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ABSTRACT

The evaluation of large language and multimodal models requires benchmarks that
go beyond simple knowledge retrieval to assess complex reasoning, especially in
scientific domains such as biology. Existing biology benchmarks fall short, either
being text-based, too low-level, or lacking the integrative reasoning needed for
expert-level problems. To address this problem, we introduce OlymBio-Bench,
a novel, expert-level multimodal benchmark for biology. Sourced from over 220
frontier research papers in life sciences and curated by a dedicated team of over 60
authors and reviewers, our benchmark is uniquely challenging, requiring sophisti-
cated inference and multi-step reasoning within realistic research contexts. A key
feature is its inherent multimodality, with a large majority of questions incorporat-
ing essential images, diagrams, and data plots that demand integrated visual and
domain-specific understanding. We evaluated a range of state-of-the-art models
on OlymBio-Bench, and our results reveal that even the most powerful models
fail to achieve a passing score, highlighting critical deficiencies in their ability to
perform complex, multimodal scientific reasoning. We further demonstrate a strong
correlation between question complexity and model failure rates, with multimodal
questions posing a more significant challenge than text-only ones. Our findings
confirm that OlymBio-Bench is a formidable and unsolved challenge that can serve
as a critical resource to catalyze the development of next-generation AI models
capable of more advanced biological scientific reasoning.

1 INTRODUCTION

The rapid progress of large language models(LLMs) creates an urgent need for rigorous evaluation.
Benchmarks are not only for scorekeeping; they diagnose weaknesses, track meaningful progress,
and guide the design of models. Besides, specialized benchmarks are crucial to the development
of subject-targeted models. Biology is a particularly demanding domain: beyond factual recall,
it requires integrating disparate information sources, interpreting complex experimental data, and
executing multi-step reasoning. As models are increasingly tasked with higher-level problem solving,
there is a clear need for benchmarks that mirror authentic research complexity and assess expert-level
scientific reasoning rather than simple knowledge retrieval.

Existing life-science benchmarks have begun to evaluate the reasoning of models and their ability
to handle realistic biological scenarios. Recently, researchers have also emphasized visual question
answering and chart/figure understanding, but these efforts typically target general-purpose perception
or under expert-level content rather than domain-specific expert-level biology. In contrast, OlymBio-
Bench is purpose-built to fill this gap by combining (i) research-style, expert-level biological problems,
and (ii) visual inputs that are essential to solving the tasks.

To meet this need, we introduce OlymBio-Bench, an expert-level, multimodal benchmark for
biology. OlymBio-Bench is built from an original self-designed collection of problems themed on the
International Biology Olympiad (IBO) that situate complex questions in realistic research contexts.
The problems span many subdisciplines and require sophisticated inference. Crucially, the benchmark
is inherently multimodal: a majority of questions include essential figures (images, diagrams, plots)
that require visual understanding tightly integrated with domain knowledge.

The evaluation results reveal a clear performance hierarchy in which the newer models oriented to
reasoning outperform the predecessors, indicating that the benchmark effectively captures meaningful
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capability differences. At the same time, even the strongest models fall well short of perfection,
underscoring persistent gaps in multimodal biological reasoning. We release OlymBio-Bench as a
resource to catalyze the development of next-generation models that reason more like human experts
and can better accelerate biological discovery.

2 RELATED WORK

2.1 THE DEVELOPMENT OF LARGE LANGUAGE MODELS

Over the past few years, LLMs have advanced rapidly—from “follow directions” to “think and reason”
to “search deeply and synthesize evidence”. The first milestone was the rise of instruction-tuned
models, which use supervised fine-tuning and human feedback to reliably follow natural-language
prompts. ChatGPT (OpenAI, 2022) popularized this paradigm, combining instruction tuning with
context handling to deliver a better conversational experience. Soon after, models like GPT-4(OpenAI,
2023) expanded beyond pure text to handle multimodal inputs (e.g., images) and showed stronger
logical consistency on complex tasks. Recent GPT-4.1(OpenAI, 2025a) also emphasize longer-
context understanding and instrution following, improving performance on document-level tasks.
There are also models such as Qwen 2.5 lines(Bai et al., 2025).

