

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING ADAM-LIKE OPTIMIZERS WITH SIGNAL-TO-NOISE RATIO GUIDED UPDATES

Anonymous authors

Paper under double-blind review

ABSTRACT

The Adam optimizer remains the default choice in deep learning, offering reliable performance across diverse architectures and tasks. In this work, we reinterpret Adam from a signal-processing perspective—viewing its gradient update as a momentum estimate normalized by noise amplitude—and propose a simple modification: replacing the second raw moment with the second central moment (variance). We show that centering provides a more accurate estimate of noise amplitude, allowing the optimizer to normalize the impact of gradient noise uniformly across the loss landscape and to dynamically scale momentum elements according to their signal-to-noise ratio. Empirically, this modification yields consistent performance gains over Adam and its variants across multiple learning paradigms and neural network architectures, including reinforcement learning and sequence modeling. Notably, on reinforcement learning benchmarks such as MuJoCo, our centered variant called “Adam+” achieves faster convergence and improved stability compared to Adam, which remains the gold standard in settings characterized by non-stationarity and the absence of reliable learning rate schedules.

1 INTRODUCTION

Adam (Kingma & Ba, 2015) is the de facto default optimization algorithm for modern deep learning. Its success is largely attributed to the combination of momentum (Rumelhart et al., 1986) with adaptive learning rates (Duchi et al., 2011; Tieleman & Hinton, 2012), yielding a robust and memory-efficient method with fast convergence in many deep learning applications. For a parameter θ_t , learning rate α_t , bias-corrected first- and second order gradient moments m_t and v_t and a numerical stability constant ϵ , its update rule at iteration t is given by

$$\theta_{t+1} \leftarrow \theta_t - \alpha_t m_t / (\sqrt{v_t} + \epsilon). \quad (1)$$

Many variants of the Adam optimizer have been developed primarily within supervised learning contexts, particularly image classification, to enhance the generalization performance of adaptive gradient methods (Wilson et al., 2017). To mitigate the adverse effects of extreme and unstable per-element learning rate scaling in Adam, AMSGrad (Reddi et al., 2018) and AdaBound (Luo et al., 2019) limit the scaling factor of the learning rate $(\sqrt{v_t} + \epsilon)^{-1}$ in (1). To mitigate the adverse correlation between m_t and v_t in Adam, AdaShift (Zhou et al., 2019) uses delayed gradients for estimating v_t , while ADOPt (Taniguchi et al., 2024) reduces this correlation by reordering the updates of m_t and v_t . Other notable enhancements include decoupled weight decay introduced in AdamW (Loshchilov & Hutter, 2019), and layer-wise learning rate scaling in LAMB (You et al., 2020) to address the exploding/vanishing gradient problem in very deep architectures.

We revisit Adam from the standpoint of gradient signal-to-noise ratio (SNR). In mini-batch SGD (Robbins & Monro, 1951), gradient estimates contain both signal and noise components, yet most adaptive optimizers—including Adam—use the raw second moment v_t for scaling, conflating variance with mean magnitude. We reinterpret Adam’s update (1) as normalizing momentum m_t by an estimate of noise amplitude. From this perspective, Adam can be viewed as approximately scaling updates by SNR, though with estimation error due to its reliance on the raw second moment.

This reinterpretation naturally aligns with earlier work on RMSProp (Tieleman & Hinton, 2012). RMSProp stabilized Adagrad (Duchi et al., 2011) by using an exponential moving average of squared

054

055

Algorithm 1 General optimizer framework

056

```

Require:  $\{\alpha_t\}_{t=1}^T, \{\phi_t, \psi_t, \zeta_t\}_{t=1}^T$ 
1: Initialize  $\theta_0$ 
2: for  $t = 1$  to  $T$  do
3:    $g_t = \nabla J_t(\theta_t)$ 
4:    $m_t = \phi_t(g_1, \dots, g_t)$ 
5:    $v_t = \psi_t(g_1, \dots, g_t)$ 
6:    $\gamma_t = \zeta_t(m_t, v_t)$ 
7:    $\theta_t = \theta_{t-1} - \alpha_t \gamma_t$ 
8: end for

```

065

066

Table 1: Functions for Adam in Algo. 1

067

068

069

070

071

072

073

074

075

gradients. A *centered* variant (Graves, 2013) further subtracted the squared mean gradient. Our work can be seen as bringing this centering principle into Adam’s framework. By replacing the raw second moment with the central second moment (variance), we obtain updates directly proportional to gradient SNR. This modification, which we denote Adam+, inherits the efficiency of Adam while improving robustness across diverse and non-stationary settings such as reinforcement learning.

Contributions:

081

082

083

084

085

086

087

088

089

090

091

092

093

2 ADAM OPTIMIZER FROM AN INFORMATION THEORETICAL PERSPECTIVE

094

095

2.1 GENERIC FRAMEWORK FOR OPTIMIZATION ALGORITHMS

096

097

098

099

Many adaptive optimizers have a unified structure outlined in Algorithm 1. This generic framework (Reddi et al., 2018; Luo et al., 2019) provides a useful lens through which similarities and differences between various algorithms can be analyzed.

100

101

102

103

104

105

106

107

In this formulation, g_t is a stochastic gradient sample of the loss function J_t evaluated at time step t . The variables θ_t and α_t represent learnable parameters and learning rates, respectively. The functions ϕ_t and ψ_t denote the update rules for the first- and second-order gradient moment estimates, respectively. Often, they incorporate exponential moving averages and bias-correction terms. The function ζ_t performs normalization and scaling of the gradient moments, and may optionally include additional mechanisms such as decoupled weight decay (Loshchilov & Hutter, 2019). To illustrate how specific optimizers fit into this general framework, we instantiate the ϕ_t , ψ_t , and ζ_t components for the Adam algorithm (Kingma & Ba, 2015) in Table 1. This shows how Adam performs moment estimation and adaptive per-parameter learning rate scaling.

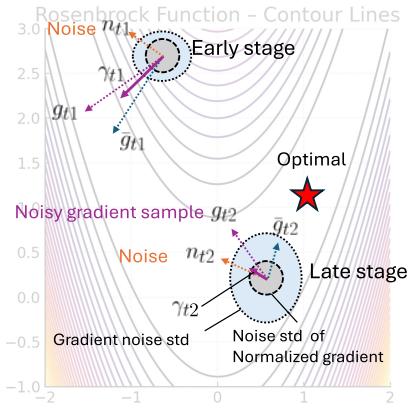


Figure 1: Normalizing noisy gradient sample by noise standard deviation in a 2D plane, $\beta_1 = 0$. In Adam+, each update is normalized by the noise standard deviation, ensuring that updates get smaller as the relative noise level increases in later stages.

108 2.2 SNR-BASED REINTERPRETATION OF ADAM-LIKE UPDATES
109110 In the popular mini-batch stochastic gradient descent, the gradient sample can be modeled as
111

112
$$g_t = \bar{g}_t + n_t, \quad (2)$$

113

114 where \bar{g}_t is the true gradient at time t and n_t is a zero-mean random noise. In a stationary setting, i.e.,
115 the distributions of g_t and n_t are time-invariant, the mean and variance of sample g_t are respectively
116 the unbiased estimates of the true gradient and noise power,
117

118
$$\bar{g}_t = \mathbb{E}[g_t], \quad \mathbb{E}[n_t^2] = \text{Var}[g_t] = \mathbb{E}[(g_t - \mathbb{E}[g_t])^2]. \quad (3)$$

119

120 The expected mean and variance can be sampled and estimated, e.g., via a simple moving average
121 (SMA) window. The setting of gradient descent is typically semi-stationary due to slowly changing
122 parameters of neural networks θ_t . In this case, one can replace simple moving average of a window
123 with exponential moving average (EMA), to weigh on recent samples and save memory space for
124 storing gradient samples via the following recursive form, where $0 < \beta < 1$:
125

126
$$\bar{g}_t \approx w_t = \beta w_{t-1} + (1 - \beta)g_t, \quad \mathbb{E}[n_t^2] \approx v_t = \beta v_{t-1} + (1 - \beta)(g_t - w_t)^2. \quad (4)$$

127

128 By normalizing the gradient sample g_t or its momentum m_t with the standard deviation of noise
129 n_t in a given local environment, we ensure each step of parameter update γ_t contains the same
130 amount of noise across the entire loss landscape. In the minimal example illustrated in Fig. 1, with
131 two points at t_1 early stage and t_2 late stage of stochastic gradient descent, the raw noisy gradient
132 samples are indicated by dotted arrows, and the noise standard deviation is illustrated by light blue
133 oval shapes. The element-wise normalization changes both the amplitude and direction of both γ_{t1}
134 and γ_{t2} , leading to larger steps in regions with clear gradient, such as early stage of training, and
135 smaller steps in regions that are more noisy, such as flat basin near the optimal point. This behavior is
136 desirable and can accelerate convergence by adjusting the step size based on element-wise gradient
137 SNR, estimated as w_t^2/v_t .
138139 In Adam, the second raw moment v_t computed in Table 1 can be interpreted as a biased estimation of
140 the variance in (4), i.e., $\mathbb{E}[g_t^2] = \text{Var}[g_t] + \mathbb{E}[g_t]^2$. However, as pointed out in (Zhou et al., 2019),
141 the correlation between $\mathbb{E}[g_t^2]$ and $\mathbb{E}[g_t]$ can bring adverse effects, in particular, in regions with
142 strong gradient signal, e.g., when $\mathbb{E}[g_t]$ is large, the overestimated noise power can overly attenuate
143 high-quality g_t or m_t with large SNR, causing unnecessary slowdown. In dynamic and non-stationary
144 environments like RL, where the errors compound, this could significantly slow down the training
145 process. Centering the second moment, i.e., normalizing updates with the variance of the gradients
146 $\text{Var}[g_t] = \mathbb{E}[g_t^2] - \mathbb{E}[g_t]^2$, helps to reduce the slowdown that occurs in regions with a strong gradient
147 signal. Indeed, centering has shown improvements in RMSProp (Graves, 2013). However, Adam and
148 its descendants inherit the uncentered formulation of RMSProp, and thus the same limitation. Here
149 we present a centered Adam (which we term Adam+) that provides a natural and largely unexplored
150 complement to the Adam family.
151152 When the second raw or central moment becomes very small, the scaling factor ζ_t may produce overly
153 large effective learning rates, causing instability (Luo et al., 2019). Raw moments tend to overestimate
154 variance, yielding smaller and more stable steps, particularly late in training. In contrast, central
155 moments provide a more accurate SNR estimate but are more sensitive in low-variance regimes.
156 This instability can be alleviated by maintaining a noise floor ϵ as is done in Adam and Adam-type
157 optimizers.
158159 3 ADAM+: ADAM WITH CENTERED SECOND ORDER MOMENT
160161 Based on the generic framework in Algorithm 1 and signal processing interpretation of Adam in
162 section 2.2, we propose to modify the function ψ_t .¹163 We propose two key modifications to the core function of Adam-like optimizers ψ_t in Table 1. First,
164 we propose replacing the second raw moment with the second central moment in ψ_t ,

165
$$w_t = \beta_2 w_{t-1} + (1 - \beta_2)g_t, \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2)(g_t - w_t)^2. \quad (5)$$

166

167 ¹Additionally, two proposed non-linear scaling functions for ζ_t , tailored for supervised learning, are described
168 in the Appendix due to space constraints.
169

162

163

Algorithm 2 Adam+ (modifications with respect to Adam in blue)

164

Require: $\alpha_0, \beta_1, \beta_2, \epsilon, \sigma$

165

1: $m_0 \leftarrow 0, v_0 \leftarrow 0, w_0 \leftarrow 0, t \leftarrow 0$

166

2: **for** $t = 1$ to T **do**

167

3: $\xi_t \sim \mathcal{N}(0, \sigma^2)$ /* Optional noise injection */

168

4: $g_t \leftarrow \nabla_{\theta} J(\theta_{t-1}) + \xi_t$

169

5: $m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) g_t$

170

6: $w_t \leftarrow \beta_2 w_{t-1} + (1 - \beta_2) g_t$

171

7: $v_t \leftarrow \beta_2 v_{t-1} + (1 - \beta_2)(g_t - w_t)^2$

172

8: $\hat{m}_t \leftarrow m_t / (1 - \beta_1^t)$

173

9: $\hat{v}_t \leftarrow v_t / (1 - \beta_2^t)$

174

10: $\gamma_t \leftarrow \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$

175

11: $\theta_t \leftarrow \theta_{t-1} - \alpha \gamma_t$

176

12: **end for**

177

13: **return** θ_t

178

179

180

Notice that in (5), both w_t and v_t are based on the same β_2 , making our approach distinct from a structurally similar update rule in AdaBelief (Zhuang et al., 2020). In AdaBelief, $v_t = \beta_2 v_{t-1} + (1 - \beta_2)(g_t - m_t)^2$, and the $1/\sqrt{v_t}$ is interpreted as a "belief", where m_t is based on the ϕ_t in Table 1, which uses β_1 as the smoothing factor of EMA. While this formulation shares the use of a central moment, its interpretation differs fundamentally from the SNR perspective presented in this work. Our approach introduces a slow momentum w_t for computing the second central moment, faithfully following the EMA approximations of signal and noise power in (4).

187

Second, we add noise injection ξ_t to the gradient sample as a regularization to reduce the correlation between the fast momentum m_t and the estimation of the noise standard deviation $\sqrt{v_t}$.

188

189

We denote Adam with these two modifications as *Adam+*, of which the pseudo code is detailed in Algorithm 2, with our modifications highlighted in blue.

190

Notice that these key modifications introduced by (5), (including those in the Appendix: (6) and (7)) are also applicable to other Adam-like algorithms, such as AMSGrad, ADOPT, AdamW, and LAMB.

191

192

4 NUMERICAL RESULTS

193

194

To demonstrate that replacing the second raw moment with the variance consistently yields performance gains over the baseline optimizers, we evaluate modified and baseline optimizers on ML tasks that span diverse model architectures, problems, and gradient regimes.^{2 3}

200

201

4.1 REINFORCEMENT LEARNING

202

203

We benchmark the performance of Adam+, with and without noise injection (NI), against the standard Adam optimizer across three MuJoCo environments. Notice that we have used the same set of tuned hyperparameters (Haarnoja et al., 2018; Raffin, 2020) for all simulations. The continuous control tasks feature unbounded return, making them particularly well-suited for evaluating the advantages of improved gradient signal-to-noise handling.

