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Abstract

Graphs in the real world are fragmented and dynamic, lacking collaboration akin to
that observed in human societies. Existing paradigms present collaborative informa-
tion collapse and forgetting, making collaborative relationships poorly autonomous
and interactive information insufficient. Moreover, collaborative information is
prone to loss when the graph grows. Effective collaboration in heterogeneous dy-
namic graph environments becomes challenging. Inspired by social learning, this
paper presents a Graph Socialized Learning (GSL) paradigm. We provide insights
into graph socialization in GSL and boost the performance of agents through effec-
tive collaboration. It is crucial to determine with whom, what, and when to share
and accumulate information for effective GSL. Thus, we propose the “Graphs Help
Graphs” (GHG) method to solve these issues. Specifically, it uses a graph-driven
organizational structure to select interacting agents and manage interaction strength
autonomously. We produce customized synthetic graphs as an interactive medium
based on the demand of agents, then apply the synthetic graphs to build prototypes
in the life cycle to help select optimal parameters. We demonstrate the effectiveness
of GHG in heterogeneous dynamic graphs by an extensive empirical study. The
code is available through https://github.com/Jillian555/GHG,

1 Introduction

Graphs have become a powerful tool for capturing complex relationships between real-world entities,
leading to their widespread use in social networks [}, 2], recommendation systems [3l], and bioin-
formatics [4]]. However, real-world graphs tend to be fragmented and dynamic, and there is often a
lack of collaboration between different graphs. From the emergent behavior of ant colonies to the
human collective intelligence, collaboration is common across different societies [5,6]. It enables
individuals to form social relationships and accomplish complex tasks. Inspired by social learning
in human society, socialized learning has been extensively explored [7} 8]. It aims to have multiple
agents interact, collaborate, and share knowledge. This acquired knowledge benefits other agents
attempting to learn different yet related tasks, demonstrating capabilities beyond a single agent.
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Figure 1: Comparison of different learning paradigms.

Existing paradigms strive to learn new graph knowledge collaboratively, just as human societies do.
As shown in Figure[I] the star graph with a central server in graph centralized federated learning [9,
10, 11} [12] and the undirected topology in graph decentralized federated learning [[13 [14} [15} [16].
Decentralized methods address communication bottlenecks and system crash risks of centralized
methods [[17]. Despite their effectiveness, on the one hand, they rely on undirected symmetric
communication topologies, where agents fail to capture agent dependencies accurately. On the
other hand, merely interacting with parameters may not lead to knowledge compatibility, causing
information collapse and difficulty in obtaining capabilities from heterogeneous agents. Additionally,
the graph lifelong learning paradigm [18 19,20} 21} 22] can adapt to dynamically growing graphs
in the same parameter space for single-agent setups, but partial old task information is forgotten,
causing agents to lose their initial performance as training continues. Thus, current paradigms are
limited in achieving effective collaboration in heterogeneous dynamic graph environments.

Consider a real-world scenario: conducting collaborative training across growing citation networks
on different platforms. Sharing elements like titles, author information, and citation relationships
can boost the efficiency of academic paper retrieval. By re-visiting existing paradigms, we find that
two significant challenges still exist: (1) Effectively managing graph heterogeneity among agents,
thereby building autonomous collaborative relationships and sharing sufficient information to avoid
collaborative information collapse. (2) Accurately capturing task dynamics in dynamic graphs to
prevent the risk of forgetting accumulated collaborative information. Therefore, we raise the question:
1. How to realize effective collaboration in heterogeneous dynamic graph scenarios?

As shown in Figure [T} we establish the Graph Socialized Learning (GSL) paradigm. It offers an
effective way for agents to share and accumulate graph information in heterogeneous dynamic
environments. This enables agents to learn the abilities of other agents and preserve old information
without loss through effective collaboration. This exploration leads us to consider: 2. How to
determine with whom, what, and when to share and accumulate graph information to accomplish
effective GSL?

Based on property and generalization of graph socialization, we propose the method “Graphs Help
” (Organizational Structure): We
employ graph-driven organizational structure to autonomously perceive collaborative relationship and
strength among agents, thereby avoiding low-quality and redundant information from collaborators.
Graph collaboration module models the collaboration graph by leveraging complementarity, as well
as parameters (or features) and structure similarity between agents. What (Interactive Medium):
We generate customized synthetic graphs as an interactive medium for information exchange. This
enables the generation of the needed graphs based on agent states, thus addressing the issue of
insufficient information from collaborators. A fine-grained customized collaboration evaluates the
demand for different classes between agents. When (Life Cycle): We apply synthetic graphs to
construct task prototypes, facilitating collaboration using optimal agent parameters at distinct tasks
and preventing collaborative information from being forgotten. Our method achieves outstanding
performance on seven datasets, surpassing the methods based on existing paradigms. Our main
contributions can be summarized as follows:

* We present a practical learning paradigm called Graph Socialized Learning (GSL), enabling
each agent’s growth via collaborative interaction.



* Graph-driven organizational structure, customized interactive medium, and prototype-based
life cycle form three key elements of socialized collaboration.

* Our method consistently achieves performance improvements on multiple datasets and
demonstrates the effectiveness of all components.

2 Related Work

2.1 Graph Federated Learning

Graph Federated Learning (GFL) is a collaborative learning paradigm for graph neural networks
that enables multiple agents to jointly train models by sharing model parameters [23| 24]]. From the
existence of centralized servers, GFL is divided into centralized graph federated learning (C-GFL)
and decentralized graph federated learning (D-GFL). C-GFL relies on a server to aggregate model
parameters, coordinating cross-client model training [9} [10, [11} 12} 25} 26]. In contrast, D-GFL
enables peer-to-peer parameter interaction by constructing communication topology [13} 14} 15, [16].

The server may be impractical in real-world collaborative training, and C-GFL can break down due to
server failure or unreliability. The symmetric topology in D-GFL fails to capture agent dependencies.
Moreover, model parameters can not obtain sufficient interactive information. Our method solves
these problems via graph-driven organizational structure and customized synthetic graph generation.

2.2 Graph Lifelong Learning

Graph Lifelong Learning (GLL) is an evolution paradigm that addresses the stable-plasticity dilemma,
requiring agents to learn new skills while retaining prior abilities [27, 28} 29]. Existing methods can
be categorized into three types: Replay-based methods retain a small number of nodes or subgraphs
from old classes, either use generator-produced graphs, to prevent forgetting [19} 21} 22, 30, [31]].
Regularization-based approaches introduce regularization terms into the loss function to enhance the
preservation of prior knowledge [[18], 132} [33] 34} [35]]. Parameter isolation methods fully or partially
preserve parameters of different tasks via approaches such as dynamic incremental feature extractors,
preventing interference between old and new information [20, 36].

The proposed method captures more accurate task prototypes by interacting with synthetic graph
information, preventing information forgetting and achieving excellent performance.

