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ABSTRACT

The Adam optimizer remains the default choice in deep learning, offering reliable
performance across diverse architectures and tasks. In this work, we reinter-
pret Adam from a signal-processing perspective—viewing its gradient update as
a momentum estimate normalized by noise amplitude—and propose a simple
modification: replacing the second raw moment with the second central moment
(variance). We show that centering provides a more accurate estimate of noise am-
plitude, allowing the optimizer to normalize the impact of gradient noise uniformly
across the loss landscape and to dynamically scale momentum elements accord-
ing to their signal-to-noise ratio. Empirically, this modification yields consistent
performance gains over Adam and its variants across multiple learning paradigms
and neural network architectures, including reinforcement learning and sequence
modeling. Notably, on reinforcement learning benchmarks such as MuJoCo, our
centered variant called “Adam+" achieves faster convergence and improved stabil-
ity compared to Adam, which remains the gold standard in settings characterized
by non-stationarity and the absence of reliable learning rate schedules.

1 INTRODUCTION

Adam (Kingma & Ba,[2015) is the de facto default optimization algorithm for modern deep learning.
Its success is largely attributed to the combination of momentum (Rumelhart et al., [1986) with
adaptive learning rates (Duchi et al.l 2011} |Tieleman & Hintonl 2012), yielding a robust and memory-
efficient method with fast convergence in many deep learning applications. For a parameter 6;,
learning rate o, bias-corrected first- and second order gradient moments m; and v; and a numerical
stability constant e, its update rule at iteration ¢ is given by

0t+1 < Ht — atmt/(\/EJr 6). (1)

Many variants of the Adam optimizer have been developed primarily within supervised learning
contexts, particularly image classification, to enhance the generalization performance of adaptive
gradient methods (Wilson et al., 2017). To mitigate the adverse effects of extreme and unstable
per-element learning rate scaling in Adam, AMSGrad (Reddi et al.| 2018) and AdaBound (Luo
et al., 2019) limit the scaling factor of the learning rate (,/v; + €)' in (I). To mitigate the adverse
correlation between m; and v; in Adam, AdaShift (Zhou et al., 2019) uses delayed gradients for
estimating v;, while ADOPT (Taniguchi et al.| |2024) reduces this correlation by reordering the
updates of m; and v;. Other notable enhancements include decoupled weight decay introduced in
AdamW (Loshchilov & Hutter, [2019), and layer-wise learning rate scaling in LAMB (You et al.,
2020) to address the exploding/vanishing gradient problem in very deep architectures.

We revisit Adam from the standpoint of gradient signal-to-noise ratio (SNR). In mini-batch SGD
(Robbins & Monrol [1951), gradient estimates contain both signal and noise components, yet most
adaptive optimizers—including Adam—use the raw second moment v; for scaling, conflating variance
with mean magnitude. We reinterpret Adam’s update (I)) as normalizing momentum m, by an estimate
of noise amplitude. From this perspective, Adam can be viewed as approximately scaling updates by
SNR, though with estimation error due to its reliance on the raw second moment.

This reinterpretation naturally aligns with earlier work on RMSProp (Tieleman & Hintonl [2012]).
RMSProp stabilized Adagrad (Duchi et al.| 2011) by using an exponential moving average of squared
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In Adam+, each update is normalized by the noise
standard deviation, ensuring that updates get smaller
as the relative noise level increases in later stages.

gradients. A centered variant (Graves, 2013) further subtracted the squared mean gradient. Our
work can be seen as bringing this centering principle into Adam’s framework. By replacing the raw
second moment with the central second moment (variance), we obtain updates directly proportional
to gradient SNR. This modification, which we denote Adam+, inherits the efficiency of Adam while
improving robustness across diverse and non-stationary settings such as reinforcement learning.

Contributions:

* We reinterpret Adam’s update rule through the lens of gradient signal-to-noise ratio (SNR), offering
a new insight into its behavior.

* Motivated by this SNR-perspective, we introduce a principled enhancement to Adam and Adam-
type optimizers by replacing the second raw moment with the central second moment (the variance).
The centering of the second raw moment brings consistent improvement across a range of sequential
modeling tasks.

* We demonstrate the effectiveness of our approach through extensive empirical evaluations across a
range of tasks exhibiting diverse gradient dynamics and optimization algorithms extending beyond
Adam-type methods.

2 ADAM OPTIMIZER FROM AN INFORMATION THEORETICAL PERSPECTIVE

2.1 GENERIC FRAMEWORK FOR OPTIMIZATION ALGORITHMS

Many adaptive optimizers have a unified structure outlined in Algorithm|I] This generic framework
(Reddi et al.,|2018} [Luo et al.l 2019) provides a useful lens through which similarities and differences
between various algorithms can be analyzed.

In this formulation, g, is a stochastic gradient sample of the loss function J; evaluated at time step
t. The variables ; and «; represent learnable parameters and learning rates, respectively. The
functions ¢; and vy denote the update rules for the first- and second-order gradient moment estimates,
respectively. Often, they incorporate exponential moving averages and bias-correction terms. The
function (; performs normalization and scaling of the gradient moments, and may optionally include
additional mechanisms such as decoupled weight decay (Loshchilov & Hutter, 2019). To illustrate
how specific optimizers fit into this general framework, we instantiate the ¢, 1;, and (; components
for the Adam algorithm (Kingma & Bal [2015)) in TableE} This shows how Adam performs moment
estimation and adaptive per-parameter learning rate scaling.
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2.2  SNR-BASED REINTERPRETATION OF ADAM-LIKE UPDATES

In the popular mini-batch stochastic gradient descent, the gradient sample can be modeled as
gt = Gt + Ny, 2

where g is the true gradient at time ¢ and n, is a zero-mean random noise. In a stationary setting, i.e.,
the distributions of g; and n; are time-invariant, the mean and variance of sample g; are respectively
the unbiased estimates of the true gradient and noise power,

gt =Elg], E[nj] = Var[g)] = E[(g: — Et[g4])?] - )

The expected mean and variance can be sampled and estimated, e.g., via a simple moving average
(SMA) window. The setting of gradient descent is typically semi-stationary due to slowly changing
parameters of neural networks 6;. In this case, one can replace simple moving average of a window
with exponential moving average (EMA), to weigh on recent samples and save memory space for
storing gradient samples via the following recursive form, where 0 < 5 < 1:

g = wy = Pwi—1 + (1 — By, E[nf] ~u = Po1+ (1 - B8) (g — wt)2 . @

By normalizing the gradient sample g, or its momentum m, with the standard deviation of noise
n. in a given local environment, we ensure each step of parameter update ; contains the same
amount of noise across the entire loss landscape. In the minimal example illustrated in Fig.[I] with
two points at ¢; early stage and ¢- late stage of stochastic gradient descent, the raw noisy gradient
samples are indicated by dotted arrows, and the noise standard deviation is illustrated by light blue
oval shapes. The element-wise normalization changes both the amplitude and direction of both 7,
and 2, leading to larger steps in regions with clear gradient, such as early stage of training, and
smaller steps in regions that are more noisy, such as flat basin near the optimal point. This behavior is
desirable and can accelerate convergence by adjusting the step size based on element-wise gradient
SNR, estimated as w? /v;.