208

209

The Fig. 2(a) demonstrates more stable, faster convergence, and higher final performance of Adam+ with and without noise injection over Adam. This indicates that in moderately difficult environments, such as HalfCheetah, the variance normalization helps stabilize early training, and noise injection

211

212

²Source code and data: <https://github.com/researcherAdamPlus/AdamPlus>

213

214

215

³All experiments were conducted on a workstation equipped with an AMD Ryzen Threadripper 2970WX 24-core processor (48 threads), 96 GB of RAM, and two NVIDIA GeForce RTX 2080 Ti GPUs. To generate a single representative figure for each task, the computational time was approximately 10 hours for image classification (using either MLP or CNN) and CartPole, 20 hours for the ZINC GT experiment, and 36 hours for training a single agent in the MuJoCo environment.

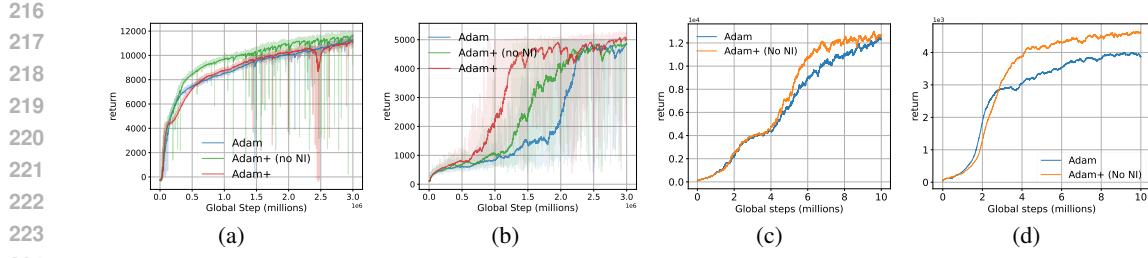


Figure 2: Performance of Adam and Adam+ on MuJoCo and Atari environments. (a) HalfCheetah-v5, (b) Humanoid-v5, (c) Qbert, (d) Seaquest.

may be neutral or slightly detrimental, as excessive randomness can interfere with stable learning once a good policy is found.

Fig. 2(b) highlights the importance of noise injection. For the difficult problem of Humanoid, Adam+ with NI exhibits much faster learning and higher final returns. Adam+ (no NI) performs better than Adam, but lags behind Adam+. This behavior indicates that gradient noise injection provides strong exploration incentives, helping avoid local minima and supporting long-term credit assignment. The combination of variance-aware updates and noise leads to better robustness and learning efficiency.

In addition, we evaluate the performance of our modification on Seaquest and Qbert Atari games solved with DQN. Similar to the continuous control, these games were chosen due to their practically unlimited rewards, which guide the optimizer toward policy improvement. We averaged the results over 5 random seeds. Figs. 2(c) and 2(d) demonstrate that Adam+ consistently outperforms Adam in both convergence speed and final return. In particular, Adam+ reaches high-return regimes significantly earlier, demonstrating improved sample efficiency. For example, in the Seaquest environment, Adam+ attains near-saturated returns after ~ 4 M steps, whereas Adam requires almost twice as many interactions to approach a similar level. This is consistent with our interpretation: by normalizing updates with a more accurate noise variance estimate, Adam+ avoids over-attenuation of strong gradient signals, enabling faster policy improvement.

4.2 SEQUENCE MODELING PROBLEMS

Centered RMSProp (Graves, 2013; Ida et al., 2016) tends to perform better on sequence modeling problems compared to its uncentered counterpart. In this subsection, we demonstrate that the centering of Adam has a similar effect. AdaBelief (Zhuang et al., 2020) made an important step in this direction. Building on that, we show that AdaBelief’s result can be advanced by ensuring that the variance is estimated with the reference mean of the same window length β_2 . In addition, we demonstrate the performance of our extensions on larger models, such as nanoGPT (Karpathy, 2022) and crammed BERT (Geiping & Goldstein, 2023).

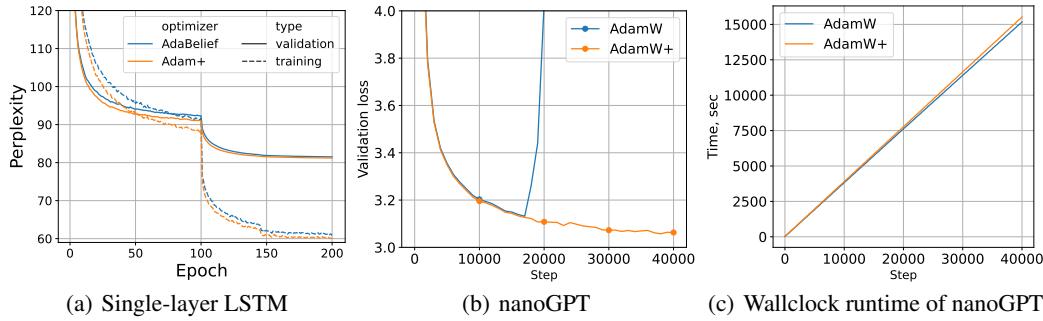
LSTM on language modeling. We benchmark Adam+ against AdaBelief on the Penn Treebank (Marcus et al., 1993) language modeling task. For this experiment, we directly reused the publicly released AdaBelief’s implementation of this experiment. We reused the learning rate of 0.01 with $\epsilon = 10^{-12}$ and the remaining hyperparameters as in their implementation.

We trained 1-, 2-, and 3-layer LSTMs, averaging results over 5 seeds. Figure 3(a) shows the training trajectory for the 1-layer LSTM; the curves for deeper networks are qualitatively similar. Table 2 summarizes the best training and validation perplexities. Importantly, AdaBelief (Zhuang et al., 2020) has already been shown to outperform several widely used optimizers under the same settings. Since Adam+ achieves better results than AdaBelief with no additional tuning, it follows that Adam+ also surpasses those baselines.

Notice that since AdaBelief estimates the noise variance v_t around m_t , its estimate of $\text{Var}(g_t)$ is generally less accurate compared to our case. By contrast, we center v_t around a reference mean within a window of the same length w_t , yielding a more reliable estimate. Consequently, our optimizer achieves consistently lower perplexity across different numbers of LSTM layers.

270
271 Table 2: Perplexity (lower is better) of Adam+ and AdaBelief on Penn Treebank dataset.
272
273
274

Optimizer	Training			Validation		
	1 Layer	2 Layers	3 Layers	1 Layer	2 Layers	3 Layers
AdaBelief	60.86	45.60	37.14	81.52	66.81	61.33
Adam+	59.99	44.87	36.62	81.22	66.33	61.08

288 Figure 3: Consistent gain from second moment centering on sequence modeling problems.
289
290

293 **nanoGPT.** We next evaluate the impact of noise centering on nanoGPT (Karpathy, 2022). The
294 experiment is conducted using the default hyperparameters provided in Karpathy (2022). This ensures
295 that any observed improvements are attributable to the optimization mechanism itself, rather than
296 to parameter search. We compare AdamW (Loshchilov & Hutter, 2019) with AdamW+, averaging
297 results over two random seeds. AdamW+ is an optimization algorithm obtained by incorporating
298 the second moment centering from Algorithm 2 into the baseline method of AdamW (Loshchilov &
299 Hutter, 2019).

300 The outcomes are summarized in Fig. 3(b). Training with AdamW exhibits instability, with validation
301 loss diverging—an issue also documented in the nanoGPT repository (Karpathy, 2022) and in
302 Taniguchi et al. (2024). In contrast, AdamW+ stabilizes training by centering the second raw moment
303 and further achieves consistently lower validation loss relative to AdamW across seeds. As shown in
304 the Fig 3(c), higher stability and lower loss come at the cost of slightly larger runtime due to the extra
305 parameter w_t .

306 **Crammed BERT.** We evaluate the performance of our proposed modifications on fine-tuning
307 BERT (Devlin et al., 2019), following a methodology from Geiping & Goldstein (2023). The model
308 is pretrained with a standard AdamW (Loshchilov & Hutter, 2019) optimizer and is fine-tuned for
309 5 epochs on a range of downstream tasks given by the GLUE benchmark (Wang et al., 2018). As
310 before, we reuse the tuned hyperparameters from AdamW (Geiping & Goldstein, 2023) and apply
311 them to AdamW+. All results are averaged over five random seeds and reported in Table 3.

314 Table 3: GLUE benchmark results for crammed BERT averaged over 5 seeds.
315

Optimizer	GLUE		CoLA		MNLI		MRPC		QNLI		QQP		RTE		SST-2		STS-B	
	A-Mean	H-Mean	Matthews	Acc	Acc (extra)	Acc	F1	Acc	Acc	F1	Acc	F1	Acc	Acc	Pearson	Spearman		
AdamW	0.8043	0.7680	0.5024	0.8498	0.8526	0.8252	0.8826	0.9092	0.9082	0.8772	0.5608	0.9323	0.8713	0.8675				
AdamW+	0.8061	0.7712	0.5139	0.8484	0.8522	0.8415	0.8926	0.9076	0.9080	0.8769	0.5602	0.9316	0.8719	0.8679				

319 The arithmetic and harmonic means (A-Mean and H-Mean) indicate that AdamW+ achieves higher
320 performance than AdamW on average across tasks in the GLUE benchmark. Notice that on CoLA
321 and MRPC, AdamW+ brings improvements of at least one percent in Matthew's correlation, accuracy,
322 and F1 score. These cases are bolded in the table. In contrast, for the specific cases where AdamW
323 outperforms AdamW+, the margins are much smaller (strictly less than one percent).

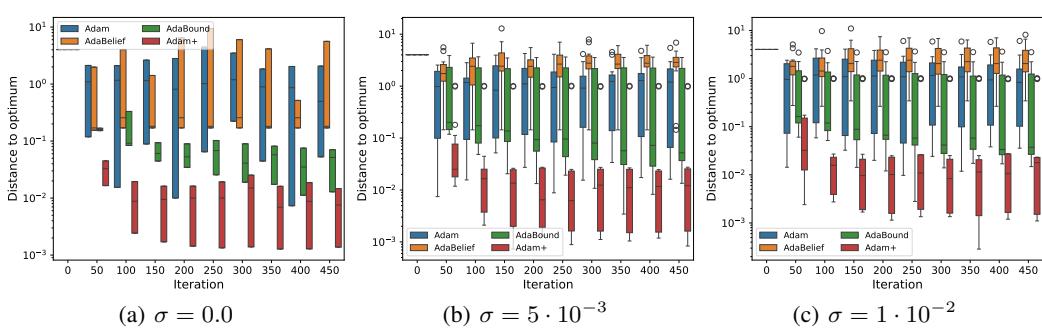


Figure 4: Convergence of the proposed Adam extensions on the Rastrigin optimization function for different levels of gradient noise σ .

4.3 RASTRIGIN TEST OPTIMIZATION FUNCTION

We evaluate how different optimizers converge to the optimum in a simple two-dimensional setting given by the Rastrigin test optimization function (Rastrigin, 1974). This setup allows us to compare the convergence speed and the stability of different optimizers on the same loss landscape. We perform a hyperparameter search using the Tree-structured Parzen estimator (TPE) (Watanabe, 2023) for each random seed: decay factors are sampled uniformly from the range $[0.5, 0.999]$, and the learning rates are drawn from a log-uniform distribution over the interval $[e^{-8}, e^{0.5}]$. The number of TPE steps is capped at 500.

To mimic the effect of stochastic data sampling, Gaussian noise $\xi \sim \mathcal{N}(0, \sigma^2)$ is added to the gradients at each iteration, resulting in stochastic optimization trajectories. For statistical significance, we compute 5 trajectories per seed, repeating the procedure over 3 random seeds. We then sample distances to the optimum at selected checkpoints and visualize the distributions using box plots.

The results in Fig. 4 show that Adam+ consistently converges closer to the optimum across all noise regimes, from deterministic gradients ($\sigma = 0$) to high-noise settings ($\sigma = 10^{-2}$). Unlike Adam and AdaBelief, which frequently converge to local minima, Adam+ maintains steady progress toward the global optimum. Moreover, its variance across trials is much smaller (notice the logarithmic scaling of the y-axis), indicating improved robustness to both hyperparameter choices and stochastic perturbations. AdaBound shows partial improvements over Adam but still suffers from wider variability and poorer convergence under higher noise.

These findings highlight two points: (i) centering the second moment reduces the tendency of Adam to over-dampen high-SNR gradients, enabling faster escape from local minima, and (ii) the SNR-based formulation underlying Adam+ provides resilience to injected gradient noise, making its behavior more stable and predictable than other Adam extensions.

4.4 MOLECULAR GRAPH REGRESSION

Lastly, we apply our centering extension to a number of different optimizers, where the ‘+’ notation is used to indicate that we incorporate the second moment centering from Algorithm 2 into the baseline method. E.g., LAMB+ corresponds to a centering of the second moment in the baseline algorithm of LAMB (You et al., 2020). We consider the ZINC dataset, comprising approximately 250,000 molecular graphs with up to 38 atoms (nodes) each, to train the GPS graph transformer (GT) (Rampášek et al., 2022). The task is to regress the continuous molecular properties from the graph structure. The hyperparameters are the same as the original codebase⁴, except that we adopt constant learning rates as listed in Table 9.

