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Abstract
We propose GLAudio: Graph Learning on Au-
dio representation of the node features and the
connectivity structure. This novel architecture
propagates the node features through the graph
network according to the discrete wave equation
and then employs a sequence learning architecture
to learn the target node function from the audio
wave signal. This leads to a new paradigm of
learning on graph-structured data, in which infor-
mation propagation and information processing
are separated into two distinct steps. We theoreti-
cally characterize the expressivity of our model,
introducing the notion of the receptive field of a
vertex, and investigate our model’s susceptibility
to over-smoothing and over-squashing both the-
oretically as well as experimentally on various
graph datasets.

1. Introduction
With the advent of the popular architectures GCN (Kipf &
Welling, 2017), GAT (Velickovic et al., 2017), and GIN (Xu
et al., 2018), Graph Neural Networks (GNNs) have emerged
as a powerful tool for learning on relational data. Despite the
theoretical importance of depth for the expressivity of neu-
ral networks, most GNNs encountered in applications are
relatively shallow. This is related to two fundamental issues
impairing the expressivity of deep GNNs: over-squashing
(Alon & Yahav, 2020), (Topping et al., 2021) and over-
smoothing (Li et al., 2018), (Oono & Suzuki, 2019). A
comprehensive theoretical framework to assess the represen-
tational capabilities of GNNs was introduced in (Xu et al.,
2018). It established that GNNs can possess a representa-
tional power at most equivalent to the Weisfeiler-Leman
graph isomorphism test when applied to featureless graphs.
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This revelation prompts an intriguing inquiry: what types
of functions are learnable by GNNs when node features are
included? A detailed characterization of these functions
for most GNNs remains elusive, instead, the two primary
limitations to their expressive power have been extensively
explored: over-smoothing and over-squashing. The concept
of over-squashing was first introduced by (Alon & Yahav,
2020). They observed that for a prediction task involving
long-range interactions between nodes separated by a dis-
tance k, a GNN requires an equivalent number of k layers to
capture these interactions effectively. As the k-th neighbor-
hood of a vertex expands exponentially with k, the explod-
ing volume of data must be compressed into a fixed-size vec-
tor at each vertex v, leading to over-squashing. In (Giovanni
et al., 2023), it was explored how over-squashing reduces
the class of functions learnable by GNNs. In (Di Giovanni
et al., 2023), it was noted that standard GNNs are guided
by the heat equation, a smoothing process. For such heat-
equation guided GNNs, over-smoothing and over-squashing
are intrinsically related to the spectral gap of the graph
Laplacian, resulting in an inevitable trade-off between these
two issues (Giraldo et al., 2023). In recent years, there has
been a significant effort to introduce new architectures ad-
dressing these performance impairments, moving beyond
heat-equation-guided GNNs. A promising approach are
continuous-time GNNs that are often physically inspired
(Chamberlain et al., 2021), (Bodnar et al., 2022). One such
architecture is GraphCON (Rusch et al., 2022) that mod-
els the node features as controlled and damped oscillators,
coupled via the adjacency structure of the underlying graph.
Inspired by the great success of the Transformer Model in
natural language processing, a completely new approach
called Graph Transformers was proposed (Kreuzer et al.,
2021), (Dwivedi & Bresson, 2020), (Rampášek et al., 2022).
Unlike GNNs, graph transformers do not propagate the node
features over the connectivity structure of the graph instead
the node features are augmented by a laplacian encoding
of the node’s position in the graph. In that sense, the en-
coding of the connectivity structure is separated from the
learning task, mitigating the phenomena over-smoothing
and over-squashing.