The next shift has been toward reasoning models, which allocate extra test-time compute to deliberate
through multi-step problems before answering. Examples include GPT-4o(OpenAI, 2024), which are
designed to use chain of thoughts methods, enabling more reliable solutions in math, coding, and
analysis. Grok4(xAI, 2025) from xAI is also a popular reasoning model.

The latest trend is deep-research or agentic models—systems that iteratively search, read, and reason
to produce evidence-backed syntheses or reports. Instead of “search once, then answer”, these models
loop through “search → reason → search → reason”, cite sources, and converge on defensible
conclusions. Representative examples include OpenAI’s Deep Research approach GPT-5(OpenAI,
2025b) and Google’s Gemini-2.5-Pro(Comanici et al., 2025), which pair web exploration with
structured reasoning to deliver analyst-style outputs.

2.2 LLM BENCHMARKS TARGETED AT BIOLOGY

Benchmarks not only evaluate models; they also steer progress by revealing where capabilities lag.
To rigorously assess whether contemporary LLMs can solve biological problems, biology-focused
benchmarks are essential. Below we situate domain-specific efforts within the broader landscape of
science benchmarks.

General science benchmarks such as GPQA (Rein et al., 2024) and SuperGPQA (Du et al., 2025)
probe expert-level knowledge with carefully curated questions, but they are text-only and thus cannot
test reasoning over figures, diagrams, or data visualizations that are central to biological inquiry.
ScienceQA (Lu et al., 2022) aligns with K–12 curricula, limiting its utility for advanced assessment.
MMLU (Hendrycks et al., 2020) includes biology but is predominantly undergraduate in scope,
constrained to multiple-choice text, and misses the integrative, cross-modal reasoning typical of
research settings. PubMedQA (Jin et al., 2019) targets biomedical question answering grounded in
PubMed, requiring interpretation of quantitative results and statistics, yet it, too, remains largely
text-centric. These scientific benchmarks surface important abilities but leave a notable gap for
expert-level multimodal biological reasoning.

Among biology-specific resources, LAB-Bench(Laurent et al., 2024) is a comprehensive suite
practical research tasks (e.g., literature search, protocol planning, data analysis). It evaluates abilities
such as literature recall and reasoning (LitQA2, SuppQA), figure and table interpretation (FigQA,
TableQA), and protocol design (ProtocolQA). Although multimodal, most tasks are relatively short
and direct, offering limited stress on extended chains of reasoning. Other benchmarks tend to focus
on subdisciplines—such as the multimodal virology benchmark VCT(Götting et al., 2025) and the
computational biology data-analysis suite Bix-Bench(Mitchener et al., 2025).

In summary, current resources provide valuable snapshots of factual recall and text-only problem
solving but fall short on comprehensive, expert-level biology questions that demand synthesis across
heterogeneous evidence (e.g., experimental plots, microscopy images, statistical charts). This gap
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motivates a benchmark that explicitly targets multimodal, expert-level reasoning. Accordingly, we
introduce a benchmark designed to probe the limits of domain knowledge and analysis, enabling
precise evaluation of factual competence, reasoning depth, and robustness on expert-level biology
tasks.

3 METHODS

3.1 DATA COLLECTION

All questions were sourced from practice sets originally developed for participants in International
Biology Olympiad (IBO, the highest-level event for biology Olympiad). These questions are covered
by confidentiality agreements and access controls, and are not publicly available (e.g., via web search).
In addition, every question underwent a structured curation pipeline—including drafting, expert
review, and selection—the full workflow of which is shown in Figure 1.

OlymBio-Bench: A Multimodal Challenge Towards Expert-Level Biological Reasoning

Item author

Item Pool

Submission

Reviewer 1

Reviewer 2

Reviewer 3

Independent
 review

Internal Item
Bank

Pass

Fail

Review
Suggestions

Revise

OlymBio-Bench

Sampling based on
subject distribution

Subject-specific test
questions

Human Expert
Inspection

Figure 1: Workflow of data collection

During item creation phase, three distinct roles were involved: the item author, the reviewers,
and the item revision specialist. After an item was initially drafted by the author according to
predefined requirements, it was independently evaluated by three reviewers. These reviewers worked
separately without communication and provided individual feedback. All review comments were
then compiled and delivered to the item revision specialist, who modified the items based on the
reviewers’ suggestions and conducted an additional review before finalization. This workflow was
intentionally designed to have a dedicated revision specialist, rather than the original author, perform
modifications to mitigate potential errors arising from the author’s cognitive biases or misconceptions.
In addition, independent input from three reviewers allowed the revision specialist to cross-validate
the feedback, thus reducing the risk of erroneous or overlooked revisions.

