
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BOOSTING ADAM-LIKE OPTIMIZERS WITH SIGNAL-TO-
NOISE RATIO GUIDED UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

The Adam optimizer remains the default choice in deep learning, offering reliable
performance across diverse architectures and tasks. In this work, we reinter-
pret Adam from a signal-processing perspective—viewing its gradient update as
a momentum estimate normalized by noise amplitude—and propose a simple
modification: replacing the second raw moment with the second central moment
(variance). We show that centering provides a more accurate estimate of noise am-
plitude, allowing the optimizer to normalize the impact of gradient noise uniformly
across the loss landscape and to dynamically scale momentum elements accord-
ing to their signal-to-noise ratio. Empirically, this modification yields consistent
performance gains over Adam and its variants across multiple learning paradigms
and neural network architectures, including reinforcement learning and sequence
modeling. Notably, on reinforcement learning benchmarks such as MuJoCo, our
centered variant called “Adam+” achieves faster convergence and improved stabil-
ity compared to Adam, which remains the gold standard in settings characterized
by non-stationarity and the absence of reliable learning rate schedules.

1 INTRODUCTION

Adam (Kingma & Ba, 2015) is the de facto default optimization algorithm for modern deep learning.
Its success is largely attributed to the combination of momentum (Rumelhart et al., 1986) with
adaptive learning rates (Duchi et al., 2011; Tieleman & Hinton, 2012), yielding a robust and memory-
efficient method with fast convergence in many deep learning applications. For a parameter θt,
learning rate αt, bias-corrected first- and second order gradient moments mt and vt and a numerical
stability constant ϵ, its update rule at iteration t is given by

θt+1 ← θt − αtmt/(
√
vt + ϵ). (1)

Many variants of the Adam optimizer have been developed primarily within supervised learning
contexts, particularly image classification, to enhance the generalization performance of adaptive
gradient methods (Wilson et al., 2017). To mitigate the adverse effects of extreme and unstable
per-element learning rate scaling in Adam, AMSGrad (Reddi et al., 2018) and AdaBound (Luo
et al., 2019) limit the scaling factor of the learning rate (

√
vt + ϵ)−1 in (1). To mitigate the adverse

correlation between mt and vt in Adam, AdaShift (Zhou et al., 2019) uses delayed gradients for
estimating vt, while ADOPT (Taniguchi et al., 2024) reduces this correlation by reordering the
updates of mt and vt. Other notable enhancements include decoupled weight decay introduced in
AdamW (Loshchilov & Hutter, 2019), and layer-wise learning rate scaling in LAMB (You et al.,
2020) to address the exploding/vanishing gradient problem in very deep architectures.

We revisit Adam from the standpoint of gradient signal-to-noise ratio (SNR). In mini-batch SGD
(Robbins & Monro, 1951), gradient estimates contain both signal and noise components, yet most
adaptive optimizers—including Adam—use the raw second moment vt for scaling, conflating variance
with mean magnitude. We reinterpret Adam’s update (1) as normalizing momentummt by an estimate
of noise amplitude. From this perspective, Adam can be viewed as approximately scaling updates by
SNR, though with estimation error due to its reliance on the raw second moment.

This reinterpretation naturally aligns with earlier work on RMSProp (Tieleman & Hinton, 2012).
RMSProp stabilized Adagrad (Duchi et al., 2011) by using an exponential moving average of squared

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Algorithm 1 General optimizer framework
Require: {αt}Tt=1, {ϕt, ψt, ζt}Tt=1

1: Initialize θ0
2: for t = 1 to T do
3: gt = ∇̂Jt(θt)
4: mt = ϕt(g1, . . . , gt)
5: vt = ψt(g1, . . . , gt)
6: γt = ζt(mt, vt)
7: θt = θt−1 − αtγt
8: end for

Table 1: Functions for Adam in Algo. 1
ϕt mt = β1mt−1 + (1− β1)gt
ψt vt = β2vt−1 + (1− β2)g2t
ζt γt = mt/(

√
vt + ϵ)

Figure 1: Normalizing noisy gradient sample by
noise standard deviation in a 2D plane, β1 = 0.
In Adam+, each update is normalized by the noise
standard deviation, ensuring that updates get smaller
as the relative noise level increases in later stages.

gradients. A centered variant (Graves, 2013) further subtracted the squared mean gradient. Our
work can be seen as bringing this centering principle into Adam’s framework. By replacing the raw
second moment with the central second moment (variance), we obtain updates directly proportional
to gradient SNR. This modification, which we denote Adam+, inherits the efficiency of Adam while
improving robustness across diverse and non-stationary settings such as reinforcement learning.

Contributions:
• We reinterpret Adam’s update rule through the lens of gradient signal-to-noise ratio (SNR), offering

a new insight into its behavior.

• Motivated by this SNR-perspective, we introduce a principled enhancement to Adam and Adam-
type optimizers by replacing the second raw moment with the central second moment (the variance).
The centering of the second raw moment brings consistent improvement across a range of sequential
modeling tasks.

• We demonstrate the effectiveness of our approach through extensive empirical evaluations across a
range of tasks exhibiting diverse gradient dynamics and optimization algorithms extending beyond
Adam-type methods.

2 ADAM OPTIMIZER FROM AN INFORMATION THEORETICAL PERSPECTIVE

2.1 GENERIC FRAMEWORK FOR OPTIMIZATION ALGORITHMS

Many adaptive optimizers have a unified structure outlined in Algorithm 1. This generic framework
(Reddi et al., 2018; Luo et al., 2019) provides a useful lens through which similarities and differences
between various algorithms can be analyzed.

In this formulation, gt is a stochastic gradient sample of the loss function Jt evaluated at time step
t. The variables θt and αt represent learnable parameters and learning rates, respectively. The
functions ϕt and ψt denote the update rules for the first- and second-order gradient moment estimates,
respectively. Often, they incorporate exponential moving averages and bias-correction terms. The
function ζt performs normalization and scaling of the gradient moments, and may optionally include
additional mechanisms such as decoupled weight decay (Loshchilov & Hutter, 2019). To illustrate
how specific optimizers fit into this general framework, we instantiate the ϕt, ψt, and ζt components
for the Adam algorithm (Kingma & Ba, 2015) in Table 1. This shows how Adam performs moment
estimation and adaptive per-parameter learning rate scaling.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 SNR-BASED REINTERPRETATION OF ADAM-LIKE UPDATES

In the popular mini-batch stochastic gradient descent, the gradient sample can be modeled as

gt = ḡt + nt, (2)

where ḡt is the true gradient at time t and nt is a zero-mean random noise. In a stationary setting, i.e.,
the distributions of gt and nt are time-invariant, the mean and variance of sample gt are respectively
the unbiased estimates of the true gradient and noise power,

ḡt = E[gt], E[n2t] = Var[gt] = E[(gt − Et[gt])
2] . (3)

The expected mean and variance can be sampled and estimated, e.g., via a simple moving average
(SMA) window. The setting of gradient descent is typically semi-stationary due to slowly changing
parameters of neural networks θt. In this case, one can replace simple moving average of a window
with exponential moving average (EMA), to weigh on recent samples and save memory space for
storing gradient samples via the following recursive form, where 0 < β < 1:

ḡt ≈ wt = βwt−1 + (1− β)gt, E[n2t] ≈ vt = βvt−1 + (1− β)(gt − wt)
2 . (4)

By normalizing the gradient sample gt or its momentum mt with the standard deviation of noise
nt in a given local environment, we ensure each step of parameter update γt contains the same
amount of noise across the entire loss landscape. In the minimal example illustrated in Fig. 1, with
two points at t1 early stage and t2 late stage of stochastic gradient descent, the raw noisy gradient
samples are indicated by dotted arrows, and the noise standard deviation is illustrated by light blue
oval shapes. The element-wise normalization changes both the amplitude and direction of both γt1
and γt2, leading to larger steps in regions with clear gradient, such as early stage of training, and
smaller steps in regions that are more noisy, such as flat basin near the optimal point. This behavior is
desirable and can accelerate convergence by adjusting the step size based on element-wise gradient
SNR, estimated as w2

t /vt.

In Adam, the second raw moment vt computed in Table 1 can be interpreted as a biased estimation of
the variance in (4), i.e., E

[
g2t
]
= Var[gt] + E [gt]

2. However, as pointed out in (Zhou et al., 2019),
the correlation between E

[
g2t
]

and E [gt] can bring adverse effects, in particular, in regions with
strong gradient signal, e.g., when E [gt] is large, the overestimated noise power can overly attenuate
high-quality gt or mt with large SNR, causing unnecessary slowdown. In dynamic and non-stationary
environments like RL, where the errors compound, this could significantly slow down the training
process. Centering the second moment, i.e., normalizing updates with the variance of the gradients
Var[gt] = E[g2t]− E[gt]2, helps to reduce the slowdown that occurs in regions with a strong gradient
signal. Indeed, centering has shown improvements in RMSProp (Graves, 2013). However, Adam and
its descendants inherit the uncentered formulation of RMSProp, and thus the same limitation. Here
we present a centered Adam (which we term Adam+) that provides a natural and largely unexplored
complement to the Adam family.

When the second raw or central moment becomes very small, the scaling factor ζt may produce overly
large effective learning rates, causing instability (Luo et al., 2019). Raw moments tend to overestimate
variance, yielding smaller and more stable steps, particularly late in training. In contrast, central
moments provide a more accurate SNR estimate but are more sensitive in low-variance regimes.
This instability can be alleviated by maintaining a noise floor ϵ as is done in Adam and Adam-type
optimizers.

3 ADAM+: ADAM WITH CENTERED SECOND ORDER MOMENT

Based on the generic framework in Algorithm 1 and signal processing interpretation of Adam in
section 2.2, we propose to modify the function ψt.1

We propose two key modifications to the core function of Adam-like optimizers ψt in Table 1. First,
we propose replacing the second raw moment with the second central moment in ψt,

wt = β2wt−1 + (1− β2)gt, vt = β2vt−1 + (1− β2)(gt − wt)
2 . (5)

1Additionally, two proposed non-linear scaling functions for ζt, tailored for supervised learning, are described
in the Appendix due to space constraints.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 2 Adam+ (modifications with respect to Adam in blue)
Require: α0, β1, β2, ϵ, σ

1: m0 ← 0, v0 ← 0, w0 ← 0, t← 0
2: for t = 1 to T do
3: ξt ∼ N (0, σ2) /* Optional noise injection */
4: gt ← ∇θJ(θt−1)+ξt
5: mt ← β1mt−1 + (1− β1)gt
6: wt ← β2wt−1 + (1− β2)gt
7: vt ← β2vt−1 + (1− β2)(gt − wt)

2

8: m̂t ← mt/(1− βt
1)

9: v̂t ← vt/(1− βt
2)

10: γt ← m̂t/(
√
v̂t + ϵ)

11: θt ← θt−1 − αγt
12: end for
13: return θt

Notice that in (5), both wt and vt are based on the same β2, making our approach distinct from a
structurally similar update rule in AdaBelief (Zhuang et al., 2020). In AdaBelief, vt = β2vt−1+(1−
β2)(gt −mt)

2, and the 1/
√
vt is interpreted as a "belief", where mt is based on the ϕt in Table 1,

which uses β1 as the smoothing factor of EMA. While this formulation shares the use of a central
moment, its interpretation differs fundamentally from the SNR perspective presented in this work.
Our approach introduces a slow momentum wt for computing the second central moment, faithfully
following the EMA approximations of signal and noise power in (4).

