.3.1. ~

Appendix E: Concept classes from approximations to the lambda calculus

In Appendix B and C, we reviewed the partial computation process that takes a �xed sequence of the closed
lambda terms, determined by an index mapping function #, to generate a sequence of approximations to
the lambda calculus, which was originally introduced in [23]. By syntactically converting a sequence of the
approximations, we obtain a sequence of databases, denoted as D0, ..., Ds for computation steps s ∈ N, which
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are further interpreted as a sequence of bounded functions, denoted as Y (D0), ..., Y (Ds). This sequence of
the bounded functions is not a concept class we are going to discuss regarding learnability because given
a �xed mapping function #, only one database Ds is generated for a number of computation steps s, and
Y (Ds) is only one function. For a given s, we need a class of databases and a class of bounded functions
from which a target function can be learned. In this section, we will introduce a sequences of classes that
has its dimension (logarithm) growing polynomially and therefore is e�ciently PAC learnable.

Rather than a single index mapping function #, we develop concept classes from the approximations that
are generated from in�nite many index mapping functions, denoted as#0,#1, ..., which are in correspondence
to a �xed sequence of identi�ers in F such as a0, a1, .... For example, the λ term I ≡ λx.x may be assigned
with an index number 0 in #0 in a correspondence to the identi�er a, and W ≡ λx.xx is assigned with
the same index number 0 in #1 in the same correspondence to the identi�er a. We further give a learning
algorithm that constructs a database to approximate another target database and show that the concept
classes developed in this section are e�cient PAC learnable.

For a given sequence of computation steps 0, 1, ..., s ∈ N and for index mapping functions #0,#1, ..., we
use [Λ0]#i,j to denote the approximation, in a correspondence to a [Λ0]s in De�nition B.1, that are generated
from partial computations to the set of closed lambda terms Λ0 ordered by the index mapping function #i

within computation steps j. Therefore, given a s as the maximum computation steps, we will have sequences:

[[Λ0]]s = {[Λ0]#0,s, [Λ
0]#1,s, ...}

Ds = {D#0,s, D#1,s, ...}
Ys = {Y (D#0,s), Y (D#1,s), ...}

where [[Λ0]]s is a sequence of approximations generated from partial computations up to computation steps s
to the lambda terms ordered under index mapping functions #0,#1, ... respectively, Ds is the corresponding
sequence of databases converted from [[Λ0]]s, where D#i,s for i ∈ N is the database generated from the
partial computations within steps s to the lambda terms ordered by the index mapping function #i, and Ys

is the sequence of bounded functions in a correspondence to Ds.

Because s is �nite and the number of identi�ers in Ds is �nite as the index mapping functions #0,#1, ...
are always in a correspondence to a �xed sequence of identi�ers in F such as a0, a1, ..., it is clear that Ds has
only a �nite number of databases while each database has a �nite number of assignments, as in�nite many
databases are identical although the number of unique approximations in [[Λ0]]s is in�nite. With this said,
we rede�ne Ds and Ys:

Ds =
⋃
i∈N

{D#i,s}

Ys =
⋃
i∈N

{Y (D#i,s)}

Proposition E.1 1) A single databases D#i,s for any i, s ∈ N takes at most s assignments, i.e., |D#i,s| ≤ s.

2) |Ds| and |Ys| are equal and they are �nite.

Proof 1) The result is based on Proposition B.2 and De�nition C.1, where each computation step produces
at most one assignment.

2) We have |Ds| = |Ys| because Ds has a one to one correspondence with Ys. They are �nite as we have
discussed earlier in this subsection. ~

Proposition E.2 The set of assignees a single database D#i,s for any i, s ∈ N can potentially take is
Xs = {a0, ..., as}|{a0,...,as}| with the size of at most ss.

Proof In [Λ0]+s (F/Λ
0) as de�ned in De�nition C.3, each assignee m0 . . . mn has the maximum size of s

because n ≤ s. Each identi�er mi for 0 ≤ i ≤ n in an assignee can be any one of the �rst s identi�ers from
the given sequence of identi�ers F. Therefore, the maximum number of potential assignees in a database is
at most ss. ~
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We had said earlier that the total number of databases in Ds is �nite because the total number of
identi�ers and the size of each term in the database are �nite. We are giving a better estimation on how
many databases in Ds.
Proposition E.3 The cardinality of the set of bounded functions Ys is |Ys| < s(2s