3 Problem Analysis

3.1 Problem Formulation

In heterogeneous dynamic multi-agent graph systems, consider the A-agent set, each agent a receives
graph data G?, at task ¢, which consists of a node set V! and a structure o,. A node is associated
with node features X! and labels Y!. Multiple agents jointly solve a supervised node classification
task containing C? classes at task ¢, so all agents use the same test sets. The graph data G? is
heterogeneous distributed between agents, with overlapping classes, i.e., {Y! NY} # 0 | a # b}.
New graph data constantly emerges until time 7", and each agent needs to learn new knowledge while
retaining knowledge from previous tasks. Notably, old tasks are inaccessible and new and old tasks

have non-overlapping classes, i.e., {Yj N Yf =0|tA£t } The relationships between agents can
be represented by a directed weighted graph G* = { A?, €%, Bt, M}, where A’ is the set of agents,
E? denotes the edges between agents, B¢ is structure, and M* € R4*4 represents edge weights. For

each agent at task ¢, the goal is to collaborate with other agents, share partial information, and learn a
graph neural network model that can distinguish new classes from previous classes, expressed as:

0, = 7o (G R, 16Y) (M
where a set of model parameters 0%;5 = {0, |1<a<A1<t<T} are estimated, R., , is

denoted as the information transmitted from agent b to agent a. The model is updated through the
function F}, based on training data G%, and information from external agents.



3.2 Graph Socialization Property

Graph Sociability. Inspired by prior works [7} 20,37, we provide graph sociability prediction for
agents as follows:
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where Yieq o is prediction results of test graph G'es and t denotes optimal task ID. This indicates that
effective GSL can be achieved when precise intra-task node prediction, effective collaboration, and
accurate task ID query are implemented.

Task Posterior

Parameter Posterior. Due to complex correlations between agents, we model graph socialized
collaboration by maximizing posterior distribution p (9%2; \ G%i) of model parameters, rather
than simply employing the likelihood function p (G LT 9%5) [38]. According to Bayes’ rule, the
posterior distribution can be decomposed as p (61} | G1%)) o< p (G4 | 01%) p (61%) , where the
first probability represents the likelihood of agent model parameters on their respective graph, while
the second probability is the prior distribution of parameters, which describes the collaborative
patterns between agents.

We assume that the graph arrives independently at each agent and satisfies conditional in-
dependence, so we get p (G174 |61%) = TI,_,[L.—ip(G.|06L), and —logp (G, |6L)
corresponds to the loss of agent’s model parameters 6% on graph G'. In addition, we capture
the pairwise correlations between multiple agent model parameters through collaborative
graph optimization [39, 40]. Agents benefit from learning from others who are both com-
plementary and similar, with greater weight given to those who are more complementary
and similar. The prior distribution of model parameters can be expressed as —logp (%) o

A A A A
S NE (28 (S0l ML04: GL) 4+ we i, € (Ml Gls G —ws i, S (ME:01:63) ).
where the relative size of agents is denoted by N! = |V!|/N* and N* is the number of nodes of all

agents. L! (-) represents the empirical risk of its local graph. C and S measures complementarity and
similarity between agents, as well as w¢ and ws are weights to balance them.

Given the ambiguous nature of an agent’s empirical loss, the relative graph size is adopted as a
surrogate because graph size is a key measure of credibility. The posterior distribution maximization
of parameters max p (61 | G1:}) can be rewritten as:

T A A
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4 Methodology

We present single-agent graph learning to acquire outputs (Section[4.T). The proposed GHG consists
of three phases: graph-driven organizational structure (Section[d.2), customized interactive medium
(Section[4.3)), and prototype-based life cycle (Section f.4). Moreover, the generalization of graph
socialization (Section[4.5) is analyzed to provide insights into socialized collaboration. The overview
of the proposed GHG is depicted in Figure 2] The pseudo-code can be found in Appendix [C.T]

4.1 Single-Agent Graph Learning

As stated in prompt-based graph learning method [20, 41]], the graph prompts are represented as
Ot = [pt,...,44]T € R™*? for task t, where n is the number of token vectors ¢! and d° is the
dimension of features. Node attributes are enhanced through weighted combinations of these tokens.
The enhanced graph representations are then passed through a frozen pre-trained GNN model f,(-)
to generate node embeddings. Node classification loss for each agent is defined as:

Clow = 3 CE(FL(GL), V2 FL(GY) = 1 (fu (e X2+ 0L) . @
@l ievy
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Figure 2: An overview of the GHG method. Firstly, the collaborative graph is built by calculating
complementarity and similarity. Next, coarse-grained agent collaboration is used to get collaborative
strength for information transfer, while fine-grained customized collaboration aids in initializing label
distribution of synthetic graphs. Then, synthetic graphs are generated through distribution alignment.
Finally, task prototypes are added gradually, and the task ID is queried to select optimal parameters.

where V! is the training set of G?, CE is the cross-entropy loss, Y! is the predicted label, ! denotes
node classification function, and h! represents MLP-based classification head. The graph prompts
{®!,...,®T} and classifiers {h', ..., hT} learn task-specific information while the frozen GNN
leverages general cross-task knowledge acquired from the first task.

4.2 Graph-Driven Organizational Structure

Complementarity and Similarity Calculation. We employ singular value decomposition on agent

outputs to indirectly capture the complementarity of the graph, i.e. F! () = ULXE (Vfl)—r. The matrix
U! holds the singular vectors of agent outputs, representing directions in the feature space. We treat
the first k& columns of U as the representative subspace. To measure the complementarity between
two agents, we apply the average principal angles cos 3% between their corresponding subspaces.
The complementarity metric is defined as:

1
C(Méb;GZ;Gi):Mébcos EZ@( ,cos Bt = max W, K=1,....k. (5
K

u€U! , veEU]

A large principal angle indicates high complementarity, whereas an angle near 7 /2 suggests subspaces
are nearly orthogonal, reflecting substantial divergence in their feature spaces. To integrate topological
structure and node information, we perform Laplacian smoothing [20] on the graph G to obtain
topology-aware node embeddings:

780 — <1 (ﬁg)_% it (Dg)_§>lxg (D;)_%, ©)

where [ is the number of Laplacian smoothing steps, I is an identity matrix, IAJZ = lA)Z — &' denotes
graph Laplacian matrix of &y, = o, + I, and D (D;; = > ; &j) is the diagonal degree matrix of .
The parameters are enhanced by concatenating model parameters 6%, € {®! %} and the mean of

topology-aware node embeddings Z(tl’(l) to promote structural information sharing. We utilize cosine
distance between the enhanced parameters of agents to quantify similarity, formulated as:

e - e

S (M}, 0L0;) =ML, —o——b
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Coarse-Grained Agent Collaboration. We present edge weights of the collaboration graph be-
tween agents derived through coarse-grained collaboration, which are specified as follows:

M, Nt

A 7%
min ((M;b—b) +weC (M,jb;GtHGa*,GtHGZ*) wsS (Mty; 0% @t)>
3

A
sty MY, =1,Ya; M, > 0,Va,b,
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where ét || e th , represents the synthetic graph (graph synthesis is described in Sectlon
of nelghbor agents NV, received by agent a. We calculate the relative size, complementarity, and
similarity of agents based on the number of nodes, subspace representations, and enhanced parameters.
A sparse collaborative graph is generated based on edge weights and participation ratio d, represented
as Bgy = 1 [b € TOPK(6A, Ma,:])].