After being subjected to four rounds of review, the items were finalized and incorporated into an
internal item bank. From this repository, we selected 363 items characterized by high discriminatory
power and strong reasoning demands. These items are typically located within authentic biological
research contexts and require respondents to integrate biological knowledge with logical reasoning
to formulate correct answers. During the selection process, we did not refer to any AI-generated
responses to these items. Upon completion of the screening, human experts were again invited to
examine the selected items, which were ultimately designated as the test set for this study.
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Figure 2: Distributions of question lengths and figure counts in OlymBio-Bench.

We analyzed the distribution of item lengths and the figure counts in the test set, with the results
presented in Figure 2. Additionally, we quantified the proportion of items from various biological
subdisciplines included in the test set, as shown in Figure 3.

It can be observed that coverage across disciplines is relatively even, enabling a well-balanced
evaluation of the model’s capabilities without strong bias toward any particular subfield. This is a
key advantage of OlymBio-Bench over HLE and other benchmarks: it spans a more comprehensive
range of biological subjects. Moreover, many terms are inherently interdisciplinary—for example,
items in Genetics and Evolutionary Biology require models to combine genetic knowledge with
an evolutionary background—making the benchmark better suited to assessing a model’s ability to
integrate knowledge for reasoning.

Figure 3: Distribution of Questions by Biological Disciplines.

3.2 BASELINE MODELS & PROMPT

Given that the majority of questions in the OlymBio-Bench benchmark are image-based, our study
primarily utilized Vision-Language Models (VLMs). The evaluated models include the GPT-4.1,
GPT-o4-mini, GPT-4, and GPT-5 series; the Gemini-2.5 series; the open-source Qwen-2.5-VL series;
and Grok-4.

We conducted the evaluation using a zero-shot prompting methodology. The prompt is shown below:
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Evaluate each of the following statements, determining if it is True or False, please provide
step-by-step solutions in your output.

Your final answer must be a single string consisting only of the letters ’T’ (for True) and ’F’
(for False), with no spaces or other characters. The order of the letters in your response
must directly correspond to the order of the statements. Put your final answer in **** and
do not use * in any other ways.

For example, if there are four statements and you find the first to be True, the second False,
the third False, and the fourth True, your answer must be exactly:

****TFFT****

{Question}

We employ regular expressions to parse the outputs and extract the answers, which are then
compared against the ground truth to calculate the accuracy. Specifically, we adopt an exact match
criterion, where a prediction is counted as correct only if it matches the ground truth exactly.

4 RESULTS

4.1 SOTA MODELS STILL FAIL TO ACHIEVE A PASSING SCORE ON OLYMBIO-BENCH

We evaluated a set of state-of-the-art LLMs—including the Gemini 2.5 family, OpenAI’s recent
series (e.g., GPT-5 and its efficient variants, o4-mini), Qwen 2.5, and xAI’s Grok—on
OlymBio-Bench. As shown in Table 1, no model reaches a passing score of 60%; the best result is
achieved by gemini-2.5-pro at 51.79%, underscoring persistent limitations of current systems
on challenging biology questions.

Among the strongest performers are gemini-2.5-pro and gpt-5. Both are most up-tpo-date
reasoning-oriented models and achieve roughly ∼ 50% on multimodal tasks and ∼ 60% on text-only
tasks, with gemini-2.5-pro slightly higher overall. Other reasoning models—gpt-5-mini,
o4-mini-high, o4-mini, and grok-4—follow, scoring 42%–46%. In general,
instruction-tuned (non-reasoning) models rank below reasoning counterparts, indicating that
OlymBio-Bench effectively differentiates models by their reasoning capacity.

Across most models, accuracy on text-only items exceeds that on multimodal items. This modality
gap suggests that incorporating visual evidence—central to biological practice—remains difficult.
Notably, inputs such as microscopy images, electrophoresis gel images, and statistical plots are
commonplace and essential in biology, so our benchmark emphasizes multimodal evaluation to
reflect real-world analytic demands. The results highlight a substantial performance gap for
expert-level biological reasoning.