Contribution. Continuing this idea of separating the encod-
ing of the connectivity structure from the learning task, we
propose GLAudio. GLAudio propagates the node features
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through the graph network according to the discrete wave
equation (I) and then uses sequence learning architectures
like LSTM or the Transformer model to learn the node func-
tion Yv : R|V (G)|×d0 → Rd1 at each vertex v ∈ V (G)
from the wave signal received at v. In that sense, GLAudio
separates the feature propagation and signal processing into
two distinct steps. Unlike the heat equation, the wave equa-
tion preserves the Dirichlet energy. Thus, the node features
can be propagated over long distances without smoothing
out. Moreover, the compression of information takes place
during the encoding of node features and graph structure
into a wave signal. Consequently, with increasing resolu-
tion the signal received at a vertex in GLAudio should be
significantly less compressed compared to the fixed-size
vector in standard GNNs. These two facts suggest that over-
smoothing and over-squashing are mitigated. We are able to
characterize the function class learnable by GLAudio and
address these two phenomena.

Motivation for Using GLAudio Over Traditional
GNNs. GLAudio offers notable advantages over traditional
GNNs, particularly in mitigating over-smoothing and over-
squashing, handling long-range dependencies, and perform-
ing well on heterophilic graphs. Traditional GNNs often
suffer from feature indistinguishability and loss of infor-
mation over multiple layers. In contrast, GLAudio uses
the discrete wave equation to preserve the Dirichlet energy,
maintaining feature distinctiveness over long-range propa-
gation. This makes GLAudio more suitable for large-scale
graphs with complex connectivity, such as biological and
social networks, heterogeneous structures, and applications
requiring detailed feature propagation, such as molecular
graphs. We support these capabilities with theoretical analy-
sis and empirical evidence and justify the additional compu-
tational overhead in scenarios where traditional GNNs fall
short.

2. GLAudio
2.1. Wave Signal Encodes Features and Graph

Structure

The discrete wave equation on a graph G with Laplacian
matrix L and initial resting configuration x ∈ R|V (G)|×d0

reads {
Ẍ(t) = −L ·X(t)

X(0) = x Ẋ(0) = 0.
(I)

It is well known that the unique solution is given by the
continuous-time signal X(t) = cos

(
L1/2 · t

)
· x. The fol-

lowing theorem proves that this signal encodes much of the
information about the features and the graph structure.

Theorem 2.1. Given two graphs G,H on the same vertex
set with initial features xG,xH , then we have for the two

corresponding wave signals XG(t),XH(t), ∀t > 0

XG|[0,t] = XH |[0,t] ⇐⇒ ∀n ∈ N0 : Ln
H · xH = Ln

G · xG

Motivated by this fact, we propose to use the signal X(t) as
an encoding of the graph’s features and structure.

2.2. Model Architecture

Encoder. To implement the encoder, we solve the differen-
tial equation (I) in discrete time using an implicit-explicit
ODE scheme (Norsett & Wanner, 1987). Let N denote the
number of discrete time steps and T the stopping time. Let
h = T

N be the step size. We denote the approximation of
X(ih) by Xi for i = 0, ..., N . The encoder architecture then
reads 

Xi+1 = Xi + hVi+1

Vi+1 = Vi − hL · Xi

X0 = x V0 = 0.

(II)

where Vi is an auxiliary ”velocity” variable. We denote
the step function provided by the numerical scheme by
X̂(x, t) = Xi · 1[0,h](t) +

∑N
i=2 Xi · 1((i−1)h,ih](t). It is

well known that as N increases X̂(x, t) converges in the
function space L∞([0, T ];R|V (G)|×d0) to the true solution
X(x, t) uniformly over all possible initial features of some
fixed compact set C ⊆ R|V (G)|×d0 .

Decoder. For the decoder model, we can use any sequence
learning architecture. We have tested RNN decoders, in
particular, LSTM (Gers et al., 2000) and CoRNN (Rusch
& Mishra, 2020). But it might also be interesting to inves-
tigate how the Transformer model (Vaswani et al., 2017)
or State Space Models (Smith et al., 2022), (Gu & Dao,
2023) perform as a decoder. For sequence learning archi-
tectures, universal approximation theorems have been es-
tablished (Schäfer & Zimmermann, 2006), (Lanthaler et al.,
2023), (Yun et al., 2019), (Wang & Xue, 2024). In the
following, we will make use of the universality of RNNs
(Schäfer & Zimmermann, 2006) to characterize the expres-
sivity of GLAudio. A simple RNN on an input sequence
x1, . . . , xn ∈ Rd0 is given by for all 1 ≤ i ≤ n

si = σ(W · si−1 + U · xi) (III)
yi = V · si,

where W ∈ Rs×s,V ∈ Rs×d1 ,U ∈ Rd0×s and σ is a non-
linearity, si are the hidden states and yi are the outputs.