In Adam, the second raw moment v; computed in Table[T|can be interpreted as a biased estimation of
the variance in (@), i.e., E [gﬂ = Var[g;] + E [gt]z. However, as pointed out in (Zhou et al., 2019),
the correlation between E [gﬂ and E [¢;] can bring adverse effects, in particular, in regions with
strong gradient signal, e.g., when E [g;] is large, the overestimated noise power can overly attenuate
high-quality g; or m; with large SNR, causing unnecessary slowdown. In dynamic and non-stationary
environments like RL, where the errors compound, this could significantly slow down the training
process. Centering the second moment, i.e., normalizing updates with the variance of the gradients
Var[g;] = E[g?] — E[g:]?, helps to reduce the slowdown that occurs in regions with a strong gradient
signal. Indeed, centering has shown improvements in RMSProp (Graves, |2013)). However, Adam and
its descendants inherit the uncentered formulation of RMSProp, and thus the same limitation. Here
we present a centered Adam (which we term Adam+) that provides a natural and largely unexplored
complement to the Adam family.

When the second raw or central moment becomes very small, the scaling factor (; may produce overly
large effective learning rates, causing instability (Luo et al.,2019). Raw moments tend to overestimate
variance, yielding smaller and more stable steps, particularly late in training. In contrast, central
moments provide a more accurate SNR estimate but are more sensitive in low-variance regimes.
This instability can be alleviated by maintaining a noise floor € as is done in Adam and Adam-type
optimizers.

3 ADAM+: ADAM WITH CENTERED SECOND ORDER MOMENT
Based on the generic framework in Algorithm [I] and signal processing interpretation of Adam in
section we propose to modify the function wtﬂ

We propose two key modifications to the core function of Adam-like optimizers v in Table|l| First,
we propose replacing the second raw moment with the second central moment in 1),

wy = PBowy—1 + (1 - 52)9t, vy = Bave_1 + (1 - Bz)(gt - wt)2 . (%)

! Additionally, two proposed non-linear scaling functions for (¢, tailored for supervised learning, are described
in the Appendix due to space constraints.
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Algorithm 2 Adam+ (modifications with respect to Adam in blue)
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Notice that in (3)), both w; and v; are based on the same 5, making our approach distinct from a
structurally similar update rule in AdaBelief (Zhuang et al.|2020). In AdaBelief, v; = Savy—1 + (1 —
B2)(g+ — m¢)?, and the 1/,/v; is interpreted as a "belief", where m; is based on the ¢, in Table
which uses (3 as the smoothing factor of EMA. While this formulation shares the use of a central
moment, its interpretation differs fundamentally from the SNR perspective presented in this work.
Our approach introduces a slow momentum w; for computing the second central moment, faithfully
following the EMA approximations of signal and noise power in (@).

Second, we add noise injection &; to the gradient sample as a regularization to reduce the correlation
between the fast momentum m; and the estimation of the noise standard deviation /v;.

We denote Adam with these two modifications as Adam+, of which the pseudo code is detailed in
Algorithm 2] with our modifications highlighted in blue.

Notice that these key modifications introduced by (), (including those in the Appendix: (6) and (7))
are also applicable to other Adam-like algorithms, such as AMSGrad, ADOPT, AdamW, and LAMB.

4 NUMERICAL RESULTS

To demonstrate that replacing the second raw moment with the variance consistently yields perfor-
mance gains over the baseline optimizers, we evaluate modified and baseline optimizers on ML tasks
that span diverse model architectures, problems, and gradient regimes.

4.1 REINFORCEMENT LEARNING

We benchmark the performance of Adam+, with and without noise injection (NI), against the standard
Adam optimizer across three MuJoCo environments. Notice that we have used the same set of tuned
hyperparameters (Haarnoja et al.| 2018; [Raffin| [2020) for all simulations. The continuous control
tasks feature unbounded return, making them particularly well-suited for evaluating the advantages
of improved gradient signal-to-noise handling.

The Fig. 2(a)]demonstrates more stable, faster convergence, and higher final performance of Adam+
with and without noise injection over Adam. This indicates that in moderately difficult environments,
such as HalfCheetah, the variance normalization helps stabilize early training, and noise injection

2Source code and data: https://github.com/researcherAdamPlus/AdamPlus

3All experiments were conducted on a workstation equipped with an AMD Ryzen Threadripper 2970WX
24-core processor (48 threads), 96 GB of RAM, and two NVIDIA GeForce RTX 2080 Ti GPUs. To generate
a single representative figure for each task, the computational time was approximately 10 hours for image
classification (using either MLP or CNN) and CartPole, 20 hours for the ZINC GT experiment, and 36 hours for
training a single agent in the MuJoCo environment.
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Figure 2: Performance of Adam and Adam+ on MuJoCo and Atari environments. (a) HalfCheetah-v5,
(b) Humanoid-v5, (c) Qbert, (d) Seaquest.

may be neutral or slightly detrimental, as excessive randomness can interfere with stable learning
once a good policy is found.

Fig. [2(b) highlights the importance of noise injection. For the difficult problem of Humanoid, Adam+
with NI exhibits much faster learning and higher final returns. Adam+ (no NI) performs better than
Adam, but lags behind Adam+. This behavior indicates that gradient noise injection provides strong
exploration incentives, helping avoid local minima and supporting long-term credit assignment. The
combination of variance-aware updates and noise leads to better robustness and learning efficiency.

In addition, we evaluate the performance of our modification on Seaquest and Qbert Atari games
solved with DQN. Similar to the continuous control, these games were chosen due to their practically
unlimited rewards, which guide the optimizer toward policy improvement. We averaged the results
over 5 random seeds. Figs. 2(c)]and demonstrate that Adam+ consistently outperforms Adam
in both convergence speed and final return. In particular, Adam+ reaches high-return regimes
significantly earlier, demonstrating improved sample efficiency. For example, in the Seaquest
environment, Adam+ attains near-saturated returns after ~4M steps, whereas Adam requires almost
twice as many interactions to approach a similar level. This is consistent with our interpretation: by
normalizing updates with a more accurate noise variance estimate, Adam+ avoids over-attenuation of
strong gradient signals, enabling faster policy improvement.

4.2 SEQUENCE MODELING PROBLEMS

Centered RMSProp (Graves, 2013} |Ida et al.,|2016) tends to perform better on sequence modeling
problems compared to its uncentered counterpart. In this subsection, we demonstrate that the centering
of Adam has a similar effect. AdaBelief (Zhuang et al.|[2020) made an important step in this direction.
Building on that, we show that AdaBelief’s result can be advanced by ensuring that the variance is
estimated with the reference mean of the same window length 5. In addition, we demonstrate the
performance of our extensions on larger models, such as nanoGPT (Karpathy, [2022)) and crammed
BERT (Geiping & Goldstein, 2023)).

LSTM on language modeling. We benchmark Adam+ against AdaBelief on the Penn Treebank (Mar
cus et al.,[1993) language modeling task. For this experiment, we directly reused the publicly released
AdaBelief’s implementation of this experiment. We reused the learning rate of 0.01 with e = 10712
and the remaining hyperparameters as in their implementation.