G, denotes the joint distribution of the current task, making it an ideal graph for information transfer.
In addition to the cross-entropy loss, we incorporate the KL divergence loss to make the agent imitate
the predictions of neighboring agents. The overall loss function for agent a at task ¢ is defined as:

Lina = Lee (FL(GLI[Cln) YY) + 1w S M (£ (Cw) F(G)). ©
b=1

where wy is the loss weight of Ly. The collaborative graph edge weight M/, serving as a measure
of collaborative strength, is used as a weight to transfer information from others to a specified agent.

4.3 Customized Interactive Medium

Fine-Grained Customized Collaboration. To generate sufficient interactive information, we pro-
pose fine-grained collaboration, customizing the initial label distribution of synthetic graphs generated
by neighboring agents based on their current states. Generally, the relative size of class counts is an
important metric. We compute M, . for each class in the current task by considering relative size,
subspace representations, and enhanced embeddings between agents. The enhanced embeddings are
concatenated by the mean of outputs and the mean of topology-aware node embeddings. The number
Vt

of nodes in class ¢ of synthetic graph |V, .

‘ generated by agent b for agent a is denoted as follows:
Vt
(5 | Nt we My )

—— 1%l (10)
where N, ; is the sum of the number of nodes of all agents in class ¢, w., denotes the contribution of
fine-grained collaborative graph edge weights, N is the sum of allocation proportions of all classes in
agent b, and -y is the compression ratio.

7t

ab,c| —

Synthetic Graph Generation. We apply synthetic graphs as a medium for information exchange.
Mean and standard deviation statistics for embeddings can effectively capture the distribution of each
layer. We concatenate embeddings from 0O-layer to /-layer and form the concatenated [-step embed-

dings for original graph and synthetic graph: Z = [Xt; zZW; Z(l)] R = [)/(:, RW: . . ;RO
The synthesis loss is expressed as:

syn ab — ZAGZ)C (H:u’abc ru’ab c”2 + We |‘02b,c - &Zb,cuz) ’ (11)

where ., [i. are the means of Z., R. and 0., 6. are the standard deviations of Z., R.. for every class.

)|

w, is the standard deviation alignment loss weight. Aqp . = (‘V}f ab.c

assigns different

weights to different classes. CA?t . and Vab . are the synthetic graph and node set generated by agent b
for agent a. We use a unit matrlx as the predefined adjacency matrix, i.e., &%, = I, which eliminates

the need to train an adjacency matrix generator and avoids encoding synthetic graphs [42] 43].



4.4 Prototype-Based Life Cycle

On completing training for each task, each agent stores task-specific prompts and classifiers. Conse-
quently, GHG focuses on forecasting the task ID. We construct task prototypes by averaging node
representations from synthetic graphs generated for agent a by neighbor agents:

1 Ne (1)
Pi= e 3| R (12)
’V ievh,

a*

All task prototypes can be constructed and added as P, = {P},..., PT}. We apply the mean of

Zl(els)t to calculate test prototype, denoted as Py .. Subsequently, we query task prototype pool using
P cs, and retrieve task ID { that exhibits the highest similarity to Pies,o. We leverage the prompts
and classifier corresponding to task #, together with the fixed GNN model, to make predictions.

4.5 Graph Socialization Generalization

We analyze the graph sociability influence of minimizing overall loss (9) on the generalization of
multi-agent graph distribution for each task (¢ is omitted for simplicity) in Theorem[I] Proposition|T]
indicates that the generalization bound in Theorem|I]is tighter than that of training on a single graph.

Theorem 1. The overall graph distribution of agent a come from three aspects: D = wD, +
WD 4 WMDK L W WM reflects the agent’s demand on single graphs, synthetic graphs, and
agent predictions from neighbors. Denote the model as F,, = ®, o h, € ¥, 0 Hy = F,. Inspired
by [44) 45| 146, 47], the generalization error on multi-agent graph distribution is bounded as follows:

o " y 1—-—w -
€D (Fa) < epgr (Fa) +wC (D, Da) +w™ep, (V) +allep, (yg’) + (27)(1%@% (0 DY hoDa), (13)

where € denotes error between model F' and optimal labeling ) under distribution D. C(-) represents
a small distance term, and dy, ay, measures the distance between two distributions.

The first term is the error bound on D!, The second term is a constant and related to a single graph.
The third term quantifies the discrepancy between real labeling V4 and synthetic graph labeling

2", while the fourth term is derived from the KL-divergence loss in the second term of Eq. (9).
The synthetic graph generation makes D" similar to D4, so V5" approximates V4. The small
ep, (V2") shows that the model trained on Dg" closely learns the multi-agent graph distribution,
and the task prototype is more holistic in Eq. (T2). The last term d#, A%, emphasizes the need for

distribution alignment in Eq. (TI).
Proposition 1. Given the conditions outlined in Theorem[l| we can derive:

sup min {Q (D), Q (DY)} < inf (ep,(F) — ep,(F)) + C (Do, Da), (14)
FeF, FeF,

where Q(D) = |ep(F) — ep, (F)| + ep, (VP), the usage of D™ and D¥ yields a tighter general-
ization bound than using only single graphs.

When multi-agent graphs are highly heterogeneous, inf pe £, (ep, (F) — ep, (F)) and C (D,, D)
become large. Since D" and DX are close to the multi-agent distribution, the left side of Eq.

is small. Thus, Proposition [I]indicates that when multi-agent graphs are extremely heterogeneous
and D" and DX approximate multi-agent graphs, agents depend more on Dz and D! for better
collaboration. Theorem I]and Proposition[I]are proved in Appendix [B]

S Experiments

5.1 Datasets and Setups

Datasets and Settings. We assess the effectiveness of GHG by leveraging seven publicly available
datasets, and their statistical details are presented in Appendix @} CoraFull [48]], Arxiv [49],
and Reddit [50] include 7, 4, and 4 tasks, respectively, each containing 10 classes. Cora [51] and
CiteSeer [51] both comprise 3 tasks with 2 classes per task. SLAP [52] and Computers [53]] include
3 and 2 tasks, respectively, each with 5 classes. A is set to 5 for all datasets except Cora and CiteSeer,
where it is 2. We generate A heterogeneous agents using Dirichlet partitioning [54]], where the
allocation ratio of nodes for each class is denoted as Dir4 (het). We define heterogeneity level as
het = 0.1 (strong) and het = 0.5 (weak). Implementation details are provided in Appendix [C.4]



Table 1: Performance comparison on five datasets in strong heterogeneity setups. Results are averaged
among three trials. The best and second results are highlighted in bold and underline.