Theorem 2.2 ((Schäfer & Zimmermann, 2006)). For any
dynamical system Si+1 = g(Si,Xi+1),Yi+1 = h(Si+1),
where g : Rs × Rd0 → Rs measurable and g : Rs → Rd1

continuous, there exists an arbitrary good approximation of
Yn by some yn of the form (III) uniformly for any input se-
quence X1, . . . ,Xn of some fixed compact set C ⊆ Rn×d0 .
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Table 1. Node classification test accuracy obtained on network graph datasets. Means are obtained from 10 random initializations over
fixed publicly available train/val/test split. Baselines for GCN, GAT and GraphCON are taken from (Rusch et al., 2022).

Datasets GCN GRAPHCON-GCN GAT GRAPHCON-GAT GLAUDIO-CORNN
CORA 0.815 0.819 0.818 0.832 0.795

CITESEER 0.719 0.729 0.714 0.732 0.686
PUBMED 0.778 0.788 0.787 0.795 0.781
TEXAS 0.551 0.854 0.522 0.822 0.802

WISCONSIN 0.518 0.878 0.494 0.857 0.831
CORNELL 0.605 0.843 0.619 0.832 0.764

For a detailed list of all hyper-parameters and further con-
figuration options, we refer to Appendix C.

2.3. Expressivity of GLAudio

In this section, we provide a thorough characterization of
the expressive power of GLAudio. This analysis enables us
to articulate how GLAudio potentially alleviates the issues
of over-squashing and over-smoothing. To ease the notation,
we restrict the discussion to the case d0 = 1. The presented
results easily generalize to the case of arbitrary d0. Let
{ϕi}i be an eigenbasis of L. We define the receptive field
Rv of a vertex v to be the set {ϕi | ∀i ∈ [n] : ⟨ev, ϕi⟩ ≠ 0}.
We call a function f : Rn → Rm supported on a linear
subspace V ⊆ Rn if for any u ⊥ V we have that ∀x ∈ Rn :
f(x+ u) = f(x).

Theorem 2.3. Provided all eigenvalues of L are unique,
if Yv is supported on Rv, and ∀ϵ > 0,∀C ⊂ Rn com-
pact there exists an approximation yN according to (III)
on the input sequence X1, . . . ,Xn such that for all initial
configurations x ∈ C,

∥∥Yv(x)− yN (X1, . . . ,XN )
∥∥
2
≤ ϵ.

Over-smoothing There exist a number of measures in the
literature on over-smoothing in deep GNNs, e.g. measures
based on the Dirichlet energy (Cai & Wang, 2020), (Zhao
& Akoglu, 2019) or on the mean-average distance (MAD)
(Chen et al., 2020), (Zhou et al., 2020). The survey paper
(Rusch et al., 2023) gives a unified, rigorous, and tractable
definition.

Definition 2.4. (Rusch et al., 2023) Given a sequence of
GNNs on a graph G, where the (N + 1)-th GNN differs
from the N -th GNN by exactly one additional layer. We say
that the sequence over-smooths w.r.t. some node similarity
µ if µ(yN ) < c1e

−c2N , where yN is the output of the N -th
GNN and c1, c2 > 0.

Note that in our model, as we increase N for fixed stop-
ping time T , the input signal X̂(x, t) of the RNN converges
towards the true signal X(x, t) and thus the output yN can
only become more accurate. This implies that provided
there are two vertices u, v such that Yu(T ) ̸= Yv(T ) and
using Theorem 2.3, µ(yN ) cannot converge to 0.