Figs. 11(a) and 11(b) depict the performance difference in the training and validation mean absolute error (MAE) over the course of the training across a range of β_2 values. The key observation is that smaller values of β_2 amplify the gains of the enhanced optimizers. This trend supports the

⁴https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py

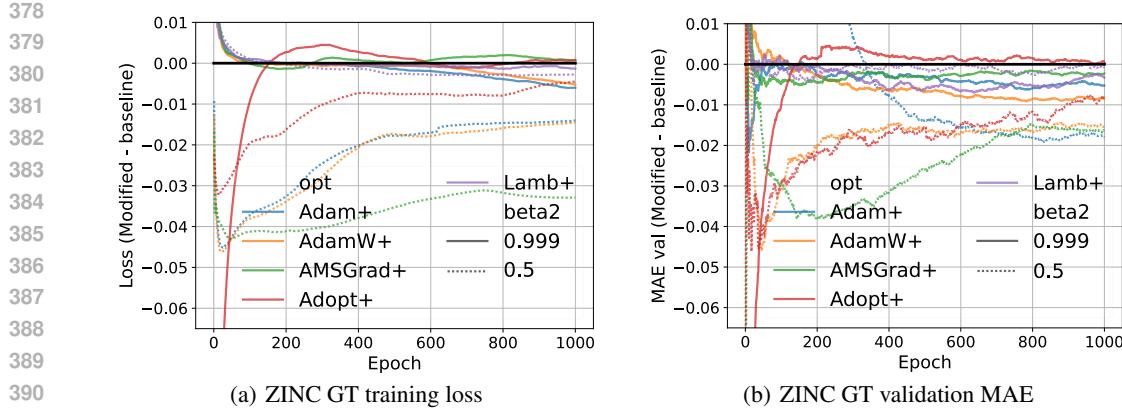


Figure 5: Performance difference of the modified and baseline optimizers in supervised learning. Molecular graph regression: (a) training loss and (b) validation MAE.

idea that the variance-based moment estimate is more accurate and responsive to recent gradient changes. Adam+, AMSGrad+, and AdamW+ exhibit notable improvements relative to their baselines, which are especially pronounced for lower $\beta_2 = 0.5$. In particular, AMSGrad+ demonstrates substantially faster convergence in the early stages, leading to superior validation MAE in the first half of the training. ADOPT+ also achieves measurable gains, though somewhat smaller, which may be attributed to potential interactions between its moment reordering strategy and the variance-based scaling. In contrast, LAMB+ shows only modest improvements. This is likely due to its trust ratio mechanism, which already stabilizes update magnitudes across layers, reducing the marginal benefit from further normalization via improved noise estimation. More extensive simulation results are summarized in the Tables 8, 9, and 10 in the Appendix.

5 RELATED WORK

Despite its popularity, Adam has undergone several refinements aimed at improving its stability and performance. A notable example is AMSGrad (Reddi et al., 2018), which modifies Adam by maintaining the maximum v_t observed so far. Even though this adjustment can lead to overly conservative updates and slower training due to the non-decreasing nature of v_t , it has nonetheless inspired a line of research focused on rethinking the mechanisms underlying adaptive optimization.

Luo et al. (2019) argues that the extreme and unstable per-parameter learning rates of Adam contribute to poor generalization (Wilson et al., 2017). In contrast, stochastic gradient descent (SGD) (Robbins & Monro, 1951), though slower to converge, often generalizes better (Luo et al., 2019). To combine the benefits of both methods, the authors proposed AdaBound, an optimizer that constrains the adaptive learning rate within dynamic bounds that gradually tighten toward a fixed target value. This design aims to combine Adam’s fast convergence in early training with the generalization benefits of SGD in later stages. Although AdaBound provides a promising trade-off between the adaptability of Adam and the stability of SGD, it requires manual tuning of the bound decay rates. Moreover, the constant terminal learning rate may become suboptimal in non-stationary environments.

AdaBelief (Zhuang et al., 2020) replaces Adam’s second moment v_t by the “belief” in the gradient direction m_t , $s_t = \beta_2 s_{t-1} + (1 - \beta_2)(g_t - m_t)^2$. Larger “belief” results in a larger per-parameter learning rate. However, this formulation introduces a temporally misaligned update ratio $m_t/(\sqrt{s_t} + \epsilon)$, as m_t and s_t are estimated using different decay factors. Moreover, the notion of “belief” lacks a precise interpretation, limiting its theoretical grounding and connections to related concepts.

Centered RMSProp (Graves, 2013; Ida et al., 2016) uses a temporally aligned update ratio. Specifically, the parameters are updated based on the momentum of rescaled gradients $g_t/(\sqrt{v_t} - g_t^2)$. However, this method has two downsides: it relies on the gradient direction given by g_t , which is generally less aligned with the true gradient compared to m_t , and it lacks bias correction, which can compromise stability in the early stages of training.

432 Based on the observation that the correlation between g_t and v_t impairs convergence, Zhou et al.
 433 (2019) introduce AdaShift: an optimization algorithm which computes m_t from the most recent n
 434 gradients, while estimating v_t from a lagged gradient g_{t-n} . Although this strategy effectively breaks
 435 the correlation (see Theorem 5 in (Zhou et al., 2019)), it is likely to underperform in non-stationary
 436 environments, where the gradient dynamics shift over time.

437 ADOPT (Taniguchi et al., 2024) achieves the same decorrelation effect by excluding g_t from the
 438 second moment estimate. Furthermore, the authors identify that Adam-style momentum contributes
 439 to convergence issues and address this by reordering the updates of m_t and v_t . They prove the
 440 convergence to a stationary point for any decay rate factor β_2 .

441 Recent works extend adaptive methods through multi-scale history or geometric structure. AdaE-
 442 MAMix (Pagliardini et al., 2025) stabilizes trajectories using mixtures of fast and slow EMAs. For
 443 large-scale pre-training, SOAP (Vyas et al., 2025), Muon (Jordan et al.), and Scion (Pethick et al.,
 444 2025) leverage structured preconditioning or tensor orthogonalization to optimize update directions.
 445 By contrast, Adam+ maintains the computational efficiency of element-wise updates. Instead of
 446 altering the update geometry, Adam+ refines the magnitude of the gradient descent steps by correcting
 447 the raw second-order moment estimate via SNR-based centering. This offers a general-purpose
 448 improvement without architectural constraints.

449 Most existing adaptive gradient methods — including Adam and its predecessors Adagrad (Duchi
 450 et al., 2011) and uncentered RMSprop (Tieleman & Hinton, 2012) — share a common limitation: they
 451 rely on some form of the second *raw* moment of the gradient, v_t , to adjust the learning rate. As we
 452 illustrated throughout the paper, this reliance restricts their ability to generalize across a wide range
 453 of problems, particularly in non-stationary environments, such as RL, where continuous adaptation
 454 of the learning rate is critical.

456 6 CONCLUSION

457 In this work, we interpret the Adam optimization algorithm from the signal-to-noise ratio perspective.
 458 This perspective motivates us to replace the raw second moment with the central second moment,
 459 yielding Adam+, which normalizes updates by gradient variance and thereby scales gradients in
 460 proportion to their SNR.

461 We empirically validated the effect of our modification across diverse learning paradigms, including
 462 reinforcement learning and sequential modeling. These gains are very consistent in sequential
 463 modeling problems - the setting where it is known that centered RMSProp outperforms its uncentered
 464 counterpart. They are also significant in non-stationary, RL domains, where traditional optimizers
 465 often struggle due to unreliable gradient signals and the absence of effective learning rate schedules.

466 These findings suggest that centering the variance within Adam-like optimizers is a generally useful
 467 design principle. Future work may explore integrating this perspective with other recent advances,
 468 such as adaptive schedules or large-scale pretraining pipelines, to further enhance the robustness and
 469 efficiency of optimization in deep learning.

472 REFERENCES

473 Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, magnitude and variance of stochastic
 474 gradients. In *Int. Conf. Mach. Learn. (ICML)*, pp. 404–413. PMLR, 2018.

475 Song Chen, Jiaxu Liu, Pengkai Wang, Shengze Cai, Chao Xu, and Jian Chu. Accelerated optimization
 476 in deep learning with a proportional-integral-derivative controller. *Nature Communications*, 15
 477 (10263), 2024.

478 Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
 479 Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
 480 algorithms. In *Int. Conf. Neural Inf. Process. Syst. (NeurIPS)*, volume 36, pp. 49205–49233. Curran
 481 Associates, Inc., 2023.

482 Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
 483 of Adam and Adagrad. 2022. ISSN 2835-8856.

486 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
 487 deep bidirectional transformers for language understanding. In *North American Chapter of the*
 488 *Association for Computational Linguistics*, 2019. URL <https://api.semanticscholar.org/CorpusID:52967399>.

489

490 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
 491 stochastic optimization. *Journal of Machine Learning Research*, 12(61):2121–2159, 2011.

492

493 Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single GPU in one day.
 494 In *Intl. Conf. Learn. Repres. (ICLR)*, volume 202 of *Proceedings of Machine Learning Research*,
 495 pp. 11117–11143. PMLR, 23–29 Jul 2023.

496

497 Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
 498 Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
 499 Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continu-
 500 ous representation of molecules. *ACS Central Science*, 4(2):268–276, Feb 2018. ISSN 2374-7943.
 501 doi: 10.1021/acscentsci.7b00572.

502

503 Alex Graves. Generating sequences with recurrent neural networks. *arXiv preprint arXiv:1308.0850*,
 504 2013.

505

506 Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
 507 Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
 508 applications. *arXiv preprint arXiv:1812.05905*, 2018.

509

510 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 511 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR)*, June 2016.

512

513 Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
 514 nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
 515 reinforcement learning algorithms. *Journal of Machine Learning Research*, 23(274):1–18, 2022.

516

517 Yasutoshi Ida, Yasuhiro Fujiwara, and Sotetsu Iwamura. Adaptive learning rate via covariance matrix
 518 based preconditioning for deep neural networks. *arXiv preprint arXiv:1605.09593*, 2016.

519

520 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
 521 Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
 522 <https://kellerjordan.github.io/posts/muon>.

523

524 Andrej Karpathy. NanoGPT. <https://github.com/karpathy/nanoGPT>, 2022.

525

526 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Intl. Conf. Learn.
 527 Repres. (ICLR)*, 2015.

528

529 Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
 530 port, University of Toronto, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.

531

532 Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 533 document recognition. *Proc. IEEE*, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

534

535 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *Intl. Conf. Learn. Repres.
 536 (ICLR)*, 2019.

537

538 Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
 539 learning rate. In *Intl. Conf. Learn. Repres. (ICLR)*, 2019.

540

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
 541 corpus of English: The Penn Treebank. *Computational Linguistics*, 19(2):313–330, 1993.

540 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533, Feb 2015. ISSN 1476-4687. doi: 10.1038/nature14236.

545 Matteo Pagliardini, Pierre Ablin, and David Grangier. The adEMAMix optimizer: Better, faster, older. In *Intl. Conf. Learn. Repres. (ICLR)*, 2025.

548 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and 549 Volkan Cevher. Training deep learning models with norm-constrained LMOs. *arXiv preprint* 550 *arXiv:2502.07529*, 2025.

551 Antonin Raffin. RL baselines3 zoo. <https://github.com/DLR-RM/rl-baselines3-zoo>, 552 2020.

554 Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do- 555 minique Beaini. Recipe for a general, powerful, scalable graph transformer. In *Int. Conf. Neural* 556 *Inf. Process. Syst. (NeurIPS)*, volume 35, pp. 14501–14515. Curran Associates, Inc., 2022.

557 Leonard Andreevič Rastrigin. Systems of extremal control. *Nauka*, 1974.

559 Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In *Intl.* 560 *Conf. Learn. Repres. (ICLR)*, 2018.

561 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The Annals of Mathematical* 562 *Statistics*, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586.

564 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by 565 back-propagating errors. *Nature*, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/ 566 323533a0.

567 Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara, 568 Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. ADOPT: Modified 569 Adam can converge with any β_2 with the optimal rate. In *Int. Conf. Neural Inf. Process. Syst.* 570 (*NeurIPS*), 2024.

571 Tijmen Tieleman and Geoffrey Hinton. RMSprop: Divide the gradient by a running average of its 572 recent magnitude. In *COURSERA: Neural Networks for Machine Learning*, volume 4, pp. 26–31, 573 2012.

575 Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu, 576 Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard 577 interface for reinforcement learning environments. *arXiv preprint arXiv:2407.17032*, 2024.

578 Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and 579 Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling. 580 In *Intl. Conf. Learn. Repres. (ICLR)*, 2025.

582 Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE: 583 A multi-task benchmark and analysis platform for natural language understanding. In *Proceedings* 584 *of the 2018 EMNLP Workshops*, pp. 353–355, Brussels, Belgium, November 2018. Association 585 for Computational Linguistics. doi: 10.18653/v1/W18-5446.

586 Shuhei Watanabe. Tree-structured Parzen estimator: Understanding its algorithm components and 587 their roles for better empirical performance. *ArXiv*, abs/2304.11127, 2023.

588 Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal 589 value of adaptive gradient methods in machine learning. In *Int. Conf. Neural Inf. Process. Syst.* 590 (*NeurIPS*), volume 30. Curran Associates, Inc., 2017.

592 Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan 593 Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep 594 learning: Training BERT in 76 minutes. In *Intl. Conf. Learn. Repres. (ICLR)*, 2020.

594 Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang, and Yong Yu. AdaShift:
 595 Decorrelation and convergence of adaptive learning rate methods. In *Intl. Conf. Learn. Repres.*
 596 (*ICLR*), 2019.

597 Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
 598 pademetrис, and James Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in observed
 599 gradients. In *Int. Conf. Neural Inf. Process. Syst. (NeurIPS)*, volume 33, pp. 18795–18806. Curran
 600 Associates, Inc., 2020.

APPENDIX

A PROPOSED SNR-BASED MODIFICATIONS TO GRADIENT SCALING FUNCTION ζ_t

609 Sign-based optimization, such as in Lion (Chen et al., 2023), has strong performance in certain
 610 supervised learning applications, as it amplifies small gradient and suppresses strong signals, akin to
 611 gradient-guided grid search, which can lead to fast and stable convergence in stationary environments
 612 with correct hyperparameters. Inspired by this rationale, we design non-linear scaling function ψ_t on
 613 top of Adam+, denoted as "Adam+NLx", by introducing two SNR-based non-linear ψ_t as follows:

$$\gamma_t = \text{sign}(m_t) \log_2 \left(1 + \sqrt{\textcolor{blue}{m_t^2}/(v_t + \epsilon)} \right) \quad (6)$$

$$\gamma_t = \text{sign}(m_t) \left[1 + \log_{10} \left(1 + \sqrt{\textcolor{blue}{m_t^2}/(v_t + \epsilon)} \right) \right] \quad (7)$$

617 In particular, both (6) and (7) scale the sign update based on element-wise gradient SNR, whereas
 618 (6) emphasizes on compressing large SNR for smoother and more robust gradient update, and
 619 (7) emulates sign optimizers while scaling the signed momentum by the number of bits in SNR.
 620 We denote the optimizers that incorporate this additional refinement with "+NL1" for (6), such as
 621 Adam+NL1, and the update in (7) with "+NL2", such as Adam+NL2.