Finally, within model families (e.g., Gemini 2.5, GPT-5), we observe a positive correlation between
parameter scale and accuracy on OlymBio-Bench. This trend supports that the benchmark rewards
genuine reasoning rather than guesswork. In sum, OlymBio-Bench is a multimodal assessment with
high difficulty that exposes current limitations and provides resolution to compare reasoning
capabilities across modern LLMs.

5 DISCUSSION

5.1 DEFICIENCIES IN REASONING AND MULTI-MODAL UNDERSTANDING AS MAJOR CAUSES
OF ERRORS

OlymBio-Bench is a scientific benchmark that involves multi-modal information. To provide a
detailed analysis of its difficulty, we examined the accuracy of each model on questions with varying
lengths and figure counts, as depicted in Figure 4. We found that as the question length and figure
count increase, nearly all models exhibit a consistent downward trend in accuracy, reflecting the
challenges posed to LLMs by the complexity of reasoning and image analysis. An interesting
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Table 1: Model Performance (Sorted by Accuracy, Total %)
Model Total (363) Multi-modal (319) Text-only (44)

Count % Count % Count %
gemini-2.5-pro (Comanici et al., 2025) 188 51.79% 161 50.47% 27 61.36%
gpt-5(OpenAI, 2025b) 185 50.96% 159 49.84% 26 59.09%
gpt-5-mini(OpenAI, 2025b) 168 46.28% 142 44.51% 26 59.09%
o4-mini-high(OpenAI, 2025c) 167 46.01% 141 44.20% 26 59.09%
o4-mini(OpenAI, 2025c) 162 44.63% 140 43.89% 22 50.00%
grok-4(xAI, 2025) 156 42.98% 131 41.07% 25 56.82%
gpt-4.1(OpenAI, 2025a) 155 42.70% 130 40.75% 25 56.82%
chatgpt-4o-latest(OpenAI, 2024) 147 40.50% 125 39.18% 22 50.00%
gpt-4.1-mini(OpenAI, 2025a) 137 37.74% 114 35.74% 23 52.27%
gemini-2.5-flash(Comanici et al., 2025) 134 36.91% 114 35.74% 20 45.45%
gpt-5-nano(OpenAI, 2025b) 113 31.13% 93 29.15% 20 45.45%
gemini-2.5-flash-lite(Comanici et al., 2025) 107 29.48% 87 27.27% 20 45.45%
qwen_qwen2.5-vl-72b-instruct(Bai et al., 2025) 99 27.27% 83 26.02% 16 36.36%
qwen_qwen2.5-vl-32b-instruct(Bai et al., 2025) 95 26.17% 75 23.51% 20 45.45%
gpt-4.1-nano(OpenAI, 2025a) 59 16.25% 46 14.42% 13 29.55%

observation regarding the effect of question length on accuracy is that top-performing models (e.g.,
gemini-2.5-pro, gpt-5) typically exhibit a negative correlation with question length. In contrast,
lower-performing models (e.g., qwen_qwen2.5-vl-32b-instruct, gpt-4.1-nano) are less sensitive or
even show a slight positive correlation. Regarding the introduction of figures, we observed that all
models experience a drop in accuracy when one figure is introduced (n=0 vs. n=1). However, as the
number of figures increases further, the subsequent decline in accuracy becomes more gradual.
Futhermore, we point out that the drop in accuracy is more pronounced with an increased number of
figures than with increased question length. This indicates that analyzing image content is more
difficult for the models and may be a critical area for future breakthroughs in the development of
LLMs.

Figure 4: Correlation of LLM accuracy on OlymBio-Bench with question length and figure count.

We selected the best-performing models, gemini-2.5-pro and gpt-5, and the worst-performing model,
gpt-4.1-nano, to conduct an error analysis on 38 multi-modal questions that were answered
incorrectly by all 15 models (Figure 5). The results show that the vast majority ( 80%) of errors were
caused by incorrect comprehension of or information extraction from the images. Furthermore,
gpt-4.1-nano produced a few invalid outputs due to formatting errors, indicating its weaker
instruction-following capabilities. In summary, we posit that when solving complex, real-world
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Figure 5: Error Types across various models on multi-modal questions.

biological problems, the current ability of LLMs to understand multi-modal information, such as
images, is insufficient and consequently limits their performance in the biological domain.