Second, we add noise injection ξt to the gradient sample as a regularization to reduce the correlation
between the fast momentum mt and the estimation of the noise standard deviation

√
vt.

We denote Adam with these two modifications as Adam+, of which the pseudo code is detailed in
Algorithm 2, with our modifications highlighted in blue.

Notice that these key modifications introduced by (5), (including those in the Appendix: (6) and (7))
are also applicable to other Adam-like algorithms, such as AMSGrad, ADOPT, AdamW, and LAMB.

4 NUMERICAL RESULTS

To demonstrate that replacing the second raw moment with the variance consistently yields perfor-
mance gains over the baseline optimizers, we evaluate modified and baseline optimizers on ML tasks
that span diverse model architectures, problems, and gradient regimes. 2 3

4.1 REINFORCEMENT LEARNING

We benchmark the performance of Adam+, with and without noise injection (NI), against the standard
Adam optimizer across three MuJoCo environments. Notice that we have used the same set of tuned
hyperparameters (Haarnoja et al., 2018; Raffin, 2020) for all simulations. The continuous control
tasks feature unbounded return, making them particularly well-suited for evaluating the advantages
of improved gradient signal-to-noise handling.

The Fig. 2(a) demonstrates more stable, faster convergence, and higher final performance of Adam+
with and without noise injection over Adam. This indicates that in moderately difficult environments,
such as HalfCheetah, the variance normalization helps stabilize early training, and noise injection

2Source code and data: https://github.com/researcherAdamPlus/AdamPlus
3All experiments were conducted on a workstation equipped with an AMD Ryzen Threadripper 2970WX

24-core processor (48 threads), 96 GB of RAM, and two NVIDIA GeForce RTX 2080 Ti GPUs. To generate
a single representative figure for each task, the computational time was approximately 10 hours for image
classification (using either MLP or CNN) and CartPole, 20 hours for the ZINC GT experiment, and 36 hours for
training a single agent in the MuJoCo environment.

4

https://github.com/researcherAdamPlus/AdamPlus

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Global Step (millions) 1e6

0

2000

4000

6000

8000

10000

12000

re
tu

rn

Adam
Adam+ (no NI)
Adam+

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Global Step (millions) 1e6

0

1000

2000

3000

4000

5000

re
tu

rn

Adam
Adam+ (no NI)
Adam+

(b)

0 2 4 6 8 10
Global steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
tu

rn

1e4

Adam
Adam+ (No NI)

(c)

0 2 4 6 8 10
Global steps (millions)

0

1

2

3

4

re
tu

rn

1e3

Adam
Adam+ (No NI)

(d)

Figure 2: Performance of Adam and Adam+ on MuJoCo and Atari environments. (a) HalfCheetah-v5,
(b) Humanoid-v5, (c) Qbert, (d) Seaquest.

may be neutral or slightly detrimental, as excessive randomness can interfere with stable learning
once a good policy is found.

Fig. 2(b) highlights the importance of noise injection. For the difficult problem of Humanoid, Adam+
with NI exhibits much faster learning and higher final returns. Adam+ (no NI) performs better than
Adam, but lags behind Adam+. This behavior indicates that gradient noise injection provides strong
exploration incentives, helping avoid local minima and supporting long-term credit assignment. The
combination of variance-aware updates and noise leads to better robustness and learning efficiency.

In addition, we evaluate the performance of our modification on Seaquest and Qbert Atari games
solved with DQN. Similar to the continuous control, these games were chosen due to their practically
unlimited rewards, which guide the optimizer toward policy improvement. We averaged the results
over 5 random seeds. Figs. 2(c) and 2(d) demonstrate that Adam+ consistently outperforms Adam
in both convergence speed and final return. In particular, Adam+ reaches high-return regimes
significantly earlier, demonstrating improved sample efficiency. For example, in the Seaquest
environment, Adam+ attains near-saturated returns after ∼4M steps, whereas Adam requires almost
twice as many interactions to approach a similar level. This is consistent with our interpretation: by
normalizing updates with a more accurate noise variance estimate, Adam+ avoids over-attenuation of
strong gradient signals, enabling faster policy improvement.

4.2 SEQUENCE MODELING PROBLEMS

Centered RMSProp (Graves, 2013; Ida et al., 2016) tends to perform better on sequence modeling
problems compared to its uncentered counterpart. In this subsection, we demonstrate that the centering
of Adam has a similar effect. AdaBelief (Zhuang et al., 2020) made an important step in this direction.
Building on that, we show that AdaBelief’s result can be advanced by ensuring that the variance is
estimated with the reference mean of the same window length β2. In addition, we demonstrate the
performance of our extensions on larger models, such as nanoGPT (Karpathy, 2022) and crammed
BERT (Geiping & Goldstein, 2023).

LSTM on language modeling. We benchmark Adam+ against AdaBelief on the Penn Treebank (Mar-
cus et al., 1993) language modeling task. For this experiment, we directly reused the publicly released
AdaBelief’s implementation of this experiment. We reused the learning rate of 0.01 with ϵ = 10−12

and the remaining hyperparameters as in their implementation.

We trained 1-, 2-, and 3-layer LSTMs, averaging results over 5 seeds. Figure 3(a) shows the training
trajectory for the 1-layer LSTM; the curves for deeper networks are qualitatively similar. Table 2
summarizes the best training and validation perplexities. Importantly, AdaBelief (Zhuang et al., 2020)
has already been shown to outperform several widely used optimizers under the same settings. Since
Adam+ achieves better results than AdaBelief with no additional tuning, it follows that Adam+ also
surpasses those baselines.

Notice that since AdaBelief estimates the noise variance vt around mt, its estimate of Var(gt) is
generally less accurate compared to our case. By contrast, we center vt around a reference mean
within a window of the same lengthwt, yielding a more reliable estimate. Consequently, our optimizer
achieves consistently lower perplexity across different numbers of LSTM layers.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Perplexity (lower is better) of Adam+ and AdaBelief on Penn Treebank dataset.

Optimizer Training Validation

1 Layer 2 Layers 3 Layers 1 Layer 2 Layers 3 Layers

AdaBelief 60.86 45.60 37.14 81.52 66.81 61.33
Adam+ 59.99 44.87 36.62 81.22 66.33 61.08

0 50 100 150 200
Epoch

60

70

80

90

100

110

120

Pe
rp

le
xi

ty

optimizer
AdaBelief
Adam+

type
validation
training

(a) Single-layer LSTM

0 10000 20000 30000 40000
Step

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
lo

ss

AdamW
AdamW+

(b) nanoGPT

0 10000 20000 30000 40000
Step

0

2500

5000

7500

10000

12500

15000

Ti
m

e,
 se

c

AdamW
AdamW+

(c) Wallclock runtime of nanoGPT

Figure 3: Consistent gain from second moment centering on sequence modeling problems.

nanoGPT. We next evaluate the impact of noise centering on nanoGPT (Karpathy, 2022). The
experiment is conducted using the default hyperparameters provided in Karpathy (2022). This ensures
that any observed improvements are attributable to the optimization mechanism itself, rather than
to parameter search. We compare AdamW (Loshchilov & Hutter, 2019) with AdamW+, averaging
results over two random seeds. AdamW+ is an optimization algorithm obtained by incorporating
the second moment centering from Algorithm 2 into the baseline method of AdamW (Loshchilov &
Hutter, 2019).

The outcomes are summarized in Fig. 3(b). Training with AdamW exhibits instability, with validation
loss diverging—an issue also documented in the nanoGPT repository (Karpathy, 2022) and in
Taniguchi et al. (2024). In contrast, AdamW+ stabilizes training by centering the second raw moment
and further achieves consistently lower validation loss relative to AdamW across seeds. As shown in
the Fig 3(c), higher stability and lower loss come at the cost of slightly larger runtime due to the extra
parameter wt.

Crammed BERT. We evaluate the performance of our proposed modifications on fine-tuning
BERT (Devlin et al., 2019), following a methodology from Geiping & Goldstein (2023). The model
is pretrained with a standard AdamW (Loshchilov & Hutter, 2019) optimizer and is fine-tuned for
5 epochs on a range of downstream tasks given by the GLUE benchmark (Wang et al., 2018). As
before, we reuse the tuned hyperparameters from AdamW (Geiping & Goldstein, 2023) and apply
them to AdamW+. All results are averaged over five random seeds and reported in Table 3.

Table 3: GLUE benchmark results for crammed BERT averaged over 5 seeds.
Optimizer GLUE CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

A-Mean H-Mean Matthews Acc Acc (extra) Acc F1 Acc Acc F1 Acc Acc Pearson Spearman

AdamW 0.8043 0.7680 0.5024 0.8498 0.8526 0.8252 0.8826 0.9092 0.9082 0.8772 0.5608 0.9323 0.8713 0.8675
AdamW+ 0.8061 0.7712 0.5139 0.8484 0.8522 0.8415 0.8926 0.9076 0.9080 0.8769 0.5602 0.9316 0.8719 0.8679

The arithmetic and harmonic means (A-Mean and H-Mean) indicate that AdamW+ achieves higher
performance than AdamW on average across tasks in the GLUE benchmark. Notice that on CoLA
and MRPC, AdamW+ brings improvements of at least one percent in Matthew’s correlation, accuracy,
and F1 score. These cases are bolded in the table. In contrast, for the specific cases where AdamW
outperforms AdamW+, the margins are much smaller (strictly less than one percent).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250 300 350 400 450
Iteration

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 o

pt
im

um

Adam
AdaBelief

AdaBound
Adam+

(a) σ = 0.0

0 50 100 150 200 250 300 350 400 450
Iteration

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 o

pt
im

um

Adam
AdaBelief

AdaBound
Adam+

(b) σ = 5 · 10−3

0 50 100 150 200 250 300 350 400 450
Iteration

10 3

10 2

10 1

100

101

Di
st

an
ce

 to
 o

pt
im

um

Adam
AdaBelief

AdaBound
Adam+

(c) σ = 1 · 10−2

Figure 4: Convergence of the proposed Adam extensions on the Rastrigin optimization function for different
levels of gradient noise σ.

4.3 RASTRIGIN TEST OPTIMIZATION FUNCTION

We evaluate how different optimizers converge to the optimum in a simple two-dimensional setting
given by the Rastrigin test optimization function (Rastrigin, 1974). This setup allows us to compare
the convergence speed and the stability of different optimizers on the same loss landscape. We
perform a hyperparameter search using the Tree-structured Parzen estimator (TPE) (Watanabe, 2023)
for each random seed: decay factors are sampled uniformly from the range [0.5, 0.999], and the
learning rates are drawn from a log-uniform distribution over the interval [e−8, e0.5]. The number of
TPE steps is capped at 500.

To mimic the effect of stochastic data sampling, Gaussian noise ξ ∼ N (0, σ2) is added to the
gradients at each iteration, resulting in stochastic optimization trajectories. For statistical significance,
we compute 5 trajectories per seed, repeating the procedure over 3 random seeds. We then sample
distances to the optimum at selected checkpoints and visualize the distributions using box plots.

