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Abstract

Despite the significant advances in neural ma-001
chine translation, performance remains subpar002
for low-resource language pairs. Ensembling003
multiple systems is a widely adopted technique004
to enhance performance, often accomplished by005
combining probability distributions. However,006
the previous approaches face the challenge of007
high computational costs for training multiple008
models. Furthermore, for black-box models,009
averaging token-level probabilities at each de-010
coding step is not feasible. To address the prob-011
lems of multi-model ensemble methods, we012
present a pivot-based single model ensemble.013
The proposed strategy consists of two steps:014
pivot-based candidate generation and post-hoc015
aggregation. In the first step, we generate can-016
didates through pivot translation. This can be017
achieved with only a single model and facil-018
itates knowledge transfer from high-resource019
pivot languages, resulting in candidates that are020
not only diverse but also more accurate. Next,021
in the aggregation step, we select k high-quality022
candidates from the generated candidates and023
merge them to generate a final translation that024
outperforms the existing candidates. Our exper-025
imental results show that our method produces026
translations of superior quality by leveraging027
candidates from pivot translation to capture the028
subtle nuances of the source sentence.029

1 Introduction030

Neural machine translation (NMT) models exhibit031

outstanding capabilities when a large volume of032

the parallel corpus is available (e.g., translate from033

and to English). However, their performance still034

falls short in cases involving low-resource lan-035

guages (e.g., Basque) and translating between non-036

English languages from different language fami-037

lies (e.g., German-Russian) (Artetxe et al., 2018).038

Top-performing large language models (LLMs),039

such as GPT models (Ouyang et al., 2022), also040

demonstrate suboptimal translation performance in041

low-resource language pairs (Robinson et al., 2023; 042

Moslem et al., 2023). The scarcity of parallel data, 043

primarily due to limited cultural interaction, makes 044

the low-resource translation task more challenging. 045

In many generation tasks, ensembling multiple 046

systems has proven to be a successful strategy for 047

performance enhancement. In NMT, traditional en- 048

semble methods average probability distributions 049

over output tokens from multiple models during 050

decoding. However, the expensive cost of training 051

multiple models is the primary shortcoming of en- 052

semble decoding. Additionally, computing token- 053

level probabilities at each decoding step is not fea- 054

sible with recent black-box models such as GPT-4o 055

and Gemini (OpenAI, 2024; Team, 2023). 056

Ensemble methods that can be utilized even 057

when token-level probabilities cannot be computed 058

have also been proposed. Selection-based ensem- 059

ble method involves generating candidates from 060

multiple models and then selecting the best candi- 061

date among them (Wang et al., 2022; Hendy et al., 062

2023). However, in this ensemble fashion, the final 063

output space is limited to the existing candidate 064

pool. In contrast, the generation-based ensemble, 065

such as LLM-Blender (Jiang et al., 2023), creates 066

improved outputs using candidates obtained from 067

multiple models. This approach aims to generate 068

a final output superior to the existing candidates. 069

Nonetheless, the main drawback from the notably 070

high cost of generating candidates through multiple 071

models remains, inducing computational overhead. 072

As the size of the models used in the ensemble in- 073

creases, the cost proportionally escalates, becoming 074

more burdensome. In addition, due to the varying 075

performance of MT systems, the quality of some 076

candidates can be significantly lower than others, 077

leading to a degradation in the overall performance. 078

To alleviate the problems above, we propose 079

Pivot-based single model Ensemble (PIVOTE), a 080

novel generation-based approach. Our intuition of a 081

single model ensemble primarily stems from pivot 082
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translation, which can produce diverse and more ac-083

curate translations. Pivot translation (Wu and Wang,084

2007; Utiyama and Isahara, 2007) is a method085

that splits the end task into two sequential steps:086

source→pivot and pivot→target. Pivoting has been087

employed to enhance low-resource translation by088

transferring knowledge from high-resource pairs.089

In many cases, English, being a resource-rich lan-090

guage, serves as the intermediate language. How-091

ever, we employ not only English but various pivot092

languages for candidate generation, thereby pro-093

ducing diverse hypotheses using a single model.094

In the next aggregation step, we select the top095

candidates for the ensemble and merge them to096

generate the final output. Since the quality of can-097

didates directly impacts the results of the ensemble,098

it is important to select high-quality candidates.099

Given that the best pivot language for translation100

varies with each source sentence, we hence select101

the top-k candidates for each source sentence via102

quality estimation (QE). By leveraging diverse can-103

didates from pivot translation and knowledge of the104

merging module, PIVOTE generates final transla-105

tions that accurately convey the meaning and subtle106

nuances of the source sentence, superior to select-107

ing from pre-existing candidates. Our contributions108

can be summarized as follows:109

• We propose a simple but effective pivot-based110

single model ensemble method, PIVOTE, to111

improve low-resource MT.112

• We show that a single model can effectively113

generate diverse and accurate hypotheses and114

that leveraging these candidates in an ensem-115

ble process can enhance translation quality116

while reducing computational overhead.117

• The empirical results on various language118

pairs demonstrate that we consistently out-119

perform state-of-the-art methods, validating120

the effectiveness of the pivot-based ensemble.121

2 Related Work122

Pivot-based approaches. Pivot translation is an123

approach that decomposes the translation task into124

two sequential steps (Wu and Wang, 2007; Utiyama125

and Isahara, 2007). By transferring knowledge126

from high-resource pivot languages, pivoting is127

especially effective in translation between low-128

resource languages (Zoph et al., 2016; Aji et al.,129

2020; He et al., 2022). In this study, pivot transla-130

tion enables us to obtain high-quality candidates131

for the ensemble. Kim et al. (2019) discusses 132

a pivot-based transfer learning technique where 133

source→pivot and pivot→target models are first 134

trained separately, then use pre-trained models to 135

initialize the source→target model, allowing effec- 136

tive training of a single, direct NMT model. Zhang 137

et al. (2022) further investigate the transfer learning 138

approach by utilizing auxiliary monolingual data. 139

Pivot translation typically employs English as 140

the bridge language. Nonetheless, previous studies 141

have explored the use of diverse pivot languages, 142

taking into account factors such as data size and 143

the relationships between languages (Paul et al., 144

2009; Dabre et al., 2015). By leveraging the abil- 145

ity of pivot translation to produce diverse outputs, 146

several studies have focused on generating para- 147

phrases (Mallinson et al., 2017; Guo et al., 2019). 148

More recently, Mohammadshahi et al. (2024) uses 149

pivot translation for ensemble, but it requires com- 150

puting token-level probabilities and fails to improve 151

translation. Our work shares the motivation with 152

these studies, generating translations depending on 153

the pivot path to obtain a variety of candidates. 154

Ensemble in NLG tasks. Ensemble learning is a 155

widely adopted strategy to obtain more accurate 156

predictions by employing multiple systems (Sagi 157

and Rokach, 2018). In NMT, the traditional ap- 158

proach involves averaging the probability distribu- 159

tions of the next target token, which is predicted 160

at each decoding step by multiple models (Bo- 161

jar et al., 2014) or by different snapshots (Huang 162

et al., 2017). When multiple sources are available, 163

an ensemble can be conducted with predictions ob- 164

tained by different sources (Firat et al., 2016). Also, 165

a token-level ensemble through vocabulary align- 166

ment across LLMs has also been proposed (Xu 167

et al., 2024). However, these methods are not ap- 168

plicable to recent black-box models as they cannot 169

compute token-level probabilities at decoding time. 170

Selection-based ensemble has also been ex- 171

plored, which chooses the final output among the 172

existing candidates. This can be achieved through 173

majority voting by selecting the most frequent 174

one (Wang et al., 2022) or selecting the best candi- 175

date with QE (Fernandes et al., 2022; Hendy et al., 176

2023). Recently, MBR decoding (Goel and Byrne, 177

2000; Farinhas et al., 2023), which aims to find the 178

hypothesis with the highest expected utility, has 179

gained attention. However, this approach limits the 180

final output space to the existing candidate pool. 181

On the other hand, the generation-based ensem- 182
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Figure 1: Overview of PIVOTE framework.