Over-squashing To formalize the concept of over-

squashing, (Topping et al., 2021) described it in terms of the
impact of a distant node’s feature xu on the prediction yv at
node v. They noted an exponential decay in

∣∣∣ ∂yv

∂xu

∣∣∣ with in-
creasing distance between nodes u and v in standard GNNs.
Utilizing Theorem 2.3, we find that the output yv reacts
similar to Yv to changes along Rv while being insensitive
to perturbations perpendicular to Rv. This nuanced under-
standing enables a more targeted approach to addressing the
limitations of GLAudio in handling long-range interactions.

3. Experiments
For details on training methods and hyper-parameters, we re-
fer to Appendix C. The code for all experiments is available
on https://github.com/AurelioSulser/GLAudio.

3.1. Node Classification on Network Graphs

For a comparison with other model architectures, we eval-
uated the performance of GLAudio on six widely popular
semi-supervised node classification single-graph datasets:
Cora, CiteSeer, PubMed, Texas, Wisconsin and Cornell. De-
rived from citation networks, the first three are homophilic,
i.e., adjacent vertices tend to have the same class label. The
latter three are significantly more heterophilic, i.e. adjacent
vertices tend to have different labels. Due to their smoothing
bias, this property poses a significant challenge for tradi-
tional MPNNs like GCN. Average test accuracies for all six
datasets are reported in Table 1.

Discussion and Results. We observe that on all six datasets
GLAudio is able to successfully learn a classification strat-
egy. On the heterophilic graph datasets, GLAudio out-
performs the GCN and GAT architecture, whereas on ho-
mophilic graphs of Cora and CiteSeer GCN and GAT
achieve higher accuracies. These results match our the-
oretic understanding: Both GCN and GAT can be seen as
time discretizations of the discrete first-order heat equation
equipped with learnable parameters causing them to nat-
urally smooth the nodes’ features. This bias is useful on
homophilic datasets, yet disadvantageous on heterophilic
graphs. Derived from the second-order wave equation,
GLAudio does not exhibit this flaw, achieving consistently
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high accuracies on all datasets.
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Figure 1. Test accuracy for varying numbers of time steps N . Ac-
curacies are averaged over 10 random initializations.

To verify that GLAudio is not prone to over-smoothing, we
measured its accuracy on homophilic datasets by varying
the time steps N , keeping other hyper-parameters constant,
notably the stopping time T . Contrary to the effect of over-
smoothing, GLAudio’s performance improved with more
time steps and reached optimal levels within the range of 50
to 200, as shown in Figure 1. This contrasts with the find-
ings in (Chamberlain et al., 2021) where GCNs’ accuracies
diminish significantly below 50% with more than 16 layers.

3.2. Graph Regression on ZINC Dataset

In (Rusch et al., 2022), it was found that the Mean Absolute
Error (MAE) of standard GCNs on the ZINC dataset in-
creased with the model’s depth, while for GraphCon-GCN,
the MAE showed a decreasing trend. This indicates the
significance of long-range dependencies within the ZINC
dataset. Given the capability of GLAudio to support excep-
tionally deep models, as highlighted in Figure 1, its potential
is explored on ZINC.

The ZINC dataset comprises approximately 12,000 molecu-
lar graphs, curated for the regression of a molecular property
known as constrained solubility. Each graph represents a
molecule, where the node features correspond to the types
of heavy atoms present, and the edge features denote the
types of bonds connecting these atoms.

Discussion and Results. GLAudio’s initial performance
on the ZINC dataset appears modest, performing on par
with GIN, and GatedGCN, see Table 2. The reason could
be that GLAudio might disproportionately emphasize long-
range over short-range interactions as models successful
on ZINC typically emphasize the latter (Dwivedi et al.,

Table 2. Test MAE on ZINC (without edge features, small 12k
version) restricted to small network sizes of ∼ 100k parameters.
Baseline results are taken from (Beaini et al., 2021) and (Rusch
et al., 2022).