We trained 1-, 2-, and 3-layer LSTMs, averaging results over 5 seeds. Figure[3(a)] shows the training
trajectory for the 1-layer LSTM; the curves for deeper networks are qualitatively similar. Table[2]
summarizes the best training and validation perplexities. Importantly, AdaBelief (Zhuang et al.|[2020)
has already been shown to outperform several widely used optimizers under the same settings. Since
Adam+ achieves better results than AdaBelief with no additional tuning, it follows that Adam+ also
surpasses those baselines.

Notice that since AdaBelief estimates the noise variance v; around mg, its estimate of Var(g;) is
generally less accurate compared to our case. By contrast, we center v; around a reference mean
within a window of the same length w, yielding a more reliable estimate. Consequently, our optimizer
achieves consistently lower perplexity across different numbers of LSTM layers.
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Table 2: Perplexity (lower is better) of Adam+ and AdaBelief on Penn Treebank dataset.

Training Validation

Optimizer
1 Layer 2Layers 3 Layers | 1 Layer 2 Layers 3 Layers

AdaBelief | 60.86 45.60 37.14 81.52 66.81 61.33
Adam+ 59.99 44.87 36.62 81.22 66.33 61.08
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Figure 3: Consistent gain from second moment centering on sequence modeling problems.

nanoGPT. We next evaluate the impact of noise centering on nanoGPT (Karpathyl 2022). The
experiment is conducted using the default hyperparameters provided in Karpathy| (2022). This ensures
that any observed improvements are attributable to the optimization mechanism itself, rather than
to parameter search. We compare AdamW (Loshchilov & Hutter, | 2019) with AdamW+, averaging
results over two random seeds. AdamW+ is an optimization algorithm obtained by incorporating
the second moment centering from Algorithm [2]into the baseline method of AdamW (Loshchilov &
Hutter, [2019).

The outcomes are summarized in Fig. 3(b)] Training with AdamW exhibits instability, with validation
loss diverging—an issue also documented in the nanoGPT repository (Karpathyl 2022) and in
Taniguchi et al.| (2024). In contrast, AdamW+ stabilizes training by centering the second raw moment
and further achieves consistently lower validation loss relative to AdamW across seeds. As shown in
the Fig higher stability and lower loss come at the cost of slightly larger runtime due to the extra
parameter w;.

Crammed BERT. We evaluate the performance of our proposed modifications on fine-tuning
BERT (Devlin et al., [2019), following a methodology from |Geiping & Goldstein| (2023). The model
is pretrained with a standard AdamW (Loshchilov & Hutter, |2019) optimizer and is fine-tuned for
5 epochs on a range of downstream tasks given by the GLUE benchmark (Wang et al., [2018). As
before, we reuse the tuned hyperparameters from AdamW (Geiping & Goldstein, 2023) and apply
them to AdamW+. All results are averaged over five random seeds and reported in Table 3]

Table 3: GLUE benchmark results for crammed BERT averaged over 5 seeds.
GLUE CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
A-Mean H-Mean | Matthews Acc Acc (extra) Acc F1 Acc Acc F1 Acc Acc Pearson  Spearman

AdamW 0.8043  0.7680 0.5024 | 0.8498 0.8526 0.8252  0.8826 | 0.9092 | 0.9082 0.8772 | 0.5608 | 0.9323 | 0.8713 0.8675
AdamW+ | 0.8061 0.7712 0.5139 | 0.8484 0.8522 0.8415  0.8926 | 0.9076 | 0.9080 0.8769 | 0.5602 | 0.9316 | 0.8719 0.8679

Optimizer

The arithmetic and harmonic means (A-Mean and H-Mean) indicate that AdamW+ achieves higher
performance than AdamW on average across tasks in the GLUE benchmark. Notice that on CoLA
and MRPC, AdamW+ brings improvements of at least one percent in Matthew’s correlation, accuracy,
and F1 score. These cases are bolded in the table. In contrast, for the specific cases where AdamW
outperforms AdamW+, the margins are much smaller (strictly less than one percent).
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Figure 4: Convergence of the proposed Adam extensions on the Rastrigin optimization function for different
levels of gradient noise o.

4.3 RASTRIGIN TEST OPTIMIZATION FUNCTION

We evaluate how different optimizers converge to the optimum in a simple two-dimensional setting
given by the Rastrigin test optimization function [1974). This setup allows us to compare
the convergence speed and the stability of different optimizers on the same loss landscape. We
perform a hyperparameter search using the Tree-structured Parzen estimator (TPE)
for each random seed: decay factors are sampled uniformly from the range [0.5,0.999], and the
learning rates are drawn from a log-uniform distribution over the interval [e =%, ¢°-5]. The number of
TPE steps is capped at 500.

To mimic the effect of stochastic data sampling, Gaussian noise £ ~ N(0,0?) is added to the
gradients at each iteration, resulting in stochastic optimization trajectories. For statistical significance,
we compute 5 trajectories per seed, repeating the procedure over 3 random seeds. We then sample
distances to the optimum at selected checkpoints and visualize the distributions using box plots.

The results in Fig. ] show that Adam+ consistently converges closer to the optimum across all noise
regimes, from deterministic gradients (o = 0) to high-noise settings (¢ = 10~2). Unlike Adam and
AdaBelief, which frequently converge to local minima, Adam+ maintains steady progress toward
the global optimum. Moreover, its variance across trials is much smaller (notice the logarithmic
scaling of the y-axis), indicating improved robustness to both hyperparameter choices and stochastic
perturbations. AdaBound shows partial improvements over Adam but still suffers from wider
variability and poorer convergence under higher noise.

These findings highlight two points: (i) centering the second moment reduces the tendency of Adam to
over-dampen high-SNR gradients, enabling faster escape from local minima, and (ii) the SNR-based
formulation underlying Adam+ provides resilience to injected gradient noise, making its behavior
more stable and predictable than other Adam extensions.

4.4 MOLECULAR GRAPH REGRESSION

Lastly, we apply our centering extension to a number of different optimizers, where the ‘+’ notation
is used to indicate that we incorporate the second moment centering from Algorithm [2] into the
baseline method. E.g., LAMB+ corresponds to a centering of the second moment in the baseline
algorithm of LAMB 2020). We consider the ZINC dataset, comprising approximately
250, 000 molecular graphs with up to 38 atoms (nodes) each, to train the GPS graph transformer
(GT) (Rampasek et al[2022)). The task is to regress the continuous molecular properties from the
graph structure. The hyperparameters are the same as the original codebaseﬂ except that we adopt
constant learning rates as listed in Table 9]

Figs.[TI(a)]and [T1(b)| depict the performance difference in the training and validation mean absolute
error (MAE) over the course of the training across a range of 35 values. The key observation is
that smaller values of 32 amplify the gains of the enhanced optimizers. This trend supports the

4https ://github.com/pyg-team/pytorch_geometric/blob/master/examples/
graph_gps.py


https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
https://github.com/pyg-team/pytorch_geometric/blob/master/examples/graph_gps.py
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Figure 5: Performance difference of the modified and baseline optimizers in supervised learning. Molecular
graph regression: (a) training loss and (b) validation MAE.

idea that the variance-based moment estimate is more accurate and responsive to recent gradient
changes. Adam+, AMSGrad+, and AdamW+ exhibit notable improvements relative to their baselines,
which are especially pronounced for lower 8o = 0.5. In particular, AMSGrad+ demonstrates
substantially faster convergence in the early stages, leading to superior validation MAE in the first
half of the training. ADOPT+ also achieves measurable gains, though somewhat smaller, which may
be attributed to potential interactions between its moment reordering strategy and the variance-based
scaling. In contrast, LAMB+ shows only modest improvements. This is likely due to its trust ratio
mechanism, which already stabilizes update magnitudes across layers, reducing the marginal benefit
from further normalization via improved noise estimation. More extensive simulation results are
summarized in the Tables 8] [9] and[I0]in the Appendix.