622 In addition, we consider Adam+(SNR lr) that scales learning rate with SNR as follows:

$$\gamma_t = \sqrt{\textcolor{blue}{m_t^2}/(v_t + \epsilon)} \cdot m_t / (\sqrt{v_t} + \epsilon) , \quad (8)$$

623 which is evaluated for RL in CartPole experiment.

624 We propose two more gradient scaling functions ζ_t in Algorithm 1, and summarize all our enhance-
 625 ments to Adam variants in Table 4, listing their postfixes, equations and algorithms, recommended
 626 baselines, hyperparameters, and application scenarios.

633 Table 4: The full list of our enhancements to Adam variants

634 Recommend	635 Postfix	636 Enhancement	637 Recommend	638 Recommend	
639 Baseline		ψ_t	ζ_t	Hyperparameters	Applications
640 Adam,	+	(5)	641 Adam		General, RL
642 AdamW,	+	(5)	643 Adam	$\sigma \in \{0.001, 0.0001\}$	RL
644 LAMB	+ (SNR lr)	(5)	645 (9)		RL
646					
647 Adam,	+NL1	(5)	648 (10)		Supervised learning
649 AdamW	+NL2	(5)	650 (11)	$\sigma = 0$	Supervised learning
651	+NL3	(5)	652 (12)		Supervised learning

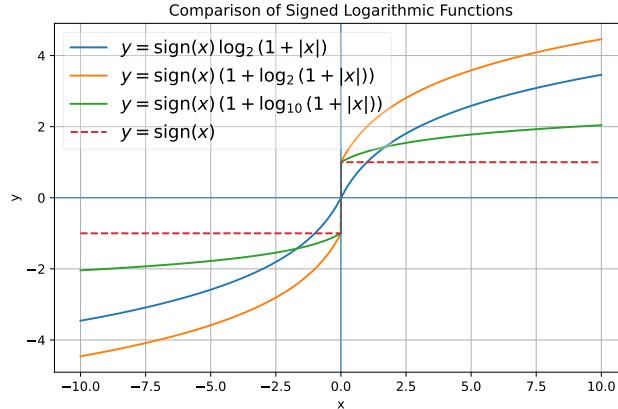
653 We still recommend $\beta_1 = 0.9, \beta_2 = 0.999$ as the default configuration with our enhancements for
 654 most application scenarios, however, as shown in Appendix F, smaller β , such as $\beta_1 = \beta_2 = 0.5$
 655 and $\beta_1 = \beta_2 = 0.9$, with our modifications on Adam, AdamW and Adopt can lead to superior
 656 performance compared to the default values for graph transformers.

657 Next, the proposed non-linear gradient scaling ζ_t functions in Table 10 are detailed as follows.

648 **Adam+ (SNR lr):** Postfix (SNR lr) stands for SNR-based learning rate scaling, expressed as
 649

$$650 \quad \gamma_t = \sqrt{m_t^2/(v_t + \epsilon)} \cdot m_t/(\sqrt{v_t} + \epsilon) . \quad (9)$$

651 Adam+ (SNR lr) scales the Adam+ update $m_t/(\sqrt{v_t} + \epsilon)$ by the square root of SNR, essentially
 652 employing quadratic Adam+ update with the sign of momentum m_t . This approach promotes faster
 653 responses under high SNR and slower responses in low SNR regime.
 654



655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671 Figure 6: Signed logarithmic functions in (10), (11), (12) for +NL1, +NL2, +NL3

672 **Adam+NL1~3:** Lastly, signed logarithmic functions, as illustrated in Fig. 6, are employed as an
 673 additional non-linear filtering mechanism in our extensions: (10) for *NL1*, (11) for *NL2*, and (12) for
 674 *NL3*, where NL1 and NL2 are already introduced in the main text.
 675

$$676 \quad \gamma_t = \text{sign}(m_t) \log_2 \left(1 + \sqrt{m_t^2/(v_t + \epsilon)} \right) \quad (10)$$

$$677 \quad \gamma_t = \text{sign}(m_t) \left[1 + \log_{10} \left(1 + \sqrt{m_t^2/(v_t + \epsilon)} \right) \right] \quad (11)$$

$$678 \quad \gamma_t = \text{sign}(m_t) \left[1 + \log_2 \left(1 + \sqrt{m_t^2/(v_t + \epsilon)} \right) \right] \quad (12)$$

679 As shown in the ZINC-GT experiment in Appendix F, the +NL3 extension achieves the best performance
 680 in training graph transformer compared to +NL1 and +NL2.
 681

682 The rationale behind these logarithmic functions is to dampen strong elements and elevate weak
 683 elements in the normalized updates of Adam+ for supervised learning, in which gradient updates
 684 become very weak as training progresses, as shown in Figs. 7 in Appendix B. NL1~3 serve as a
 685 middle ground between signed optimizers, such as Lion (Chen et al., 2023), and Adam-like linear
 686 optimizers. Similar to Lion, NL1~3 are mainly for supervised learning, which underperform linear
 687 optimizers in reinforcement learning, where fast responses to disruptions are critical.
 688

689 B GRADIENT SNR IN CIFAR10-RESNET18 AND CARTPOLE-DQN

690 In this section, we analyze the dynamics of element-wise gradient SNR, a central concept underlying
 691 our enhancements to Adam-like baseline optimization algorithms. We trace key metrics for both
 692 Adam and Adam+ in the contexts of supervised learning (CIFAR-10 with ResNet-18) in Figs. 7 and
 693 reinforcement learning (CartPole with DQN) in Figs. 8. To trace gradient SNR, we add functions for
 694 layer-wise gradient SNR estimation to Adam+ and our customized Adam optimizers.
 695

696 We compute the gradient SNR in dB domain for the last layer of the neural network, as follows:
 697

$$698 \quad \bar{\eta}_t = \frac{1}{d} \sum_{i=1}^d \eta_{t,i} , \quad \eta_{t,i} = 10 \log_{10} \left(\frac{m_{t,i}^2}{v_{t,i} + \epsilon} \right) ,$$

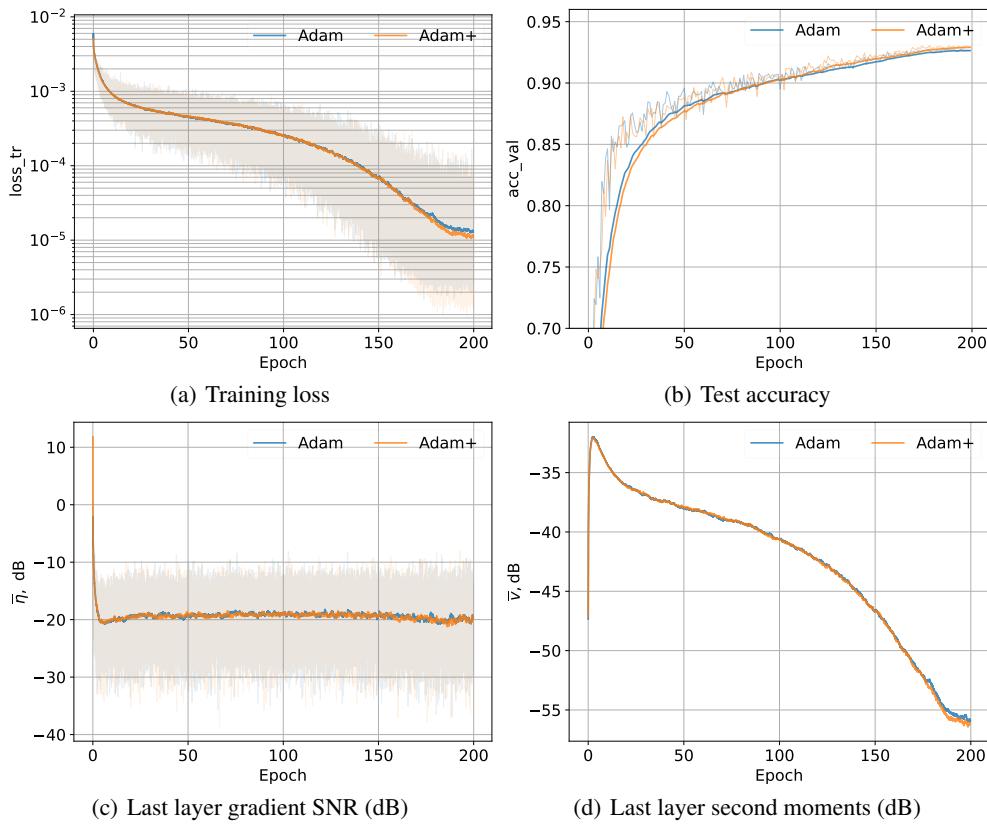
702 where $\eta_{t,i}$ is the element-wise gradient SNR in dB for element i at time step t , and d denotes the
 703 number of parameters of the layer. Similarly, we compute layer-wise average second moment as
 704

$$705 \bar{v}_t = \frac{1}{d} \sum_{i=1}^d 10 \log_{10}(v_{t,i} + \epsilon).$$

706

708 The reason to average in dB domain is to prevent the gradient SNR or second moment from being
 709 dominated by elements that are orders of magnitude larger than the typical values, reflecting the true
 710 scale of most elements.

711 We focus on the last layer for two reasons: (i) it reduces computational costs compared to computing
 712 SNR across the entire model, (ii) the last-layer gradient has the most immediate impact on the loss,
 713 making it a meaningful indicator of convergence behavior.



729 Figure 7: Traces of training ResNet-18 on CIFAR-10 under cosine learning rate annealing: (a) training
 730 loss, (b) test accuracy, (c) gradient SNR in dB, and (d) second raw moment for Adam and second
 731 central moment for Adam+ in dB. (c) and (d) are only for the last layer. ($\beta_1 = 0.9$, $\beta_2 = 0.999$).
 732

742 As shown in Figs. 7, the training loss, test accuracy, gradient SNR and second moments of the last
 743 layer in ResNet-18 of Adam and Adam+ are closely aligned over 200 epochs in supervised learning,
 744 with Adam+ slightly leads in the last 30 epochs. For most of the time, the gradient SNR of the last
 745 layer fluctuate between $-30 \sim -12$ dB, with an average of -20 dB, however, the second moments
 746 decrease steadily over the course of training, from -32 dB in the early epochs to -56 dB in the
 747 end, reducing two orders of magnitude. Given the almost constant gradient SNR, this shows that the
 748 scale of gradient update decreases by at least an order of magnitude over the course of training. This
 749 highlight the challenge of supervised learning in shrinking magnitude of gradient.

754 The different smoothness of gradient SNR $\bar{\eta}_t$ and second moments \bar{v}_t can be explained by their
 755 different smoothing factor, $\beta_1 = 0.9$ for $\bar{\eta}_t$ and $\beta_2 = 0.999$ for \bar{v}_t . Toward the end of the training,
 756 the second central moment of Adam+ becomes visibly smaller than the second raw moment of Adam,

as shown in Fig. 7(d), leading to larger gradient update, which may contribute to the better training loss and test accuracy of Adam+ compared to Adam.

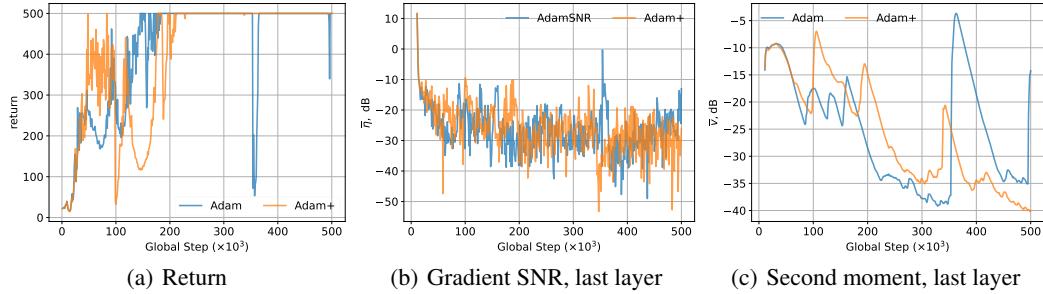


Figure 8: Return and last-layer metrics for DQN in CartPole under Adam and Adam+ in a single run (random seed: 50) with constant learning rate, based on hyperparameters in Table 14.

The return and the gradient SNR and second moments of the last layer for DQN in Cartpole in a single run are presented in Figs. 8. In Fig. 8(a), the DQN initially converges around 200,000 steps under both Adam and Adam+, but subject to disturbances from exploration at ratio of 0.05 (see Table 14), which encourage robustness and generalizability. This explains drops in return after the initial convergence under both Adam and Adam+. However, Adam and Adam+ respond differently to such disturbances: the DQN under Adam+ quickly rebalanced with only small drops in return, but under Adam the drop is more substantial and recovery is slower.

The traces of last layer gradient SNR (Fig. 8(b)) and second moments (Fig. 8(c)) under Adam and Adam+ provide more insights to the optimizer behavior and the environmental dynamics. First, the gradient SNR in RL is much lower and more volatile (range of $-20 \sim -50$ dB with a gradually decreasing mean) than that of supervised learning ($-12 \sim -30$ dB with a constant average of -20 dB), indicating a more difficult, non-stationary environment for reinforcement learning.

Second, when disturbance appears, e.g., around 350,000 for Adam, and 340,000 for Adam+, the gradient SNR and second moment jump up, indicating a departure from the convergence area. However, the second moment under Adam raises more substantially (17 dB higher) compared to Adam+ under similar disturbances. Such a smaller increase in second moment under Adam+ allow larger learning rate being applied when the gradient SNR increases abruptly, leading to fast responses to disturbance and only a tiny drop in return. In contrast, the smaller learning rate scale under Adam in such disturbance leads to slower recovery, and substantial drops in return under disturbances. This example demonstrates the benefit of using second central moment instead of second raw moment in Adam+ in reinforcement learning under tough, non-stationary environments.