ble method involves generating a new final predic-183

tion. Fusion-in-Decoder (Izacard and Grave, 2021)184

proposes an architecture that aggregates additional185

information with a given input. More recently,186

within the context of LLMs, Jiang et al. (2023)187

and Yin et al. (2023) investigate a method of using188

LLMs to generate multiple outputs and aggregate189

them. Generating new output through LLMs offers190

the benefit of explicitly harnessing their pre-trained191

knowledge within the ensemble process.192

3 Pivot-based Single Model Ensemble193

In this section, we first introduce the overview of194

PIVOTE framework (§3.1). Then, we describe the195

candidate generation process through pivot transla-196

tion (§3.2) and the aggregation process (§3.3).197

3.1 Overview198

Our objective is the same as that of conventional199

translation tasks: converting the given source lan-200

guage sentence x into the target language sentence201

ŷ. PIVOTE consists of two steps: candidate genera-202

tion and candidate aggregation. Figure 1 illustrates203

an overview of the proposed ensemble framework.204

As the first step, we input x to generate candi-205

dates through a single multilingual NMT model.206

One translation path could be directly translat-207

ing from the source to the target through the208

source→target path. Alternatively, pivot transla-209

tions can be achieved by employing high-resource210

pivot languages, enabling translation paths from211

source→pivot and pivot→target. During the pivot212

process, leveraging abundant parallel data enables213

knowledge transfer from high-resource pivot lan-214

guages, thereby facilitating the generation of di-215

verse and more accurate translations. Through216

these n paths, we can obtain a candidate pool217

C = {c1, ..., cn} composed of n candidates in the218

target language, employing only a single model. 219

As the second step, a ranking process is first con- 220

ducted within the candidate pool C since not all 221

candidates contribute to the ensemble. Using the 222

estimated quality of each candidate, we select the 223

top-k candidates. We then generate the final output 224

ŷ using the selected high-quality candidates. This 225

generation-based approach facilitates the produc- 226

tion of outputs superior to existing candidates. 227

3.2 Pivot-based Candidate Generation 228

In the first step, PIVOTE takes a source sentence x 229

as input and generates n candidates. Direct transla- 230

tion yields only one candidate, whereas pivot trans- 231

lation enables the generation of multiple candidates 232

from a single source sentence using a single model. 233

Generating candidates through pivot translation has 234

two major advantages: diversity and quality. 235

First, we can obtain diverse candidates that can 236

act complementarily. One of the key principles for 237

the ensemble is that the participants must be suf- 238

ficiently diverse to provide various inductive bi- 239

ases. In PIVOTE, each source sentence is translated 240

diversely by passing through multiple translation 241

paths. Diverse translation paths enhance the like- 242

lihood of providing expressions that convey the 243

accurate meaning of the source sentence. Pivot- 244

based candidate generation shares a similar goal 245

with a previous study that generates paraphrases 246

through round-trip translation, aiming to generate 247

diverse translations (Thompson and Post, 2020). 248

Second, by utilizing a parallel corpus of 249

high-resource pivot languages, pivoting enables 250

more accurate translations. For low-resource lan- 251

guage pairs, more appropriate translations can be 252

achieved through two-step decoding through a 253

pivot language (He et al., 2022). Moreover, lever- 254

aging pivot languages with abundant parallel data, 255

not limited to English, allows us to obtain better 256
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translations (Paul et al., 2009; Dabre et al., 2015).257