Dataset Paradigm CoraFull Arxiv Reddit Cora CiteSeer
Metric MAPT MAF| MAPt MAF|, MAP{ MAF| MAPt MAF| MAP{ MAF]
Single - 4.2:01 36.7:04 8.4+00 35.1:02 15.8x0.1 60.1:05 18.2:0.1 54.9:0.1 16.9:00 54.9:0.0
FedAvg FL 4.6:0.1 38.3:02 8.9:0.1 36.1:03 26.6:02 47.9+07 18.2+0.1 58.7:0.1 17.0:00 54.9+

DFedGNN GFL 4.6:02 39.5: 1 9.0=0.1 36.0:04 14.8+0.1 62.7-0.6 18.0=0.0 54.4+18 17.0=00 55.4=
FedGTA GFL 4.6:0.1 38.1:04 8.7:01 35.8:04 14.9:01 62.4:07 18.0:00 59.7:24 17.0+
4

( ). (
( ).( (

Fed-PUB GFL 4.0-01 34.0-03 7.7:02 35.1x0.1 13.5:03 48.1+06 16.9+0.1 53.0-02 16.7-00 55.9-0.
( ).( (
( ).( (

FedTAD GFL 4.6:02 37.9:04 8.9:0.1 36.0:0.1 24.4:02 50.0:04 18.2:02 54.8:08 17.0:00 54.8:00
TWP GLL 5.1:02 34.9:02 8.4:01 35.1:0.1 16.2:02 58.6+05 18.6:0.1 55.2+0.1 17.0x00 54.9+0.1
ERGNN GLL 23.2:03 14.0:03 19.6:06 18.2+0.6 36.5:0.7 31.6:09 24.0+43 42.5+57 17.9+0.1 53.4+0.1
GSIP GLL 26.3:09 12.8+08 22.5:09 9.7:02 48.4+06 15.3204 33.2:09 34.5:24 19.6:05 50.6:0.7
TPP GLL 28.9:02 4.8:03 16.4+03 6.0:02 43.4:02 5.4+06 53.6:16 0.0-00 51.6:0.1 0.0=0.0
DMSG GLL 27.3:06 9.0£10 21.8:0.1 8.8+02 47.9:02 13.2+16 37.5+35 27.7+53 33.4+08 28.7+13

Fed-TPP  GFLL 28.6:03 4.4+03 15.3:02 5.3:02 40.1:01 5.3:06 58.7:17 0.0:00 51.7:01 0.0:0.0
Fed-DMSG GFLL 37.3:03 0.1:05 22.7:03 7.9:06 57.4:07 6.4:04 39.9+16 18.1:32 40.1x10 14.1+13
POWER  GFLL 25.3+04 14.8+06 11.0:0.1 25.7+03 61.4+10 2.9:15 40.9+:03 27.1:07 36.9+25 24.0+338

MASC SL 36.7:04 0.9:12 22.3:05 16.5:07 58.1+18 4.6:32 39.2:23 23.3:43 36.6:02 24.3+05
GHG GSL 54.0-058 0.0:0.0 59.2:03 0.0-0.0 86.7:09 0.0-0.0 79.2:34 0.0-0.0 65.7:4.1 0.0-0.0

Baselines and Metrics. We compare GHG with following baselines: Single, five FL/GFL methods
(i.e. FedAvg [55], DFedGNN [13], Fed-PUB [9], FedGTA [25]], and FedTAD [10]), five GLL methods
(i.e. TWP [18]], ERGNN [19], GSIP [21]], TPP [20], and DMSG [22]), graph federated lifelong
learning methods (i.e. FedAvg combines with two representative GLL methods and POWER [56]),
and socialized learning method MASC [7]. We evaluate the performance of compared methods using
two widely adopted metrics: Average Performance (AP) and Average Forgetting (AF) [34]. The final
results are reported as mean values across all agents, denoted as MAP and MAF.

5.2 Performance Comparison

GHG facilitates multi-agent graph socialized learning effectively. The effects of GSL for het=0.1
on seven datasets are presented in Tables[T]and P} and results for het=0.5 are in Appendix GHG
surpasses all baselines in performance. Results are discussed as follows:

(1) FL/GFL methods cannot sufficiently transmit information. Consequently, collaborative collapse
of heterogeneity is exacerbated in the dynamic environment, resulting in lower performance. D-GFL
method DFedGNN relies on an undirected symmetric communication topology, which can not satisfy
the collaborative demands of agents. In particular, GFL performs poorly compared with FedAvg. The
reason might be that they focus on learning single fixed data and even overfit, thus lacking cooperation.
We build an organizational structure based on directed weighted graphs and a customized interactive
medium to achieve autonomous collaboration and sufficient information interaction.

(2) GLL methods are limited to single agent settings. Moreover, old information is forgotten after
learning new tasks, so forgetting still occurs. TPP and Fed-TPP achieve high MAP and zero MAF on
Cora and Citeseer datasets. This arises from agents only having two categories, leading to minimal
divergence between individual and overall data distributions and enabling accurate task ID prediction.
The prototypes formed by GHG, leveraging interactive information in strong heterogeneity, can still
predict the task ID with 100% accuracy. Thus, it achieves zero MAF across all datasets, retaining old
information losslessly.

(3) GFLL methods offer some mitigation for these issues, but a considerable performance disparity
remains when compared with GHG. Merely integrating federated and lifelong learning fails to
adequately address information collapse and forgetting. Conversely, GHG achieves information
sharing and accumulation by designing organizational structure, interactive medium, and life cycle.

(4) SL method MASC forgot several old knowledge, and full-data interaction causes high transmis-
sion. Our GHG successfully preserves old information and avoids interaction costs by leveraging
synthetic graphs as an effective medium.



Table 2: Performance comparison on SLAP and Com-
puters datasets in strong heterogeneity setups.

Dataset Para. SLAP Computers
Metric MAPT MAF| MAP{t MAF]
Single - 8.2:01 34.1:x18 13.6x20 30.8:79

FedAvg GFL  8.0:01 32.9:06 10.5:04 4.9:29
DFedGNN GFL  8.1:0.1 33.8:03 19.8:22 21.8:53
Fed-PUB  GFL 11.6:01 42.3:19 27.5:1.1 64.7:209
FedGTA GFL  8.3:02 33.7:23 13.5:52 10.6242
FedTAD GFL  8.1x01 31.8:22 10.5:04 5.0:67

(a) Complementarity weight we and
similarity weight ws

85
TWP GLL 8.1:01 33.2:15 14.5:10 29.2:42 P P A N A A A
ERGNN GLL 15.6:02 20.8:1.1 18.0:20 24.1:6.1 Ol Y [Eresrow e —

GSIP GLL 15.7:05 15.9:07 19.2:10 36.4s52 T |d o e Cieser
TPP GLL 24.8:15 15.8:20 36.7:06 0.0:00 O G G SR R
DMSG GLL 15.8:02 13.6:05 28.5:24 30.7+52 S |«
Fed TPP  GFLL 27.2:1> 12.3:07 36.5:15 0.0:00 »
Fed-DMSG GFLL 18.0:03 9.8:07 32.2:31 3.6:28 45
POWER  GFLL 15.5:05 20.1:02 10.7:32 24475 £ 00020400 0810121416
MASC SL 15.0:03 18.6:08 24.2+16 21.6+13 (b) Collaborative weight weor
GHG GSL 62.4:30 0.0:0.0 82.5:02 0.0:0.0 . .
Figure 3: The analysis of hyper-parameters.