2).
Proof Like in [F, k], we only consider the databases with the assignees having the largest size s in the set
Ds. Such databases dominates Ds as the number of these databases is larger than the number of the others
with smaller sizes.
1) Instance spaces for databases in Ds Let X be the set of assignees in a database D ∈ Ds, alternatively
called an instance space. For two di�erent databases D1, D2 ∈ Ds, although their sizes are the same in
general, i.e., |D1| ≈ |D2| ≤ s, the instance spaces X1 and X2 may be completely di�erent. Let Xs denote
the set of all such instance spaces. The maximum number of di�erent instance spaces of the set of databases
in Ds is the number of choices to select s assignees without repetition from the total number of potential
assignees ss, i.e.,

|Xs| ≤
(
ss

s

)
< s(s

2)

2) Normal forms for database sets The maximum size of a term in a database is at most s according
to De�nition C.2 (de�ned in Appendix C). Therefore a normal form must be a term with size less than s
according to the de�nition of database in De�nition 2.1. Therefore, there are a total of 1 + 11 + 22...+ (s−
1)s−1 < ss unique normal forms, denoted as |NF |, in Ds.
3) The size |Ds| and |Ys| For a unique instance space X, the number of the total databases taking the

instance space X is |NF |s ≤ (ss)s = s(s
2) as a database has only at most s assignments. For a total of

|X| < s(s
2) di�erent instance spaces for databases in Ds, there are at most |NF |s × |Xs| < s(2s

2) databases.

Therefor |Ds| = |Ys| < s(2s
2).~

With the class of bounded functions Ys over the set of instance spaces Xs for a given s ∈ N, we can
de�ne a family of such classes Ys =

⋃
0≤i≤s Yi over Xs =

⋃
0≤i≤s Xi. In correspondence, we denote the

family of databases as Ds =
⋃

0≤i≤s Di.
Proposition E.4 1. |Ds| ≤ |Ds+1|
2. |Ys| ≤ |Ys+1|
3. dim(Ds) and dim(Ys) are in polynomial in s: log |Ds| = log |Ys| < (2s2 + 1)log(s).
Proof The conclusions 1 and 2 are clear from the de�nitions of Ds and Ys. The conclusion 3 comes from
Proposition E.3:

log |Ds| = log(|Y0|+ ...+ |Ys|) < log(s× |Ys|) < log s× s(2s
2) = (2s2 + 1)log(s)

~

The polynomially growing dimension of Ys has determined that Ys is e�ciently PAC learnable:
Theorem E.5 The concept class Ys for any s ∈ N is e�ciently PAC learnable.
Proof According to Theorem 2.2 of [10] and Theorem 5 of [13], the concept class Ys for any s ∈ N is
e�ciently PAC learnable because log|Ys| < (2s2 + 1)log(s), a polynomial in s. ~

Appendix F - DS dimensions of concept classes

In this section, we discuss the DS dimensions of the concept classes we have discussed so far. There are no
new conclusions from this section. But it provides an integral and consistent view.

In parallel to a sequence of database sets D = {D0,D1, ..., } (accordingly [F0, 0], [F1, 1], ...) and corre-
spondingly a sequence of bounded function sets Y = {Y0,Y1, ..., } (accordingly [[F0, 0]], [[F1, 1]], ...), in this
section, we continue to use general notations D0,D1, ... and Y0,Y1, ... that are applicable to an arbitrary
sequence of database classes and corresponding sequence of bounded function classes in addition to Yk and
[F, k]. We show the DS dimension of a class Yk for a k ∈ N is the size of the corresponding database.

Before we do so, we need to give additional notations. Given a class Dk for any k ∈ N, we use NF(Dk)
to denote all the normal forms in individual databases of Dk, i.e., NF(Dk) =

⋃
D∈Dk

NF (D). Given a

Dk, we use LMS(Dk) and LMS+(Dk) for all the lmss and the proper lmss in Dk respectively. Further
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we use LMS−(Dk) to denote all improper lmss, i.e., LMS(Dk)\LMS+(Dk). For example, LMS−(Dk) =
{a a, a null} for the class of the databases Dk is

{{}, {a null := a}, {a a := a}, {a null := a; a a := a}}

We single out the improper lmss LMS−(T ) to show that a subset of such lmss determines the DS
dimension of the corresponding class of bounded functions.