In addition, pivot translation with a single model258

offers practical benefits over employing multiple259

models. Firstly, it can reduce the costs of operating260

multiple models including LLMs. Secondly, the261

substantial performance disparities among models262

mean that using the top-performing single model263

for candidate generation often leads to higher-264

quality outcomes. Lastly, it reduces inference la-265

tency by using a single model for two batched infer-266

ences, while multi-model ensembles require up to267

11, causing significant overhead and limiting real-268

time response capability. Given that pivot transla-269

tion with a single model allows for the creation of270

diverse and more accurate translations, we utilize271

an MNMT model to generate the candidates.272

Selecting pivot languages. For each language pair,273

we carefully select pivot languages based on the as-274

sumption that pivot language with abundant mutual275

knowledge would allow us to obtain higher-quality276

candidates. We select n top-performing paths for277

our study based on BLEU scores on the FLORES-278

200 benchmark (Costa-jussà et al., 2022). We eval-279

uate the outputs for each path, including direct280

translation and through various pivot translations.281

NLLB (Costa-jussà et al., 2022) is used to gener-282

ate candidates, and results on the FLORES-200 for283

selecting translation paths are in Appendix A. If284

pivot languages are selected based on BLEU scores,285

high-resource languages are predominantly chosen,286

rather than low-resource ones. The experiments287

detailed in Appendix B demonstrate that overly pri-288

oritizing diversity by employing low-resource pivot289

languages, at the expense of candidate quality, does290

not result in improvements in the final translation.291

The experiments comparing metrics for selecting292

translation paths are in Appendix C. As a result,293

we compose the candidate pool using the 4 paths.294

3.3 Candidate Aggregation295

In the aggregation step, we take the candidate pool296

C as input and output the merged final translation ŷ.297

The post-hoc aggregation process encompasses two298

stages: selecting and merging. In the first stage, we299

select candidates by ranking method. There are two300

approaches for selecting candidates. One approach301

evaluates each translation path and selects the best302

paths for all source sentences. The other approach303

involves selecting the best top-k candidates for each304

source sentence. After selecting k candidates, we305

generate the final translation ŷ using the merging306

module. This process enables the creation of better 307

outputs beyond the quality of existing candidates. 308

Selecting the top-k candidates. The pivot lan- 309

guage that generates the highest-quality candidate 310

varies for each source sentence. The best output is 311

not guaranteed from one translation path alone, as 312

it can vary depending on factors such as the size 313

of the parallel corpus and the relationship between 314

languages. First, PIVOTE uses QE to rank all n 315

candidates from candidate pool C = {c1, ..., cn}. 316

Afterward, we select top-k candidates among n can- 317

didate pool. Selecting the top-k candidates ensures 318

the quality of the output by filtering out low-quality 319

candidates while also efficiently reducing the cost 320

during the merging process. We use the reference- 321

free COMETkiwi (wmt22-COMETkiwi-da) (Rei 322

et al., 2022b) for ranking candidates. 323

Generating the final translation. To generate 324

the final translation ŷ by merging the top-k 325

candidates, we explore methods from two cate- 326

gories: encoder-decoder ensemble architectures 327

and LLM-based approach. Employing encoder- 328

decoder architectures during the merging process 329

offers the advantage of relatively low training 330

costs. We conduct experiments using Fusion- 331

in-Decoder (FiD) (Izacard and Grave, 2021) 332

and TRICE (Huang et al., 2021) architectures. 333

The former method involves passing Translate 334

source into <target language> referring 335

<target language> candidate. source: <x> 336

candidate: <ck> through the encoder, represen- 337

tations are concatenated and merged in the decoder. 338

The latter approach involves concatenating 339

<x></s><ls>;<c1></s><lt>;...;<ck></s><lt> 340

with language token <llang> and providing it as 341

input. Encoder-decoder ensemble architectures are 342

further described in detail in Appendix D. 343

On the other hand, the LLM-based ensemble 344

implicitly leverages their translation capabilities 345

during ensemble, as the source sentence is also pro- 346

vided. We conduct merging experiments with GEN- 347

FUSER (Jiang et al., 2023), Llama-3 (AI@Meta, 348

2024), and GPT models (Ouyang et al., 2022; Ope- 349

nAI, 2023, 2024). When employing GENFUSER, 350

we construct the input by concatenating top-k can- 351

didates to the prompt, as presented in Jiang et al. 352

(2023). For merging with Llama-3 and GPT, we 353

use the prompt template in Appendix E. By lever- 354

aging a variety of candidates, each with different 355

strengths, the aggregation process can effectively 356

mitigate errors in a complementary manner. 357
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4 Experiments358

We use NVIDIA RTX 3090 or 4090 GPUs for ex-359

periments.360

4.1 Datasets361

Lang-pair Dataset # Sentences
Train Dev Test

KO ↔ IT TED 2020 v1 357,733 2,000 2,000(Reimers and Gurevych, 2020)

AR ↔ PT WikiMatrix v1 153,441 2,000 2,000(Schwenk et al., 2019)

Table 1: Datasets statistics.