MODEL TEST MAE
GIN (XU ET AL., 2018) 0.41
GATEDGCN (BRESSON & LAURENT, 2017) 0.42
DGN (BEAINI ET AL., 2021) 0.22
GCN (KIPF & WELLING, 2017) 0.47
GRAPHCON-GCN (RUSCH ET AL., 2022) 0.22
GAT (VELICKOVIC ET AL., 2017) 0.46
GRAPHCON-GAT (RUSCH ET AL., 2022) 0.23
GLAUDIO-LSTM 0.4342

2022). To test this, we combined a 4-layer GCN (∼ 10,000
parameters) and a GLAudio-CoRNN (∼ 90,000 parameters),
allowing GCN to focus on short-range and GLAudio on
long-range dependencies. The result achieved a test MAE
of 0.3157, markedly surpassing standard GNN models and
nearing state-of-the-art performance, suggesting GLAudio’s
proficiency in capturing dependencies missed by shallow
GCN.

3.3. Long Range Graph Benchmark: Peptides-struct

Long Range Graph Benchmark is a set of 5 datasets to mea-
sure the ability of GNNs and Graph Transformers to solve
problems depending on long-range interactions (Dwivedi
et al., 2023). We evaluated GLAudio on one of these tasks,
namely Peptides-struct, a multi-dimensional graph regres-
sion task on molecular graphs.

Table 3. Test mean absolute error (MAE) on Peptides-struct. Base-
line results are taken from (Dwivedi et al., 2023).

MODEL TEST MAE
GCN (KIPF & WELLING, 2017) 0.3496
GIN (XU ET AL., 2018) 0.3547
GATEDGCN (BRESSON & LAURENT, 2017) 0.3420
TRANSFORMER+LAPPE
(HAMILTON ET AL., 2017) 0.2529
GLAUDIO-LSTM 0.3569

Discussion and Results. The results in Table 3 show GLAu-
dio achieving on par MAEs with traditional MPNNs but
underperforming graph transformers. This suggests that
GLAudio might have difficulties capturing the long-range
dependencies of Peptides-struct. On the contrary, we ob-
served significant performance enhancements with an in-
creasing number of time steps. Moreover, recent findings
from (Tönshoff et al., 2023) reveal that a simple GCN with
extensive hyper-parameter tuning can achieve state-of-the-
art results (0.2460 MAE) on Peptides-struct. It casts doubt
on the suitability of Peptides-struct as a benchmark for long-
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range graph interactions.

4. Conclusion
We proposed a novel graph learning architecture based on
wave propagation. A central distinction from other mod-
els lies in the separation of information propagation and
information processing into two different steps. This sep-
aration allows for deep feature propagation without over-
smoothing. Moreover, our theoretical study of expressivity
provides a new approach to understanding over-squashing
as a miss-alignment between graph structure and task. In
our empirical studies, GLAudio was benchmarked against
state-of-the-art models using network datasets and molecu-
lar graphs. On heterophilic datasets, we empirically validate
that GLAudio alleviates over-smoothing. Additionally, we
investigated the phenomenon of over-squashing on more
complex datasets, namely ZINC and Peptides-struct. Based
on our results, it remains inconclusive as to whether GLAu-
dio significantly mitigates over-squashing. Despite not yet
achieving state-of-the-art scores on more complex datasets,
we believe that our approach of separating information pro-
cessing from feature propagation represents a promising
concept that leaves space for further investigation.
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A. Proof of Theorem 2.1
We remark that the power series representation of the signal XH(t) is given by

XH(t) = cos
(
L
1/2
H · t

)
· xH =

∞∑
n=0

(−1)nLn
Ht2n

(2n)!
· xH =

∞∑
n=0

(−1)n · (Ln
H · xH) · t2n

(2n)!
.

It is thus immediate that ∀n ∈ N0 : Ln
H · xH = Ln

G · xG implies that

XH(t) = XG(t).

For the other implication, we note that XG|[0,t] = XH |[0,t] implies that

∀n ∈ N0 :
d(2n)

dx(2n)
XG(0) =

d(2n)

dx(2n)
XH(0).

According to the power series representation of XG(t) and XH(t), this is equivalent to

Ln
H · xH = Ln

G · xG.