5 RELATED WORK

Despite its popularity, Adam has undergone several refinements aimed at improving its stability
and performance. A notable example is AMSGrad (Reddi et all 2018), which modifies Adam
by maintaining the maximum v; observed so far. Even though this adjustment can lead to overly
conservative updates and slower training due to the non-decreasing nature of vy, it has nonetheless
inspired a line of research focused on rethinking the mechanisms underlying adaptive optimization.

Luo et al.|(2019) argues that the extreme and unstable per-parameter learning rates of Adam contribute
to poor generalization (Wilson et al.,|2017)). In contrast, stochastic gradient descent (SGD) (Robbins
& Monrol [1951)), though slower to converge, often generalizes better (Luo et al., 2019). To combine
the benefits of both methods, the authors proposed AdaBound, an optimizer that constrains the
adaptive learning rate within dynamic bounds that gradually tighten toward a fixed target value. This
design aims to combine Adam’s fast convergence in early training with the generalization benefits of
SGD in later stages. Although AdaBound provides a promising trade-off between the adaptability of
Adam and the stability of SGD, it requires manual tuning of the bound decay rates. Moreover, the
constant terminal learning rate may become suboptimal in non-stationary environments.

AdaBelief (Zhuang et al.| |2020) replaces Adam’s second moment v; by the "belief" in the gradient
direction my, s; = fBas¢_1 + (1 — Ba2)(gs — my)?. Larger "belief" results in a larger per-parameter
learning rate. However, this formulation introduces a temporally misaligned update ratio m./( /s +
€), as my and s; are estimated using different decay factors. Moreover, the notion of “belief” lacks a
precise interpretation, limiting its theoretical grounding and connections to related concepts.

Centered RMSProp (Graves|, 2013; Ida et al.,[2016) uses a temporally aligned update ratio. Specif-
ically, the parameters are updated based on the momentum of rescaled gradients g;/(\/v; — g7).
However, this method has two downsides: it relies on the gradient direction given by gy, which is
generally less aligned with the true gradient compared to my, and it lacks bias correction, which can
compromise stability in the early stages of training.
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Based on the observation that the correlation between g, and v; impairs convergence, Zhou et al.
(2019) introduce AdaShift: an optimization algorithm which computes m; from the most recent n
gradients, while estimating v; from a lagged gradient g;_,,. Although this strategy effectively breaks
the correlation (see Theorem 5 in (Zhou et al.;|2019)), it is likely to underperform in non-stationary
environments, where the gradient dynamics shift over time.

ADOPT (Taniguchi et al., 2024) achieves the same decorrelation effect by excluding g; from the
second moment estimate. Furthermore, the authors identify that Adam-style momentum contributes
to convergence issues and address this by reordering the updates of m; and v;. They prove the
convergence to a stationary point for any decay rate factor fs.

Recent works extend adaptive methods through multi-scale history or geometric structure. AdaE-
MAMix (Pagliardini et al.| |2025) stabilizes trajectories using mixtures of fast and slow EMAs. For
large-scale pre-training, SOAP (Vyas et al.| 2025)), Muon (Jordan et al.), and Scion (Pethick et al.|
2025)) leverage structured preconditioning or tensor orthogonalization to optimize update directions.
By contrast, Adam+ maintains the computational efficiency of element-wise updates. Instead of
altering the update geometry, Adam+ refines the magnitude of the gradient descent steps by correcting
the raw second-order moment estimate via SNR-based centering. This offers a general-purpose
improvement without architectural constraints.

Most existing adaptive gradient methods — including Adam and its predecessors Adagrad (Duchi
et al., 201 1) and uncentered RMSprop (Tieleman & Hinton| 2012)) — share a common limitation: they
rely on some form of the second raw moment of the gradient, v;, to adjust the learning rate. As we
illustrated throughout the paper, this reliance restricts their ability to generalize across a wide range
of problems, particularly in non-stationary environments, such as RL, where continuous adaptation
of the learning rate is critical.

6 CONCLUSION

In this work, we interpret the Adam optimization algorithm from the signal-to-noise ratio perspective.
This perspective motivates us to replace the raw second moment with the central second moment,
yielding Adam+, which normalizes updates by gradient variance and thereby scales gradients in
proportion to their SNR.

We empirically validated the effect of our modification across diverse learning paradigms, including
reinforcement learning and sequential modeling. These gains are very consistent in sequential
modeling problems - the setting where it is known that centered RMSProp outperforms its uncentered
counterpart. They are also significant in non-stationary, RL domains, where traditional optimizers
often struggle due to unreliable gradient signals and the absence of effective learning rate schedules.

These findings suggest that centering the variance within Adam-like optimizers is a generally useful
design principle. Future work may explore integrating this perspective with other recent advances,
such as adaptive schedules or large-scale pretraining pipelines, to further enhance the robustness and
efficiency of optimization in deep learning.
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APPENDIX

A PROPOSED SNR-BASED MODIFICATIONS TO GRADIENT SCALING
FUNCTION (;

Sign-based optimization, such as in Lion (Chen et al.| [2023), has strong performance in certain
supervised learning applications, as it amplifies small gradient and suppresses strong signals, akin to
gradient-guided grid search, which can lead to fast and stable convergence in stationary environments
with correct hyperparameters. Inspired by this rationale, we design non-linear scaling function v; on
top of Adam+, denoted as "Adam+NLx", by introducing two SNR-based non-linear 1), as follows:

0 = sign(m) oz, (1-+ /i /-4 0 ®)
v¢ = sign(my) [1 + log (1 + \/"mﬂ @)

In particular, both (6)) and (7)) scale the sign update based on element-wise gradient SNR, whereas
(6) emphasizes on compressing large SNR for smoother and more robust gradient update, and
(7) emulates sign optimizers while scaling the signed momentum by the number of bits in SNR.
We denote the optimizers that incorporate this additional refinement with "+NL1" for (@), such as
Adam+NL1, and the update in with "+NL2", such as Adam+NL?2.

In addition, we consider Adam+(SNR Ir) that scales learning rate with SNR as follows:

Ve = \/mi /(v +€) - my /(o +e) (®)
which is evaluated for RL in CartPole experiment.

We propose two more gradient scaling functions ¢; in Algorithm[I] and summarize all our enhance-
ments to Adam variants in Table 4} listing their postfixes, equations and algorithms, recommended
baselines, hyperparameters, and application scenarios.