We conduct experiments on the linguistically362

distant languages within pairs: not in the same363

language family and using different scripts. We364

select 2 language pairs, resulting in 4 transla-365

tion directions in total, Korean (Koreanic)↔Italian366

(Romance) and Arabic (Arabic)↔Portuguese (Ro-367

mance). The language family grouping is defined368

by the criteria presented in Fan et al. (2020).369

We validate our approach across various do-370

mains. For Korean↔Italian pair, we run experi-371

ments on TED2020 (Reimers and Gurevych, 2020).372

For Arabic↔Portuguese pair, we use WikiMa-373

trix (Schwenk et al., 2019). All the datasets are ob-374

tained from the OPUS1 (Tiedemann, 2012) project.375

The statistics for the datasets are listed in Table 1.376

4.2 Evaluation Metrics377

We assess the translation quality using BLEU (Pa-378

pineni et al., 2002), chrF++ (Popović, 2017),379

and reference-based COMET (wmt22-COMET-da)380

(Rei et al., 2022a). For reporting BLEU, Sacre-381

BLEU (Post, 2018) is used with ko-mecab tok-382

enizer for Korean and 13a tokenizer for the others.383

4.3 Baselines384

As an encoder-decoder NMT model, we use NLLB-385

200-distilled-600M (Costa-jussà et al., 2022).386

When training NLLB, we use the Transformers387

library from HuggingFace (Wolf et al., 2020).388

AdamW optimizer (Loshchilov and Hutter, 2019)389

is used with a learning rate of 2e−5, batch size of390

2, and dropout with a probability of 0.1. When val-391

idation BLEU was not improved for 3 checkpoints,392

with 30k steps between them, we stopped training.393

For open-source LLMs, we use Vicuna 13B (Chi-394

ang et al., 2023), Baize 13B (Xu et al., 2023a),395

and Llama-3-8B-Instruct (AI@Meta, 2024) as396

the baseline. We fine-tuned these LLMs with397

1https://opus.nlpl.eu

QLoRA (Dettmers et al., 2024); r=16, α=64, 398

dropout=0.1 for all linear layers. For black- 399

box LLMs, we use GPT-4 (OpenAI, 2023) 400

and GPT-4o (OpenAI, 2024). The version of 401

gpt-4-1106-preview and gpt-4o-2024-08-06 402

are employed for GPT-4 and GPT-4o, respectively. 403

For GPT models, temperature is set to 0.0 for sta- 404

ble responses (Peng et al., 2023) and top_ p is set 405

to 0.1 to ensure reproducibility. For LLMs, we use 406

the prompt template of Hendy et al. (2023), as pre- 407

sented in Appendix E. 408

As state-of-the-art ensemble baselines, we em- 409

ploy LLM-Blender (Jiang et al., 2023), EVA (Xu 410

et al., 2024), and MBR (Farinhas et al., 2023). For 411

LLM-Blender and EVA, we fine-tuned the same 412

open-source LLMs used in each study utilizing the 413

parallel corpus described in Table 1. The list of the 414

LLMs is in Appendix F. temperature is set to 0.1 to 415

mitigate hallucination for low-resource pairs (Guer- 416

reiro et al., 2023). For MBR, we generate a set of 417

5 hypotheses using GPT-4. When generating hy- 418

potheses, temperature was set to 0.0 for its optimal 419

performance, based on the results of our pilot ex- 420

periments in Appendix G and prior study (Peng 421

et al., 2023). Other configurations are the same as 422

in the original work (Farinhas et al., 2023). 423

4.4 Implementation Details 424

In the candidate generation step of PIVOTE, we 425

employ NLLB. For each source-target language 426

pair, we use an NLLB fine-tuned for the language 427

pair in Table 1 to generate the directly translated 428

candidates. For the merging module, we use Llama- 429

3, GPT-4, and GPT-4o. For all models used in 430

PIVOTE, including NLLB, Llama-3, GPT-4, and 431

GPT-4o, we apply the same settings in §4.3. 432

As detailed in §3.3, we explore two approaches 433

in the ensemble process: one dynamically selects 434

the top-k (k=3) candidates and another uses candi- 435

dates obtained from fixed paths. To select the top-k 436

candidates for each source sentence, we use the 437

reference-free COMETkiwi as described in §3.3. 438

When selecting candidates from fixed paths, we 439

used directly translated candidates and English- 440

pivoted candidates, which were the top-performing 441

paths on the FLORES-200 benchmark. 442

4.5 Main Results 443

Table 2 reports the overall performance of PIVOTE 444

and other methods. The results demonstrate that 445

PIVOTE consistently outperforms baselines across 446

all language pairs. While standalone NMT systems 447

5
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Model Korean→Italian Italian→Korean Arabic→Portuguese Portuguese→Arabic
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Standalone NMT System
NLLB (Costa-jussà et al., 2022) 16.27 41.14 84.60 17.40 23.39 87.33 27.25 50.35 84.21 13.50 40.90 84.24
Vicuna (Chiang et al., 2023) 10.11 31.15 70.29 10.60 16.51 72.29 17.64 38.44 76.01 8.40 27.38 79.18
Baize (Xu et al., 2023a) 10.62 31.87 73.62 10.38 16.44 76.63 16.56 36.67 76.87 8.50 27.28 79.18
Llama-3 (AI@Meta, 2024) 11.79 34.82 77.37 13.82 18.95 85.80 18.78 40.20 78.73 12.25 35.16 82.79
GPT-4 (OpenAI, 2023) 14.07 42.22 86.80 17.23 22.96 86.94 25.82 51.89 85.46 15.11 41.39 83.99
GPT-4o (OpenAI, 2024) 15.11 42.59 85.93 17.20 22.82 85.31 27.28 52.57 85.90 16.28 42.40 83.82
Prior Ensemble Method
LLM-Blender (Jiang et al., 2023) 8.77 28.74 82.80 0.03 0.85 42.77 11.80 29.85 67.95 0.94 2.69 46.49
EVA (Xu et al., 2024) 2.53 15.26 39.00 1.51 3.57 37.17 9.77 28.40 68.75 7.99 27.00 73.15
MBR (Farinhas et al., 2023) 14.10 42.24 86.70 17.14 23.00 87.53 25.45 51.78 85.55 14.66 41.11 83.93
Proposed Method
PIVOTE (Llama-3; top3) 15.60 39.86 84.10 14.56 19.92 87.34 23.41 45.95 81.66 14.27 38.25 81.80
PIVOTE (Llama-3; D, E) 13.85 37.36 69.96 14.97 20.21 85.42 21.35 43.75 79.71 12.37 36.51 82.09
PIVOTE (GPT-4; top3) 16.66 42.85 86.82 17.95 23.84 87.50 27.22 51.73 85.65 16.53 42.41 84.46
PIVOTE (GPT-4; D, E) 17.10 43.29 85.92 18.18 24.05 88.74 27.98 52.41 85.27 17.02 43.02 84.82
PIVOTE (GPT-4o; top3) 17.77 43.38 85.46 18.08 23.98 88.15 28.62 52.53 85.87 16.92 42.93 84.52
PIVOTE (GPT-4o; D, E) 18.02 43.46 86.19 18.31 24.32 88.33 29.50 53.16 86.03 17.66 43.73 84.27

Table 2: Main results. The best scores in each pair are marked bold. Within parentheses in the proposed method, the
parts separated by semicolons denote the merging module and the candidates used. D and E represent candidates
obtained from direct translation and English pivot, respectively.

Model Korean→Italian
BLEU chrF++ COMET

Candidate
NLLB (direct) 16.27 41.14 84.60
NLLB (Portuguese pivot) 13.13 37.57 83.21
NLLB (Spanish pivot) 13.87 38.47 83.71
NLLB (English pivot) 14.77 39.39 81.48

Table 3: Quality of candidates used for the ensemble.

rely solely on their pre-trained knowledge, PIVOTE448

explicitly leverages candidates during the ensemble.449

Even when training an open-source LLM, Llama-450

3, we can enhance translation capability by utiliz-451

ing candidates obtained via pivoting. Compared to452

using LLMs for translation, we can improve per-453

formance with only the minimal cost of utilizing454

a small 0.6B model. Table 3 presents the quality455

of candidates utilized in the ensemble. We will456

further elaborate with a case study, showing that457

PIVOTE achieves better translations by leveraging458

candidates to capture subtle nuances of the source459

sentence. We report experiments in a setting that460

does not use training data in Appendix H and exper-461

iments with other GPT models in Appendix K. The462

analysis of the proportion of top-k candidates and463

performance variation with k are in Appendix J.464

Comparison with multi-model ensemble. We465

compare PIVOTE with LLM-Blender (Jiang et al.,466

2023) and EVA (Xu et al., 2024), state-of-the-467

art ensemble methods utilizing multiple models.468

LLM-Blender employs N (N=11) LLMs for candi-469

date generation, picks top-3 candidates with PAIR-470

RANKER, and fuses them with GENFUSER. EVA471

is a token-level ensemble method that leverages472

vocabulary alignment across multiple models.473

Results in Table 2 show that PIVOTE outper-474

forms multi-model ensemble baselines by a con- 475

siderable margin. LLM-Blender was unable to im- 476

prove outputs compared to its candidate LLMs in 477

non-English translation tasks. Additionally, LLMs 478

used for generating candidates in LLM-Blender, 479

such as Vicuna and Baize, exhibit subpar perfor- 480

mance on given tasks. These results align with re- 481

cent work (Xu et al., 2023b); open-source LLMs 482

often struggle when not translating into English. 483

EVA is not only ineffective on the given tasks but 484

also has several limitations inherent to its design 485

as a token-level ensemble. First, EVA is unable to 486

use black-box models such as GPT-4. Second, it is 487

memory-intensive, as it requires loading multiple 488

models into memory simultaneously. While multi- 489

model ensemble methods generate candidates us- 490

ing up to 11 LLMs (with sizes up to 13B), PIVOTE 491

generates candidates with a significantly smaller 492

single model (0.6B), thereby greatly reducing com- 493

putational overhead. 494

Results on all language pairs. To validate gener- 495

alizability, we report the results for all language 496

pairs we experimented with, including those within 497

the same language family. Distant pairs refer to 498

languages that belong to different families and use 499

different scripts, while similar pairs belong to the 500

same family and share the same script. The statis- 501

tics for each language pair are in Appendix I. Lan- 502

guage pairs used in the experiments are as follows: 503

• Distant language pairs: Portuguese↔Russian, 504

Dutch↔Russian, and French↔Ukrainian 505

• Similar language pairs: Spanish↔Portuguese 506

and Ukrainian↔Russian 507
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# Type Example

1

Source Sentence 그래서그동안자문해왔습니다.왜우리는질병들과싸우기에더현명하고,정확하며더욱적합한 ...
(English Translation: So we’ve been asking ourselves, why should we limit this smarter, more precise, more appropriate ...)

Target Reference Quindi mi sono chiesta: perché dovremmo limitare questo modo intelligente, preciso, migliore ...
Top-1 Candidate Quindi ci siamo chiesti, perché dovremmo limitare questo modo più intelligente, più preciso e più appropriato ...
Top-2 Candidate Quindi ci siamo chiesti: perché dovremmo limitare questo metodo più intelligente, più preciso e più adatto ...
Top-3 Candidate Quindi nel corso di questo tempo, abbiamo chiesto: perché dovremmo limitare questo metodo più intelligente, più preciso e più adeguato ...
GPT-4 Quindi, abbiamo cercato consigli fino ad ora. Perché dobbiamo limitare questo metodo, che è più intelligente, preciso e più adatto ...
PIVOTE Quindi ci siamo chiesti: perché dovremmo limitare questo metodo più intelligente, più preciso e più adatto ...

2

Source Sentence 많은사람들이헤드폰을사용하는데이것의문제점은 3가지큰건강이슈를가져온다는것입니다.
(English Translation: The trouble with widespread headphone use is it brings three really big health issues.)