The results in Fig. 4 show that Adam+ consistently converges closer to the optimum across all noise
regimes, from deterministic gradients (σ = 0) to high-noise settings (σ = 10−2). Unlike Adam and
AdaBelief, which frequently converge to local minima, Adam+ maintains steady progress toward
the global optimum. Moreover, its variance across trials is much smaller (notice the logarithmic
scaling of the y-axis), indicating improved robustness to both hyperparameter choices and stochastic
perturbations. AdaBound shows partial improvements over Adam but still suffers from wider
variability and poorer convergence under higher noise.

These findings highlight two points: (i) centering the second moment reduces the tendency of Adam to
over-dampen high-SNR gradients, enabling faster escape from local minima, and (ii) the SNR-based
formulation underlying Adam+ provides resilience to injected gradient noise, making its behavior
more stable and predictable than other Adam extensions.

4.4 MOLECULAR GRAPH REGRESSION

Lastly, we apply our centering extension to a number of different optimizers, where the ‘+’ notation
is used to indicate that we incorporate the second moment centering from Algorithm 2 into the
baseline method. E.g., LAMB+ corresponds to a centering of the second moment in the baseline
algorithm of LAMB (You et al., 2020). We consider the ZINC dataset, comprising approximately
250, 000 molecular graphs with up to 38 atoms (nodes) each, to train the GPS graph transformer
(GT) (Rampášek et al., 2022). The task is to regress the continuous molecular properties from the
graph structure. The hyperparameters are the same as the original codebase4, except that we adopt
constant learning rates as listed in Table 9.

Figs. 11(a) and 11(b) depict the performance difference in the training and validation mean absolute
error (MAE) over the course of the training across a range of β2 values. The key observation is
that smaller values of β2 amplify the gains of the enhanced optimizers. This trend supports the

4https://github.com/pyg-team/pytorch_geometric/blob/master/examples/
graph_gps.py

7

https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ZINC GT training loss (b) ZINC GT validation MAE

Figure 5: Performance difference of the modified and baseline optimizers in supervised learning. Molecular
graph regression: (a) training loss and (b) validation MAE.

idea that the variance-based moment estimate is more accurate and responsive to recent gradient
changes. Adam+, AMSGrad+, and AdamW+ exhibit notable improvements relative to their baselines,
which are especially pronounced for lower β2 = 0.5. In particular, AMSGrad+ demonstrates
substantially faster convergence in the early stages, leading to superior validation MAE in the first
half of the training. ADOPT+ also achieves measurable gains, though somewhat smaller, which may
be attributed to potential interactions between its moment reordering strategy and the variance-based
scaling. In contrast, LAMB+ shows only modest improvements. This is likely due to its trust ratio
mechanism, which already stabilizes update magnitudes across layers, reducing the marginal benefit
from further normalization via improved noise estimation. More extensive simulation results are
summarized in the Tables 8, 9, and 10 in the Appendix.

5 RELATED WORK

Despite its popularity, Adam has undergone several refinements aimed at improving its stability
and performance. A notable example is AMSGrad (Reddi et al., 2018), which modifies Adam
by maintaining the maximum vt observed so far. Even though this adjustment can lead to overly
conservative updates and slower training due to the non-decreasing nature of vt, it has nonetheless
inspired a line of research focused on rethinking the mechanisms underlying adaptive optimization.

Luo et al. (2019) argues that the extreme and unstable per-parameter learning rates of Adam contribute
to poor generalization (Wilson et al., 2017). In contrast, stochastic gradient descent (SGD) (Robbins
& Monro, 1951), though slower to converge, often generalizes better (Luo et al., 2019). To combine
the benefits of both methods, the authors proposed AdaBound, an optimizer that constrains the
adaptive learning rate within dynamic bounds that gradually tighten toward a fixed target value. This
design aims to combine Adam’s fast convergence in early training with the generalization benefits of
SGD in later stages. Although AdaBound provides a promising trade-off between the adaptability of
Adam and the stability of SGD, it requires manual tuning of the bound decay rates. Moreover, the
constant terminal learning rate may become suboptimal in non-stationary environments.

AdaBelief (Zhuang et al., 2020) replaces Adam’s second moment vt by the "belief" in the gradient
direction mt, st = β2st−1 + (1− β2)(gt −mt)

2. Larger "belief" results in a larger per-parameter
learning rate. However, this formulation introduces a temporally misaligned update ratio mt/(

√
st +

ϵ), as mt and st are estimated using different decay factors. Moreover, the notion of “belief” lacks a
precise interpretation, limiting its theoretical grounding and connections to related concepts.

Centered RMSProp (Graves, 2013; Ida et al., 2016) uses a temporally aligned update ratio. Specif-
ically, the parameters are updated based on the momentum of rescaled gradients gt/(

√
vt − g2t).

However, this method has two downsides: it relies on the gradient direction given by gt, which is
generally less aligned with the true gradient compared to mt, and it lacks bias correction, which can
compromise stability in the early stages of training.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Based on the observation that the correlation between gt and vt impairs convergence, Zhou et al.
(2019) introduce AdaShift: an optimization algorithm which computes mt from the most recent n
gradients, while estimating vt from a lagged gradient gt−n. Although this strategy effectively breaks
the correlation (see Theorem 5 in (Zhou et al., 2019)), it is likely to underperform in non-stationary
environments, where the gradient dynamics shift over time.

ADOPT (Taniguchi et al., 2024) achieves the same decorrelation effect by excluding gt from the
second moment estimate. Furthermore, the authors identify that Adam-style momentum contributes
to convergence issues and address this by reordering the updates of mt and vt. They prove the
convergence to a stationary point for any decay rate factor β2.

Recent works extend adaptive methods through multi-scale history or geometric structure. AdaE-
MAMix (Pagliardini et al., 2025) stabilizes trajectories using mixtures of fast and slow EMAs. For
large-scale pre-training, SOAP (Vyas et al., 2025), Muon (Jordan et al.), and Scion (Pethick et al.,
2025) leverage structured preconditioning or tensor orthogonalization to optimize update directions.
By contrast, Adam+ maintains the computational efficiency of element-wise updates. Instead of
altering the update geometry, Adam+ refines the magnitude of the gradient descent steps by correcting
the raw second-order moment estimate via SNR-based centering. This offers a general-purpose
improvement without architectural constraints.

Most existing adaptive gradient methods — including Adam and its predecessors Adagrad (Duchi
et al., 2011) and uncentered RMSprop (Tieleman & Hinton, 2012) — share a common limitation: they
rely on some form of the second raw moment of the gradient, vt, to adjust the learning rate. As we
illustrated throughout the paper, this reliance restricts their ability to generalize across a wide range
of problems, particularly in non-stationary environments, such as RL, where continuous adaptation
of the learning rate is critical.

6 CONCLUSION

In this work, we interpret the Adam optimization algorithm from the signal-to-noise ratio perspective.
This perspective motivates us to replace the raw second moment with the central second moment,
yielding Adam+, which normalizes updates by gradient variance and thereby scales gradients in
proportion to their SNR.

We empirically validated the effect of our modification across diverse learning paradigms, including
reinforcement learning and sequential modeling. These gains are very consistent in sequential
modeling problems - the setting where it is known that centered RMSProp outperforms its uncentered
counterpart. They are also significant in non-stationary, RL domains, where traditional optimizers
often struggle due to unreliable gradient signals and the absence of effective learning rate schedules.

These findings suggest that centering the variance within Adam-like optimizers is a generally useful
design principle. Future work may explore integrating this perspective with other recent advances,
such as adaptive schedules or large-scale pretraining pipelines, to further enhance the robustness and
efficiency of optimization in deep learning.

REFERENCES

Lukas Balles and Philipp Hennig. Dissecting Adam: The sign, magnitude and variance of stochastic
gradients. In Int. Conf. Mach. Learn. (ICML), pp. 404–413. PMLR, 2018.

Song Chen, Jiaxu Liu, Pengkai Wang, Shengze Cai, Chao Xu, and Jian Chu. Accelerated optimization
in deep learning with a proportional-integral-derivative controller. Nature Communications, 15
(10263), 2024.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V Le. Symbolic discovery of optimization
algorithms. In Int. Conf. Neural Inf. Process. Syst. (NeurIPS), volume 36, pp. 49205–49233. Curran
Associates, Inc., 2023.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of Adam and Adagrad. 2022. ISSN 2835-8856.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understanding. In North American Chapter of the
Association for Computational Linguistics, 2019. URL https://api.semanticscholar.
org/CorpusID:52967399.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(61):2121–2159, 2011.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single GPU in one day.
In Intl. Conf. Learn. Repres. (ICLR), volume 202 of Proceedings of Machine Learning Research,
pp. 11117–11143. PMLR, 23–29 Jul 2023.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continu-
ous representation of molecules. ACS Central Science, 4(2):268–276, Feb 2018. ISSN 2374-7943.
doi: 10.1021/acscentsci.7b00572.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint arXiv:1308.0850,
2013.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Ki-
nal Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep
reinforcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022.

Yasutoshi Ida, Yasuhiro Fujiwara, and Sotetsu Iwamura. Adaptive learning rate via covariance matrix
based preconditioning for deep neural networks. arXiv preprint arXiv:1605.09593, 2016.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan.github.io/posts/muon.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Intl. Conf. Learn.
Repres. (ICLR), 2015.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proc. IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. Intl. Conf. Learn. Repres.
(ICLR), 2019.

Liangchen Luo, Yuanhao Xiong, and Yan Liu. Adaptive gradient methods with dynamic bound of
learning rate. In Intl. Conf. Learn. Repres. (ICLR), 2019.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

10

https://api.semanticscholar.org/CorpusID:52967399
https://api.semanticscholar.org/CorpusID:52967399
https://github.com/karpathy/nanoGPT
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, Feb 2015. ISSN 1476-4687. doi: 10.1038/nature14236.

Matteo Pagliardini, Pierre Ablin, and David Grangier. The adEMAMix optimizer: Better, faster,
older. In Intl. Conf. Learn. Repres. (ICLR), 2025.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained LMOs. arXiv preprint
arXiv:2502.07529, 2025.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/rl-baselines3-zoo,
2020.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. In Int. Conf. Neural
Inf. Process. Syst. (NeurIPS), volume 35, pp. 14501–14515. Curran Associates, Inc., 2022.

Leonard Andreevič Rastrigin. Systems of extremal control. Nauka, 1974.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of Adam and beyond. In Intl.
Conf. Learn. Repres. (ICLR), 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, 22(3):400 – 407, 1951. doi: 10.1214/aoms/1177729586.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533–536, Oct 1986. ISSN 1476-4687. doi: 10.1038/
323533a0.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Nagahara,
Tomoshi Iiyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. ADOPT: Modified
Adam can converge with any β2 with the optimal rate. In Int. Conf. Neural Inf. Process. Syst.
(NeurIPS), 2024.