To be consistent with literature such as [17], [6], [4] in notation, we exchangeably use H in the place of
Yk : E×NF(Dk), which can be written as Yk ⊆ (NF(Dk))

E.
We use Y to denote the co-domain NF(Dk) of Yk, and S to denote a �nite subset of Ed, i.e., S ⊂ Ed,

where d ∈ N, such that S would be DS-shattered by Yk. For h : E → NF(Dk), and S = (x1, . . . , xd) ∈ Ed,
the projection h|S of h to S is the map from [d] to Yk de�ned by i 7→ h(xi), where [d] = {1, 2, . . . , d}. The
projection of Yk to S is H|S = {h|S : h ∈ H} ⊆ (NF(Dk))

d. (Note that h is used for a bounded function
Y (D) where D ∈ Dk.)

Given a Yk, there is a S ⊆ LMS−(Dk) such that (NF(Dk))
|S| ⊆ Yk shatters S. As special cases,

[F0, 0] ≡ {{}, 0} and [F1, 1] ≡ {{a}, 1} do not have an assignee, therefore they have 0 as the DS dimension,
a trivial case. Before we look at [F2, 2], we see the database class above having the the pseudo cube:

a a a null
{} null null

{a null := a} null a
{a a := a} a null

{a null := a; a a := a} a a

where the columns a a and a null show the outputs of Y (D)(x) when x ∈ {a a, a null} and D is an element

in the above database class. In the example above, |(NF(Dk))
LMS−(Dk)| = |Yk|, i.e., Yk shatters its own

instance space.
We will see the DS dimension of [Fk, k] with k > 1 in general. But we give an analysis on [F2, 2] = [{a, b}, 2]

�rst. Because there are a total of 3 normal forms a, b, null and there are a total of 4 assignees: a a, a b, b b, b a,
one of the largest databases has 4 assignees (assignments) and we have a total of 81 databases. In this case,
[[{a, b}, 2]] shatters the 4 assignees {a a, a b, b b, b a}. See Appendix A.1 for a 4 × 81 matrix as the pseudo
cube of [[{a, b}, 2]].

For a [Fk, k] in general, we will have the concept class [[Fk, k]] to shatter the set of the entire set of
improper lmss with the size of k+k2+ ...+k(k−1). For [F3, 3], there are a total of 13 normal forms (including
null), 27 improper assignees, and |[[F3, 3]]| = 1327. Therefore the pseudo cube is represented in a matrix
with size of 27× 1327.

Because a database cannot be practically constructed exponentially to �ll up the maximum capacity of
kk assignments in a class [Fk, k], as if a linked list cannot be fully populated in practice, we are not bothered
to have the negative result that [[Fk, k]] is not e�ciently PAC learnable. (The high cardinality actually
demonstrates a high expressiveness of the EP data model as a positive characteristic.) Instead, our focus
is on those databases that can be constructed linearly or polynomially, which is the nature of the entire
computation theory having the Turing machine that can only sequentially (and parallelly) produce partial
computational results and the nature of our computation practice today and tomorrow. A good example of
such applications we are interested in is a class of graphs de�ned in Section 4 (as attached in Appendix A.4)
that is e�ciently PAC learnable.

Regarding a database class Ds for a given s ∈ N converted from approximations to the lambda calculus,
we have a maximum number of s identi�ers and of assignees in a database. Such a linear growth of the
cardinality of a database says nothing but that not all improper lmss as assignees in Ds are shattered by Ys.
This is due to the natural of the partial computations to the lambda calculus: By the time the computation
steps s ends up with a set of improper lmss LMS−(Ds), it is most likely that not all the databases have
been generated in Ds. In other words, the corresponding concept class Ys most likely has not been �lled
with adequate components to DS-shatter the instance set of the improper lmss LMS−(Ds). However, there
is a smaller computation steps s

′
such that the concept class Ds′ has been fully constructed and Ys′ (and

therefore Ys) DS-shatters the instance set of the improper lmss LMS−(Ds′ ). For example, Ys′ for a large s
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would include [[{a, b}, 2]] that guarantees the DS dimension of Ys′ is at least 4. Although the instance space
of Ys includes additional assignees like a b c, but none of the databases in Ds are constructed enough to have
the additional assignees being DS-shattered.

With that being said, we will show that given a Dk with a corresponding pseudo cube [[F, k
′
]], the

instances S shattered by Yk is the set of the improper assignees LMS−([F, k
′
]).