6 CONCLUSION

All in all, we have constructed a biological benchmark that features high discriminatory power, high
difficulty, and is close to the frontiers of life science research. Previously, due to the relatively low
difficulty of the benchmark related to biological reasoning questions, many large language models
achieved high scores, which made it difficult for us to effectively evaluate the comprehension
abilities of these large language models when dealing with biological problems. This newly
constructed benchmark has solved the problems of insufficient difficulty and lack of reasoning in the
existing biological benchmark.

Among the models we tested, even the best-performing model only answered approximately half of
the questions correctly. The low accuracy reveals that there is still substantial room for improvement
in the problem-solving abilities of current large language models in the context of biological
scientific research, providing a good reference framework for strengthening the biological
comprehension and problem-solving abilities of large language models.

Meanwhile, we also analyzed the causes of errors made by large language models and found that
most of the errors can be attributed to the deficiencies in their multi-modal capabilities. This implies
that current large language models still have flaws in their comprehension abilities regarding the
cutting-edge scientific research charts in biology, which also provides some clues for further
enhancing the biological problem-solving abilities of large language models.
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A APPENDIX

A.1 EXAMPLE QUESTIONS FROM THE DATASTE

Here we show one example from each subdiscpline in our dataset.

Animal Biology

P57 is a natural bioactive compound extracted from Hoodia gordonii that can markedly
suppress appetite in animals. Researchers administered intraperitoneal injections of P57
at varying concentrations in mice (Vehicle denotes solvent-only injection) and recorded
food intake over 72 hours, as shown in the figure. They also observed that, over a short
time frame, mice injected with P57 exhibited a decrease in body temperature compared
with mice receiving Vehicle only(Wang et al., 2023). Judge the correctness of the following
statements:

A) In the short period after injection, the body temperature of mice receiving 20
mg/kg P57 may be higher than that of mice receiving 15 mg/kg P57.

B) P57 may lead to a reduction in the overall metabolic rate of mouse cells.
C) Injecting an appropriate concentration of P57 may enable the establishment of a

mouse model that mimics hibernation.
D) The microscopic mechanism by which P57 suppresses appetite requires follow-up

biochemical analyses for elucidation.

Biochemistry and Molecular Biology

Transient DNA:RNA hybridizations are an important step in gene expression but can also
lead to DNA damage. scRad27 is known to be a yeast nuclease that participates in joining
Okazaki fragments, and RAD27-AID is a factor that can specifically degrade scRad27. S9.6
is a monoclonal antibody that specifically binds DNA:RNA hybrids, while anti-dsDNA is
a monoclonal antibody that specifically binds double-stranded DNA. In the presence or
absence of Auxin, researchers measured the cellular level of scRad27 (panel b), used S9.6
and anti-dsDNA to assess the amounts of DNA: RNA hybrids and double-stranded DNA
(panel c) were further analyzed, as well as the relative level of DNA:RNA hybrids (panel
d)(Mangione et al., 2025). Judge whether the following statements are true or false (T/F):
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A) RAD27-AID can effectively degrade scRad27 under any condition.
B) scRad27 can hydrolyze the RNA primer segments used to join Okazaki fragments,

thereby allowing the DNA of adjacent Okazaki fragments to be correctly ligated.
C) If the gene encoding scRad27 is inactivated, the cellular level of DNA:RNA

hybrids in yeast is likely to decrease.
D) Under normal conditions, scRad27 may reduce the likelihood of DNA damage.