Tijmen Tieleman and Geoffrey Hinton. RMSprop: Divide the gradient by a running average of its
recent magnitude. In COURSERA: Neural Networks for Machine Learning, volume 4, pp. 26–31,
2012.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson, and
Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language modeling.
In Intl. Conf. Learn. Repres. (ICLR), 2025.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. GLUE:
A multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP, Workshops, pp. 353–355, Brussels, Belgium, November 2018. Association
for Computational Linguistics. doi: 10.18653/v1/W18-5446.

Shuhei Watanabe. Tree-structured Parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. ArXiv, abs/2304.11127, 2023.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The marginal
value of adaptive gradient methods in machine learning. In Int. Conf. Neural Inf. Process. Syst.
(NeurIPS), volume 30. Curran Associates, Inc., 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In Intl. Conf. Learn. Repres. (ICLR), 2020.

11

https://github.com/DLR-RM/rl-baselines3-zoo

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhiming Zhou, Qingru Zhang, Guansong Lu, Hongwei Wang, Weinan Zhang, and Yong Yu. AdaShift:
Decorrelation and convergence of adaptive learning rate methods. In Intl. Conf. Learn. Repres.
(ICLR), 2019.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. AdaBelief optimizer: Adapting stepsizes by the belief in observed
gradients. In Int. Conf. Neural Inf. Process. Syst. (NeurIPS), volume 33, pp. 18795–18806. Curran
Associates, Inc., 2020.

APPENDIX

A PROPOSED SNR-BASED MODIFICATIONS TO GRADIENT SCALING
FUNCTION ζt

Sign-based optimization, such as in Lion (Chen et al., 2023), has strong performance in certain
supervised learning applications, as it amplifies small gradient and suppresses strong signals, akin to
gradient-guided grid search, which can lead to fast and stable convergence in stationary environments
with correct hyperparameters. Inspired by this rationale, we design non-linear scaling function ψt on
top of Adam+, denoted as "Adam+NLx", by introducing two SNR-based non-linear ψt as follows:

γt = sign(mt) log2

(
1 +

√
m2

t/(vt + ϵ)

)
(6)

γt = sign(mt)

[
1 + log10

(
1 +

√
m2

t/(vt + ϵ)

)]
(7)

In particular, both (6) and (7) scale the sign update based on element-wise gradient SNR, whereas
(6) emphasizes on compressing large SNR for smoother and more robust gradient update, and
(7) emulates sign optimizers while scaling the signed momentum by the number of bits in SNR.
We denote the optimizers that incorporate this additional refinement with "+NL1" for (6), such as
Adam+NL1, and the update in (7) with "+NL2", such as Adam+NL2.

In addition, we consider Adam+(SNR lr) that scales learning rate with SNR as follows:

γt =
√
m2

t/(vt + ϵ) ·mt/(
√
vt + ϵ) , (8)

which is evaluated for RL in CartPole experiment.

We propose two more gradient scaling functions ζt in Algorithm 1, and summarize all our enhance-
ments to Adam variants in Table 4, listing their postfixes, equations and algorithms, recommended
baselines, hyperparameters, and application scenarios.

Table 4: The full list of our enhancements to Adam variants
Recommend
Baseline

Postfix Enhancement Recommend
Hyperparameters

Recommend
Applicationsψt ζt

Adam,
AdamW,
LAMB

+ (5) Adam
σ ∈ {0.001, 0.0001}

General, RL
+ (5) Adam RL
+ (SNR lr) (5) (9) RL

Adam,
AdamW

+NL1 (5) (10)
σ = 0

Supervised learning
+NL2 (5) (11) Supervised learning
+NL3 (5) (12) Supervised learning

We still recommend β1 = 0.9, β2 = 0.999 as the default configuration with our enhancements for
most application scenarios, however, as shown in Appendix F, smaller β, such as β1 = β2 = 0.5
and β1 = β2 = 0.9, with our modifications on Adam, AdamW and Adopt can lead to superior
performance compared to the default values for graph transformers.

Next, the proposed non-linear gradient scaling ζt functions in Table 10 are detailed as follows.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Adam+ (SNR lr): Postfix (SNR lr) stands for SNR-based learning rate scaling, expressed as

γt =
√
m2

t/(vt + ϵ) ·mt/(
√
vt + ϵ) . (9)

Adam+ (SNR lr) scales the Adam+ update mt/(
√
vt + ϵ) by the square root of SNR, essentially

employing quadratic Adam+ update with the sign of momentum mt. This approach promotes faster
responses under high SNR and slower responses in low SNR regime.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

4

2

0

2

4

y
Comparison of Signed Logarithmic Functions

y = sign(x) log2 (1 + |x|)
y = sign(x) (1 + log2 (1 + |x|))
y = sign(x) (1 + log10 (1 + |x|))
y = sign(x)

Figure 6: Signed logarithmic functions in (10), (11), (12) for +NL1, +NL2, +NL3

Adam+NL1∼3: Lastly, signed logarithmic functions, as illustrated in Fig. 6, are employed as an
additional non-linear filtering mechanism in our extensions: (10) for NL1, (11) for NL2, and (12) for
NL3, where NL1 and NL2 are already introduced in the main text.

γt = sign(mt) log2

(
1 +

√
m2

t/(vt + ϵ)

)
(10)

γt = sign(mt)

[
1 + log10

(
1 +

√
m2

t/(vt + ϵ)

)]
(11)

γt = sign(mt)

[
1 + log2

(
1 +

√
m2

t/(vt + ϵ)

)]
(12)

As shown in the ZINC-GT experiment in Appendix F, the +NL3 extension achieves the best perfor-
mance in training graph transformer compared to +NL1 and +NL2.

The rationale behind these logarithmic functions is to dampen strong elements and elevate weak
elements in the normalized updates of Adam+ for supervised learning, in which gradient updates
become very weak as training progresses, as shown in Figs. 7 in Appendix B. NL1∼3 serve as a
middle ground between signed optimizers, such as Lion (Chen et al., 2023), and Adam-like linear
optimizers. Similar to Lion, NL1∼3 are mainly for supervised learning, which underperform linear
optimizers in reinforcement learning, where fast responses to disruptions are critical.

B GRADIENT SNR IN CIFAR10-RESNET18 AND CARTPOLE-DQN

In this section, we analyze the dynamics of element-wise gradient SNR, a central concept underlying
our enhancements to Adam-like baseline optimization algorithms. We trace key metrics for both
Adam and Adam+ in the contexts of supervised learning (CIFAR-10 with ResNet-18) in Figs. 7 and
reinforcement learning (CartPole with DQN) in Figs. 8. To trace gradient SNR, we add functions for
layer-wise gradient SNR estimation to Adam+ and our customized Adam optimizers.

We compute the gradient SNR in dB domain for the last layer of the neural network, as follows:

ηt =
1

d

d∑
i=1

ηt,i , ηt,i = 10 log10

(
m2

t,i

vt,i + ϵ

)
,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where ηt,i is the element-wise gradient SNR in dB for element i at time step t, and d denotes the
number of parameters of the layer. Similarly, we compute layer-wise average second moment as

v̄t =
1

d

d∑
i=1

10 log10(vt,i + ϵ).

The reason to average in dB domain is to prevent the gradient SNR or second moment from being
dominated by elements that are orders of magnitude larger than the typical values, reflecting the true
scale of most elements.

We focus on the last layer for two reasons: (i) it reduces computational costs compared to computing
SNR across the entire model, (ii) the last-layer gradient has the most immediate impact on the loss,
making it a meaningful indicator of convergence behavior.

0 50 100 150 200
Epoch

10 6

10 5

10 4

10 3

10 2

lo
ss

_t
r

Adam Adam+

(a) Training loss

0 50 100 150 200
Epoch

0.70

0.75

0.80

0.85

0.90

0.95

ac
c_

va
l

Adam Adam+

(b) Test accuracy

0 50 100 150 200
Epoch

40

30

20

10

0

10

,d
B

Adam Adam+

(c) Last layer gradient SNR (dB)

0 50 100 150 200
Epoch

55

50

45

40

35

v,
dB

Adam Adam+

(d) Last layer second moments (dB)

Figure 7: Traces of training ResNet-18 on CIFAR-10 under cosine learning rate annealing: (a) training
loss, (b) test accuracy, (c) gradient SNR in dB, and (d) second raw moment for Adam and second
central moment for Adam+ in dB. (c) and (d) are only for the last layer. (β1 = 0.9, β2 = 0.999).

As shown in Figs. 7, the training loss, test accuracy, gradient SNR and second moments of the last
layer in ResNet-18 of Adam and Adam+ are closely aligned over 200 epochs in supervised learning,
with Adam+ slightly leads in the last 30 epochs. For most of the time, the gradient SNR of the last
layer fluctuate between −30 ∼ −12 dB, with an average of -20 dB, however, the second moments
decrease steadily over the course of training, from −32 dB in the early epochs to −56 dB in the
end, reducing two orders of magnitude. Given the almost constant gradient SNR, this shows that the
scale of gradient update decreases by at least an order of magnitude over the course of training. This
highlight the challenge of supervised learning in shrinking magnitude of gradient.

The different smoothness of gradient SNR η̄t and second moments v̄t can be explained by their
different smoothing factor, β1 = 0.9 for η̄t and β2 = 0.999 for v̄t. Toward the end of the training,
the second central moment of Adam+ becomes visibly smaller than the second raw moment of Adam,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

as shown in Fig. 7(d), leading to larger gradient update, which may contribute to the better training
loss and test accuracy of Adam+ compared to Adam.

0 100 200 300 400 500
Global Step (×103)

0

100

200

300

400

500

re
tu

rn

Adam Adam+

(a) Return

0 100 200 300 400 500
Global Step (×103)

50

40

30

20

10

0

10

,d
B

AdamSNR Adam+

(b) Gradient SNR, last layer

0 100 200 300 400 500
Global Step (×103)

40

35

30

25

20

15

10

5

v,
dB

Adam Adam+

(c) Second moment, last layer

Figure 8: Return and last-layer metrics for DQN in CartPole under Adam and Adam+ in a single run
(random seed: 50) with constant learning rate, based on hyperparameters in Table 14.

The return and the gradient SNR and second moments of the last layer for DQN in Cartpole in a
single run are presented in Figs. 8. In Fig. 8(a), the DQN initially converges around 200,000 steps
under both Adam and Adam+, but subject to disturbances from exploration at ratio of 0.05 (see Table
14), which encourage robustness and generalizability. This explains drops in return after the initial
convergence under both Adam and Adam+. However, Adam and Adam+ respond differently to such
disturbances: the DQN under Adam+ quickly rebalanced with only small drops in return, but under
Adam the drop is more substantial and recovery is slower.

The traces of last layer gradient SNR (Fig. 8(b)) and second moments (Fig. 8(c)) under Adam and
Adam+ provide more insights to the optimizer behavior and the environmental dynamics. First, the
gradient SNR in RL is much lower and more volatile (range of −20 ∼ −50 dB with a gradually
decreasing mean) than that of supervised learning (−12 ∼ −30 dB with a constant average of −20
dB), indicating a more difficult, non-stationary environment for reinforcement learning.