Table 5: Training hyperparameters for CIFAR-10 with ResNet18

Hyperparameter	Value
Dataset	CIFAR-10 (Krizhevsky, 2009)
Model	ResNet18 (He et al., 2016)
Batch size	128
Epochs	200
β_1, β_2	0.9, 0.999 (default)
Learning rate (initial)	0.001
Learning rate schedule	Cosine annealing
Weight decay	5×10^{-4}
Data augmentation	Random crop, horizontal flip
Loss function	Cross-entropy

810
 811 **C EXPERIMENTAL SETUPS AND HYPERPARAMETERS FOR EVALUATED**
 812 **PIPELINES**

813
 814 In Table 6, we list the hardware specifications, experimental setups and runtime for our evaluations of
 815 various optimizers across different deep learning pipelines, including the code base for the five deep
 816 learning pipelines and our modifications. The hyperparameters of each deep learning pipeline are
 817 further detailed in Table 5 for CIFAR10-ResNet18, Table 7 for MNIST-MLP, Table 11 for ZINC-GT,
 818 Table 14 for CartPole-DQN, and Table 16 for MuJoCo-SAC.

819 **Table 6: Hardware configuration, runtime, and code bases for all pipelines**

820 Item	821 Details
822 Hardware specs.	823 AMD Ryzen Threadripper 2970WX (24 cores / 48 threads), 96 GB RAM, 824 dual NVIDIA RTX 2080 Ti GPUs
825	826 Dataset: CIFAR-10 (Krizhevsky, 2009) 827 Runtime: 1.2 hours per optimizer (1 thread per GPU) 828 Codebase: https://github.com/kuangliu/pytorch-cifar 829 Notes: Used standard ResNet18 and cosine LR schedule.
830	831 Dataset: MNIST digits (Lecun et al., 1998) 832 Runtime: 30 minutes per optimizer (1 thread per GPU) 833 Codebase: https://github.com/tensorflow/datasets/blob/master/docs/keras_example.ipynb , 834 https://github.com/pytorch/tutorials/blob/main/beginner_source/blitz/cifar10_tutorial.py 835 Notes: Trained with 2-layer MLP. The pipeline is based on the two 836 referenced codebases.
837	838 Dataset: ZINC molecular graphs (Gómez-Bombarelli et al., 2018) 839 Runtime: 6 ~ 8 hours per optimizer (10 threads in parallel) 840 Codebase: https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py 841 Notes: Epoch-based random seed for training dataloader, fixed seed for 842 validation and test dataloaders.
843	844 Environment: OpenAI Gym CartPole-v1 (Huang et al., 2022; Towers 845 et al., 2024) 846 Runtime: 1.2 hours per optimizer (10 seeds in parallel) 847 Codebase: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py 848 Notes: Discrete control task; all optimizers evaluated in same seed 849 regime (20 ~ 29).
850	851 Environment: MuJoCo continuous control (v5) (Huang et al., 2022; 852 Towers et al., 2024) 853 Runtime: 40 hours for 3 million global steps 854 Codebase: https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py 855 Notes: Long-horizon RL; unbounded return.

856
 857 **D ADDITIONAL RESULTS ON IMAGE CLASSIFICATION AND RL CONTROL**

859
 860 The results for CIFAR-ResNet18⁵, MNIST-MLP, ZINC-GT, and DQN-cartpole are summarized in
 861 Table 8. A key observation is that no single optimizer consistently outperforms others on every task,
 862 whereas our modifications generally enhance the baseline optimizers across all tested settings.

863 ⁵Based on codebase in <https://github.com/kuangliu/pytorch-cifar>. Also, see Table 5 in
 the Appendix C.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

Notice that the goal of these experiments is *NOT* to introduce an optimizer that universally outperforms all others across all tasks, as shown by the test results that none of them could do so.

881

882

883

884

885

886

For each task, all optimizers were tested under identical experimental conditions. The only differences lie in the optimizer configurations, ensuring a fair and controlled comparison. We consider three benchmarks: image classification, and reinforcement learning. We train an image classifier on CIFAR-10 (Krizhevsky, 2009) and MNIST (Lecun et al., 1998) datasets with ResNet-18 (He et al., 2016) and MLP, respectively. Lastly, we evaluate the performance of Adam and Adam+ in CartPole with deep Q network (DQN) (Mnih et al., 2015).

887

888

889

890

D.1 IMAGE CLASSIFICATION

891

892

893

MLP for MNIST We trained a 2-layer MLP classifier for the MNIST digit classification task. The experimental settings are provided in Table 7 in the Appendix. Table 8 demonstrates a consistent improvement in the maximum validation accuracy resulting from our enhancements. Fig. D.1 demonstrates the difference in validation accuracy between the enhanced and the baseline versions of 5 optimizers over the course of training for $\beta_2 = 0.999$.

894

895

896

897

Generally, we see a positive trend indicating the consistent gains attained by the "+" versions. Among them, Adam+ demonstrates the most consistent improvements over standard Adam. By decoupling the signal from the noise — through replacing the second raw moment with the gradient variance — Adam+ enables more accurate estimation of the true gradient direction, thereby facilitating improved convergence. Similar in spirit, LAMB+, which scales updates using a trust ratio, also benefits from more accurate SNR estimation. This leads to sustained performance gains across training, highlighting the compatibility of variance-based normalization with layer-wise adaptive scaling. In contrast, the improvement of AMSGrad+ over AMSGrad is more moderate. This is likely due to the inherently conservative nature of both optimizers, as they retain the maximum of previous second moment estimates, thereby reducing the dynamic range available for further enhancement. Finally, AdamW+ and ADOPT+ exhibit more erratic behavior, with gains followed by periods of degradation. This instability may arise because both optimizers are already finely tuned for strong performance on standard image classification tasks, leaving less room for consistent improvements via second-moment modifications.

898

899

900

901

902

903

904

905

906

907

908

909

910

To quantitatively assess optimizer convergence, we employed two metrics: the normalized area under the curve (nAUC) and normalized full score duration (nFSD). The nAUC measures the agent’s cumulative performance over the entire training process and is normalized by the product of the maximum achievable return (500) and the total number of steps. In contrast, the nFSD metric measures the fraction of steps at which the agent achieves maximum return. The normalization coefficient is defined by the total number of steps performed by an agent. Table 8 shows that Adam+ ranks the highest in both measures. Furthermore, the improved optimizers outperform the originals across the board, underscoring the effectiveness of our modifications.

Table 7: Training hyperparameters for MNIST with 2-layer MLP

Hyperparameter	Value
Dataset	MNIST (Lecun et al., 1998)
Model	2-layer MLP (784-128-10)
Activation	ReLU
Batch size	100
Epochs	200
Learning rate	1×10^{-3} for LAMB, LAMB+; 1×10^{-4} for the rest
Weight decay	1×10^{-3}
Dropout	None
Loss function	Cross-entropy

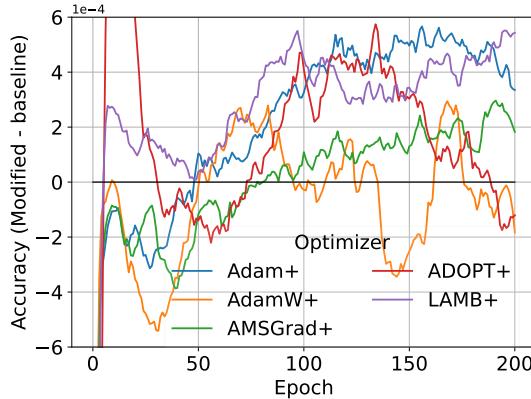


Table 8: Optimizer performances in image classification (test accuracy for CIFAR10-ResNet18 and MNIST-MLP), graph-level regression using a graph transformer in ZINC (loss value, Mean Absolute Error (MAE) in validation and testing), and reinforcement learning using a DQN for cartpole (normalized area under the curve and normalized full score duration).

Optimizer $\beta_1 = 0.9, \beta_2 = 0.999$	CIFAR10		MNIST		ZINC, GT		Cartpole	
	Accuracy	Accuracy	Loss	MAE val	MAE test	nAUC	nFSD	
AdamW+NL1	0.9422	0.9800	0.0572	0.1555	0.1215	0.8449	0.155	
AdamW+	0.9398	0.9807	0.0551	0.1603	0.1338	0.8367	0.200	
AdamW	0.9391	0.9804	0.0616	0.1690	0.1312	0.8225	0.205	
AMSGrad+	0.9388	0.9803	0.0638	0.1663	0.1349	0.8165	0.230	
AMSGrad	0.9406	0.9801	0.0636	0.1684	0.1336	0.8083	0.245	
LAMB+	0.9364	0.9828	0.0443	0.1230	0.0913	0.6836	0.005	
LAMB	0.9352	0.9825	0.0463	0.1275	0.0973	0.6336	0.000	
Adam+ (SNR lr)	-	-	-	-	-	0.8579	0.420	
Adam+	0.9327	0.9815	0.0547	0.1621	0.1332	0.8577	0.330	
Adam	0.9323	0.9811	0.0610	0.1681	0.1329	0.8149	0.120	
ADOPT	0.9388	0.9813	0.0548	0.1581	0.1280	0.8263	0.160	
ADOPT+	0.9374	0.9814	0.0560	0.1592	0.1339	0.8190	0.280	
AdaBound	0.9428	0.9821	0.0882	0.1707	0.1460	0.0322	0.000	
AdaBeliefW	0.9402	0.9804	0.0597	0.1639	0.1262	0.8334	0.145	
Lion ($\beta_2 = 0.99$)	0.9372	0.9773	0.0335	0.1090	0.0863	0.4564	0.000	
AdaBelief	0.9326	0.9804	0.0549	0.1583	0.1271	0.7984	0.120	

E EXTENDED RESULTS FOR THE TASKS IN TABLE 8

We further expand the results for optimizers under four deep learning tasks in Table 8 into Table 10, by including the test results of four additional optimizers, PIDAOSI, RMSprop, and AdaShift. In Table 10, the performance metrics of deep learning pipelines using various optimizers are listed, which cover different neural network architectures (CNN, MLP, Transformers), tasks (image classification, graph-level regression, control), and learning paradigms (supervised learning and reinforcement learning). The top three optimizers for each pipeline are highlighted in colors.

As noted in the main body of the paper, image classification is one of the most well-studied tasks, therefore, the differences in performance (test accuracy) under different optimizers are generally very small. Also notice that for ZINC-GT, and Cartpole-DQN, more optimizers and parameters (β_1, β_2) are evaluated in Appendices F and G. For example, the top three for ZINC-GT pipeline in Table 10 are not necessarily the best when different (β_1, β_2) or learning rate schedules are used.

The key messages from Table 10 are as follows:

- None of the optimizers dominate others across all the four tasks. PIDAOSI ranks high across all four tasks, but not in top three for graph level regression. Lion leads in ZINC-GT pipeline by a significant margin, but perform poorly in Cartpole-DQN.

972
973 Table 9: Optimizer performances on molecular graph regression with graph transformers.
974
975

(β_1, β_2)	Optimizer (lr)	MAE			Optimizer (lr)	MAE		
		Loss	val	test		Loss	val	test
0.5, 0.5	AdamW+NL2 (0.0001)	0.0429	0.1253	0.1008	Adam+NL2 (0.0001)	0.0466	0.1295	0.0981
0.9, 0.9	AdamW+NL2 (0.0001)	0.0433	0.1261	0.0945	Adam+NL2 (0.0001)	0.0463	0.1270	0.0970
0.9, 0.999	AdamW+NL2 (0.0001)	0.0435	0.1299	0.0966	Adam+NL2 (0.0001)	0.0480	0.1318	0.1017
0.5, 0.5	AdamW+NL1 (0.0001)	0.0459	0.1422	0.1111	Adam+NL1 (0.0001)	0.0472	0.1412	0.1091
0.9, 0.9	AdamW+NL1 (0.0001)	0.0533	0.1569	0.1240	Adam+NL1 (0.0001)	0.0514	0.1559	0.1268
0.9, 0.999	AdamW+NL1 (0.0001)	0.0572	0.1555	0.1215	Adam+NL1 (0.0001)	0.0581	0.1613	0.1252
0.5, 0.5	AdamW+ (0.0001)	0.0532	0.1520	0.1182	Adam+ (0.0001)	0.0530	0.1534	0.1196
0.9, 0.9	AdamW+ (0.0001)	0.0548	0.1594	0.1273	Adam+ (0.0001)	0.0599	0.1645	0.1302
0.9, 0.999	AdamW+ (0.0001)	0.0551	0.1603	0.1338	Adam+ (0.0001)	0.0547	0.1621	0.1332
0.5, 0.5	AdamW (0.0001)	0.0667	0.1662	0.1315	Adam (0.0001)	0.0673	0.1697	0.1299
0.9, 0.9	AdamW (0.0001)	0.0620	0.1706	0.1307	Adam (0.0001)	0.0620	0.1650	0.1297
0.9, 0.999	AdamW (0.0001)	0.0616	0.1690	0.1312	Adam (0.0001)	0.0610	0.1681	0.1329
0.5, 0.5	LAMB+ (0.0010)	0.0560	0.1479	0.1225	ADOPT+ (0.0001)	0.0547	0.1456	0.1174
0.9, 0.9	LAMB+ (0.0010)	0.0466	0.1266	0.0955	ADOPT+ (0.0001)	0.0608	0.1588	0.1292
0.9, 0.999	LAMB+ (0.0010)	0.0443	0.1230	0.0913	ADOPT+ (0.0001)	0.0548	0.1582	0.1281
0.5, 0.5	LAMB (0.0010)	0.0588	0.1485	0.1207	ADOPT (0.0001)	0.0583	0.1568	0.1297
0.9, 0.9	LAMB (0.0010)	0.0467	0.1268	0.0952	ADOPT (0.0001)	0.0536	0.1579	0.1281
0.9, 0.999	LAMB (0.0010)	0.0463	0.1276	0.0974	ADOPT (0.0001)	0.0560	0.1593	0.1339
0.5, 0.5	AMSGrad+ (0.0001)	0.0938	0.1989	0.1602	AMSGrad (0.0001)	0.1268	0.2157	0.1853
0.9, 0.9	AMSGrad+ (0.0001)	0.0850	0.1867	0.1587	AMSGrad (0.0001)	0.0879	0.1885	0.1542
0.9, 0.999	AMSGrad+ (0.0001)	0.0638	0.1663	0.1349	AMSGrad (0.0001)	0.1718	0.2434	0.2098

996

997 • Our modifications generally bring consistent improvements over their baselines. In particular,
998 Adam+, AdamW+, and LAMB+ consistently outperform their baselines Adam, AdamW, and
999 LAMB across the four tasks. For ADOPT and AMSGrad, such benefits are less consistent.
1000

1001 • Our modified optimizers generally ranked among the top three across all pipelines. In Cartpole-
1002 DQN, our Adam+, Adam+ (SNR lr) ranks the top within the top two in nAUC and the top two in
1003 nFSD, demonstrating the strength and utility of our enhancement in this domain.
1004

1005 We further evaluate optimizers in the ZINC-GT pipeline with different combinations of (β_1, β_2) and
1006 learning rate schedulers in Appendix F. For reinforcement learning, more results are presented in
1007 Appendices G and I.