5.3 Ablation Study

To explore the contributions of differ- Table 3: Ablation comparisons on five datasets.

ent components, we perform an abla-

tion study in terms of the MAP met-  Method CoraFull Arxiv Reddit Cora CiteSeer

El‘ngsat’JﬁEesahc(;l“;scgofg‘;stwfoféfﬁf' B 28.9:00 16405 43402 53.6:16 51.6:0]
P > g B+Lgyn 33.2:03 26.4+03 48.3:02 54.1+02 52.6:0.7

their importance to Q3L We devise foUr g/ wtLee  516:10 58901 834.00 78842 63.6:2-
TPP [20] as baseline: B+ Esyn: This vari.- B+Lgyn+Lee+ Ly 54.0:08 59.2:05 86.7:0.9 79.2:3.4 65.7:4.1
ant constructs accurate task prototypes leveraging synthetic graph loss; B+Lsyn+Lce: This variant
incorporates synthetic graphs from neighbor agents into single graph training with cross-entropy
loss; B+Lsyn+Lce+Lia: This variant is the full model, trained with KL divergence loss to help agents
mimic others’ patterns, achieving the best performance.

5.4 Further Analysis

Hyper-Parameter Analysis. (1) We assess the performance on CoraFull under diverse combi-
nations of trade-off parameters. Specifically, we tune w¢ varies in 0.5 to 1.7 and wg varies in
0.1 t0 0.9. As shown in Figurel’ﬂ_ﬁjl> the performance of GHG is stable across w¢ and wg varies,
indicating low sensitivity to hyper-parameters. (2) Figure [3(b)] presents performance as weo varies,
where “R” indicates random sampling. The customized graph synthesis significantly outperforms the
random approach, with an almost 10% improvement on Cora, demonstrating the effectiveness of the
customized interactive medium. The analysis of loss weights is presented in Appendix [D.2]

Graph Socialization Necessity. The performance of GHG with 5, 10, and 20 agents, as well as
different participation ratios d is shown in Table We can observe that the higher the participation
ratio, the higher the performance, which proves the necessity of agent socialization. The more agents
A, the more dispersed the graph becomes, thus resulting in lower performance. However, the only
special case is when § equals 0.2. In the case of 5 or 10 agents, only 1 or 2 agents cooperate, leading
to the inability to predict task ID accurately, so performance is lower than that of 20 agents.

Graph Socialization Efficiency. (1) We compare GHG with baselines on Corafull across different
interaction rounds in Figure[d(b)] GHG outperforms baselines in all cases. It peaks at four interactions,
which shows GHG efficiently completes collaboration. In contrast, Fed-DMSG and MASC require



Fed-TPP
MASC

10 5 10 20 2 4 6 8 10
Number of Agents Interaction Rounds

(a) Number of agents A (b) Interaction rounds r

Fed-DMSG
== GHG

POWER

CoraFull Arxiv
(c) Compression ratio y

Reddit Cora CiteSeer

Figure 4: The analysis of parameters.

more interactions for high performance. Fed-TPP shows little variation with different », and POWER
fails to save interaction overhead. (2) Figure (c)]illustrates the performance variation on five datasets
with different compression ratios. We observe that higher y generally leads to better performance.
However, we use the results with 7 to limit interaction costs. Even when + is halved, our method
maintains high performance. We further analyze the time, memory, and communication costs in
Appendix [D-3]to demonstrate the efficiency of GHG over baselines.

Visulization. (1) The visualization of collaborative graph edge weights is displayed in Figure
[l The first row shows three matrices of coarse-grained agent collaboration for Task 0 of Reddit,
with those for the other three tasks in Appendix [D.4] The second row presents three matrices of
fine-grained customized collaboration for Class 0 of Task 0. Agents almost abandon their initial
state in the complementarity matrix, impeding the subsequent training. In the similarity matrix, the
insistence of agents on their models hinders information acquisition. Our collaborative approach
filters out redundant interaction information and gets what each agent needs, highlighting the role
of GHG in enhancing autonomous socialization efficiency. (2) As shown in Figure [6] we utilize
t-SNE to visualize node embeddings of three classes generated by random sampling and GHG
on Arxiv. The reciprocal generation of node representations by two agents within GHG facilitates
preservation of the category-wise node distributions inherent in the original graph and enables the
customization of category quantities to meet agent demands. This demonstrates that GHG has a
superior ability to capture sufficient graph information.

*

0 0 0 Class 0 (Original) Class 0 (Original)
1 - 1 0.8 1 0.8 Class 1 (Original) ** Class 1 Original) % % %
0.6 0.6 Class 2 (Original) <% % ’&’c" Class 2 (Original) % ** o “
2 2 04 2 04 % Class 0 (Random ¥ * .
3 3 0'2 3 0'2 * *
.. .. >
4 4 4 * ¥ * *
0.0 0.0 W * o R
01234 01234 * hl
o 10 o 1.0 "
Class 0 (Original) Class 0 (Original)
1 038 1 038 1 08 Class 1 (Original) aE Class I (Original)
N 0.6 5 0.6 N 0.6 P Class 2 (Original) * A Class 2 (Original)
0.4 0.4 0.4 T g % Class 0 (Random) .m,ﬁ , % ClassO (Synthetic)
3 02 3 02 3 02 :"-?& %+ Class I (Random) * A 3 &+ Class 1 (Synthetic)
4 ! g : e g *  Class2 Random) *  Class 2 (Synthetic)
0125354 0 01234 % Giz33 % = rd
(a) Complementarity (b) Similarity  (c) Collaboration (a) Random (b) Customized Synthesis

Figure 5: The visualization of collaborative graph Figure 6: The visualization of node embeddings
edge weight matrices on Reddit dataset. on Arxiv dataset.

6 Conclusion

Current paradigms face the predicament of information collapse and forgetting, struggling to share
and accumulate information in dynamic heterogeneous graph settings collaboratively. We present a
practical GSL paradigm and develop a GHG approach to enhance the performance of each agent.
Graph-driven organizational structure, customized interactive medium, and prototype-based life cycle
form three key elements of GSL. In future work, we aim to refine the organizational structure further
to accommodate large-scale multi-agent systems and strengthen the scalability of the graph socialized
learning model. Moreover, we plan to evaluate the effectiveness of the graph socialized learning
method on real-world application datasets.
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A Appendix

The appendix contains supplementary proofs, together with comprehensive details of implementation
and results mentioned in the main paper. It is organized as follows:

* In Section B, we provide the proofs of Theorem 1 and Proposition 1 regarding graph
socialization generalization.