Table 4: The full list of our enhancements to Adam variants

Recommend Postfix Enhancement Recommend Recommend

Baseline Py Ce Hyperparameters Applications

Adam, + (&) Adam General, RL

AdamW, + G) Adam o €{0.001,0.0001} RL

LAMB + (SNR Ir) (9) RL

Adam +NL1 @) (T0p Supervised learning

AdamW +NL2 (&) (1I) oc=0 Supervised learning
+NL3 (&) (12) Supervised learning

We still recommend 57 = 0.9, 2 = 0.999 as the default configuration with our enhancements for
most application scenarios, however, as shown in Appendix [F} smaller 3, such as 51 = > = 0.5
and 51 = B2 = 0.9, with our modifications on Adam, AdamW and Adopt can lead to superior
performance compared to the default values for graph transformers.

Next, the proposed non-linear gradient scaling ¢; functions in Table|10|are detailed as follows.
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Adam+ (SNR Ir): Postfix (SNR Ir) stands for SNR-based learning rate scaling, expressed as

Yo =/ mi/(ve + €) - my /(i +€) . ©)

Adam+ (SNR Ir) scales the Adam+ update m;/(,/v; + €) by the square root of SNR, essentially
employing quadratic Adam+ update with the sign of momentum m;. This approach promotes faster
responses under high SNR and slower responses in low SNR regime.

Comparison of Signed Logarithmic Functions
T

— y=sign(x)logz (1 + |x])

(
y =sign(x) (1 +logz (1 + |x]))
— y=sign(x) (1 +1log1o (1 +[x])) /
27 ---- y=sign(x) ]
-///- ----------------------

T T T T T T T T
-10.0 =75 -5.0 =25 0.0 25 5.0 7.5 10.0

Figure 6: Signed logarithmic functions in (I0), (IT), for +NL1, +NL2, +NL3

Adam+NL1~3: Lastly, signed logarithmic functions, as illustrated in Fig. [6] are employed as an
additional non-linear filtering mechanism in our extensions: (I0) for NLI, (T1) for NL2, and (T2)) for
NL3, where NL1 and NL2 are already introduced in the main text.

0 = signtmi) logy (14 /e (o + 0 (10)
e = sign(my) [1 +logy, (1 + \/nmﬂ (11)
v, = sign(me) {1 +log, (1 + \/m)] (12)

As shown in the ZINC-GT experiment in Appendix [F the +NL3 extension achieves the best perfor-
mance in training graph transformer compared to +NL1 and +NL2.

The rationale behind these logarithmic functions is to dampen strong elements and elevate weak
elements in the normalized updates of Adam+ for supervised learning, in which gradient updates
become very weak as training progresses, as shown in Figs. [7]in Appendix [B] NL1~3 serve as a
middle ground between signed optimizers, such as Lion (Chen et al.,|2023), and Adam-like linear
optimizers. Similar to Lion, NL1~3 are mainly for supervised learning, which underperform linear
optimizers in reinforcement learning, where fast responses to disruptions are critical.

B GRADIENT SNR IN CIFAR10-RESNET18 AND CARTPOLE-DQN

In this section, we analyze the dynamics of element-wise gradient SNR, a central concept underlying
our enhancements to Adam-like baseline optimization algorithms. We trace key metrics for both
Adam and Adam+ in the contexts of supervised learning (CIFAR-10 with ResNet-18) in Figs.[/|and
reinforcement learning (CartPole with DQN) in Figs. [8] To trace gradient SNR, we add functions for
layer-wise gradient SNR estimation to Adam+ and our customized Adam optimizers.

We compute the gradient SNR in dB domain for the last layer of the neural network, as follows:

1< m?2,

=1
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where 7, ; is the element-wise gradient SNR in dB for element 7 at time step ¢, and d denotes the
number of parameters of the layer. Similarly, we compute layer-wise average second moment as

d

_ 1
U= ; 10logo(ve,i + €).

The reason to average in dB domain is to prevent the gradient SNR or second moment from being
dominated by elements that are orders of magnitude larger than the typical values, reflecting the true
scale of most elements.

We focus on the last layer for two reasons: (i) it reduces computational costs compared to computing
SNR across the entire model, (ii) the last-layer gradient has the most immediate impact on the loss,
making it a meaningful indicator of convergence behavior.
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Figure 7: Traces of training ResNet-18 on CIFAR-10 under cosine learning rate annealing: (a) training
loss, (b) test accuracy, (c) gradient SNR in dB, and (d) second raw moment for Adam and second
central moment for Adam+ in dB. (c) and (d) are only for the last layer. (81 = 0.9, 82 = 0.999).

As shown in Figs.[/] the training loss, test accuracy, gradient SNR and second moments of the last
layer in ResNet-18 of Adam and Adam+ are closely aligned over 200 epochs in supervised learning,
with Adam+ slightly leads in the last 30 epochs. For most of the time, the gradient SNR of the last
layer fluctuate between —30 ~ —12 dB, with an average of -20 dB, however, the second moments
decrease steadily over the course of training, from —32 dB in the early epochs to —56 dB in the
end, reducing two orders of magnitude. Given the almost constant gradient SNR, this shows that the
scale of gradient update decreases by at least an order of magnitude over the course of training. This
highlight the challenge of supervised learning in shrinking magnitude of gradient.

The different smoothness of gradient SNR 7}, and second moments v; can be explained by their
different smoothing factor, 5; = 0.9 for 7; and B3 = 0.999 for ¥;. Toward the end of the training,
the second central moment of Adam+ becomes visibly smaller than the second raw moment of Adam,
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as shown in Fig. leading to larger gradient update, which may contribute to the better training
loss and test accuracy of Adam+ compared to Adam.
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Figure 8: Return and last-layer metrics for DQN in CartPole under Adam and Adam+ in a single run
(random seed: 50) with constant learning rate, based on hyperparameters in Table[T4]

The return and the gradient SNR and second moments of the last layer for DQN in Cartpole in a
single run are presented in Figs. [8] In Fig. the DQN initially converges around 200,000 steps
under both Adam and Adam+, but subject to disturbances from exploration at ratio of 0.05 (see Table
[T4), which encourage robustness and generalizability. This explains drops in return after the initial
convergence under both Adam and Adam+. However, Adam and Adam+ respond differently to such
disturbances: the DQN under Adam+ quickly rebalanced with only small drops in return, but under
Adam the drop is more substantial and recovery is slower.

The traces of last layer gradient SNR (Fig.[8(b)) and second moments (Fig. under Adam and
Adam+ provide more insights to the optimizer behavior and the environmental dynamics. First, the
gradient SNR in RL is much lower and more volatile (range of —20 ~ —50 dB with a gradually
decreasing mean) than that of supervised learning (—12 ~ —30 dB with a constant average of —20
dB), indicating a more difficult, non-stationary environment for reinforcement learning.

Second, when disturbance appears, e.g., around 350,000 for Adam, and 340,000 for Adam+, the
gradient SNR and second moment jump up, indicating a departure from the convergence area.
However, the second moment under Adam raises more substantially (17 dB higher) compared to
Adam+ under similar disturbances. Such a smaller increase in second moment under Adam+ allow
larger learning rate being applied when the gradient SNR increases abruptly, leading to fast responses
to disturbance and only a tiny drop in return. In contrast, the smaller learning rate scale under Adam
in such disturbance leads to slower recovery, and substantial drops in return under disturbances. This
example demonstrates the benefit of using second central moment instead of second raw moment in
Adam-+ in reinforcement learning under tough, non-stationary environments.