1008 F HYPERPARAMETES AND TEST RESULTS FOR GRAPH TRANSFORMER ON 1009 ZINC DATASET

1010 In this section, we further analyze the optimizers' performance on the graph regression problem with
1011 graph transformers. The hyperparameter settings are given in the Table 11. For a fair evaluation of the
1012 optimizers, we replace the *ReduceLROnPlateau* learning rate scheduler with two settings: constant
1013 learning rate in Table 12, and cosine learning annealing in Table 13. As a result, our minimum MAE
1014 on the test set is higher than that in the original paper (Rampášek et al., 2022) (MAE: 7%), since
1015 we do not employ a validation set for learning rate decay. However, in our setting, validation MAE
1016 serves as another independent test set since it is not involved in training.
1017

1018 Table 12 serves as an extension of the Table 9 and includes additional optimizers, such as
1019 AdamW+NL3, AdaBelief, AdaShift, RMPprop, AdaBound, and PIDAOSI under constant learning
1020 rate. In this setting, Lion achieves the best performance by a large margin in all three MAE on the
1021 training set, validation set, and test set. Our enhanced LAMB+ achieves the second in validation
1022 and test MAE, which is not completely surprising since LAMB is designed for deep architecture
1023 like transformers. Lastly, our non-linear modification to AdamW, AdamW+NL3 achieves the third
1024 place in validation and test MAE. Moreover, within each comparison group, our enhanced versions
1025 constantly outperform their baseline counterparts, highlighting the benefits of our enhancement. It
can also be observed that for AdamW and Adam, smaller β s lead to worse performance, while our

1026

1027 Table 10: Optimizer performances in image classification (CIFAR, MNIST, **larger is better**), molecular
1028 graph regression using a graph transformer in ZINC dataset (**smaller is better**) with constant
1029 learning rates, and reinforcement learning using a DQN for cartpole (normalized area under the curve
1030 and normalized full score duration) (**larger is better**). Highlights are the top **first**, **second**, and **third**.

Optimizer $\beta_1 = 0.9, \beta_2 = 0.999$	CIFAR10		MNIST		ZINC, GT		Cartpole	
	Accuracy	Accuracy	Loss	MAE val	MAE test	nAUC	nFSD	
AdamW+NL1	0.9422	0.9800	0.0572	0.1555	0.1215	0.8449	0.155	
AdamW+	0.9398	0.9807	0.0551	0.1603	0.1338	0.8367	0.200	
AdamW	0.9391	0.9804	0.0616	0.1690	0.1312	0.8225	0.205	
AMSGrad+	0.9388	0.9803	0.0638	0.1663	0.1349	0.8165	0.230	
AMSGrad	0.9406	0.9801	0.0636	0.1684	0.1336	0.8083	0.245	
LAMB+	0.9364	0.9828	0.0443	0.1230	0.0913	0.6836	0.005	
LAMB	0.9352	0.9825	0.0463	0.1275	0.0973	0.6336	0.000	
Adam+ (SNR lr)	-	-	-	-	-	0.8579	0.420	
Adam+	0.9327	0.9815	0.0547	0.1621	0.1332	0.8577	0.330	
Adam	0.9323	0.9811	0.0610	0.1681	0.1329	0.8149	0.120	
ADOPT	0.9388	0.9813	0.0548	0.1581	0.1280	0.8263	0.160	
ADOPT+	0.9374	0.9814	0.0560	0.1592	0.1339	0.8190	0.280	
AdaBound	0.9428	0.9821	0.0882	0.1707	0.1460	0.0322	0.000	
AdaBeliefW	0.9402	0.9804	0.0597	0.1639	0.1262	0.8334	0.145	
Lion ($\beta_2 = 0.99$)	0.9372	0.9773	0.0335	0.1090	0.0863	0.4564	0.000	
AdaBelief	0.9326	0.9804	0.0549	0.1583	0.1271	0.7984	0.120	
PIDAOSI* (Chen et al., 2024)	0.9452	0.9836	0.0441	0.1439	0.1100	0.8344	0.354	
RMSprop ($\beta_1 = 0$) (Tieleman & Hinton, 2012)	0.9281	0.9843	0.0597	0.1698	0.1459	0.7899	0.146	
AdaShift (Zhou et al., 2019)	0.9346	0.9775	0.1687	0.2286	0.1958	0.3760	0.000	

1053 * Training followed the default PIDAOSI parameters for MNIST and CIFAR-10 as in Table 6 of (Chen et al.,
1054 2024); for Cartpole, the parameters of PIDAOSI are set to identical to that of the CIFAR-10 test.

1057 Table 11: Training hyperparameters for ZINC dataset with GPS graph transformer

Hyperparameter	Value
Dataset	ZINC (Gómez-Bombarelli et al., 2018)
Model	10-layer GPS graph transformer (Rampášek et al., 2022)
Channels	64
Positional Encoding (PE)	Random Walk, with length 20
PE dim	8
Attention type	Multihead
Dropout	0.5 on attention head
Batch size	128
Epochs	1000
Initial Learning rate (lr)	1×10^{-3} for LAMB and LAMB+; 1×10^{-4} for the rest
Learning rate scheduler	Constant (Table 12); Cosine annealing (Table 13)
Weight decay	1×10^{-5}
Loss function	Mean Absolute Error (MAE)
Random seed	51 (constant lr in Table 12), 41 (cosine lr in Table 13)

1073 enhanced version generally achieve better performance for smaller β s, implying a more accurate
1074 estimation of noise power with out enhancement.1076 Next, we evaluate the performance of GT under a cosine annealing learning rate schedule, which
1077 are reported in the Figs. 9 and the Table 13. In this setting, Lion no longer outperforms all other
1078 methods, in fact, its lowest training loss did not translate to best validation and test MAE. This shows
1079 that Lion is highly sensitive to hyperparameters, in our other tests with a different random seed,
Lion also spikes in training loss and does not recovery well afterwards. In contrast, Adam+NL3

1080
 1081 Table 12: Molecular graph regression with graph transformers under fixed learning rate (**smaller is**
 1082 **better**). Highlights are the **best** within each group, and the top **first**, **second**, and **third**.

(β_1, β_2)	Optimizer (lr)	MAE			Optimizer (lr)	MAE		
		Loss	val	test		Loss	val	test
0.5, 0.5		0.0459	0.1339	0.1017		0.0483	0.1249	0.1019
0.9, 0.9	AdamW+NL3	0.0418	0.1304	0.0944	Adam+NL3	0.0469	0.1276	0.1001
0.9, 0.999		0.0425	0.1249	0.0983		0.0431	0.1279	0.0999
0.5, 0.5		0.0429	0.1253	0.1008		0.0466	0.1295	0.0981
0.9, 0.9	AdamW+NL2	0.0433	0.1261	0.0945	Adam+NL2	0.0463	0.1270	0.0970
0.9, 0.999		0.0435	0.1299	0.0966		0.0480	0.1318	0.1017
0.5, 0.5		0.0459	0.1422	0.1111		0.0472	0.1412	0.1091
0.9, 0.9	AdamW+NL1	0.0533	0.1569	0.1240	Adam+NL1	0.0514	0.1559	0.1268
0.9, 0.999		0.0572	0.1555	0.1215		0.0581	0.1613	0.1252
0.5, 0.5		0.0532	0.1520	0.1182		0.0530	0.1534	0.1196
0.9, 0.9	AdamW+	0.0548	0.1594	0.1273	Adam+	0.0599	0.1645	0.1302
0.9, 0.999		0.0551	0.1603	0.1338		0.0547	0.1621	0.1332
0.5, 0.5		0.0667	0.1662	0.1315		0.0673	0.1697	0.1299
0.9, 0.9	AdamW	0.0620	0.1706	0.1307	Adam	0.0620	0.1650	0.1297
0.9, 0.999		0.0616	0.1690	0.1312		0.0610	0.1681	0.1329
0.5, 0.5		0.0560	0.1479	0.1225		0.0547	0.1456	0.1174
0.9, 0.9	LAMB+	0.0466	0.1266	0.0955	ADOPT+	0.0608	0.1588	0.1292
0.9, 0.999		0.0443	0.1230	0.0913		0.0548	0.1582	0.1281
0.5, 0.5		0.0588	0.1485	0.1207		0.0583	0.1568	0.1297
0.9, 0.9	LAMB	0.0467	0.1268	0.0952	ADOPT	0.0536	0.1579	0.1281
0.9, 0.999		0.0463	0.1276	0.0974		0.0560	0.1593	0.1339
0.5, 0.5		0.0938	0.1989	0.1602		0.1268	0.2157	0.1853
0.9, 0.9	AMSGrad+	0.0850	0.1867	0.1587	AMSGrad	0.0879	0.1885	0.1542
0.9, 0.999		0.0638	0.1663	0.1349		0.1718	0.2434	0.2098
0.9, 0.999	AdaBelief	0.0549	0.1583	0.1271	RMSprop ($\beta_1=0$)	0.0597	0.1698	0.1459
0.9, 0.999	AdaShift	0.1687	0.2286	0.1958	AdaBound	0.0882	0.1707	0.1460
Custom	Lion	0.0335	0.1090	0.0863	PIDAOSI	0.0441	0.1439	0.1100

1111 and AdamW+NL3 yield an important result: although initially slower, as can be seen in the Fig.
 1112 9, they eventually attain the lowest validation and test MAE. This improvement can be attributed
 1113 to their retention of gradient magnitude, which enables more confident update steps, particularly
 1114 under diminishing learning rates. The results in Table 13 also confirm that our enhanced optimizers
 1115 consistently outperform the corresponding baselines within most of the groups, except for LAMB.

1116 This experiment suggests the possibility of using smaller smoothing factors (β s) for our enhanced
 1117 Adam variants in training transformer architecture, which would be impossible without the replace-
 1118 ment of second raw moment in Adam variants with second central moment.

1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148

1149
 1150 Table 13: Molecular graph regression with graph transformers under cosine learning rate annealing
 1151 (**smaller is better**). Highlights are the **best** within each group, and the top **first**, **second**, and **third**.

(β_1, β_2)	Optimizer	MAE			Optimizer	MAE		
		Loss	val	test		Loss	val	test
0.5, 0.5		0.0268	0.1326	0.1051		0.0255	0.1313	0.1019
0.9, 0.9	AdamW+NL3	0.0164	0.1142	0.0859	Adam+NL3	0.0166	0.1180	0.0834
0.9, 0.999		0.0175	0.1168	0.0912		0.0167	0.1161	0.0922
0.5, 0.5	AdamW+NL2	0.0351	0.1440	0.1108		0.0342	0.1437	0.1069
0.9, 0.9		0.0184	0.1258	0.0899	Adam+NL2	0.0183	0.1218	0.0912
0.9, 0.999		0.0190	0.1219	0.1015		0.0186	0.1209	0.0970
0.5, 0.5		0.0429	0.1548	0.1170		0.0425	0.1527	0.1213
0.9, 0.9	AdamW+NL1	0.0396	0.1499	0.1192	Adam+NL1	0.0456	0.1586	0.1182
0.9, 0.999		0.0504	0.1568	0.1226		0.0503	0.1588	0.1295
0.5, 0.5		0.0365	0.1509	0.1172		0.0326	0.1444	0.1139
0.9, 0.9	AdamW+	0.0523	0.1596	0.1243	Adam+	0.0534	0.1666	0.1265
0.9, 0.999		0.0579	0.1657	0.1276		0.0596	0.1678	0.1301
0.9, 0.999	AdamW	0.0543	0.1711	0.1316	Adam	0.0546	0.1703	0.1318
0.9, 0.999	LAMB+	0.0179	0.1208	0.0914	LAMB	0.0179	0.1183	0.0891
0.5, 0.5		0.0384	0.1476	0.1131		0.0484	0.1610	0.1256
0.9, 0.9	ADOPT+	0.0534	0.1633	0.1297	ADOPT	0.0544	0.1654	0.1301
0.9, 0.999		0.0567	0.1651	0.1354		0.0582	0.1656	0.1329
0.9, 0.999	AMSGrad+	0.0646	0.1656	0.1346	AMSGrad	0.0648	0.1733	0.1399
0.9, 0.999	AdaBelief	0.0559	0.1676	0.1313	RMSprop ($\beta_1=0$)	0.0553	0.1564	0.1286
0.9, 0.999	AdaShift	0.1917	0.2435	0.2107	AdaBound	0.0402	0.1377	0.1157
Custom	Lion	0.0140	0.1217	0.0891	PIDAOSI	0.0590	0.1598	0.1236