Cell Biology

Both cGMP and NO are key signaling molecules in cellular signal transduction pathways.
To investigate their roles in inducing cellular differentiation, scientists treated embryonic
stem cells (ES) and induced pluripotent stem cells (iPS), as well as early differentiating
cells obtained after these stem cells developed into embryoid bodies (EBs), with atrial
natriuretic peptide (ANP) and several nitric oxide synthase (NOS) isoforms. They then
measured intracellular activities and analyzed the signaling pathways; the results are
shown in the figure. Annotations: NPR-C: a type of ANP receptor, a member of the G
protein–coupled receptor superfamily; GC-A: guanylyl cyclase A; sGC: soluble guanylyl
cyclase; nNOS: neuronal NOS; eNOS: endothelial NOS; iNOS-2: inducible NOS-2. self-
renewal; survival and pluripotency; early mesodermal commitment; cardiomyocyte and
pacemaker precursors; vasculogenesis and endothelial precursors; endodermal lineage
and beta-cells(Kots & Bian, 2024). Judge the correctness (true/false) of the following
statements:

A) Because ANP is synthesized in the atria, ANP has no effect on the differentiation
of cardiovascular-related cell types in early embryos.

B) As cells differentiate, sGC-related genes begin to be expressed, and the predomi-
nant NOS isoform also changes.

C) NO may play an important role in cell differentiation, and its function may vary
across different stages of embryonic cell differentiation.
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D) Based on the above results, it can be inferred that sGC may be an important factor
linking the transduction of ANP and NO signals.

Ecology and Animal Behavior

Ecologists recorded changes in the biomass density of Centrostephanus rodgersii (a sea
urchin that primarily grazes on macroalgae) across several areas of Tasmania’s east coast
from 2009 to 2023. The results are shown in the figure: the dashed line denotes the
ecologically expected optimal biomass density for sea urchins; the dotted polyline before
2023 represents the observed sea urchin biomass density; and the lines after 2023 indicate
projected biomass density under different fishing pressures. H denotes the harvest intensity
on sea urchins, where H = 0 indicates no fishing and H = 1.00 indicates harvesting all
catchable urchins. Note: In all three panels, among the radial projection lines extending
beyond 2023, trajectories lower on the plot correspond to H values approaching 1.00,
whereas higher trajectories correspond to H values approaching 0(Cresswell et al., 2025).
Judge the correctness (true/false) of the following statements:

A) C. rodgersii is a naturally invasive species on Tasmania’s east coast.
B) An overabundance of sea urchins may degrade the local kelp-forest ecosystem.
C) Heavy harvesting of sea urchins will inevitably disrupt the balance of the local

ecosystem.
D) As sea urchin population density increases, the expected differences in population

outcomes under varying harvest intensities also increase.

Genetics and Evolutionary Biology

Researchers inserted a genomic segment from a sponge into the zebrafish genome. This
segment contains two genes, lsl and Scaper. An enhancer is located within one of these
genes. In zebrafish, the expression patterns driven by the sponge sequence and by the
endogenous zebrafish genes are shown in the figure. Note: zf = zebrafish; UIC = uninjected
control; sponge = sponge-derived sequence(Wong et al., 2020). Judge the correctness
(true/false) of the following statements:
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A) The enhancer for the sponge lsl gene resides within the lsl gene itself.
B) It can be inferred that the sponge gene segment contains a transcription factor that

increases the expression level of the zebrafish lsl1 gene.
C) This experiment provides evidence for deep conservation of gene regulatory

mechanisms across the animal kingdom during metazoan evolution.
D) As sea urchin population density increases, the expected differences in population

outcomes under varying harvest intensities also increase.

Plant Biology

ABA DEFICIENT 2 (ABA2) and BETA-GLUCOSIDASE 1 (BG1) are key genes in ab-
scisic acid (ABA) biosynthesis. Compared with the wild type, the aba2 and bg1 mutants
show markedly reduced anthocyanin accumulation under low-phosphate (LP) conditions.
LP-induced anthocyanin accumulation is likewise reduced in ABA-signaling mutants. Over-
expression of the transcription factor ABI5 rescues the LP-induced anthocyanin phenotype
in these ABA-related mutants, and ABI5 expression is significantly decreased in ABA-
signaling mutants(Song et al., 2024). Judge whether the following statements are true or
false.

A) Stomata are abnormally open in ABA-biosynthesis mutants.
B) Overexpression of ABA2 reduces SnRK2 activity, whereas ABA2 deficiency de-

creases PP2C activity.
C) ABI5 mediates ABA-promoted anthocyanin accumulation under LP.
D) Introducing the structural gene CHS together with its cognate regulatory module

in the anthocyanin pathway restores the bg1 anthocyanin-accumulation phenotype
to wild-type levels.
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