Second, when disturbance appears, e.g., around 350,000 for Adam, and 340,000 for Adam+, the
gradient SNR and second moment jump up, indicating a departure from the convergence area.
However, the second moment under Adam raises more substantially (17 dB higher) compared to
Adam+ under similar disturbances. Such a smaller increase in second moment under Adam+ allow
larger learning rate being applied when the gradient SNR increases abruptly, leading to fast responses
to disturbance and only a tiny drop in return. In contrast, the smaller learning rate scale under Adam
in such disturbance leads to slower recovery, and substantial drops in return under disturbances. This
example demonstrates the benefit of using second central moment instead of second raw moment in
Adam+ in reinforcement learning under tough, non-stationary environments.

Table 5: Training hyperparameters for CIFAR-10 with ResNet18
Hyperparameter Value

Dataset CIFAR-10 (Krizhevsky, 2009)
Model ResNet18 (He et al., 2016)
Batch size 128
Epochs 200
β1, β2 0.9, 0.999 (default)
Learning rate (initial) 0.001
Learning rate schedule Cosine annealing
Weight decay 5× 10−4

Data augmentation Random crop, horizontal flip
Loss function Cross-entropy

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C EXPERIMENTAL SETUPS AND HYPERPARAMETERS FOR EVALUATED
PIPELINES

In Table 6, we list the hardware specifications, experimental setups and runtime for our evaluations of
various optimizers across different deep learning pipelines, including the code base for the five deep
learning pipelines and our modifications. The hyperparameters of each deep learning pipeline are
further detailed in Table 5 for CIFAR10-ResNet18, Table 7 for MNIST-MLP, Table 11 for ZINC-GT,
Table 14 for CartPole-DQN, and Table 16 for MuJoCo-SAC.

Table 6: Hardware configuration, runtime, and code bases for all pipelines
Item Details
Hardware specs. AMD Ryzen Threadripper 2970WX (24 cores / 48 threads), 96 GB RAM,

dual NVIDIA RTX 2080 Ti GPUs

CIFAR10-ResNet18

Dataset: CIFAR-10 (Krizhevsky, 2009)
Runtime: 1.2 hours per optimizer (1 thread per GPU)
Codebase: https://github.com/kuangliu/
pytorch-cifar
Notes: Used standard ResNet18 and cosine LR schedule.

MNIST-MLP

Dataset: MNIST digits (Lecun et al., 1998)
Runtime: 30 minutes per optimizer (1 thread per GPU)
Codebase: https://github.com/tensorflow/
datasets/blob/master/docs/keras_example.ipynb,
https://github.com/pytorch/tutorials/blob/main/
beginner_source/blitz/cifar10_tutorial.py
Notes: Trained with 2-layer MLP. The pipeline is based on the two
referenced codebases.

ZINC-GT

Dataset: ZINC molecular graphs (Gómez-Bombarelli et al., 2018)
Runtime: 6 ∼ 8 hours per optimizer (10 threads in parallel)
Codebase: https://github.com/pyg-team/pytorch_
geometric/blob/master/examples/graph_gps.py
Notes: Epoch-based random seed for training dataloader, fixed seed for
validation and test dataloaders.

CartPole-DQN

Environment: OpenAI Gym CartPole-v1 (Huang et al., 2022; Towers
et al., 2024)
Runtime: 1.2 hours per optimizer (10 seeds in parallel)
Codebase: https://github.com/vwxyzjn/cleanrl/
blob/master/cleanrl/dqn.py
Notes: Discrete control task; all optimizers evaluated in same seed
regime (20 ∼ 29).

MuJoCo-SAC

Environment: MuJoCo continuous control (v5) (Huang et al., 2022;
Towers et al., 2024)
Runtime: 40 hours for 3 million global steps
Codebase: https://github.com/vwxyzjn/cleanrl/
blob/master/cleanrl/sac_continuous_action.py
Notes: Long-horizon RL; unbounded return.

D ADDITIONAL RESULTS ON IMAGE CLASSIFICATION AND RL CONTROL

The results for CIFAR-ResNet185, MNIST-MLP, ZINC-GT, and DQN-cartpole are summarized in
Table 8. A key observation is that no single optimizer consistently outperforms others on every task,
whereas our modifications generally enhance the baseline optimizers across all tested settings.

5Based on codebase in https://github.com/kuangliu/pytorch-cifar. Also, see Table 5 in
the Appendix C.

16

https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://github.com/tensorflow/datasets/blob/master/docs/keras_example.ipynb
https://github.com/tensorflow/datasets/blob/master/docs/keras_example.ipynb
https://github.com/pytorch/tutorials/blob/main/beginner_source/blitz/cifar10_tutorial.py
https://github.com/pytorch/tutorials/blob/main/beginner_source/blitz/cifar10_tutorial.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/sac_continuous_action.py
https://github.com/kuangliu/pytorch-cifar

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Training hyperparameters for MNIST with 2-layer MLP
Hyperparameter Value

Dataset MNIST (Lecun et al., 1998)
Model 2-layer MLP (784-128-10)
Activation ReLU
Batch size 100
Epochs 200
Learning rate 1× 10−3 for LAMB, LAMB+; 1× 10−4 for the rest
Weight decay 1× 10−3

Dropout None
Loss function Cross-entropy

Notice that the goal of these experiments is NOT to introduce an optimizer that universally outperforms
all others across all tasks, as shown by the test results that none of them could do so.

For each task, all optimizers were tested under identical experimental conditions. The only differences
lie in the optimizer configurations, ensuring a fair and controlled comparison. We consider three
benchmarks: image classification, and reinforcement learning. We train an image classifier on
CIFAR-10 (Krizhevsky, 2009) and MNIST (Lecun et al., 1998) datasets with ResNet-18 (He et al.,
2016) and MLP, respectively. Lastly, we evaluate the performance of Adam and Adam+ in CartPole
with deep Q network (DQN) (Mnih et al., 2015).

D.1 IMAGE CLASSIFICATION

MLP for MNIST We trained a 2-layer MLP classifier for the MNIST digit classification task. The
experimental settings are provided in Table 7 in the Appendix. Table 8 demonstrates a consistent
improvement in the maximum validation accuracy resulting from our enhancements. Fig. D.1
demonstrates the difference in validation accuracy between the enhanced and the baseline versions of
5 optimizers over the course of training for β2 = 0.999.

Generally, we see a positive trend indicating the consistent gains attained by the "+" versions. Among
them, Adam+ demonstrates the most consistent improvements over standard Adam. By decoupling
the signal from the noise — through replacing the second raw moment with the gradient variance —
Adam+ enables more accurate estimation of the true gradient direction, thereby facilitating improved
convergence. Similar in spirit, LAMB+, which scales updates using a trust ratio, also benefits
from more accurate SNR estimation. This leads to sustained performance gains across training,
highlighting the compatibility of variance-based normalization with layer-wise adaptive scaling.
In contrast, the improvement of AMSGrad+ over AMSGrad is more moderate. This is likely due
to the inherently conservative nature of both optimizers, as they retain the maximum of previous
second moment estimates, thereby reducing the dynamic range available for further enhancement.
Finally, AdamW+ and ADOPT+ exhibit more erratic behavior, with gains followed by periods of
degradation. This instability may arise because both optimizers are already finely tuned for strong
performance on standard image classification tasks, leaving less room for consistent improvements
via second-moment modifications.

To quantitatively assess optimizer convergence, we employed two metrics: the normalized area
under the curve (nAUC) and normalized full score duration (nFSD). The nAUC measures the agent’s
cumulative performance over the entire training process and is normalized by the product of the
maximum achievable return (500) and the total number of steps. In contrast, the nFSD metric
measures the fraction of steps at which the agent achieves maximum return. The normalization
coefficient is defined by the total number of steps performed by an agent. Table 8 shows that Adam+
ranks the highest in both measures. Furthermore, the improved optimizers outperform the originals
across the board, underscoring the effectiveness of our modifications.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 50 100 150 200
Epoch

6

4

2

0

2

4

6

Ac
cu

ra
cy

 (M
od

ifi
ed

 -
ba

se
lin

e)

1e 4

Optimizer
Adam+
AdamW+
AMSGrad+

ADOPT+
LAMB+

Table 8: Optimizer performances in image classification (test accuracy for CIFAR10-ResNet18
and MNIST-MLP), graph-level regression using a graph transformer in ZINC (loss value, Mean
Absolute Error (MAE) in validation and testing), and reinforcement learning using a DQN for cartpole
(normalized area under the curve and normalized full score duration).

Optimizer β1 =
0.9, β2= 0.999

CIFAR10 MNIST ZINC, GT Cartpole

Accuracy Accuracy Loss MAE val MAE test nAUC nFSD

AdamW+NL1 0.9422 0.9800 0.0572 0.1555 0.1215 0.8449 0.155
AdamW+ 0.9398 0.9807 0.0551 0.1603 0.1338 0.8367 0.200
AdamW 0.9391 0.9804 0.0616 0.1690 0.1312 0.8225 0.205
AMSGrad+ 0.9388 0.9803 0.0638 0.1663 0.1349 0.8165 0.230
AMSGrad 0.9406 0.9801 0.0636 0.1684 0.1336 0.8083 0.245
LAMB+ 0.9364 0.9828 0.0443 0.1230 0.0913 0.6836 0.005
LAMB 0.9352 0.9825 0.0463 0.1275 0.0973 0.6336 0.000
Adam+ (SNR lr) - - - - - 0.8579 0.420
Adam+ 0.9327 0.9815 0.0547 0.1621 0.1332 0.8577 0.330
Adam 0.9323 0.9811 0.0610 0.1681 0.1329 0.8149 0.120
ADOPT 0.9388 0.9813 0.0548 0.1581 0.1280 0.8263 0.160
ADOPT+ 0.9374 0.9814 0.0560 0.1592 0.1339 0.8190 0.280

AdaBound 0.9428 0.9821 0.0882 0.1707 0.1460 0.0322 0.000
AdaBeliefW 0.9402 0.9804 0.0597 0.1639 0.1262 0.8334 0.145
Lion (β2 = 0.99) 0.9372 0.9773 0.0335 0.1090 0.0863 0.4564 0.000
AdaBelief 0.9326 0.9804 0.0549 0.1583 0.1271 0.7984 0.120

E EXTENDED RESULTS FOR THE TASKS IN TABLE 8

We further expand the results for optimizers under four deep learning tasks in Table 8 into Table 10,
by including the test results of four additional optimizers, PIDAOSI, RMSprop, and AdaShift. In
Table 10, the performance metrics of deep learning pipelines using various optimizers are listed, which
cover different neural network architectures (CNN, MLP, Transformers), tasks (image classification,
graph-level regression, control), and learning paradigms (supervised learning and reinforcement
learning). The top three optimizers for each pipeline are highlighted in colors.

As noted in the main body of the paper, image classification is one of the most well-studied tasks,
therefore, the differences in performance (test accuracy) under different optimizers are generally very
small. Also notice that for ZINC-GT, and Cartpole-DQN, more optimizers and parameters (β1, β2)
are evaluated in Appendices F and G. For example, the top three for ZINC-GT pipeline in Table 10
are not necessarily the best when different (β1, β2) or learning rate schedules are used.

The key messages from Table 10 are as follows:

• None of the optimizers dominate others across all the four tasks. PIDAOSI ranks high across all
four tasks, but not in top three for graph level regression. Lion leads in ZINC-GT pipeline by a
significant margin, but perform poorly in Cartpole-DQN.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 9: Optimizer performances on molecular graph regression with graph transformers.