Target Reference Il problema dell’utilizzo diffuso degli auricolari è che scatenano tre grandi problemi di salute.
Top-1 Candidate Il problema è che molte persone usano le cuffie, e questo Porta a tre grandi problemi di salute.
Top-2 Candidate Il problema è che molte persone usano le cuffie, e questo Porta a tre grandi problemi di salute.
Top-3 Candidate Il problema è che molte persone usano cuffie, e questo è ciò che causa tre problemi di salute principali.
GPT-4 Molte persone utilizzano le cuffie, ma il problema è che ciò comporta tre importanti questioni di salute.
PIVOTE Il problema è che molte persone usano le cuffie, e questo porta a tre grandi problemi di salute.

Table 4: Case study. Parts with the same meanings as the source and mistranslated parts are highlighted in blue and
red, respectively. English translation of the source sentence is obtained from another pair within the same dataset.

Model BLEU chrF++ COMET BLEU chrF++ COMET
Distant Language Pairs

Portuguese→Russian Russian→Portuguese
NLLB 25.17 51.77 90.12 29.69 55.81 86.01
GPT-4 26.50 52.76 91.11 25.51 54.05 86.69
PIVOTE 27.48 53.49 91.74 30.82 56.73 88.37

Dutch→Russian Russian→Dutch
NLLB 22.95 50.21 89.92 25.56 53.60 88.18
GPT-4 24.37 51.32 91.28 24.46 53.85 88.58
PIVOTE 25.45 52.16 91.47 28.05 55.80 89.35

French→Ukrainian Ukrainian→French
NLLB 14.58 37.11 82.99 20.69 44.04 80.61
GPT-4 13.84 39.03 84.12 23.30 47.13 83.43
PIVOTE 17.20 39.82 86.55 24.35 47.17 84.36

Similar Language Pair (Romance)
Spanish→Portuguese Portuguese→Spanish

NLLB 32.38 56.97 86.88 33.63 57.61 85.13
GPT-4 29.94 55.26 84.84 34.70 58.63 86.75
PIVOTE 34.06 58.11 87.70 36.03 59.32 86.92

Similar Language Pair (Slavic)
Ukrainian→Russian Russian→Ukrainian

NLLB 22.16 45.41 89.82 19.67 43.35 89.87
GPT-4 24.41 47.59 89.43 22.42 45.61 90.39
PIVOTE 24.64 47.51 90.78 22.09 45.40 90.70

Table 5: Results on all language pairs.

Table 5 shows the results with the top-508

performing baselines, NLLB (Costa-jussà et al.,509

2022) and GPT-4 (OpenAI, 2023). PIVOTE con-510

sistently exhibits superior performance compared511

to strong baselines on distant language pairs. Sur-512

prisingly, it also showed improvements in similar513

language pairs, such as Spanish↔Portuguese.514

Case study. We conduct a qualitative analysis to515

verify the impact of candidates on the final trans-516

lation. We compare the output of GPT-4, used as517

the merging module, with PIVOTE, which utilizes518

candidates for the ensemble process. In Table 4, we519

provide two examples along with the source and520

target sentences, as well as the top-3 candidates.521

Through the first example, we can observe that522

PIVOTE can appropriately translate homonyms523

within the context. In Korean, “자문” has the mean-524

ing of both “consultation” and “asking oneself”.525

Considering the context, the expression should be526

Candidate Generation # Cand.
Korean→Italian

BLEU chrF++ COMET
LLMs (of LLM-Blender) 11 14.75 41.29 86.20
LLMs + NLLB (direct) 12 16.08 42.38 86.22
NLLB (pivot, ours) 4 16.66 42.85 86.82

Table 6: Comparison of candidate generation methods.

translated to convey the meaning of “asking our- 527

selves”, as also shown in the English translation. 528

However, GPT-4 mistranslated the source sentence, 529

converting the phrase “자문해왔습니다” to “abbi- 530

amo cercato consigli” (“seeking consultation from 531

others”). On the other hand, PIVOTE accurately 532

translates with the expression “ci sono chiesti” that 533

means “asking ourselves”, aligning well with the 534

context by leveraging information from candidates. 535

In the second sample, GPT-4 translates the 536

source sentence by translating the noun “이슈” into 537

“questioni”. However, given the topic of discussing 538

potential health risks, this translation does not fit 539

well with the overall context. By contrast, the en- 540

semble result of PIVOTE, generated using the iden- 541

tical model, improves translation quality by using 542

a more accurate expression “problemi”, despite 543

having access to the same pre-trained knowledge. 544

Additionally, when more suitable expressions (e.g., 545

“ne vale la pena”) appear in candidates, PIVOTE 546

utilizes them to refine the final translation. 547

4.6 Analysis 548

Candidate generation. To validate the effective- 549

ness of PIVOTE, we conduct experiments only 550

varying the candidate generation method, while 551

using the same merging module, GPT-4. We com- 552

pare a candidate pool of size 4 obtained through 553

pivot translation (PIVOTE) with a candidate pool 554
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Model Korean→Italian
BLEU chrF++ COMET

Standalone NMT System
NLLB (Costa-jussà et al., 2022) 16.27 41.14 84.60
Encoder-Decoder
PIVOTE (FiD) 13.74 36.78 78.98
PIVOTE (TRICE) 15.89 41.98 84.06
LLM-based
PIVOTE (GENFUSER) 14.56 39.32 80.07
PIVOTE (GPT-4) 16.66 42.85 86.82

Table 7: Evaluation of merging module variants.

of size 11 obtained using 11 LLMs as employed in555

LLM-Blender (Jiang et al., 2023).556

As shown in Table 6, the proposed method of557

generating candidates through pivot translation558

achieves the highest performance, despite using559

the smallest candidate pool. From the perspective560

of direct translation in NLLB, leveraging 3 can-561

didates obtained through pivot translation yields562

higher scores than incorporating candidates gener-563

ated by 11 LLMs. These results demonstrate that564

using stable-quality candidates generated by a sin-565

gle model via pivot translation outperforms the use566

of multiple models with performance disparities.567

Candidate aggregation. We first investigate568

whether PIVOTE shows improvement when utiliz-569

ing other merging modules. As detailed in §3.3, we570

run experiments with three architectures: FiD (Izac-571

ard and Grave, 2021), TRICE (Huang et al., 2021),572

and GENFUSER (Jiang et al., 2023). When imple-573

menting FiD, we replace the backbone of FiD to574

mT5BASE (Xue et al., 2021). TRICE is a method pro-575

posed for multi-source translation. Since TRICE576

was not originally intended for ensemble use, we re-577

purposed it by training on the following two tasks:578

The first task is the original translation which con-579

verts source sentences into target sentences. The580

second task is refining candidates that are paired581

with target references. In the case of TRICE, only582

the highest quality candidates, which are the di-583

rectly translated ones, are used due to its architec-584

ture. FiD and GENFUSER use top-3 candidates.585

Table 7 shows that the ensemble methods using586

encoder-decoder architectures and GENFUSER do587

not yield improved results. These methods strug-588

gle to leverage additional information from the589

candidates and, consequently, do not enhance per-590

formance. In contrast, using GPT-4 as the merg-591

ing module leads to better performance compared592

to the standalone NMT system. We also com-593

pare ranking methods COMETkiwi and PAIR-594

RANKER (Jiang et al., 2023). While the perfor-595

Category Method Korean→Italian
BLEU chrF++ COMET

Selection-based
(top-1)