B. Proof of Theorem Theorem 2.3
Before we present the actual proof, we introduce the following definition.

We call an operator Φ : (L∞ ([0, 1];R) , ∥ · ∥L∞) → (L∞ ([0, 1];R) , ∥ · ∥L∞) causal if for any two input signals u, v ∈
L∞ ([0, 1];R)

u|[0,t] = v|[0,t] −→ Φ(u)|[0,t] = Φ(v)|[0,t].

We begin the proof with the claim that if there exists a continuous (with respect to the L∞-norm on the input-/output-signals),
causal operator Φ such that Φ(Xv)(T ) = Yv(x), then we can conclude.

Proof of the claim. As a preliminary step, we define K = {Xi
v(x)|∀1 ≤ i ≤ N, for all initial configuration x ∈ C}. It

follows from compactness of C that K is compact. In the following, we will give a description of Φ(X̂v)(T ) as a dynamical
system and apply Theorem 2.2 to this description together with the compact set K.

For an arbitrary input sequence X1, . . . ,XN , set Si = (i,Xi,Vi), where Vi = Vi−1 − h · L · Xi−1 and V0 = 0. It is clear
that Si+1 is computable from Si,Xi+1, hence there exists a measurable function g such that Si+1 = g(Si,Xi+1). We note
that for the special input sequence X1 = X1

v, . . . ,XN = XN
v , we have that Si = (i,Xi

v,Vi
v).

To define the function h(Si), let us introduce vectors X̃1, . . . , X̃i, Ṽ1, . . . , Ṽi (that are in some sense approximations of
X1, . . . ,Xi,V1, . . . ,Vi) given by

X̃j = X̃j+1 − hṼj+1

Ṽj = Ṽj+1 + h · L · X̃j

X̃i = Xi Ṽi = Vi.

In the special case where X1 = X1
v, . . . ,XN = XN

v , we have that X̃1 = X1
v, . . . , X̃N = XN

v . We define the continuous
function f : R|V (G)| × R|V (G)| → L∞([0, 1];R) given by f(Xi,Vi)(t) = X̃i · 1[0,h](t) +

∑i
j=2 X̃i · 1((i−1)h,ih](t).

This allows us to define h(Si) = Φ(f(Xi,Vi))(ih). We note that in the special case that X1 = X1
v, . . . ,XN = XN

v that
f(Xi,Vi)|[0,ih] = X̂v|[0,ih] and hence by causality of Φ, we have that h(Si) = Φ(X̂v)(ih). Applying Theorem 2.2 to this
dynamic system with compact set K, we get the output of some RNN yN satisfies that ∀x ∈ C : ∥Φ(X̂v(x))(Nh) −
yN (X1

v(x), . . . ,XN
v (x))∥ ≤ ϵ. Provided we picked N large enough such that ∀x ∈ C : ∥Yv(x) − Φ(X̂v(x))(Nh)∥ =

∥Φ(Xv(x))(Nh)− Φ(X̂v(x))(Nh)∥ ≤ ϵ, we can combine the two bounds to obtain the statement of the theorem.
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All that remains is to argue the existence of such a continuous, causal operator Φ. Let us make the following preliminary
remarks. Let ϕ1, . . . , ϕn be normalized eigenvectors of L associated with eigenvalues λ1, . . . , λn. W.l.o.g. we may assume
that λ1, . . . , λn ∈ Q and let k ∈ N1 such that ∀0 ≤ i ≤ n : k · λi ∈ N. Moreover, we denote the spectral decomposition of
L by U ·Λ ·Ut, where U is orthonormal and Λ is diagonal, and for all i ≥ 1 we introduce the functions

ui(t) =
cos(λi · t)
⟨ev, ϕi⟩

.