Table 5: Training hyperparameters for CIFAR-10 with ResNet18

Hyperparameter Value

Dataset CIFAR-10 (Krizhevsky, [2009)
Model ResNet18 (He et al.l|2016)
Batch size 128

Epochs 200

B, B2 0.9, 0.999 (default)

Learning rate (initial) 0.001

Learning rate schedule  Cosine annealing

Weight decay 5x107*

Data augmentation
Loss function

Random crop, horizontal flip
Cross-entropy
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C EXPERIMENTAL SETUPS AND HYPERPARAMETERS FOR EVALUATED
PIPELINES

In Table [6] we list the hardware specifications, experimental setups and runtime for our evaluations of
various optimizers across different deep learning pipelines, including the code base for the five deep
learning pipelines and our modifications. The hyperparameters of each deep learning pipeline are
further detailed in Table [5] for CIFAR10-ResNet18, Table [7] for MNIST-MLP, Table[11] for ZINC-GT,
Table [T4] for CartPole-DQN, and Table [T6]for MuJoCo-SAC.

Table 6: Hardware configuration, runtime, and code bases for all pipelines
Item Details

Hardware specs. AMD Ryzen Threadripper 2970WX (24 cores / 48 threads), 96 GB RAM,
dual NVIDIA RTX 2080 Ti GPUs

Dataset: CIFAR-10 (Krizhevsky, 2009)

Runtime: 1.2 hours per optimizer (1 thread per GPU)

Codebase: https://github.com/kuangliu/
pytorch-cifar

Notes: Used standard ResNet18 and cosine LR schedule.

Dataset: MNIST digits (Lecun et al., [ 1998))

Runtime: 30 minutes per optimizer (1 thread per GPU)

Codebase: https://github.com/tensorflow/
datasets/blob/master/docs/keras_example.ipynb,
https://github.com/pytorch/tutorials/blob/main/
beginner_source/blitz/cifarl0_tutorial.py

Notes: Trained with 2-layer MLP. The pipeline is based on the two
referenced codebases.

Dataset: ZINC molecular graphs (Gomez-Bombarelli et al., 2018))
Runtime: 6 ~ 8 hours per optimizer (10 threads in parallel)
Codebase: https://github.com/pyg-team/pytorch_|
geometric/blob/master/examples/graph_gps.py
Notes: Epoch-based random seed for training dataloader, fixed seed for
validation and test dataloaders.

CIFAR10-ResNetl8

MNIST-MLP

ZINC-GT

Environment: OpenAI Gym CartPole-v1 (Huang et al., |2022; Towers

B et al.l2024)
CartPole~DON Runtime: 1.2 hours per optimizer (10 seeds in parallel)
Codebase: https://github.com/vwxyzin/cleanrl/

blob/master/cleanrl/dgn.py
Notes: Discrete control task; all optimizers evaluated in same seed
regime (20 ~ 29).

Environment: MuJoCo continuous control (v5) (Huang et al., [2022;
Towers et al., [2024)

Runtime: 40 hours for 3 million global steps

Codebase: https://github.com/vwxyzjn/cleanrl/
blob/master/cleanrl/sac_continuous_action.py
Notes: Long-horizon RL; unbounded return.

MuJoCo-SAC

D ADDITIONAL RESULTS ON IMAGE CLASSIFICATION AND RL CONTROL

The results for CIFAR—ResNetlSE], MNIST-MLP, ZINC-GT, and DQN-cartpole are summarized in
Table[S] A key observation is that no single optimizer consistently outperforms others on every task,
whereas our modifications generally enhance the baseline optimizers across all tested settings.

SBased on codebase inhttps://github.com/kuangliu/pytorch-cifar, Also, see Tablein
the Appendix|[C}
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Table 7: Training hyperparameters for MNIST with 2-layer MLP

Hyperparameter Value

Dataset MNIST (Lecun et al.,|{1998)

Model 2-layer MLP (784-128-10)

Activation ReLLU

Batch size 100

Epochs 200

Learning rate 1 x 1072 for LAMB, LAMB+; 1 x 10~ for the rest
Weight decay 1x1073

Dropout None

Loss function Cross-entropy

Notice that the goal of these experiments is NOT to introduce an optimizer that universally outperforms
all others across all tasks, as shown by the test results that none of them could do so.

For each task, all optimizers were tested under identical experimental conditions. The only differences
lie in the optimizer configurations, ensuring a fair and controlled comparison. We consider three
benchmarks: image classification, and reinforcement learning. We train an image classifier on
CIFAR-10 (Krizhevskyl 2009) and MNIST (Lecun et al.l [1998)) datasets with ResNet-18 (He et al.|
2016) and MLP, respectively. Lastly, we evaluate the performance of Adam and Adam+ in CartPole
with deep Q network (DQN) (Mnih et al., 2015)).

D.1 IMAGE CLASSIFICATION

MLP for MNIST We trained a 2-layer MLP classifier for the MNIST digit classification task. The
experimental settings are provided in Table[7)in the Appendix. Table [§|demonstrates a consistent
improvement in the maximum validation accuracy resulting from our enhancements. Fig. [D.1]
demonstrates the difference in validation accuracy between the enhanced and the baseline versions of
5 optimizers over the course of training for 2 = 0.999.

Generally, we see a positive trend indicating the consistent gains attained by the "+" versions. Among
them, Adam+ demonstrates the most consistent improvements over standard Adam. By decoupling
the signal from the noise — through replacing the second raw moment with the gradient variance —
Adam+ enables more accurate estimation of the true gradient direction, thereby facilitating improved
convergence. Similar in spirit, LAMB+, which scales updates using a trust ratio, also benefits
from more accurate SNR estimation. This leads to sustained performance gains across training,
highlighting the compatibility of variance-based normalization with layer-wise adaptive scaling.
In contrast, the improvement of AMSGrad+ over AMSGrad is more moderate. This is likely due
to the inherently conservative nature of both optimizers, as they retain the maximum of previous
second moment estimates, thereby reducing the dynamic range available for further enhancement.
Finally, AdamW+ and ADOPT+ exhibit more erratic behavior, with gains followed by periods of
degradation. This instability may arise because both optimizers are already finely tuned for strong
performance on standard image classification tasks, leaving less room for consistent improvements
via second-moment modifications.

To quantitatively assess optimizer convergence, we employed two metrics: the normalized area
under the curve (nAUC) and normalized full score duration (nFSD). The nAUC measures the agent’s
cumulative performance over the entire training process and is normalized by the product of the
maximum achievable return (500) and the total number of steps. In contrast, the nFSD metric
measures the fraction of steps at which the agent achieves maximum return. The normalization
coefficient is defined by the total number of steps performed by an agent. Table[§|shows that Adam+
ranks the highest in both measures. Furthermore, the improved optimizers outperform the originals
across the board, underscoring the effectiveness of our modifications.
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Accuracy (Modified - baseline)

-2 Optimizer
Adam+ —+ ADOPT+
—41 AdamW+ —— LAMB+
—— AMSGrad+
6 50 100 150 200
Epoch

Table 8: Optimizer performances in image classification (test accuracy for CIFAR10-ResNet18
and MNIST-MLP), graph-level regression using a graph transformer in ZINC (loss value, Mean
Absolute Error (MAE) in validation and testing), and reinforcement learning using a DQN for cartpole
(normalized area under the curve and normalized full score duration).