1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

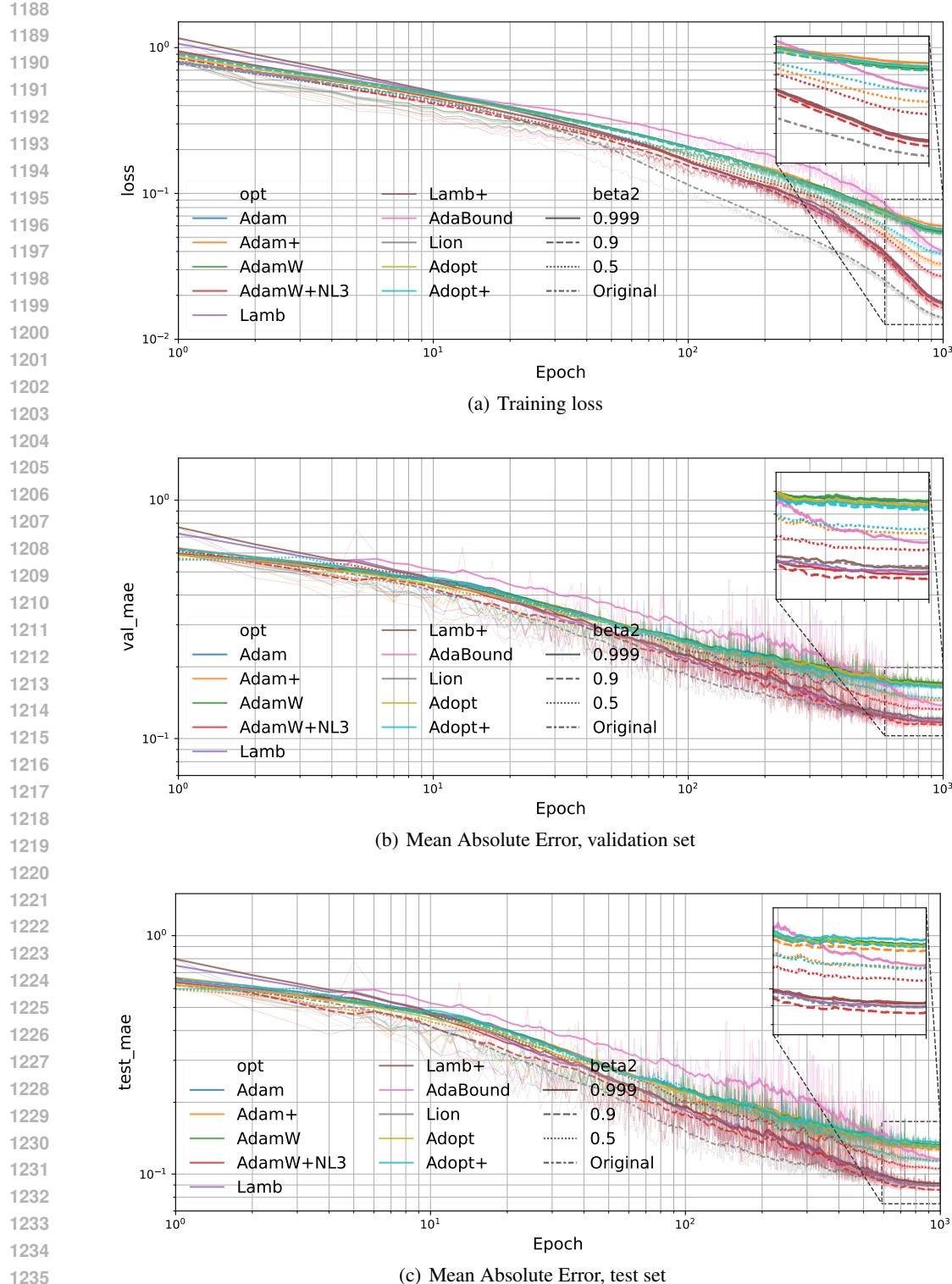


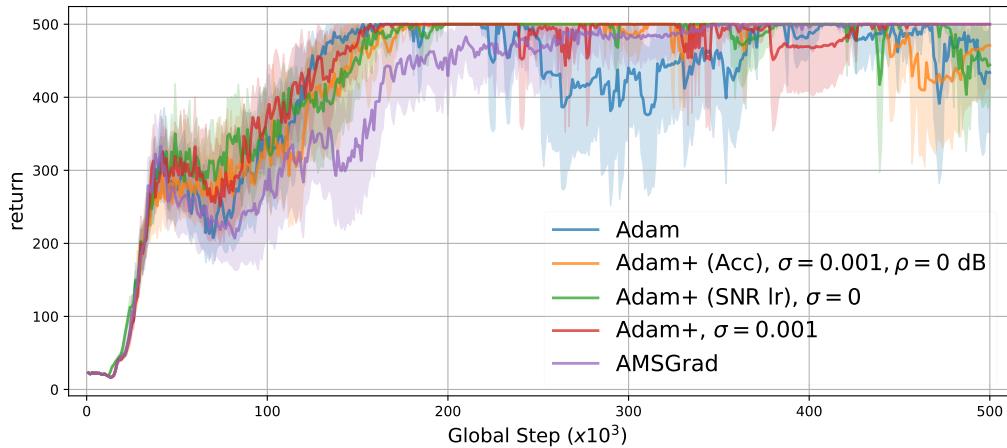
Figure 9: Molecular graph property regression with GPS graph transformer on ZINC dataset, with cosine learning rate annealing: (a) Training loss MAE, (b) validation MAE, (c) test MAE. Notice that the validation set has not been used for learning rate scheduling, hence is just another a test set.

1242 G HYPERPARAMETERS AND TEST RESULTS FOR CARTPOLE-DQN

1244 To illustrate the benefits of our enhanced Adam optimizers in reinforcement learning, we first evaluate
 1245 discrete control with DQN in the CartPole environment, with the hyperparameters listed in Table 14.
 1246 The training return over global steps of five selected optimizers are presented in Fig. 10 and the full
 1247 results of various optimizers and their parameter settings are listed in Table 10.

1250 Table 14: Training hyperparameters for CartPole-v1 with DQN

1251 Hyperparameter	1252 Value
1253 Environment	1254 CartPole-v1
1255 Algorithm	1256 Deep Q-Network (DQN) (Mnih et al., 2015)
1257 Code base	1258 <i>dqn.py</i> in CleanRL (Huang et al., 2022)
1259 Random seeds	1260 $\{20, 21, 22, 23, 24, 25, 26, 27, 28, 29\}$
1261 Replay buffer size	1262 5000
1263 Batch size	1264 128
1265 Gamma (discount factor)	1266 0.99
1267 Learning rate	2.5×10^{-4}
1268 Train start	After 10,000 steps
1269 Train freq	Every 10 steps
1270 Target network update freq	Every 500 steps
1271 Exploration schedule	ϵ -greedy (linear decay from 1.0 to 0.05)
1272 Exploration fraction	0.1 (50,000) steps
1273 End exploration rate	0.05
1274 Max global steps	500,000
1275 Weight decay	1×10^{-5}
1276 Loss function	MSE

1284 Figure 10: DQN with Cartpole-v1, average over 10 seeds (20-29), 95% confidence interval in
 1285 errorband

1286 To evaluate the performance of different optimizers for training DQN in CartPole, we run a total
 1287 of 10 training trajectories under 10 different random seeds (20-29), and present the average return
 1288 under the 10 seeds over the number of environment interactions (global steps). This representation is
 1289 fair since global steps represents the actual computing time for training compared to the number of
 1290 episodes, since an episode may contain different numbers of steps due to early termination.

1291 To accurately reflect the performance of DQN, we split the total 500,000 global steps into chunks of
 1292 1000 steps, and find the average return of each chunk for each seed. In Fig. 10, the average return and
 1293 its 95% confidence interval based on 10 different seeds are presented. In this way, we place equal
 1294 weights on different seeds in the averaging. This approach avoid over-representing failing cases that
 1295 would record small returns more frequently due to early termination of each episode.

1296
 1297 Table 15: Performance of Optimizers (**larger is better**) for Cartpole DQN at $\beta_1 = 0.9, \beta_2 = 0.999$,
 1298 from the average of 10 runs (random seeds 20-29) and reported using two metrics: normalized area
 1299 under the curve (nAUC) and the normalized full score duration (nFSD). Highlights are the top **first**,
 1300 **second**, and **third**.

Optimizer	Hyperparameters	nAUC	nFSD
Adam+ (SNR lr)	$\sigma = 0$	0.8580	0.420
Adam+	$\sigma = 0.001$	0.8577	0.330
AdamW+NL1	$\sigma = 0$	0.8450	0.155
AdamW+	$\sigma = 0.001$	0.8367	0.200
Adam+NL1	$\sigma = 0$	0.8355	0.120
PIDAOSI (Chen et al., 2024)	default	0.8344	0.354
AdaBeliefW		0.8335	0.145
ADOPT		0.8264	0.160
AdamW		0.8225	0.205
ADOPT+	$\sigma = 0$	0.8190	0.280
AMSGrad+	$\sigma = 0$	0.8166	0.230
Adam		0.8150	0.120
AMSGrad		0.8083	0.245
AdaBelief		0.7985	0.120
RMSProp (Tieleman & Hinton, 2012)		0.7899	0.146
Adam+NL2	$\sigma = 0$	0.7858	0.020
Adam+NL3	$\sigma = 0$	0.7585	0.010
LAMB+	$\sigma = 0$	0.6837	0.005
LAMB		0.6337	0.000
Lion ($\beta_2 = 0.99$)	default	0.4564	0.000
AdaShift (Zhou et al., 2019)		0.3760	0.000
AdaBound		0.0323	0.000
AdaGrad		0.0213	0.000

1323
 1324 The five evaluated optimizers in Fig. 10 reach their initial convergence (reaching full return) during the
 1325 global step window between 155k to 200k global steps, however, due to disruptions from exploration
 1326 (0.05 end exploration rate), most of them experience drops in return after the initial convergence. This
 1327 instability can be attributed to a relatively high final exploration ratio of 0.05, which, while promoting
 1328 generalization, introduces increased variance in performance. Visually, it is evident that our enhanced
 1329 variants achieve faster convergence than AMSGrad and exhibit greater stability compared to Adam.

1330 More specifically, the noise injection introduced in Adam+, $\sigma = 0.001$ allows for faster convergence
 1331 and higher returns compared to Adam. Adam+ (SNR lr), $\sigma = 0$, shows that adapting the learning
 1332 rate based on SNR results in smooth and consistent performance, showing one of the most stable
 1333 trajectories.

1334 To further quantify the visual inspection, we consider two performance metrics, a normalized
 1335 Area Under Curve (nAUC), and normalized full score duration (nFSD), which measure the portion
 1336 of chunks with full score return. These quantitative results are partially listed in Table 10 and
 1337 comprehensively in Table 15 which contains more optimizers and hyperparameter combinations
 1338 for our enhanced optimizers. Adam+ (SNR lr), $\sigma = 0$ achieves the highest nAUC and nFSD,
 1339 demonstrating the benefit of SNR-adaptive learning rate. The Adam+ with noise injection, $\sigma = 0.001$,
 1340 achieves a very competitive performance and is ranked second in nAUC.

1341 On the other hand, signed and logarithmic optimizers perform poorly, showing that reinforcement
 1342 learning depends on linear (or quadratic) optimizers for fast response. AdamW and LAMB also
 1343 perform poorly due to the small and shallow neural network architecture in this task.

H CONVERGENCE ANALYSIS ON A QUADRATIC FUNCTION

1347 We study the behavior of Adam+ and AdaBelief on the one-dimensional stochastic quadratic model

$$1349 \min_{\theta \in \mathbb{R}} J(\theta) = \frac{\lambda}{2} (\theta - \theta^*)^2, \quad \lambda > 0, \quad (13)$$

1350 with stochastic gradients
 1351

$$1352 \quad g_t = \lambda(\theta_t - \theta^*) + \xi_t, \quad \xi_t \sim \mathcal{N}(0, \sigma^2) \text{ i.i.d.} \quad (14)$$

1353 We analyze the asymptotic behavior of the optimizer near the optimum θ^* . In this regime, the gradient
 1354 is dominated by the stochastic noise, i.e., $g_t \approx \xi_t$ where $\xi_t \sim \mathcal{N}(0, \sigma^2)$ (Balles & Hennig, 2018).
 1355 Since the input to the second-moment estimator is effectively i.i.d., the estimator v_t converges to a
 1356 stationary distribution.

1357 Furthermore, to isolate the effect of v_t (the distinct feature of Adam+ and AdaBelief), we abstract
 1358 away the effect of the first-order moment. We approximate $m_t \approx g_t$, treating the numerator as an
 1359 unfiltered gradient. Consequently, both optimizers reduce to the simplified update rule
 1360

$$1361 \quad \theta_{t+1} = \theta_t - \alpha \frac{g_t}{\sqrt{v_t}}. \quad (15)$$

1363 We omit the bias-correction terms as is often done in the related work Zhuang et al. (2020).
 1364

1365 Define the error $x_t = \theta_t - \theta^*$. With that (15) becomes

$$1366 \quad x_{t+1} = \left(1 - \frac{\lambda\alpha}{\sqrt{v_t}}\right) x_t - \alpha \frac{\xi_t}{\sqrt{v_t}}. \quad (16)$$

1369 To derive the convergence rate, we employ a *mean-field approximation*, replacing the random variable
 1370 v_t with its steady-state expectation $\mathbb{E}[v_t]$. This approximation assumes that the fluctuations of v_t
 1371 around its mean are negligible compared to the dynamics of the parameter θ_t , a standard simplification
 1372 in the analysis of adaptive moment estimation (Balles & Hennig, 2018; Défossez et al., 2022).

1373 Under this assumption, v_t is treated as a constant scalar $\mathbb{E}[v_t]$, simplifying (16) to the stochastic
 1374 linear recursion
 1375

$$1376 \quad x_{t+1} = \rho x_t - \eta \xi_t, \quad \rho := 1 - \frac{\lambda\alpha}{\sqrt{\mathbb{E}[v_t]}}, \quad \eta := \frac{\alpha}{\sqrt{\mathbb{E}[v_t]}}. \quad (17)$$

1379 Since ξ_t has zero mean and is independent of x_t , the mean error satisfies

$$1380 \quad \mathbb{E}[x_{t+1}] = \rho \mathbb{E}[x_t], \quad (18)$$

1382 so the mean converges whenever $|\rho| < 1$.

1383 An optimizer will converge to the error ball of a radius given by the variance of the error x_t . This
 1384 yields

$$1386 \quad \text{Var}[x_{t+1}] = \rho^2 \text{Var}[x_t] + \eta^2 \text{Var}[\xi_t] = \rho^2 \text{Var}[x_t] + \frac{\alpha^2}{\mathbb{E}[v_t]} \sigma^2, \quad (19)$$

1387 due to the mean-field approximation of v_t , and the i.i.d. assumption of the gradient noise.