¢ In Section C, it presents a thorough overview of baselines, detailed descriptions of datasets,
and relevant experimental details in the main paper.

* In Section D, it offers complete experimental results alongside in-depth analysis to fully
evaluate the performance of the proposed method, followed by time, memory, and commu-
nication costs analysis.

* In Section E, we discuss the related work, privacy issue, limitation, and potential broader
impact of the method.

B Proof of Graph Socialization Generalization

B.1 Proof of Theorem 1

Proof. We leverage previous results [44, 46| 47]] to get the inequality and multi-agent graph distribu-
tion generalization bound:

ep, (Fy) <ep, (F) + C (Do, Da), (15)

1
ep, (F) < GD(F)+§dHAH (poD,poDa)+ep, (V). (16)

where C (Do, Da) = 3dr, a7, (Do, Da) +1(Ds), and n(D,) = mingezr, ep, (F) + ep, (F) is
a constant. These terms tend to be small except when graph heterogeneity is severe [44]. ¥, Ha, Fa
are the space of prompts, classifier, and model on agent a. ) represents the optimal labeling function
of graph distribution D. Since the overall graph distribution of agent a originates from single graphs,
synthetic graphs, and predictions of neighboring agents on synthetic graphs, we sum three inequalities
after multiplying them by their corresponding weights.

The support of D;" and DX are identical. As a consequence, their proximity to the support of the
multi-agent graph distribution also matches, which is denoted as:

dyy, am, (o DY poDa) =dy,an, (VoD poDa). (17

By leveraging the findings from [45] and Pinsker inequality, we establish that the optimization of loss
(@) leads to the minimization of Epul (Fy,). After gradually adding three inequalities, we obtain:

syn

2

w
ep, (Fa) <epu (Fo) + C(Dy, Da) + dy,an, (Yo DI 1hoDa)

. wkl . .
tep, (V) + 5 duaan, (oD% v oDa) +ep, (Vo)

<eps (Fa) +wC (Da, Da) +w™%ep, (V") +wMlep, (V3™)

1—w
+ ( 5 )d’HaA’Ha (¢OD;yn,wODA).

(18)

Since w + w¥ + ¥ = 1, we can derive:

ep, (Fu) < €pa (Fy) + wC (Dy, Da) +wep, (V) + WMep (y};l)

(1-w) (19

+ 2 dHaAHa (¢ © Df}’“? w © DA) N
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B.2 Proof of Proposition 1

Proof. We initiate with:

sup [epyn (F) — ep, (F)| +ep, (V") <
FeF,

. 1
inf (ep,(F) —ep,(F)) + ydr.az, (Da;Da) +1(Da),

FeF,

(20)

where 3d 7, a7, (Da,Da) + 1 (Da) = C(Dy,Da). For any F € F,, we can derive:

epy (F) — ep, (F) + e, (V5") < ep,(F) — ép, (F) + C (Do, Da)

21
— enp(F) + ep, (V3") < ep, (F) + C (Do, D). b

The right side of Eq.(ZT)) corresponds to the original bound stated in [44], so we have:

1
epu (F) + €p, (VK < ep, (F) + id}'aA]—'a (Da,Da) +1(Da) - (22)

Combine Eq.(2T) and 22)), and if weight w — 0,

. 1
wklEDg(F) + wSyHeDsayn(F) +e€ep, (ygl) < ep, (F) + idfaA]:a (DQ,DA) +n (Da) . (23)

Thus, we determine that our overall graph generalization bound in Theorem 1 is tighter than the single
graph generalization bound in [44], provided that the condition in Proposition 1 is satisfied. O

Algorithm 1 Training of GHG

Input: A series of multi-agent graphs: G%i = {GL|1<a<A1<t<T}, task number

—

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

YRIINHERN T

T, interaction round r, agent number A, the graph neural networks f1.4(-) = {fa(:) |
1 < a < A}, initial prompts &} = {®! |1 <a < A,1 <t < T} and classifiers h}:, =
{ht |1 <a < A1 <t<T},initial collaborative graph edge weights M.
fora =1to Ado
Pre-train f,(-) on G with graph pre-training learning.
end for
fort =1to T do
for rnd = 1tor do
fora =1to Ado
if rnd == 1 then
Optimize ®f, and h!, by minimizing single-agent graph learning loss as Eq. (@).
else
Receive interaction information R = {Uf, U}, ®*, h', MEAN(F(G!||G").),

MEAN(Z:0), MEAN(z:("), Gt, F(G*)} sent from other agents.
Optimize ®!, and h!, by minimizing multi-agent graph learning loss as Eq. ().
end if
Calculate complementarity C and similarity S as Eq. (3) and Eq. (7).
Update collaboration graph edge weights M!, as Eq. (§).
Calculate initial label distribution of synthetic graphs for neighbor agents as Eq. (I0).
Generate synthetic graphs for neighbor agents as Eq. (TI).
Send interaction information R to other agents.
if rnd == r then
Obtain task prototype P! of task ¢ as Eq. (12).
end if
end for
end for
end for
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Algorithm 2 Inference in GHG

Input:

Graph neural networks fi.a(:) = {fu(*) | 1 < a < A}, graph prompts &1} =

{®! |1 <a<A1<t<T}, classifiers bl = {hl |1 <a < A, 1<t <T}, task proto-
types P1.4 = {P, | 1 < a < A}, and test graph Gieq.

Output
. for

1
2
3:
4
5

: Prediction results of agents for test graph.

a=1to Ado
Obtain task prototype P, q.
Infer the task ID of test graph ¢ by querying P, with Py .

Obtain predictions through f,(-) and the corresponding graph prompts <I>f; and classifier hf;.

: end for

6: Return Prediction results of agents for the test graph.

C Implementation Details

C.1 Algorithm

The proposed method is summarized in Algorithm [T for training and Algorithm 2] for inference.

C.2 Datasets and Baselines

The statistical properties of seven datasets are shown in Table[d] On CoraFull dataset, the node label
distribution of five agents under two heterogeneous levels for each task is shown in Figure[/| It can

be seen

that different agents have different classes and numbers of nodes in each task. We introduce

the baselines from the main paper as follows:

Single serves as the lower-bound baseline, exclusively utilizing the most recent single graph
to update the model.

Federated Averaging (FedAvg) [53] serves as the foundational federated learning method,
where the server aggregates the model parameters received from clients and distributes them
back to clients.

Decentralized Federated Graph Neural Network (DFedGNN) [[13]] adopts a decentralized
parallel stochastic gradient descent algorithm for training the graph neural network model
across a peer-to-peer network topology.

Federated Personalized Subgraph Learning (Fed-PUB) [9] performs weighted averaging
during server-side aggregation and learn personalized sparse masks to update the subgraph-
relevant subset of the aggregation parameters.