Lemma F.1 Given a Dk with a corresponding pseudo cube [[Fk′ , k′]], let D ∈ [Fk′ , k′] and m := p ∈ D.
Then m or a term t, where t →D m, must be an instance of S.
Proof Assume m and a term t are not in S. We can �nd another D1 ∈ [Fk′ , k

′
] and Y (D1) ∈ [[Fk′ , k

′
]] such

that D = D1 ∪ {m := p} because D is always constructed on the top of another database (and also the
pseudo cube [[Fk′ , k′]] requires such an D1 exists). In this case, the two corresponding bounded functions
show the same behavior, i.e., Y (D)(xi) = Y (D1)(xi) for all i ∈ [d] in S. This contradicts that S is shattered.
(Note when m := p is in D but not in D1, D1 that we choose as a proper subset of D would never have
an assignment n := q such that the assignee n is a proper lms of m, i.e., n ∈ LMS−(m). For example, if a
single-assignment database is D ≡ {a b c := p}, then we would choose {} but not {a b := p} as D1.) ~
Lemma F.2 Given a Dk with a corresponding pseudo cube [[Fk′ , k′]], let D ∈ [Fk′ , k′] and two equivalent
terms t1 and t2 , i.e., t1 =D t2. The two terms t1 and t2 cannot be two instances in S simultaneously.
Proof Assume t1 and t2 are both in S and t2 →D t1 for a D ∈ [Fk′ , k′]. Assume t1 →D n, the normal
form of t1 under D. Then t2 →D n as well. Certainly, we can �nd another database D1 ∈ [Fk′ , k′] such that
t1 →D1 n and t2 →D1 n (when the DS-dimension of [[Fk′ , k′]] is larger than 2), such as when there is a
single assignment in both D and D1 that drives the same reduced result n. But we are more interested in
�nding another database D2 ∈ [Fk′ , k′] such that t1 →D2

p, where p ̸≡ n, and at the same time t2 →D2
q,

where q ̸≡ n. Certainly, there is possibly a database D3 ∈ [Fk′ , k′], such that t1 →D3
p and t2 →D3

n.
But if that is the case, we can always �nd D2, where D2 and D3 are identical except for t2 →D2 q and
t2 →D3 n. The properties of the pseudo cube [[Fk′ , k′]] guarantees that such D2 and D3 exist in [Fk′ , k′].
This concludes: Y (D)(t1) ̸≡ Y (D2)(t1) and Y (D)(t2) ̸≡ Y (D2)(t2). This is a contradiction to the conclusion
that S is shattered by [[Fk′ , k′]] ~
Lemma F.3 A normal form cannot be an instance in S.
Proof Given m := p ∈ D and t →D m, where we have m →D p. If p, a normal form, is in S, then both m
and t cannot be in S according to Lemma F.2. But this is contradict to Lemma F.1 which requires either m
or t be in S. ~
Theorem F.4 Given a Dk with the largest pseudo cube [[Fk′ , k′]] having the instances set S being DS-
shattered by [[Fk′ , k′]] (and therefor Yk), the elements of S come from LMS−(Dk), i.e., S ⊆ LMS−(Dk)
and precisely |S| = |LMS−([Fk′ , k′])|.
Proof Since a normal form cannot be an instance in S (Lemma F.3), two equivalent terms cannot be in S
simultaneously (Lemma F.2), and either an assignee or another term that is reducible to the assignee must
be in S (Lemma F.1), we choose assignee to be in S.

If an assignee t1 is a proper lms of another assignee t2 in NF(Dk), then t1 is no longer an assignee but
a normal form in a database D where t2 is an assignee. Because a normal form cannot be an instance in S,
t1 is not an instance of S.

Because the concept class Yk has the given (largest) pseudo cube [[Fk′ , k′]], the instances shattered by
Yk are precisely those LMS−([Fk′ , k′]), i.e., |S| = |LMS−([Fk′ , k′])|. ~

The number of assignees are the same number of assignments in a database. Therefore, we can say that
the DS dimension of Yk is proportional to the number of assignments in one of the largest databases in Dk.
We also say that a concept class Yk is e�ciently PAC learnable if a database is practically constructible,
i.e., the size of the largest database in the corresponding database class grows linearly or polynomially in k.
Theorem F.5 A concept class Yk is e�ciently PAC learnable if a database is practically constructible, i.e.,
the size of the largest database in the corresponding database class grows linearly or polynomially in k.
Proof Given a class of databases Dk, let the number of assignees in one of the largest databases and the
number of the maximum size of a term t are kn for a constant n > 0. This is nothing more than Theorem
E.5 except that the number s is replace by kn. Therefore log|Ykn | < (2(kn)2 + 1)log(kn) = 2k2n n log k, a
polynomial in k
According to Theorem 2.2 of [10] and Theorem 5 of [13], Yk is e�ciently PAC learnable because log|Ykn | <
2k2n n log k, a polynomial in k. ~
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Fig. 1. The pseudo cube for [F, 2]