Optimizer §; = CIFARI10 MNIST ZINC, GT Cartpole

0.9, B2=0.999 Accuracy | Accuracy Loss MAE val MAE test | nAUC nFSD
AdamW+NL1 0.9422 0.9800 0.0572 0.1555 0.1215 0.8449  0.155
AdamW+ 0.9398 0.9807 0.0551 0.1603 0.1338 0.8367  0.200
AdamW 0.9391 0.9804 0.0616 0.1690 0.1312 0.8225 0.205
AMSGrad+ 0.9388 0.9803 0.0638 0.1663 0.1349 0.8165  0.230
AMSGrad 0.9406 0.9801 0.0636 0.1684 0.1336 0.8083  0.245
LAMB+ 0.9364 0.9828 0.0443 0.1230 0.0913 0.6836  0.005
LAMB 0.9352 0.9825 0.0463 0.1275 0.0973 0.6336  0.000
Adam+ (SNR 1Ir) - - - - - 0.8579  0.420
Adam+ 0.9327 0.9815 0.0547 0.1621 0.1332 0.8577 0.330
Adam 0.9323 0.9811 0.0610 0.1681 0.1329 0.8149  0.120
ADOPT 0.9388 0.9813 0.0548 0.1581 0.1280 0.8263  0.160
ADOPT+ 0.9374 0.9814 0.0560 0.1592 0.1339 0.8190  0.280
AdaBound 0.9428 0.9821 0.0882 0.1707 0.1460 0.0322  0.000
AdaBeliefW 0.9402 0.9804 0.0597 0.1639 0.1262 0.8334 0.145
Lion (82 = 0.99) 0.9372 0.9773 0.0335 0.1090 0.0863 0.4564  0.000
AdaBelief 0.9326 0.9804 0.0549 0.1583 0.1271 0.7984  0.120

E EXTENDED RESULTS FOR THE TASKS IN TABLE[g

We further expand the results for optimizers under four deep learning tasks in Table|8|into Table
by including the test results of four additional optimizers, PIDAOSI, RMSprop, and AdaShift. In
Table[T0] the performance metrics of deep learning pipelines using various optimizers are listed, which
cover different neural network architectures (CNN, MLP, Transformers), tasks (image classification,
graph-level regression, control), and learning paradigms (supervised learning and reinforcement
learning). The top three optimizers for each pipeline are highlighted in colors.

As noted in the main body of the paper, image classification is one of the most well-studied tasks,
therefore, the differences in performance (test accuracy) under different optimizers are generally very
small. Also notice that for ZINC-GT, and Cartpole-DQN, more optimizers and parameters (31, 32)
are evaluated in Appendices[F]and[G] For example, the top three for ZINC-GT pipeline in Table [I0]
are not necessarily the best when different (31, 32) or learning rate schedules are used.

The key messages from Table|10]are as follows:
* None of the optimizers dominate others across all the four tasks. PIDAOSI ranks high across all

four tasks, but not in top three for graph level regression. Lion leads in ZINC-GT pipeline by a
significant margin, but perform poorly in Cartpole-DQN.
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Table 9: Optimizer performances on molecular graph regression with graph transformers.

Optimizer MAE Optimizer MAE
B B2) ) o . (p

Loss val test Loss val test
05.05 0.0429 0.1253 0.1008 0.0466 0.1295 0.0981
0.9.0.9 g)dg(%‘;v)*NLz 0.0433  0.1261  0.0945 gdgg(lﬁl)\m 0.0463  0.1270  0.0970
009,099 | 0.0435  0.1299 0.0966 | * 7 0.0480 0.1318 ~ 0.1017
0.5.0.5 0.0459” 01422 ~ 0.0111 00472 ~ 0.1412~ 0.109T
0.9.0.9 gdgg(‘)‘;v)*NLl 00533 01569 0.1240 é)d(‘)‘(r)‘(lﬁl)\m 00514 01559 0.1268
009,099 | 0.0572  0.1555 01215 |~ "7 = 0.0581 0.1613  0.1252
0.5.0.5 e, 005327 01520 T0.01827|7 5~ 7 7 00530 T 0.1534 0.119%
0.9.0.9 Oo00n, 00548 01504 01273 | GO 00599 01645 0.1302
09,0999 | 000D 00551 01603 01338 | 0D o547 0121 01332
05.05 w0067 01662 T 0.0315 | - 00673 ~ 0.1697~ 0.1299
0.9.0.9 0000 00620 01706 01307 | @G 00620 0.1650 0.1297
0.9, 0.999 : 00616 01690 0.1312 : 00610 0.1681 0.1329
05.05 00560 0.1479 0.1225 0.0547 0.1456 0.1174
0.9.0.9 {6’*01\(’)[3); 0.0466 0.1266  0.0955 g%ggﬂ* 0.0608 0.1588  0.1292
0.9, 0.999 : 0.0443  0.1230 0.0913 : 00548  0.1582 0.1281
0505 1, T 0.0588 0.1485 ~ 0.1207 |, < ( 0.0583  0.1568 0.1297 ~
0.9.0.9 &)Aol\gﬁ)) 0.0467 0.1268 0.0952 E?)%B’gﬁ 00536 01579 0.1281
0.9.0.999 : 0.0463 0.1276 0.0974 : 00560 0.1593  0.1339
05,05 0.0938 0.1989  0.1602 0.1268 02157 0.1853
0.9.0.9 gl\gg&r;‘“ 0.0850 0.1867 0.1587 gl\(/){gg}lrfd 0.0879 0.1885 0.1542
09,0999 | © 0.0638 01663 01349 | © 0.1718 02434 02098

* Our modifications generally bring consistent improvements over their baselines. In particular,
Adam+, AdamW+, and LAMB+ consistently outperform their baselines Adam, AdamW, and
LAMB across the four tasks. For ADOPT and AMSGrad, such benefits are less consistent.

* Our modified optimizers generally ranked among the top three across all pipelines. In Cartpole-
DQN, our Adam+, Adam+ (SNR Ir) ranks the top within the top two in nAUC and the top two in
nFSD, demonstrating the strength and utility of our enhancement in this domain.

We further evaluate optimizers in the ZINC-GT pipeline with different combinations of (31, 52) and
learning rate schedulers in Appendix [F} For reinforcement learning, more results are presented in
Appendices[G|and

F HYPERPARAMETES AND TEST RESULTS FOR GRAPH TRANSFORMER ON
ZINC DATASET

In this section, we further analyze the optimizers’ performance on the graph regression problem with
graph transformers. The hyperparameter settings are given in the Table[IT} For a fair evaluation of the
optimizers, we replace the ReduceLROnPlateau learning rate scheduler with two settings: constant
learning rate in Table[I2} and cosine learning annealing in Table[T3] As a result, our minimum MAE
on the test set is higher than that in the original paper (Rampasek et al., [2022) (MAE: 7%), since
we do not employ a validation set for learning rate decay. However, in our setting, validation MAE
serves as another independent test set since it is not involved in training.