(β1, β2) Optimizer
(lr)

MAE Optimizer
(lr)

MAE

Loss val test Loss val test

0.5, 0.5 AdamW+NL2
(0.0001)

0.0429 0.1253 0.1008 Adam+NL2
(0.0001)

0.0466 0.1295 0.0981
0.9, 0.9 0.0433 0.1261 0.0945 0.0463 0.1270 0.0970
0.9, 0.999 0.0435 0.1299 0.0966 0.0480 0.1318 0.1017
0.5, 0.5 AdamW+NL1

(0.0001)

0.0459 0.1422 0.1111 Adam+NL1
(0.0001)

0.0472 0.1412 0.1091
0.9, 0.9 0.0533 0.1569 0.1240 0.0514 0.1559 0.1268
0.9, 0.999 0.0572 0.1555 0.1215 0.0581 0.1613 0.1252
0.5, 0.5 AdamW+

(0.0001)

0.0532 0.1520 0.1182 Adam+
(0.0001)

0.0530 0.1534 0.1196
0.9, 0.9 0.0548 0.1594 0.1273 0.0599 0.1645 0.1302
0.9, 0.999 0.0551 0.1603 0.1338 0.0547 0.1621 0.1332
0.5, 0.5 AdamW

(0.0001)

0.0667 0.1662 0.1315 Adam
(0.0001)

0.0673 0.1697 0.1299
0.9, 0.9 0.0620 0.1706 0.1307 0.0620 0.1650 0.1297
0.9, 0.999 0.0616 0.1690 0.1312 0.0610 0.1681 0.1329

0.5, 0.5 LAMB+
(0.0010)

0.0560 0.1479 0.1225 ADOPT+
(0.0001)

0.0547 0.1456 0.1174
0.9, 0.9 0.0466 0.1266 0.0955 0.0608 0.1588 0.1292
0.9, 0.999 0.0443 0.1230 0.0913 0.0548 0.1582 0.1281
0.5, 0.5 LAMB

(0.0010)

0.0588 0.1485 0.1207 ADOPT
(0.0001)

0.0583 0.1568 0.1297
0.9, 0.9 0.0467 0.1268 0.0952 0.0536 0.1579 0.1281
0.9, 0.999 0.0463 0.1276 0.0974 0.0560 0.1593 0.1339

0.5, 0.5 AMSGrad+
(0.0001)

0.0938 0.1989 0.1602 AMSGrad
(0.0001)

0.1268 0.2157 0.1853
0.9, 0.9 0.0850 0.1867 0.1587 0.0879 0.1885 0.1542
0.9, 0.999 0.0638 0.1663 0.1349 0.1718 0.2434 0.2098

• Our modifications generally bring consistent improvements over their baselines. In particular,
Adam+, AdamW+, and LAMB+ consistently outperform their baselines Adam, AdamW, and
LAMB across the four tasks. For ADOPT and AMSGrad, such benefits are less consistent.

• Our modified optimizers generally ranked among the top three across all pipelines. In Cartpole-
DQN, our Adam+, Adam+ (SNR lr) ranks the top within the top two in nAUC and the top two in
nFSD, demonstrating the strength and utility of our enhancement in this domain.

We further evaluate optimizers in the ZINC-GT pipeline with different combinations of (β1, β2) and
learning rate schedulers in Appendix F. For reinforcement learning, more results are presented in
Appendices G and I.

F HYPERPARAMETES AND TEST RESULTS FOR GRAPH TRANSFORMER ON
ZINC DATASET

In this section, we further analyze the optimizers’ performance on the graph regression problem with
graph transformers. The hyperparameter settings are given in the Table 11. For a fair evaluation of the
optimizers, we replace the ReduceLROnPlateau learning rate scheduler with two settings: constant
learning rate in Table 12, and cosine learning annealing in Table 13. As a result, our minimum MAE
on the test set is higher than that in the original paper (Rampášek et al., 2022) (MAE: 7%), since
we do not employ a validation set for learning rate decay. However, in our setting, validation MAE
serves as another independent test set since it is not involved in training.

Table 12 serves as an extension of the Table 9 and includes additional optimizers, such as
AdamW+NL3, AdaBelief, AdaShift, RMPprop, AdaBound, and PIDAOSI under constant learning
rate. In this setting, Lion achieves the best performance by a large margin in all three MAE on the
training set, validation set, and test set. Our enhanced LAMB+ achieves the second in validation
and test MAE, which is not completely surprising since LAMB is designed for deep architecture
like transformers. Lastly, our non-linear modification to AdamW, AdamW+NL3 achieves the third
place in validation and test MAE. Moreover, within each comparison group, our enhanced versions
constantly outperform their baseline counterparts, highlighting the benefits of our enhancement. It
can also be observed that for AdamW and Adam, smaller βs lead to worse performance, while our

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Optimizer performances in image classification (CIFAR, MNIST, larger is better), molec-
ular graph regression using a graph transformer in ZINC dataset (smaller is better) with constant
learning rates, and reinforcement learning using a DQN for cartpole (normalized area under the curve
and normalized full score duration) (larger is better). Highlights are the top first, second, and third.

Optimizer
β1 = 0.9, β2= 0.999

CIFAR10 MNIST ZINC, GT Cartpole

Accuracy Accuracy Loss MAE val MAE test nAUC nFSD

AdamW+NL1 0.9422 0.9800 0.0572 0.1555 0.1215 0.8449 0.155
AdamW+ 0.9398 0.9807 0.0551 0.1603 0.1338 0.8367 0.200
AdamW 0.9391 0.9804 0.0616 0.1690 0.1312 0.8225 0.205
AMSGrad+ 0.9388 0.9803 0.0638 0.1663 0.1349 0.8165 0.230
AMSGrad 0.9406 0.9801 0.0636 0.1684 0.1336 0.8083 0.245
LAMB+ 0.9364 0.9828 0.0443 0.1230 0.0913 0.6836 0.005
LAMB 0.9352 0.9825 0.0463 0.1275 0.0973 0.6336 0.000
Adam+ (SNR lr) - - - - - 0.8579 0.420
Adam+ 0.9327 0.9815 0.0547 0.1621 0.1332 0.8577 0.330
Adam 0.9323 0.9811 0.0610 0.1681 0.1329 0.8149 0.120
ADOPT 0.9388 0.9813 0.0548 0.1581 0.1280 0.8263 0.160
ADOPT+ 0.9374 0.9814 0.0560 0.1592 0.1339 0.8190 0.280

AdaBound 0.9428 0.9821 0.0882 0.1707 0.1460 0.0322 0.000
AdaBeliefW 0.9402 0.9804 0.0597 0.1639 0.1262 0.8334 0.145
Lion (β2 = 0.99) 0.9372 0.9773 0.0335 0.1090 0.0863 0.4564 0.000
AdaBelief 0.9326 0.9804 0.0549 0.1583 0.1271 0.7984 0.120
PIDAOSI* (Chen et al.,
2024)

0.9452 0.9836 0.0441 0.1439 0.1100 0.8344 0.354

RMSprop (β1 =
0) (Tieleman & Hinton,
2012)

0.9281 0.9843 0.0597 0.1698 0.1459 0.7899 0.146

AdaShift (Zhou et al.,
2019)

0.9346 0.9775 0.1687 0.2286 0.1958 0.3760 0.000

∗ Training followed the default PIDAOSI parameters for MNIST and CIFAR-10 as in Table 6 of (Chen et al.,
2024); for Cartpole, the parameters of PIDAOSI are set to identical to that of the CIFAR-10 test.

Table 11: Training hyperparameters for ZINC dataset with GPS graph transformer
Hyperparameter Value

Dataset ZINC (Gómez-Bombarelli et al., 2018)
Model 10-layer GPS graph transformer (Rampášek et al., 2022)
Channels 64
Positional Encoding (PE) Random Walk, with length 20
PE dim 8
Attention type Multihead
Dropout 0.5 on attention head
Batch size 128
Epochs 1000
Initial Learning rate (lr) 1× 10−3 for LAMB and LAMB+; 1× 10−4 for the rest
Learning rate scheduler Constant (Table 12); Cosine annealing (Table 13)
Weight decay 1× 10−5

Loss function Mean Absolute Error (MAE)
Random seed 51 (constant lr in Table 12), 41 (cosine lr in Table 13)

enhanced version generally achieve better performance for smaller βs, implying a more accurate
estimation of noise power with out enhancement.

Next, we evaluate the performance of GT under a cosine annealing learning rate schedule, which
are reported in the Figs. 9 and the Table 13. In this setting, Lion no longer outperforms all other
methods, in fact, its lowest training loss did not translate to best validation and test MAE. This shows
that Lion is highly sensitive to hyperparameters, in our other tests with a different random seed,
Lion also spikes in training loss and does not recovery well afterwards. In contrast, Adam+NL3

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 12: Molecular graph regression with graph transformers under fixed learning rate (smaller is
better). Highlights are the best within each group, and the top first, second, and third.

(β1, β2) Optimizer
(lr)

MAE Optimizer
(lr)

MAE

Loss val test Loss val test

0.5, 0.5
AdamW+NL3

0.0459 0.1339 0.1017
Adam+NL3

0.0483 0.1249 0.1019
0.9, 0.9 0.0418 0.1304 0.0944 0.0469 0.1276 0.1001
0.9, 0.999 0.0425 0.1249 0.0983 0.0431 0.1279 0.0999
0.5, 0.5

AdamW+NL2
0.0429 0.1253 0.1008

Adam+NL2
0.0466 0.1295 0.0981

0.9, 0.9 0.0433 0.1261 0.0945 0.0463 0.1270 0.0970
0.9, 0.999 0.0435 0.1299 0.0966 0.0480 0.1318 0.1017
0.5, 0.5

AdamW+NL1
0.0459 0.1422 0.1111

Adam+NL1
0.0472 0.1412 0.1091

0.9, 0.9 0.0533 0.1569 0.1240 0.0514 0.1559 0.1268
0.9, 0.999 0.0572 0.1555 0.1215 0.0581 0.1613 0.1252
0.5, 0.5

AdamW+
0.0532 0.1520 0.1182

Adam+
0.0530 0.1534 0.1196

0.9, 0.9 0.0548 0.1594 0.1273 0.0599 0.1645 0.1302
0.9, 0.999 0.0551 0.1603 0.1338 0.0547 0.1621 0.1332
0.5, 0.5

AdamW
0.0667 0.1662 0.1315

Adam
0.0673 0.1697 0.1299

0.9, 0.9 0.0620 0.1706 0.1307 0.0620 0.1650 0.1297
0.9, 0.999 0.0616 0.1690 0.1312 0.0610 0.1681 0.1329

0.5, 0.5
LAMB+

0.0560 0.1479 0.1225
ADOPT+

0.0547 0.1456 0.1174
0.9, 0.9 0.0466 0.1266 0.0955 0.0608 0.1588 0.1292
0.9, 0.999 0.0443 0.1230 0.0913 0.0548 0.1582 0.1281
0.5, 0.5

LAMB
0.0588 0.1485 0.1207

ADOPT
0.0583 0.1568 0.1297

0.9, 0.9 0.0467 0.1268 0.0952 0.0536 0.1579 0.1281
0.9, 0.999 0.0463 0.1276 0.0974 0.0560 0.1593 0.1339

0.5, 0.5
AMSGrad+

0.0938 0.1989 0.1602
AMSGrad

0.1268 0.2157 0.1853
0.9, 0.9 0.0850 0.1867 0.1587 0.0879 0.1885 0.1542
0.9, 0.999 0.0638 0.1663 0.1349 0.1718 0.2434 0.2098

0.9, 0.999 AdaBelief 0.0549 0.1583 0.1271 RMSprop (β1=0) 0.0597 0.1698 0.1459
0.9, 0.999 AdaShift 0.1687 0.2286 0.1958 AdaBound 0.0882 0.1707 0.1460
Custom Lion 0.0335 0.1090 0.0863 PIDAOSI 0.0441 0.1439 0.1100

and AdamW+NL3 yield an important result: although initially slower, as can be seen in the Fig.
9, they eventually attain the lowest validation and test MAE. This improvement can be attributed
to their retention of gradient magnitude, which enables more confident update steps, particularly
under diminishing learning rates. The results in Table 13 also confirm that our enhanced optimizers
consistently outperform the corresponding baselines within most of the groups, except for LAMB.