PAIRRANKER 15.61 40.62 84.46
COMETkiwi 15.61 40.71 84.10
COMET* (ideal) 17.77 42.81 84.83

Generation-based PIVOTE 16.66 42.85 86.82

Table 8: Comparison with selection-based ensemble.
Note that COMET* is the ideal baseline, as it requires
references. Best scores including COMET* are bolded,
while best scores excluding it are underlined.

mance is comparable, considering the efficiency 596

factor, we opt for COMETkiwi. Detailed experi- 597

ments about the ranking method are in Appendix L. 598

Comparison with selection-based ensemble. 599

With a selection-based ensemble, we can choose 600

one of the existing candidates as the final transla- 601

tion, rather than generating a new one. In this exper- 602

iment, we compare our approach with a selection- 603

based ensemble by selecting the top-1 transla- 604

tion using PAIRRANKER (Jiang et al., 2023) and 605

COMETkiwi (Rei et al., 2022b). Additionally, we 606

report results with an ideal case: selecting top-1 607

by considering references as well, which are not 608

available in practice. The ideal top-1 is selected by 609

reference-based COMET (Rei et al., 2022a). 610

As shown in Table 8, PIVOTE exhibits su- 611

perior performance compared to the selection- 612

based ensemble methods. Even when we lever- 613

age reference-based COMET, which is impossi- 614

ble in real-world scenarios due to the necessity for 615

references, PIVOTE outperforms it in chrF++ and 616

COMET. These results indicate that performing a 617

generation-based ensemble with pivoting can effec- 618

tively produce final translations that surpass those 619

selected from the existing candidate pool. 620

5 Conclusion 621

In this work, we introduced PIVOTE, a pivot-based 622

single model ensemble framework, to enhance 623

translation in scenarios where parallel data are 624

scarce. By transferring knowledge from diverse 625

pivot languages, we were able to obtain not only 626

diverse but also high-quality candidates. And the 627

optimal path to generating the best candidate varies 628

per sentence, our study underscores the significance 629

of exploiting a spectrum of pivot languages. More- 630

over, the single model generation process offers 631

cost savings compared to multi-model ensemble 632

approaches. Empirical results and qualitative anal- 633

yses show that the proposed method can yield con- 634

textually suitable translations for the given source 635

sentences by leveraging pivoted candidates. 636
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Limitations637

Despite PIVOTE utilizes candidates obtained via638

pivoting, limitations arise from the nature of pivot639

translation. Constraining the pivot language to high-640

resource languages can limit the number of candi-641

dates because pivoting through low-resource lan-642

guages can lead to some loss of information due643

to error propagation inherent in the two-step trans-644

lation. This semantic shift potentially causes a de-645

crease in candidate quality. If the quality of candi-646

dates declines, improvements from the ensemble647

might not be significant, indicating a limitation in648

the number of pivot paths.649
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Appendix 1046

A Pivot Language Selection 1047

Based on the results from the FLORES-200 (Costa- 1048

jussà et al., 2022) benchmark, we select the top-4 1049

pivot paths as presented in Table 9. We utilize the 1050

full 2009 sentences as our test set: 997 sentences 1051

from the dev and 1012 sentences from the devtest. 1052

The pivot language pool is chosen as the bridge 1053

languages in Fan et al. (2020). 1054

Pivot Language Lang-pair
KO→IT IT→KO AR→PT PT→AR

direct 14.02 18.63 27.15 15.22
arb_Arab 11.03 15.82 - -
ben_Beng 10.79 15.44 18.65 9.76
ces_Latn 11.48 16.08 21.23 11.55
deu_Latn 12.49 17.11 22.62 12.56
ell_Grek 11.96 16.54 22.53 12.54
eng_Latn 14.82 19.34 28.40 15.92
fin_Latn 9.62 14.31 17.27 9.48
fra_Latn 13.55 17.27 24.96 13.77
heb_Hebr 10.42 14.37 20.31 10.94
hin_Deva 11.54 17.12 21.79 11.72
hun_Latn 10.54 14.96 18.64 9.65
ind_Latn 12.41 17.03 22.47 11.97
ita_Latn - - 24.70 14.09
jpn_Jpan 10.60 14.73 14.29 7.31
kor_Hang - - 16.09 7.67
lit_Latn 10.46 14.96 18.14 9.47
nld_Latn 12.27 17.10 23.22 12.94
pes_Arab 11.09 15.86 20.88 11.50
pol_Latn 11.54 15.86 21.14 11.60
por_Latn 13.80 18.01 - -
rus_Cyrl 12.25 16.57 22.77 12.39
spa_Latn 13.89 18.39 26.60 14.91
swe_Latn 11.93 16.54 22.34 12.25
swh_Latn 10.66 14.22 19.13 10.19
tam_Taml 9.90 14.92 18.09 9.48
tur_Latn 11.25 15.92 19.53 10.04
ukr_Cyrl 11.76 16.43 21.87 12.12
vie_Latn 12.00 16.32 21.39 11.49
zho_Hans 10.00 11.51 15.29 6.82

Table 9: BLEU scores on FLORES-200 benchmark.
Pivot languages are sorted in alphabetical order and top-
4 pivot paths are marked bold.
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Figure 2: Illustration of the merging process using FiD (Izacard and Grave, 2021).
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Figure 3: Illustration of the merging process using TRICE (Huang et al., 2021).

B Impact of Resource-level of Pivot1055

Languages1056

Under the assumption that high-quality candidates1057

are more adept at conveying the meaning of the1058

source sentence, we select the top-4 paths based on1059

scores on FLORES-200. To verify this hypothesis,1060

we conduct experiments using mid/low-resource1061

pivot languages. According to the WMT222, we1062

select Ukrainian and Croatian as mid- and low-1063

resource languages, respectively. Table 10 shows1064

that using candidates from high-resource languages1065

outperforms those obtained from mid/low-resource1066

languages. The quality of candidates is presented1067

in Table 11. In conclusion, since high-resource lan-1068

guages can also provide sufficient diversity, we1069

select top-performing paths based on the results on1070

FLORES-200.1071

Method Korean→Italian
BLEU chrF++ COMET

PIVOTE (GPT-4; U, C) 15.28 41.78 85.75
PIVOTE (GPT-4; E, S) 16.27 42.55 86.50

Table 10: Comparison with mid/low-resource languages.
U, C, E, and S represent candidates from Ukrainian,
Croatian, English, and Spanish pivot, respectively.

Model Korean→Italian
BLEU chrF++ COMET

Candidate
NLLB (Ukrainian pivot) 11.95 35.03 82.32
NLLB (Croatian pivot) 12.25 35.93 79.91
NLLB (Spanish pivot) 13.87 38.47 83.71
NLLB (English pivot) 14.77 39.39 81.48

Table 11: Quality of candidates from each pivot path.

2https://www.statmt.org/wmt22/
translation-task.html

C Metric for Selecting Translation Paths 1072

We conduct a comparative analysis between BLEU 1073

and COMET, used for selecting the n translation 1074

paths. The results in Table 12 indicate that the dif- 1075

ference between metrics is marginal. We believe 1076

that this stems from the minimal difference in se- 1077

lected paths, as presented in Table 13. We observe 1078

some changes in order and minor differences, but 1079

the pivot languages selected by BLEU and COMET 1080

show similar compositions. 1081

top-k Path Selection Korean→Italian
BLEU chrF++ COMET

top-1 COMET 15.98 42.59 86.22
BLEU 16.20 42.84 85.36

top-2 COMET 16.46 42.58 86.66
BLEU 16.57 43.04 86.37

top-3 COMET 16.39 42.41 86.04
BLEU 16.66 42.85 86.82

Table 12: Impact of the pivot path selection metric.