1389 For $|\rho| < 1$, the steady-state variance is given by

$$1391 \quad \text{Var}[x_\infty] := \lim_{t \rightarrow \infty} \text{Var}[x_t] = \frac{\alpha^2 \sigma^2}{\mathbb{E}[v_t] (1 - \rho^2)}. \quad (20)$$

1393 All optimizer-dependent behavior now arises from the stationary scale $\mathbb{E}[v_t]$.

1394 The second central moment v_t is constructed from the centered quantity $g_t - w_t$, where w_t is an
 1395 exponential moving average with parameter β , such that $\beta = \beta_1$ for AdaBelief and $\beta = \beta_2$ for
 1396 Adam+
 1397

$$1398 \quad w_t = \beta w_{t-1} + (1 - \beta) g_t \quad (21)$$

$$1399 \quad v_t = \beta v_{t-1} + (1 - \beta)(w_t - g_t)^2. \quad (22)$$

1400 Then the mean-field approximation equals
 1401

$$1402 \quad \mathbb{E}[v_t] = \mathbb{E}[\beta v_{t-1} + (1 - \beta)(g_t - w_t)^2] \quad (23)$$

$$1403 \quad = \beta \mathbb{E}[v_{t-1}] + \mathbb{E}[(g_t - w_t)^2] - \beta \mathbb{E}[(g_t - w_t)^2] \quad (24)$$

1404 At the steady-state, $\mathbb{E}[v_{t-1}] = \mathbb{E}[v_t]$. Then based on Lemma H.1 we obtain
 1405

$$\mathbb{E}[v_t] = \mathbb{E}[(g_t - w_t)^2] = \frac{2\beta^2}{1+\beta} \sigma^2. \quad (25)$$

1406 Substituting (25) into (20) gives
 1407

$$\text{Var}[x_\infty] = \frac{\alpha^2}{1-\rho^2} \frac{1+\beta}{2\beta^2} \quad (26)$$

$$\rho = 1 - \frac{\lambda\alpha\sqrt{1+\beta}}{\sqrt{2}\beta\sigma}. \quad (27)$$

1415 By plugging (27) into (26) and assuming sufficiently small α such that we can ignore second-order
 1416 terms arising in ρ^2 we get

$$\text{Var}[x_\infty] = \frac{\alpha^2}{1-\rho^2} \frac{1+\beta}{2\beta^2} \approx \frac{\alpha\sigma\sqrt{1+\beta}}{2\sqrt{2}\lambda\beta}. \quad (28)$$

1420 This expression quantifies the trade-off between AdaBelief ($\beta = \beta_1$) and Adam+ ($\beta = \beta_2$): for the
 1421 default choice $\beta_1 < \beta_2$,

- 1422 • the contraction factor $|\rho|$ is smaller for AdaBelief, giving *faster convergence*
- 1423 • the variance of the steady-state error is a monotonically decreasing function in β . It is
 1424 smaller for Adam+, giving *smaller steady-state error*.

1426 This captures the fundamental trade-off: AdaBelief converges faster but to a noisier solution, while
 1427 Adam+ converges more slowly, but to a more accurate one due to a more faithful estimation of the
 1428 gradient signal-to-noise ratio.

1429 **Lemma H.1** (Steady-state variance estimate). *Under the model (14) and the EMA definition (21),
 1430 and assuming stationarity of w_t , we have*

$$\mathbb{E}[v_t] = \mathbb{E}[(g_t - w_t)^2] = \frac{2\beta^2}{1+\beta} \sigma^2. \quad (29)$$

1434 *Proof.* From (14) we can write

$$g_t = \bar{g} + \xi_t.$$

1437 Taking expectations in (21) and using linearity,

$$\mathbb{E}[w_t] = \beta\mathbb{E}[w_{t-1}] + (1-\beta)\mathbb{E}[g_t].$$

1440 In steady state, $\mathbb{E}[w_t] = \mathbb{E}[w_{t-1}] =: \bar{w}$, and $\mathbb{E}[g_t] = \bar{g}$, so

$$\bar{w} = \beta\bar{w} + (1-\beta)\bar{g} \Rightarrow \bar{w} = \bar{g}.$$

1442 Thus, we can decompose

$$w_t = \bar{g} + z_t,$$

1444 where z_t is a zero-mean random process capturing the EMA of the noise. In particular,

$$g_t - w_t = (\bar{g} + \xi_t) - (\bar{g} + z_t) = \xi_t - z_t. \quad (30)$$

1448 Then using the decomposition in (21),

$$w_t = \beta w_{t-1} + (1-\beta)\bar{g} + (1-\beta)\xi_t,$$

1450 and hence

$$z_t = w_t - \bar{g} = \beta(w_{t-1} - \bar{g}) + (1-\beta)\xi_t = \beta z_{t-1} + (1-\beta)\xi_t.$$

1452 Since ξ_t is independent of z_{t-1} and has zero mean, the variance of z_t satisfies

$$\text{Var}[z_t] = \beta^2 \text{Var}[z_{t-1}] + (1-\beta)^2 \text{Var}[\xi_t] = \beta^2 \text{Var}[z_{t-1}] + (1-\beta)^2 \sigma^2.$$

1454 At stationarity, $\text{Var}[z_t] = \text{Var}[z_{t-1}]$, giving

$$\text{Var}[z_t] = \frac{1-\beta}{1+\beta} \sigma^2.$$

1458 Since $w_t = \bar{g} + z_t$, we also have $\text{Var}[w_t] = \text{Var}[z_t]$.
 1459

1460 From (21) we have

$$1461 \quad g_t - w_t = g_t - (\beta w_{t-1} + (1 - \beta)g_t) = \beta(g_t - w_{t-1}),$$

1462 and using (30) yields

$$1463 \quad \mathbb{E}[(g_t - w_t)^2] = \beta^2 \mathbb{E}[(g_t - w_{t-1})^2] = \beta^2 \mathbb{E}[(\xi_t - z_{t-1})^2] = \beta^2(\sigma^2 + \mathbb{E}[z_{t-1}^2]),$$

1464 using independence of ξ_t and z_{t-1} . At stationarity $\mathbb{E}[z_{t-1}^2] = \mathbb{E}[z_t^2] = \text{Var}[z_t]$, so

$$1466 \quad \mathbb{E}[(g_t - w_t)^2] = \beta^2(\sigma^2 + \text{Var}[z_t]) = \frac{2\beta^2}{1 + \beta} \sigma^2,$$

1468 which is the desired expression. \square

1470 **Comparison with standard Adam.** Finally, we compare the convergence behavior with standard
 1471 Adam. Unlike Adam+ and AdaBelief, standard Adam uses an uncentered second moment estimator
 1472 v_t . Under the mean-field approximation in the quadratic regime, the expected second moment for
 1473 Adam is

$$1474 \quad \mathbb{E}[v_t^{\text{Adam}}] \approx \mathbb{E}[g_t^2] = \text{Var}[g_t] + (\mathbb{E}[g_t])^2 = \sigma^2 + \lambda^2 \mathbb{E}[x_t]^2. \quad (31)$$

1475 Comparing this to the Adam+ estimator ($\mathbb{E}[v_t] \approx \sigma^2$), we observe that

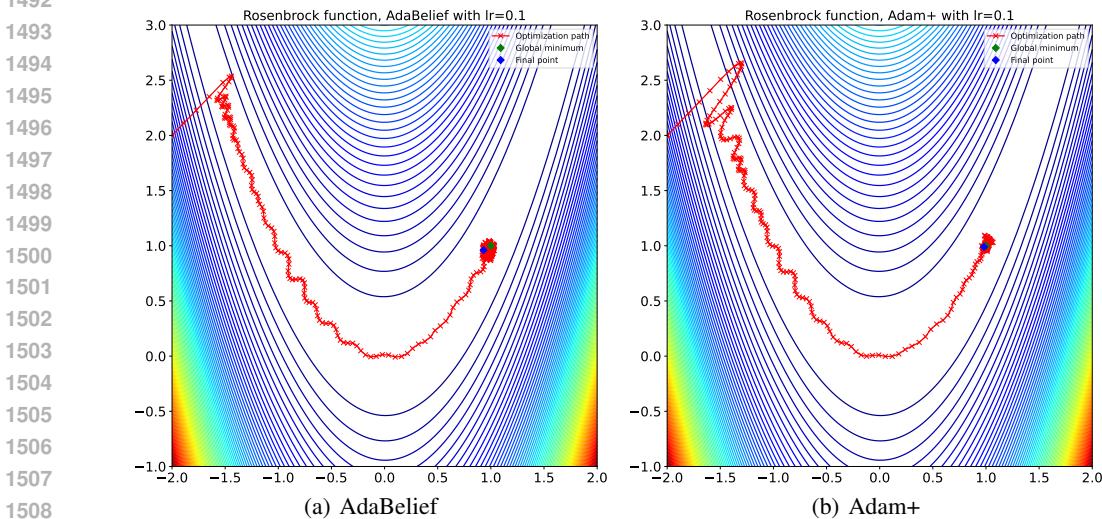
$$1477 \quad \mathbb{E}[v_t^{\text{Adam}}] > \mathbb{E}[v_t] \quad \text{whenever } \mathbb{E}[x_t] \neq 0. \quad (32)$$

1478 The spectral radius ρ (27) that governs the convergence is given by

$$1479 \quad \rho = 1 - \lambda\alpha \frac{1}{\sqrt{\mathbb{E}[v_t]}}. \quad (33)$$

1482 Since the denominator for Adam is larger, the effective step size is smaller, resulting in a spectral
 1483 radius closer to 1 (slower convergence). This result indicates that standard Adam dampens the useful
 1484 gradient signal that unnecessarily slowing down the optimization process. Based on SNR-centering,
 1485 Adam+ maintains a lower spectral radius that is a function only of the noise level.

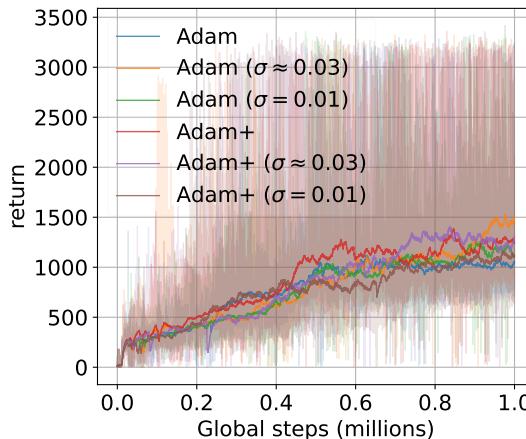
1486 To further support our derivations, we evaluate the convergence behavior of Adam+ and AdaBelief
 1487 on the Rosenbrock function. The result is shown in the Fig. 11. While AdaBelief exhibits faster
 1488 initial descent, Adam+ demonstrates lower final loss. Specifically, Adam+ converges closer to the
 1489 global optimum and maintains a smaller oscillation radius (steady-state variance) around the optimal
 1490 point compared to AdaBelief. This confirms our theoretical result that the additional state w_t enables
 1491 convergence to a smaller steady-state error ball.



1510 Figure 11: Convergence on the Rosenbrock function. Although AdaBelief achieves faster early-stage conver-
 1511 gence, Adam+ ultimately reaches a lower loss value and settles into a tighter error bound around the optimum.
 This aligns with our theoretical analysis.

1512 **I HYPERPARAMETERS SAC IN MUJOCO ENVIRONMENTS**
15131514 The hyperparameters and the results for SAC in the MuJoCo environment are given in Table 16.
15151516 **Table 16: Training hyperparameters for SAC in MuJoCo environments**
1517

1518 Hyperparameter	1519 Value
1520 Environment	Hopper-v5, HalfCheetah-v5, Humanoid-v5
1521 Algorithm	Soft Actor-Critic (SAC) (Haarnoja et al., 2018) (Spinning Up)
1522 Code base	<i>sac_continuous_action.py</i> in CleanRL (Huang et al., 2022)
1523 Random seed	1
1524 num_envs	1
1525 Replay buffer size	10^6
1526 Batch size	256
1527 Gamma	0.99
1528 Tau	0.005
1529 Alpha	0.2
1530 Autotune	True
1531 Learning rate	3×10^{-4} (for both policy and target networks)
1532 Train start	After 10,000 steps
1533 Policy network train freq	Every 1 step
1534 Target network update freq	Every 1 step
1535 Max global steps	$\{1 \times 10^6, 3 \times 10^6, 3 \times 10^6\}$
1536 Weight decay	0 (none)

1537 **J ABLATION: DISENTANGLING THE NOISE INJECTION EFFECT**
15381539 To understand whether the noise injection effect is complementary or orthogonal to SNR-centering,
1540 we conducted an ablation in which we added the noise of $\sigma \approx 0.03$ (-50dB) and $\sigma = 0.01$ (-60dB)
1541 to both Adam and Adam+ when training an RL agent on the Hopper-v5 environment. The hyperpa-
1542 rameters are given in the Table 16. The results averaged over 3 seeds are shown in Fig. 12. Three
1543 observations are in order: first, for the noiseless case, there is a clear effect of SNR-centering resulting
1544 in a higher return of Adam+ compared to vanilla Adam. Second, the noise injection of $\sigma \approx 0.03$
1545 improves the return of Adam+ toward the end of the training. For the same σ , Adam also exhibits a
1546 performance boost at the final training steps. For a lower noise level of $\sigma = 0.01$, both optimizers
1547 experience a performance drop. This indicates that for the considered setting, the noise injection
1548 effect is orthogonal to SNR-centering, i.e., Adam can also benefit from it, and it should be treated as
1549 a hyperparameter that encourages exploration, achieving an effect similar to that of ϵ -greedy.
15501563 **Figure 12: Noise injection effect on Adam and Adam+ optimizers for different levels of noise σ in
1564 Hopper-v5 environment.**
1565

1566
1567

J.1 USE OF LARGE LANGUAGE MODELS (LLMs)

1568
1569
1570

We used LLMs as a writing assistant during the preparation of this manuscript. Specifically, it was employed to (i) improve the clarity and fluency of text passages, (ii) suggest alternative phrasings, and (iii) help structure certain sections.

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619