This experiment suggests the possibility of using smaller smoothing factors (βs) for our enhanced
Adam variants in training transformer architecture, which would be impossible without the replace-
ment of second raw moment in Adam variants with second central moment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 13: Molecular graph regression with graph transformers under cosine learning rate annealing
(smaller is better). Highlights are the best within each group, and the top first, second, and third.

(β1, β2) Optimizer MAE Optimizer MAE

Loss val test Loss val test

0.5, 0.5
AdamW+NL3

0.0268 0.1326 0.1051
Adam+NL3

0.0255 0.1313 0.1019
0.9, 0.9 0.0164 0.1142 0.0859 0.0166 0.1180 0.0834
0.9, 0.999 0.0175 0.1168 0.0912 0.0167 0.1161 0.0922
0.5, 0.5 AdamW+NL2 0.0351 0.1440 0.1108

Adam+NL2
0.0342 0.1437 0.1069

0.9, 0.9 0.0184 0.1258 0.0899 0.0183 0.1218 0.0912
0.9, 0.999 0.0190 0.1219 0.1015 0.0186 0.1209 0.0970
0.5, 0.5

AdamW+NL1
0.0429 0.1548 0.1170

Adam+NL1
0.0425 0.1527 0.1213

0.9, 0.9 0.0396 0.1499 0.1192 0.0456 0.1586 0.1182
0.9, 0.999 0.0504 0.1568 0.1226 0.0503 0.1588 0.1295
0.5, 0.5

AdamW+
0.0365 0.1509 0.1172

Adam+
0.0326 0.1444 0.1139

0.9, 0.9 0.0523 0.1596 0.1243 0.0534 0.1666 0.1265
0.9, 0.999 0.0579 0.1657 0.1276 0.0596 0.1678 0.1301
0.9, 0.999 AdamW 0.0543 0.1711 0.1316 Adam 0.0546 0.1703 0.1318

0.9, 0.999 LAMB+ 0.0179 0.1208 0.0914 LAMB 0.0179 0.1183 0.0891

0.5, 0.5
ADOPT+

0.0384 0.1476 0.1131
ADOPT

0.0484 0.1610 0.1256
0.9, 0.9 0.0534 0.1633 0.1297 0.0544 0.1654 0.1301
0.9, 0.999 0.0567 0.1651 0.1354 0.0582 0.1656 0.1329

0.9, 0.999 AMSGrad+ 0.0646 0.1656 0.1346 AMSGrad 0.0648 0.1733 0.1399

0.9, 0.999 AdaBelief 0.0559 0.1676 0.1313 RMSprop (β1=0) 0.0553 0.1564 0.1286
0.9, 0.999 AdaShift 0.1917 0.2435 0.2107 AdaBound 0.0402 0.1377 0.1157
Custom Lion 0.0140 0.1217 0.0891 PIDAOSI 0.0590 0.1598 0.1236

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

100 101 102 103

Epoch
10 2

10 1

100

lo
ss

opt
Adam
Adam+
AdamW
AdamW+NL3
Lamb

Lamb+
AdaBound
Lion
Adopt
Adopt+

beta2
0.999
0.9
0.5
Original

(a) Training loss

100 101 102 103

Epoch

10 1

100

va
l_m

ae

opt
Adam
Adam+
AdamW
AdamW+NL3
Lamb

Lamb+
AdaBound
Lion
Adopt
Adopt+

beta2
0.999
0.9
0.5
Original

(b) Mean Absolute Error, validation set

100 101 102 103

Epoch

10 1

100

te
st

_m
ae

opt
Adam
Adam+
AdamW
AdamW+NL3
Lamb

Lamb+
AdaBound
Lion
Adopt
Adopt+

beta2
0.999
0.9
0.5
Original

(c) Mean Absolute Error, test set

Figure 9: Molecular graph property regression with GPS graph transformer on ZINC dataset, with
cosine learning rate annealing: (a) Training loss MAE, (b) validation MAE, (c) test MAE. Notice that
the validation set has not been used for learning rate scheduling, hence is just another a test set.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G HYPERPARAMETERS AND TEST RESULTS FOR CARTPOLE-DQN

To illustrate the benefits of our enhanced Adam optimizers in reinforcement learning, we first evaluate
discrete control with DQN in the CartPole environment, with the hyperparameters listed in Table 14.
The training return over global steps of five selected optimizers are presented in Fig. 10 and the full
results of various optimizers and their parameter settings are listed in Table 10.

Table 14: Training hyperparameters for CartPole-v1 with DQN
Hyperparameter Value

Environment CartPole-v1
Algorithm Deep Q-Network (DQN) (Mnih et al., 2015)
Code base dqn.py in CleanRL (Huang et al., 2022)
Random seeds {20, 21, 22, 23, 24, 25, 26, 27, 28, 29}
Replay buffer size 5000
Batch size 128
Gamma (discount factor) 0.99
Learning rate 2.5× 10−4

Train start After 10,000 steps
Train freq Every 10 steps
Target network update freq Every 500 steps
Exploration schedule ϵ-greedy (linear decay from 1.0 to 0.05)
Exploration fraction 0.1 (50,000) steps
End exploration rate 0.05
Max global steps 500,000
Weight decay 1× 10−5

Loss function MSE

0 100 200 300 400 500
Global Step (x103)

0

100

200

300

400

500

re
tu

rn

Adam
Adam+ (Acc), = 0.001, = 0 dB
Adam+ (SNR lr), = 0
Adam+, = 0.001
AMSGrad

Figure 10: DQN with Cartpole-v1, average over 10 seeds (20-29), 95% confidence interval in
errorband

To evaluate the performance of different optimizers for training DQN in CartPole, we run a total
of 10 training trajectories under 10 different random seeds (20-29), and present the average return
under the 10 seeds over the number of environment interactions (global steps). This representation is
fair since global steps represents the actual computing time for training compared to the number of
episodes, since an episode may contain different numbers of steps due to early termination.

To accurately reflect the performance of DQN, we split the total 500,000 global steps into chunks of
1000 steps, and find the average return of each chunk for each seed. In Fig. 10, the average return and
its 95% confidence interval based on 10 different seeds are presented. In this way, we place equal
weights on different seeds in the averaging. This approach avoid over-representing failing cases that
would record small returns more frequently due to early termination of each episode.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 15: Performance of Optimizers (larger is better) for Cartpole DQN at β1 = 0.9, β2 = 0.999,
from the average of 10 runs (random seeds 20-29) and reported using two metrics: normalized area
under the curve (nAUC) and the normalized full score duration (nFSD). Highlights are the top first,
second, and third.

Optimizer Hyperparameters nAUC nFSD

Adam+ (SNR lr) σ = 0 0.8580 0.420
Adam+ σ = 0.001 0.8577 0.330
AdamW+NL1 σ = 0 0.8450 0.155
AdamW+ σ = 0.001 0.8367 0.200
Adam+NL1 σ = 0 0.8355 0.120
PIDAOSI (Chen et al., 2024) default 0.8344 0.354
AdaBeliefW 0.8335 0.145
ADOPT 0.8264 0.160
AdamW 0.8225 0.205
ADOPT+ σ = 0 0.8190 0.280
AMSGrad+ σ = 0 0.8166 0.230
Adam 0.8150 0.120
AMSGrad 0.8083 0.245
AdaBelief 0.7985 0.120
RMSProp (Tieleman & Hinton, 2012) 0.7899 0.146
Adam+NL2 σ = 0 0.7858 0.020
Adam+NL3 σ = 0 0.7585 0.010
LAMB+ σ = 0 0.6837 0.005
LAMB 0.6337 0.000
Lion (β2 = 0.99) default 0.4564 0.000
AdaShift (Zhou et al., 2019) 0.3760 0.000
AdaBound 0.0323 0.000
AdaGrad 0.0213 0.000

The five evaluated optimizers in Fig. 10 reach their initial convergence (reaching full return) during the
global step window between 155k to 200k global steps, however, due to disruptions from exploration
(0.05 end exploration rate), most of them experience drops in return after the initial convergence. This
instability can be attributed to a relatively high final exploration ratio of 0.05, which, while promoting
generalization, introduces increased variance in performance. Visually, it is evident that our enhanced
variants achieve faster convergence than AMSGrad and exhibit greater stability compared to Adam.

More specifically, the noise injection introduced in Adam+, σ = 0.001 allows for faster convergence
and higher returns compared to Adam. Adam+ (SNR lr), σ = 0, shows that adapting the learning
rate based on SNR results in smooth and consistent performance, showing one of the most stable
trajectories.

To further quantify the visual inspection, we consider two performance metrics, a normalized
Area Under Curve (nAUC), and normalized full score duration (nFSD), which measure the portion
of chunks with full score return. These quantitative results are partially listed in Table 10 and
comprehensively in Table 15 which contains more optimizers and hyperparameter combinations
for our enhanced optimizers. Adam+ (SNR lr), σ = 0 achieves the highest nAUC and nFSD,
demonstrating the benefit of SNR-adaptive learning rate. The Adam+ with noise injection, σ = 0.001,
achieves a very competitive performance and is ranked second in nAUC.

On the other hand, signed and logarithmic optimizers perform poorly, showing that reinforcement
learning depends on linear (or quadratic) optimizers for fast response. AdamW and LAMB also
perform poorly due to the small and shallow neural network architecture in this task.

H CONVERGENCE ANALYSIS ON A QUADRATIC FUNCTION

We study the behavior of Adam+ and AdaBelief on the one-dimensional stochastic quadratic model

min
θ∈R

J(θ) =
λ

2
(θ − θ⋆)2, λ > 0, (13)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

with stochastic gradients

gt = λ(θt − θ⋆) + ξt, ξt ∼ N (0, σ2) i.i.d. (14)

We analyze the asymptotic behavior of the optimizer near the optimum θ⋆. In this regime, the gradient
is dominated by the stochastic noise, i.e., gt ≈ ξt where ξt ∼ N (0, σ2) (Balles & Hennig, 2018).
Since the input to the second-moment estimator is effectively i.i.d., the estimator vt converges to a
stationary distribution.