D Implementation Details of the Merging 1082

Modules 1083

In this section, we provide detailed explanations of 1084

the merging modules. Figure 2 shows the FiD (Izac- 1085

ard and Grave, 2021). First, the instruction and the 1086

source sentence are concatenated with each candi- 1087

date, and processed independently by the encoder. 1088

Then the decoder takes the concatenation of each 1089

representation and generates the final translation. 1090

As shown in Figure 3, TRICE (Huang et al., 1091

2021) is trained with a two-stage fine-tuning 1092

method. In the first fine-tuning stage, the model 1093

is trained on two different inputs and single targets: 1094

Source→Target and Candidate→Target. In the sec- 1095

ond fine-tuning stage, the source and the candidate 1096

are concatenated and provided as a single input. 1097
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Lang-pair BLEU COMET
KO→IT English (14.82), direct (14.02), Spanish (13.89), Portuguese (13.80) English (82.89), Spanish (82.70), Indonesian (81.62), Portuguese (81.50)
IT→KO English (19.34), direct (18.63), Spanish (18.39), Portuguese (18.01) Spanish (87.32), English (87.07), Portuguese (87.02), French (86.14)
AR→PT English (28.40), direct (27.15), Spanish (26.60), French (24.96) direct (85.71), English (85.57), Spanish (85.54), Indonesian (84.94)
PT→AR English (15.92), direct (15.22), Spanish (14.91), Italian (14.09) French (82.65), direct (81.36), English (81.04), German (80.44)

Table 13: Selected top-4 pivot paths from each metric. Scores are from experiments on FLORES-200.

E Prompt Templates1098

We use the zero-shot prompt template from Hendy1099

et al. (2023) to instruct the LLMs for translation,1100

Translate this sentence from [source1101
language] to [target language], Source:1102
[source sentence]1103

Target:1104

when ensembling with candidates, we use the1105

prompt template as follows,1106

Ensemble the [source language] sentence1107
with the provided [target language]1108
candidates to create the best possible1109
[target language] translation.1110

[source language] sentence: [source1111
sentence]1112

[target language] candidate k: [target1113
candidate]1114

Please provide only the [target1115
language] translation and no additional1116
text.1117

[target language] translation:1118

F Open-source LLMs1119

In experiments with LLM-Blender and EVA, we1120

employ the same models as used in each paper.1121

These open-source LLMs are listed in Table 14.1122

Model Model Size
LLM-Blender (Jiang et al., 2023)
Vicuna (Chiang et al., 2023) 13B
Baize (Xu et al., 2023a) 13B
Alpaca (Taori et al., 2023) 13B
Koala (Geng et al., 2023) 13B
Open Assistant (LAION-AI, 2023) 12B
Dolly V2 (Conover et al., 2023) 12B
Flan-T5 (Chung et al., 2022) 11B
MOSS (Sun and Qiu, 2023) 7B
Mosaic MPT (MosaicML, 2023) 7B
StableLM (Stability-AI, 2023) 7B
ChatGLM (Du et al., 2022) 6B
EVA (Xu et al., 2024)
Baichuan2-Chat (Baichuan, 2023) 7B
TigerBot-Chat-V3 (Chen et al., 2023) 7B
Vicuna-V1.5 (Chiang et al., 2023) 7B
Llama-2-Chat (Touvron et al., 2023) 7B

Table 14: Open-source LLMs along with their respective
model sizes.

G Impact of temperature in MBR 1123

To investigate the best performance of MBR, we 1124

compared it across three different temperature con- 1125

figurations: 1.0, 0.5, and 0.0, which were used in 1126

prior works by Farinhas et al. (2023), Suzgun et al. 1127

(2023), and Peng et al. (2023), respectively. 1128

Table 15 and 16 show the quality of MBR out- 1129

puts and hypotheses under different temperature 1130

settings, respectively. Aligning with the findings of 1131

the previous study (Peng et al., 2023), we observed 1132

that a lower temperature setting achieved better 1133

performance. Thus, we set the temperature of 0.0 1134

for MBR in our experiments. 1135

Method
Korean→Italian

BLEU chrF++ COMET

MBR (temp=1.0; Farinhas et al. (2023)) 13.53 42.13 86.57
MBR (temp=0.5; Suzgun et al. (2023)) 13.90 42.19 86.69
MBR (temp=0.0; Peng et al. (2023)) 14.10 42.24 86.70

Table 15: Impact of temperature in MBR decoding.

Method Korean→Italian
BLEU chrF++ COMET

MBR hypotheses (temp=1.0) 13.47 41.71 84.94
(±0.21) (±0.14) (±2.62)

MBR hypotheses (temp=0.5) 13.86 42.03 86.55
(±0.13) (±0.11) (±0.15)

MBR hypotheses (temp=0.0) 14.09 42.21 86.62
(±0.07) (±0.06) (±0.10)

Table 16: Average quality of MBR hypotheses.

H Experiments without Training Data 1136

In Table 17, we report the results of experiments 1137

conducted in a setting where no training data was 1138

used. When compared to the results in Table 2, this 1139

observation affirms that the quality of candidates 1140

during ensemble plays an important role in enhanc- 1141

ing the final translation. 1142

I Datasets Statistics 1143

Table 18 shows the dataset statistics for each lan- 1144

guage pair used in the experiments in Table 5. 1145

14



Figure 4: Proportion of pivot languages (Korean→Italian) comprising the top-k
candidates.

Figure 5: Impact of top-k
values on performance.

Model Korean→Italian Italian→Korean Arabic→Portuguese Portuguese→Arabic
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Standalone NMT System
NLLB (Costa-jussà et al., 2022) 13.88 38.56 81.54 14.98 20.99 85.75 23.55 47.50 82.08 13.23 38.55 82.79
Vicuna (Chiang et al., 2023) 3.06 15.73 55.31 3.85 7.57 64.24 6.43 17.62 68.10 3.15 19.56 63.79
Baize (Xu et al., 2023a) 4.28 22.85 65.66 3.71 7.36 58.06 7.83 21.78 76.12 2.83 17.91 62.03
Llama-3 (AI@Meta, 2024) 8.46 34.83 82.59 0.61 2.07 29.03 18.37 43.32 81.75 7.31 25.67 75.45
GPT-4 (OpenAI, 2023) 14.07 42.22 86.80 17.23 22.96 86.94 25.82 51.89 85.46 15.11 41.39 83.99
GPT-4o (OpenAI, 2024) 15.11 42.59 85.93 17.20 22.82 85.31 27.28 52.57 85.90 16.28 42.40 83.82
Prior Ensemble Method
LLM-Blender (Jiang et al., 2023) 3.75 19.58 61.26 0.17 1.58 39.04 6.92 22.14 64.01 1.97 3.42 44.62
EVA (Xu et al., 2024) 3.65 23.54 63.94 1.14 3.23 46.99 8.23 26.87 56.68 3.46 21.88 60.30
MBR (Farinhas et al., 2023) 14.10 42.24 86.70 17.14 23.00 87.53 25.45 51.78 85.55 14.66 41.11 83.93
Proposed Method
PIVOTE (Llama-3; top3) 13.38 39.99 84.21 12.19 19.40 41.52 24.92 49.57 85.17 15.33 40.77 84.26
PIVOTE (Llama-3; D, E) 12.74 38.47 80.04 12.15 18.22 42.51 24.29 48.17 82.75 13.15 38.67 83.08
PIVOTE (GPT-4; top-3) 16.35 42.45 86.32 17.27 23.17 86.06 26.28 51.06 85.22 15.08 41.19 84.37
PIVOTE (GPT-4; D, E) 16.29 42.61 86.75 17.55 23.50 88.02 26.60 51.45 85.68 15.12 41.34 83.87
PIVOTE (GPT-4o; top3) 17.39 42.89 85.30 17.15 23.27 87.68 27.88 51.98 85.58 15.91 42.10 84.58
PIVOTE (GPT-4o; D, E) 17.22 42.78 85.29 16.99 23.04 87.96 27.38 51.68 85.64 15.60 41.64 84.80