Federated Graph Topology-aware Aggregation (FedGTA) [25]] aggregates through topology-
aware local smoothing confidence and mixed neighbor features.

Federated Topology-aware Data-free Knowledge Distillation (FedTAD) [10] measures
class-wise knowledge reliability at clients and uses a generator to produce pseudo-graphs,
transferring reliable knowledge from clients to the global model.

Topology-aware Weight Preserving (TWP) [18]] assesses parameter contribution to task per-
formance and topology, and introduces regularization terms to preserve critical parameters.

Experience Replay Graph Neural Network (ERGNN) [19] achieves multiple node selection
strategies to extract representative nodes for memory replay.

Graph Spatial Information Preservation (GSIP) [21]] prevents catastrophic forgetting by
preserving graph spatial information based on low- and high-frequency components.

Task Profiling and Prompting (TPP) [20] enables replay-free and forget-free learning through
discriminative graph prompts and task ID predictions.

Diversified Memory Selection and Generation (DMSG) [22] employs buffer selection
strategies considering intra-class and inter-class diversity, along with diversified memory
generation for replay.
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Table 4: Statistics of datasets.

Datasets CoraFull Arxiv Reddit Cora  CiteSeer SLAP Computers
# nodes 19,793 169,343 227,853 2,708 3,327 20,419 13,752
# edges 130,622 1,166,243 114,615,892 5,429 4,732 172,248 245,778
# class 70 40 40 7 6 15 10
# agent 5 5 5 2 2 5 5
# task 7 4 4 3 3 3 2
# novel class 10 10 10 2 2 5 5
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Figure 7: Node label distribution for each task of five agents on CoraFull dataset under two heteroge-
neous levels.

* Graph Evolution Trajectory-aware Knowledge Transfer (POWER) [56]] replays experience
nodes with maximum local-global coverage at clients and tackles global expertise conflict
by trajectory-aware knowledge transfer.

* Multi-Agent Socialized Collaboration (MASC) [7]] constructs collective collaboration and
reciprocal altruism and achieves socialized learning via knowledge distillation.

C.3 Metrics

We use two widely adopted metrics to evaluate the performance of the compared methods: Average
Performance (AP) and Average Forgetting (AF) [34]]. Specifically, AP and AF are calculated from
the lower triangular performance matrix J € RT*T, J i (t > t') represents the node classification
accuracy on task ¢’ after learning task ¢. After learning a new task, average performance assesses the
average performance on previous tasks, while average forgetting measures the average performance
drop on old tasks. MAP and MAF denote the mean accuracy and forgetting rate across A agents,
respectively. Higher MAP and lower MAF correspond to superior performance. MAP and MAF are
derived through the following formulas after completing 7 tasks:

A T -

MAP = ix o7 Z JT MAF = —— g Z (JEE = T8 (24)

a=1 t=1

C.4 Detailed Settings

Our model is deployed in PyTorch and on an NVIDIA RTX 3090 GPU. We use Adam with weight
decay, setting the learning rate to 0.005 and training for 50 epochs. For graph synthesis of each agent,
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Table 5: Performance comparison on five datasets in weak heterogeneity setups. Results are averaged
among three trials. The best and second results are highlighted in bold and underline.

Dataset Paradigm CoraFull Arxiv Reddit Cora CiteSeer

Metric MAPT MAF| MAPT MAF| MAP{ MAF| MAP{ MAF| MAP{T MAF]
Single - 6.2:0.1 55.3:0.1 11.9z0.1 49.6:0.1 21.3:02 82.1:04 26.8:0.1 79.3:02 20.4+02 57.5:05
FedAvg FL 7.2:03 59.3:02 12.3z02 50.7:04 21.6:0.1 83.6:06 29.6:05 81.0:04 20.4-02 60.0:0.2
DFedGNN GFL 7.3:01 60.0:03 12.8200 53.0:04 21.7+00 83.4:04 29.0:08 81.8x10 23.6:0.1 64.1+06
Fed-PUB GFL 5.3+06 51.5:22 11.1:x05 50.7+02 21.2:02 84.3+02 16.7:03 63.0-05 16.7:00 51.3+1.1
FedGTA  GFL 7.1:02 59.6:04 12.6:0.1 51.7:01 21.5:01 83.3z0.1 29.8:05 81.3:05 23.6:0.1 61.0:00
FedTAD GFL 7.0:0.1 58.5:04 12.5:0.1 52.1:02 22.5:09 82.5+13 31.5:10 80.3:03 20.1:0.1 59.6+04
TWP GLL 6.7:02 51.9:01 11.9202 50.1:03 21.3+03 81.8205 31.3:0.1 79.8205 19.9:0.1 56.6+03
ERGNN GLL 37.4:04 17.7:06 24.7-05 29.1:05 55.6:04 36.3:04 36.3:38 70.6:57 23.2:02 56.1:12
GSIP GLL 43.5:03 12.5:04 30.6:02 14.9:04 69.4+13 17.9:17 44.0:21 60.3:36 24.6:07 53.8+2.1
TPP GLL 46.8:04 1.8:0.1 21.0:01 9.3:02 69.9:02 5.1:05 79.5:04 0.0:00 53.7:13 0.0:0.0
DMSG GLL 41.4:08 10.8209 25.3:03 12.9:04 66.3+1.1 16.2:14 58.3:06 37.3:35 41.4:22 32.8:23
Fed-TPP  GFLL 47.1x01 2.2:01 19.5:00 8.2:02 67.7:05 5.0:03 76.6:17 0.0:0.0 50.4:05 0.00.0
Fed-DMSG GFLL 56.1:07 0.4+09 29.9:04 8.1:04 77.0:10 4.3:02 67.9:+16 17.1:19 44.8+12 27.6+15
POWER GFLL 42202 15.8:07 25.1:08 32.6:1.1 76.0:08 10.6:06 63.4:49 30.1:49 49.9:07 21.3:09
MASC SL 54.7-08 2.7+1.1 31.7+06 24.9+07 78.1:04 7.7+12 65.1:12 26.6+15 48.5+13 10.6+13
GHG GSL 60.7:02 0.0:00 61.0:02 0.0:0.0 92.7:00 0.0:0.0 93.9:09 0.0:00 72.7:37 0.0:0.0

we employ Adam with a learning rate of 0.001 or 0.005 and 50 epochs per interaction round. The
graph prompt settings follow those of TPP [20], with 3 Laplacian steps and three prompts. Results
are reported as the mean and standard deviation of three trials. For dataset splits, CoraFull, Arxiv,
and Reddit have 60% training, 20% validation, and 20% testing, while Cora, CiteSeer, SLAP, and
Computers have 20% training, 40% validation, and 40% testing. The compression ratio g is 0.1 for
most datasets, except for Reddit, which has a value of 0.01. When applying SVD to agent outputs,
the representative subspace column number k of CoraFull, Arxiv, and Reddit is 3, and the last four
datasets use k£ = 2. For SVD on outputs of classes, k is set to 1. The number of interactions for the
first three datasets is 4, and for the last four datasets, interaction round r is set to 2.