Furthermore, to isolate the effect of vt (the distinct feature of Adam+ and AdaBelief), we abstract
away the effect of the first-order moment. We approximate mt ≈ gt, treating the numerator as an
unfiltered gradient. Consequently, both optimizers reduce to the simplified update rule

θt+1 = θt − α
gt√
vt
. (15)

We omit the bias-correction terms as is often done in the related work Zhuang et al. (2020).

Define the error xt = θt − θ⋆. With that (15) becomes

xt+1 =

(
1− λα
√
vt

)
xt − α

ξt√
vt
. (16)

To derive the convergence rate, we employ a mean-field approximation, replacing the random variable
vt with its steady-state expectation E [vt]. This approximation assumes that the fluctuations of vt
around its mean are negligible compared to the dynamics of the parameter θt, a standard simplification
in the analysis of adaptive moment estimation (Balles & Hennig, 2018; Défossez et al., 2022).

Under this assumption, vt is treated as a constant scalar E [vt], simplifying (16) to the stochastic
linear recursion

xt+1 = ρ xt − η ξt, ρ := 1− λα√
E [vt]

, η :=
α√
E [vt]

. (17)

Since ξt has zero mean and is independent of xt, the mean error satisfies

E [xt+1] = ρE [xt] , (18)

so the mean converges whenever |ρ| < 1.

An optimizer will converge to the error ball of a radius given by the variance of the error xt. This
yields

Var[xt+1] = ρ2 Var[xt] + η2 Var[ξt] = ρ2 Var[xt] +
α2

E [vt]
σ2, (19)

due to the mean-field approximation of vt, and the i.i.d. assumption of the gradient noise.

For |ρ| < 1, the steady-state variance is given by

Var[x∞] := lim
t→∞

Var[xt] =
α2σ2

E [vt] (1− ρ2)
. (20)

All optimizer-dependent behavior now arises from the stationary scale E [vt].

The second central moment vt is constructed from the centered quantity gt − wt, where wt is an
exponential moving average with parameter β, such that β = β1 for AdaBelief and β = β2 for
Adam+

wt = βwt−1 + (1− β)gt (21)

vt = βvt−1 + (1− β)(wt − gt)2. (22)

Then the mean-field approximation equals

E [vt] = E
[
βvt−1 + (1− β)(gt − wt)

2
]

(23)

= βE [vt−1] + E
[
(gt − wt)

2
]
− βE

[
(gt − wt)

2
]

(24)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

At the steady-state, E [vt−1] = E [vt]. Then based on Lemma H.1 we obtain

E [vt] = E
[
(gt − wt)

2
]
=

2β2

1 + β
σ2. (25)

Substituting (25) into (20) gives

Var[x∞] =
α2

1− ρ2
1 + β

2β2
(26)

ρ = 1− λα
√
1 + β√
2βσ

. (27)

By plugging (27) into (26) and assuming sufficiently small α such that we can ignore second-order
terms arising in ρ2 we get

Var[x∞] =
α2

1− ρ2
1 + β

2β2
≈ ασ

√
1 + β

2
√
2λβ

. (28)

This expression quantifies the trade-off between AdaBelief (β = β1) and Adam+ (β = β2): for the
default choice β1 < β2,

• the contraction factor |ρ| is smaller for AdaBelief, giving faster convergence
• the variance of the steady-state error is a monotonically decreasing function in β. It is

smaller for Adam+, giving smaller steady-state error.

This captures the fundamental trade-off: AdaBelief converges faster but to a noisier solution, while
Adam+ converges more slowly, but to a more accurate one due to a more faithful estimation of the
gradient signal-to-noise ratio.
Lemma H.1 (Steady-state variance estimate). Under the model (14) and the EMA definition (21),
and assuming stationarity of wt, we have

E [vt] = E
[
(gt − wt)

2
]
=

2β2

1 + β
σ2. (29)

Proof. From (14) we can write
gt = ḡ + ξt.

Taking expectations in (21) and using linearity,

E [wt] = βE [wt−1] + (1− β)E [gt] .

In steady state, E [wt] = E [wt−1] =: w̄, and E [gt] = ḡ, so

w̄ = βw̄ + (1− β)ḡ ⇒ w̄ = ḡ.

Thus, we can decompose
wt = ḡ + zt,

where zt is a zero-mean random process capturing the EMA of the noise. In particular,

gt − wt = (ḡ + ξt)− (ḡ + zt) = ξt − zt. (30)

Then using the decomposition in (21),

wt = βwt−1 + (1− β)ḡ + (1− β)ξt,
and hence

zt = wt − ḡ = β(wt−1 − ḡ) + (1− β)ξt = βzt−1 + (1− β)ξt.
Since ξt is independent of zt−1 and has zero mean, the variance of zt satisfies

Var[zt] = β2 Var[zt−1] + (1− β)2 Var[ξt] = β2 Var[zt−1] + (1− β)2σ2.

At stationarity, Var[zt] = Var[zt−1], giving

Var[zt] =
1− β
1 + β

σ2.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Since wt = ḡ + zt, we also have Var[wt] = Var[zt].

From (21) we have
gt − wt = gt −

(
βwt−1 + (1− β)gt

)
= β(gt − wt−1),

and using (30) yields
E
[
(gt − wt)

2
]
= β2E

[
(gt − wt−1)

2
]
= β2 E

[
(ξt − zt−1)

2
]
= β2

(
σ2 + E

[
z2t−1

])
,

using independence of ξt and zt−1. At stationarity E
[
z2t−1

]
= E

[
z2t
]
= Var[zt], so

E
[
(gt − wt)

2
]
= β2

(
σ2 +Var[zt]

)
=

2β2

1 + β
σ2,

which is the desired expression.

Comparison with standard Adam. Finally, we compare the convergence behavior with standard
Adam. Unlike Adam+ and AdaBelief, standard Adam uses an uncentered second moment estimator
vt. Under the mean-field approximation in the quadratic regime, the expected second moment for
Adam is

E
[
vAdam
t

]
≈ E

[
g2t
]
= Var[gt] + (E [gt])

2 = σ2 + λ2E [xt]
2
. (31)

Comparing this to the Adam+ estimator (E [vt] ≈ σ2), we observe that

E
[
vAdam
t

]
> E [vt] whenever E [xt] ̸= 0. (32)

The spectral radius ρ (27) that governs the convergence is given by

ρ = 1− λα 1√
E [vt]

. (33)

Since the denominator for Adam is larger, the effective step size is smaller, resulting in a spectral
radius closer to 1 (slower convergence). This result indicates that standard Adam dampens the useful
gradient signal that unnecessarily slowing down the optimization process. Based on SNR-centering,
Adam+ maintains a lower spectral radius that is a function only of the noise level.

To further support our derivations, we evaluate the convergence behavior of Adam+ and AdaBelief
on the Rosenbrock function. The result is shown in the Fig. 11. While AdaBelief exhibits faster
initial descent, Adam+ demonstrates lower final loss. Specifically, Adam+ converges closer to the
global optimum and maintains a smaller oscillation radius (steady-state variance) around the optimal
point compared to AdaBelief. This confirms our theoretical result that the additional state wt enables
convergence to a smaller steady-state error ball.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.01.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Rosenbrock function, AdaBelief with lr=0.1
Optimization path
Global minimum
Final point

(a) AdaBelief
2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.01.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Rosenbrock function, Adam+ with lr=0.1
Optimization path
Global minimum
Final point

(b) Adam+

Figure 11: Convergence on the Rosenbrock function. Although AdaBelief achieves faster early-stage conver-
gence, Adam+ ultimately reaches a lower loss value and settles into a tighter error bound around the optimum.
This aligns with our theoretical analysis.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

I HYPERPARAMETERS SAC IN MUJOCO ENVIRONMENTS

The hyperparameters and the results for SAC in the MuJoCo environment are given in Table 16.

Table 16: Training hyperparameters for SAC in MuJoCo environments
Hyperparameter Value

Environment Hopper-v5, HalfCheetah-v5, Humanoid-v5
Algorithm Soft Actor-Critic (SAC) (Haarnoja et al., 2018) (Spinning Up)
Code base sac_continuous_action.py in CleanRL (Huang et al., 2022)
Random seed 1
num_envs 1
Replay buffer size 106

Batch size 256
Gamma 0.99
Tau 0.005
Alpha 0.2
Autotune True
Learning rate 3× 10−4 (for both policy and target networks)
Train start After 10,000 steps
Policy network train freq Every 1 step
Target network update freq Every 1 step
Max global steps {1× 106, 3× 106, 3× 106}
Weight decay 0 (none)

J ABLATION: DISENTANGLING THE NOISE INJECTION EFFECT

To understand whether the noise injection effect is complementary or orthogonal to SNR-centering,
we conducted an ablation in which we added the noise of σ ≈ 0.03 (−50dB) and σ = 0.01 (−60dB)
to both Adam and Adam+ when training an RL agent on the Hopper-v5 environment. The hyperpa-
rameters are given in the Table 16. The results averaged over 3 seeds are shown in Fig. 12. Three
observations are in order: first, for the noiseless case, there is a clear effect of SNR-centering resulting
in a higher return of Adam+ compared to vanilla Adam. Second, the noise injection of σ ≈ 0.03
improves the return of Adam+ toward the end of the training. For the same σ, Adam also exhibits a
performance boost at the final training steps. For a lower noise level of σ = 0.01, both optimizers
experience a performance drop. This indicates that for the considered setting, the noise injection
effect is orthogonal to SNR-centering, i.e., Adam can also benefit from it, and it should be treated as
a hyperparameter that encourages exploration, achieving an effect similar to that of ϵ-greedy.

0.0 0.2 0.4 0.6 0.8 1.0
Global steps (millions)

0

500

1000

1500

2000

2500

3000

3500

re
tu

rn

Adam
Adam (0.03)
Adam (= 0.01)
Adam+
Adam+ (0.03)
Adam+ (= 0.01)

Figure 12: Noise injection effect on Adam and Adam+ optimizers for different levels of noise σ in
Hopper-v5 environment.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

J.1 USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as a writing assistant during the preparation of this manuscript. Specifically, it was
employed to (i) improve the clarity and fluency of text passages, (ii) suggest alternative phrasings,
and (iii) help structure certain sections.

30

	Introduction
	Adam optimizer from an information theoretical perspective
	Generic framework for optimization algorithms
	SNR-based reinterpretation of Adam-like updates

	Adam+: Adam with centered second order moment
	Numerical Results
	Reinforcement learning
	Sequence modeling problems
	Rastrigin test optimization function
	Molecular graph regression

	Related work
	Conclusion
	Proposed SNR-based modifications to gradient scaling function t
	Gradient SNR in CIFAR10-ResNet18 and CartPole-DQN
	Experimental setups and hyperparameters for evaluated pipelines
	Additional results on image classification and RL control
	Image classification

	Extended results for the tasks in Table 8
	Hyperparametes and test results for graph transformer on ZINC dataset
	Hyperparameters and test results for CartPole-DQN
	Convergence analysis on a quadratic function
	Hyperparameters SAC in MuJoCo environments
	Ablation: disentangling the noise injection effect
	Use of Large Language Models (LLMs)