Table 17: Results on Korean↔Italian and Arabic↔Portuguese, in a setting where no training data was used.

Lang-pair Dataset # Sentences
Train Dev Test

Distant Language Pairs

PT ↔ RU
news-commentary v18.1

66,743 2,000 2,000
(Tiedemann, 2012)

NL ↔ RU
news-commentary v18.1

80,724 2,000 2,000
(Tiedemann, 2012)

FR ↔ UK
WikiMatrix v1

166,063 2,000 2,000
(Schwenk et al., 2019)

Similar Language Pairs

ES ↔ PT
TED 2020 v1

315,462 2,000 2,000
(Reimers and Gurevych, 2020)

UK ↔ RU
TED 2020 v1

197,978 2,000 2,000
(Reimers and Gurevych, 2020)

Table 18: Number of sentences in the corpus and data
split for each language pair.

J Additional Analysis on Candidates1146

We conduct experiments to investigate the impact1147

of the value of k in the top-k candidates and its1148

composition. Figure 4 illustrates the proportion of1149

pivot languages composing the top-k candidates.1150

Top-k candidates, selected by the QE metric, are1151

composed of diverse candidates obtained through1152

various pivot languages. We also observe the same1153

tendency in other datasets. This suggests that gen-1154

erating diverse candidates through multiple paths1155

helps acquire higher-quality candidates.1156

Figure 5 presents BLEU scores for different val- 1157

ues of the k. The highest BLEU is achieved when k 1158

is set to 3. These results demonstrate that more can- 1159

didates in the aggregation process enhance diver- 1160

sity, thereby increasing the likelihood of providing 1161

contextually appropriate information. However, it 1162

shows convergence around top-3. We attribute this 1163

to the inclusion of candidates with lower estimated 1164

scores, such as degenerated sentences. Hence, as k 1165

increases, the improvement reaches a plateau. 1166

K Results with Additional Models 1167

We report results with diverse GPT mod- 1168

els, GPT-3.5 and GPT-4o-mini, in Table 19. 1169

The version of gpt-3.5-turbo-1106 and 1170

gpt-4o-mini-2024-07-18 are employed for 1171

GPT-3.5 and GPT-4o-mini, respectively. 1172

L Impact of Ranking Strategies for 1173

Candidate Selection 1174

In this experiment, we compare the case of using 1175

the PAIRRANKER (Jiang et al., 2023) and the case 1176

of using COMETkiwi (Rei et al., 2022b) for a 1177

ranking stage. Table 20 compares the results af- 1178

ter selecting the top-3 using PAIRRANKER and 1179

COMETkiwi. As shown in the results, the differ- 1180
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Model Korean→Italian Italian→Korean Arabic→Portuguese Portuguese→Arabic
BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

Standalone NMT System
GPT-3.5 (Ouyang et al., 2022) 12.77 40.13 82.58 15.28 21.13 85.91 25.40 50.23 85.06 14.73 40.81 84.37
GPT-4 (OpenAI, 2023) 14.07 42.22 86.80 17.23 22.96 86.94 25.82 51.89 85.46 15.11 41.39 83.99
GPT-4o-mini (OpenAI, 2024) 13.39 41.35 85.45 17.15 22.80 85.22 23.98 50.25 84.47 15.00 40.72 84.44
GPT-4o (OpenAI, 2024) 15.11 42.59 85.93 17.20 22.82 85.31 27.28 52.57 85.90 16.28 42.40 83.82
Proposed Method
PIVOTE (GPT-3.5; top3) 15.07 39.87 83.13 15.08 21.12 86.03 26.83 50.23 85.46 15.65 41.10 84.13
PIVOTE (GPT-3.5; D, E) 16.44 41.53 85.23 16.60 22.64 87.84 27.49 50.63 84.35 16.12 41.59 83.82
PIVOTE (GPT-4; top3) 16.66 42.85 86.82 17.95 23.84 87.50 27.22 51.73 85.65 16.53 42.41 84.46
PIVOTE (GPT-4; D, E) 17.10 43.29 85.92 18.18 24.05 88.74 27.98 52.41 85.27 17.02 43.02 84.82
PIVOTE (GPT-4o-mini; top3) 16.25 41.43 83.87 17.06 23.10 88.09 27.10 50.80 85.26 16.16 41.79 84.27
PIVOTE (GPT-4o-mini; D, E) 16.58 41.84 85.16 17.44 23.51 87.12 28.19 51.44 84.65 17.21 42.63 83.11
PIVOTE (GPT-4o; top3) 17.77 43.38 85.46 18.08 23.98 88.15 28.62 52.53 85.87 16.92 42.93 84.52
PIVOTE (GPT-4o; D, E) 18.02 43.46 86.19 18.31 24.32 88.33 29.50 53.16 86.03 17.66 43.73 84.27

Table 19: Results on Korean↔Italian and Arabic↔Portuguese, with diverse models.

Method Korean→Italian
BLEU chrF++ COMET

PAIRRANKER (Jiang et al., 2023) 16.74 42.82 85.92
COMETkiwi (Rei et al., 2022b) 16.66 42.85 86.82

Table 20: Impact of candidate ranking strategies.

ence in the final ensemble scores using the two1181

ranking methods is not significant. We believe this1182

is because the candidates selected by both ranking1183

methods are similar. There are 979 out of 2000 test1184

sets (48.95%) where the top-3 candidates selected1185

by both ranking methods are the same. In cases1186

with 2 out of 3 matches, there were 1533 instances1187

(76.65%). Given the similarity in predictions by1188

both ranking methods, the final scores exhibit com-1189

parable performance, except in the case of COMET.1190

From the cost perspective, PAIRRANKER requires1191

comparisons for O(N2) unique pair combinations1192

depending on the number of candidates N . How-1193

ever, COMETkiwi only needs to sort the scores1194

of N candidates, resulting in a time complexity of1195

O(N logN). Therefore, due to its computational1196

efficiency, we use COMETkiwi to rank candidates.1197
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