D Experimental Results

D.1 Performance Comparison

The performance under weak heterogeneity conditions is presented in Table[5] Overall, it is better
than that under the strong heterogeneity condition. Nevertheless, our method still shows remarkable
performance. This indicates the effectiveness of our method in collaboration.

D.2 Hyper-Parameter Analysis

The KL divergence loss weight wy takes values in [le — 3,1e — 2,1e — 1, 1e — 0], and the results
on five datasets are shown in Figure Different datasets have different optimal values. We note
that the model’s performance doesn’t vary significantly with different values. The synthetic standard
deviation loss weight w,, is set to [le —4, 1le — 3, 1le — 2, 1e — 1], and the performance on five datasets
is presented in Figure[8(b)] The results indicate that setting w, to 1le — 3 or 1e — 2 yields satisfactory
outcomes.

D.3 Time, Memory, and Communication Costs Analysis

As shown in Table[6]and Table[7] we provide an analysis of the time, memory, and communication
costs. A, T, r, and C denote the number of agents, the number of tasks, the number of interactions,
and the number of classes per task, respectively. d° and d represent the dimensions of original features
and model outputs, respectively. Our method offers five advantages over baselines: shorter runtime,
lightweight models, no need for replay, lower memory usage, and reduced interaction cost.
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(a) KL divergence loss weight wy;  (b) Standard deviation loss weight w.

Figure 8: The analysis of loss weights.

Table 6: Comparison of time, model parameters, memory size on CoraFull dataset.

Method Time cost (s) Model content Model params (M) Memory concent Memory size (MB)
Fed-DMSG 881 A agents, Server 33.7 Replay graph 79.6
POWER 1403 A agents, Server 20.4 Replay graph, Global replay graph 86.2
MASC 1215 A agents, Server 13.5 Replay graph 79.6
GHG 1092 A agents 11.5 Prompts, Classifiers, Prototypes 7.5

Table 7: Comparison of communication costs on CoraFull dataset.

Method Complexity Content Params (M)
Fed-DMSG O(ATrF) Model parameters F' 1885.0
POWER  O(ATrF + ATC Fyaa) Model parameters F', Class prototype gradients Fyr,q ~ 632.5

Original graph |V'|d°, Classifiers h,
Node embeddings |V'|d

~ 1 1 > o
O(AATH(|V| +2C + 3)d Prompts @, Classifiers h, Synthetic graphs |V|d°,

% o Node embeddings (|V| + 2C + 3)d, 105.0
H(VI+C+1)d? + @+ h)) Topology-aware embeddings (C' + 1)d°

MASC  O(ATr([V|d + h) + AT|V|d°) 109.4

GHG

Our approach involves a time cost to facilitate information collaboration among agents, with the goal
of enhancing each agent’s performance. For each agent at every task of each interaction, the time
consumption mainly stems from three aspects: graph-driven organizational structure, customized
interactive medium, and prototype-based life cycle. In the graph-driven organizational structure
process, the complexity of using SVD to extract the representative subspace is O((|V'| + |V])d?) for
the complementarity measure. Similarity calculation is related to the Laplacian smoothing process.
As solving for collaborative graph edge weights is a convex optimization problem, it can be quickly
solved with convex optimization solvers. Thus, the complexity of graph edge weight calculation is
O((JV| + |V])d? + I|a|d®), where || returns of the number of edges. Given the number of epochs
Eqyn on synthetic process, the computational complexity of synthetic graph generation for neighbor
agents and task prototype computation are O(A(l|a| 4[|V | + C)d°Egyy) and O(Al|V|de + |V|de).
It is linear to the number of nodes, the number of edges, and the number of original node attributes.

D.4 Visualization

As shown in Figure[9] collaborative graph edge weights for the last three tasks on Reddit dataset are
displayed. The varying collaborative weights among agents across different tasks reveal autonomous
collaborative relationships, which are beneficial for enhanced collaboration and promoting the
performance improvement of agents.

E Discussion

E.1 Discussion on Related Work

While our approach shares the decentralization and lifelong learning considerations of recent
work [38]], it differs in several key aspects. Unlike [38]], which relies on full-parameter interac-
tions and gradient-based lifelong adaptation, our method explicitly models not only agent similarity
but also complementarity and structural relations. Moreover, GHG employs a customized interactive
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Figure 9: The visualization of collaborative graph edge weight matrices on Reddit dataset.

Table 8: Privacy analysis on CoraFull dataset.
Method MIA success rate (%) SRA precision (%) MAP (%)

GHG 9.7 1.0 54.0
GHG-DP 4.9 0.9 384

medium to reduce communication overhead and enhance knowledge compatibility. GHG adopts
prototypes and isolation-based strategies to achieve more stable and efficient lifelong learning.

E.2 Discussion on Privacy Issue

The primary application scenarios of GSL involve cases where multiple laboratories or institutions
train models on different graph libraries while aiming to share knowledge collaboratively. Our
goal is to share information to enable effective socialized collaboration, unlike graph data across
pharmaceutical companies or hospitals, which may not be shareable due to privacy concerns. We still
provide a brief discussion on the privacy issue. We conduct Membership Inference Attacks (MIA) and
Structure Reconstruction Attacks (SRA) on synthetic graphs transmitted between agents. As shown
in Table[8] we report the average MIA success rate and SRA precision across all synthetic graphs.
It can be observed that MIA scores are consistently higher than those of SRA. Although synthetic
node features are generated based on the original topology, synthetic graphs do not directly transmit
topology. Thus, the original structure is well protected. To enhance privacy protection of synthetic
graphs, we apply feature perturbation using the Gaussian mechanism [58] to achieve Differential
Privacy (DP). As shown in Table[8] both MIA success rate and SRA precision decrease. Although the
performance of GHG slightly drops due to DP, it still significantly outperforms baselines.

E.3 Limitation

For large-scale multi-agent systems operating in complex environments, we employ sparsification
techniques to improve scalability. However, when the number of agents grows very large, the current
method may incur computational and communication overhead. An interesting direction for future
work is to investigate more suitable organizational structures (i.e. hierarchical structures) that can
better scale to large multi-agent systems. Moreover, we plan to conduct experiments on real-world
datasets to further validate the potential of GSL methods in the future.

E.4 Broader Impact

Our work can positively impact society by contributing to fields that utilize graph-structured data, such
as social networks and recommendation systems. It can make information reuse and recommendations
more efficient in these fields. However, a lack of regulatory bodies might lead to negative effects.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are discussed in Appendix E.3.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 3.2 and 4.5 for assumptions and the detailed proof is provided in
Appendix B.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results is added
in Appendix C.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: They are enclosed in the supplemental material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The experiment settings are provided in Appendix C.4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See that Table 1, Table 2, Table 3, and Table 5 report the standard deviation of
experimental results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The detailed description is provided in Appendix C.4 and D.3.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Broader impacts are discussed in Appendix E.4.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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