We write ⟨·, ·⟩t, where t > 0, for the scalar product defined on C0([0, 1],R) by

⟨u, v⟩t =
1

πk

∫
[0,2π·k·t]

u
( s

2π · k

)
· v

( s

2π · k

)
ds

We remark that given the wave signal X(t) =
∑n

j=1 ϕj cos(λj · t)⟨ϕj ,x⟩ corresponding to the initial configuration x, the
scalar product satisfies

⟨ui,Xv⟩1 =
∑

ϕj∈Rv

⟨ui, ⟨ϕj , ev⟩ · cos(λj · t) · ⟨ϕj ,x⟩⟩1 (IV)

=
∑

ϕj∈Rv

⟨ϕj ,x⟩ ·
⟨ϕj , ev⟩
⟨ϕi, ev⟩

· ⟨cos(λi · t), cos(λj · t)⟩1 (V)

=
∑

ϕj∈Rv

⟨ϕj ,x⟩ · δij . (VI)

With these preparations at hand, it is easy to conclude. We note that since Yv is supported on Rv , the function Yv factorizes
into Yv = Ỹv ◦ p, where p : Rn → R|Rv| is the projection

p(x) = (⟨x, ϕi⟩)i≥1:ϕi∈Rv

and Ỹv : R|Rv| → R is continuous.

We define the operator Φ : C0 ([0, T ];R) → C0 ([0, T ];R) by

Φ(u)(t) = Ỹv((⟨u, ui⟩t)i≥1:ϕi∈Rv ).

We remark that Φ is causal and continuous. Moreover, given the wave signal X(t) corresponding to the initial configuration
x, we have that

Φ(Xv)(T ) = Ỹv((⟨Xv, ui⟩1)i≥1:ϕi∈Rv ) = Ỹv((⟨x, ϕi⟩)i≥1:ϕi∈Rv ) = Ỹv ◦ p(x) = Yv(x).

C. Further Experiment and Training Details
Our base architecture admits the following hyper-parameters: Number of layers L, number of time steps N , step size h,
hidden dimension size q, stopping time T , and the choice of activation function σ. Note that N,h, and T are coupled by
T = Nh.

Further, we experimented with initial node-wise linear or non-linear embeddings, different dropout rates, and varying
constant or adaptive (ReduceOnPlateau) learning rates. The eigenvalues of the Laplacian L, i.e., the frequencies of our
oscillation X(t) lie in [0, 2maxv deg(v)]. Let D denote the degree matrix. To avoid very high frequencies, difficult to be
captured by our numerical approximation of X(t), we also considered normalizing the Laplacian in (I) by N = D− 1

2 LD− 1
2 .

The eigenvalues of N lie in [0, 2]. Similarly to avoid very slow frequencies, we implemented the option of adding self-loops,
leading to I + L or I + N instead of L resp. N in (I).

We used the Adam optimizer with various learning rates and weight decays. For node classification tasks, we used the
multi-class cross-entropy function as a loss function. For regression tasks, we used the ℓ1-function as the loss function.

In our training process, each training run of GLAudio for all six network datasets was conducted over a span of 300
epochs. For ZINC the maximum number of epochs was 1000 and for Peptides-struct 300. For ZINC and Peptides-Struct
early-stopping at stagnating validation loss was used to avoid overfitting.
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Table 4. Overview of best-found hyperparameter configurations for all experiments.

Dataset L N h Learning
Rate

Weight
Decay Activation Hidden

Dim.
Normalized
Laplacian

Dropout
Rate

Self
Loops

Cora 2 200 0.02 0.001 0.005 Leaky ReLU 32 True 0.2 False
Citeseer 1 150 0.01 0.0025 0.005 Leaky ReLU 24 True 0.2 False
Pubmed 1 50 0.06 0.0025 0.005 Leaky ReLU 24 False 0.3 False
Texas 2 10 0.15 0.001 0.01 Leaky ReLU 32 False 0.4 False
Cornell 1 2 0.7 0.0025 0.005 ReLU 48 True 0.4 False
Wisconsin 1 4 0.2 0.01 0.001 Leaky ReLU 32 True 0.3 False
ZINC (CoRNN + GCN) 3 100 0.02 0.005 0.0 Leaky ReLU 150 + 40 True 0.0 True
ZINC (LSTM) 3 20 0.5 0.005 0.0 ReLU 128 True 0.0 True
Peptides-struct (LSTM) 3 20 0.5 0.002 0.0 GeLU 128 True 0.0 False
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