Table [_I;Z] serves as an extension of the Table E] and includes additional optimizers, such as
AdamW+NL3, AdaBelief, AdaShift, RMPprop, AdaBound, and PIDAOSI under constant learning
rate. In this setting, Lion achieves the best performance by a large margin in all three MAE on the
training set, validation set, and test set. Our enhanced LAMB+ achieves the second in validation
and test MAE, which is not completely surprising since LAMB is designed for deep architecture
like transformers. Lastly, our non-linear modification to AdamW, AdamW+NL3 achieves the third
place in validation and test MAE. Moreover, within each comparison group, our enhanced versions
constantly outperform their baseline counterparts, highlighting the benefits of our enhancement. It
can also be observed that for AdamW and Adam, smaller 3s lead to worse performance, while our
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Table 10: Optimizer performances in image classification (CIFAR, MNIST, larger is better), molec-
ular graph regression using a graph transformer in ZINC dataset (smaller is better) with constant
learning rates, and reinforcement learning using a DQN for cartpole (normalized area under the curve

and normalized full score duration) (larger is better). Highlights are the top first, , and third.
Optimizer CIFARI10 MNIST ZINC, GT Cartpole
pr=0.9,62=0.999 Accuracy | Accuracy | Loss MAEval MAE test | nAUC nFSD
AdamW+NLI1 0.9422 0.9800 0.0572 0.1555 0.1215 0.8449  0.155
AdamW+ 0.9398 0.9807 0.0551 0.1603 0.1338 0.8367 0.200
AdamW 0.9391 0.9804 0.0616 0.1690 0.1312 0.8225 0.205
AMSGrad+ 0.9388 0.9803 0.0638 0.1663 0.1349 0.8165 0.230
AMSGrad 0.9406 0.9801 0.0636 0.1684 0.1336 0.8083  0.245
LAMB+ 0.9364 0.9828 0.0443 0.6836  0.005
LAMB 0.9352 0.9825 0.0463 0.1275 0.0973 0.6336  0.000
Adam+ (SNR Ir) - - - - - 0.8579  0.420
Adam+ 0.9327 0.9815 0.0547 0.1621 0.1332 0.330
Adam 0.9323 0.9811 0.0610 0.1681 0.1329 0.8149  0.120
ADOPT 0.9388 0.9813 0.0548 0.1581 0.1280 0.8263  0.160
ADOPT+ 0.9374 0.9814 0.0560 0.1592 0.1339 0.8190 0.280
AdaBound 0.9821 0.0882 0.1707 0.1460 0.0322  0.000
AdaBeliefW 0.9402 0.9804 0.0597 0.1639 0.1262 0.8334 0.145
Lion (B2 = 0.99) 0.9372 0.9773 0.0335 0.1090 0.0863 0.4564  0.000
AdaBelief 0.9326 0.9804 0.0549 0.1583 0.1271 0.7984 0.120
PIDAOSTI* (Chen et al., 0.9452 0.1439 0.1100 0.8344  0.354
2024)
RMSprop (81 = 0.9281 0.9843 0.0597 0.1698 0.1459 0.7899  0.146
0) (Tieleman & Hintonl,
2012)

AdaShift (Zhou et al.| 0.9346 0.9775 0.1687 0.2286 0.1958 0.3760  0.000
2019)

* Training followed the default PIDAOSI parameters for MNIST and CIFAR-10 as in Table 6 of (Chen et al.|
2024)); for Cartpole, the parameters of PIDAOSI are set to identical to that of the CIFAR-10 test.

Table 11: Training hyperparameters for ZINC dataset with GPS graph transformer

Hyperparameter Value

Dataset ZINC (Gomez-Bombarelli et al.| 2018)

Model 10-layer GPS graph transformer (Rampasek et al.| 2022)
Channels 64

Positional Encoding (PE) Random Walk, with length 20

PE dim 8

Attention type Multihead

Dropout 0.5 on attention head

Batch size 128

Epochs 1000

Initial Learning rate (lr) 1 x 1072 for LAMB and LAMB+; 1 x 10~ for the rest
Learning rate scheduler Constant (Table[T2); Cosine annealing (Table [T3)

Weight decay 1x107°
Loss function Mean Absolute Error (MAE)
Random seed 51 (constant Ir in Table ['I;ZI), 41 (cosine Ir in Table E])

enhanced version generally achieve better performance for smaller Ss, implying a more accurate
estimation of noise power with out enhancement.

Next, we evaluate the performance of GT under a cosine annealing learning rate schedule, which
are reported in the Figs. [0]and the Table In this setting, Lion no longer outperforms all other
methods, in fact, its lowest training loss did not translate to best validation and test MAE. This shows
that Lion is highly sensitive to hyperparameters, in our other tests with a different random seed,
Lion also spikes in training loss and does not recovery well afterwards. In contrast, Adam+NL3
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Table 12: Molecular graph regression with graph transformers under fixed learning rate (smaller is

better). Highlights are the best within each group, and the top first, , and third.
(B, B2) grp;tlmlzer MAE 8Bt1mlzer MAE
Loss val test Loss val test
0.5,0.5 0.0459 0.1339 0.1017 0.0483  0.1249 0.1019
0.9,0.9 AdamW+NL3 0.1304  0.0944 Adam+NL3 0.0469 0.1276  0.1001
0.9, 0.999 0.0425  0.1249  0.0983 0.0431 0.1279  0.0999
“0505 | T 0.0429 0.1253 ~ 0.1008 | 0.0466 ~ 0.1295 0.0981
0.9,0.9 AdamW+NL2 0.0433  0.1261  0.0945 Adam+NL2 0.0463 0.1270  0.0970
0.9, 0.999 0.0435 0.1299  0.0966 0.0480 0.1318 0.1017
"0505 | T 0.0459 0.1422 ~ 01111 | 0.0472 ~ 0.1412° 0.1091
0.9,0.9 AdamW+NL1 0.0533 0.1569 0.1240 Adam+NL1 0.0514 0.1559 0.1268
0.9, 0.999 0.0572  0.1555 0.1215 0.0581 0.1613  0.1252
"0505 | T 0.0532° 0.1520 01182 | 0.0530  0.1534 0.1196
09,09 AdamW+  0.0548 0.1594 0.1273 Adam+ 0.0599 0.1645 0.1302
0.9, 0.999 0.0551 0.1603 0.1338 0.0547 0.1621 0.1332
"0505 | T 0.0667 0.1662 0.1315| 0.0673 ~ 0.1697 0.1299
0.9,0.9 AdamW 0.0620 0.1706  0.1307 Adam 0.0620  0.1650 0.1297
0.9, 0.999 0.0616  0.1690 0.1312 0.0610 0.1681 0.1329
0.5,0.5 0.0560 0.1479 0.1225 0.0547 0.1456 0.1174
0.9,0.9 LAMB+ 0.0466  0.1266  0.0955 ADOPT+ 0.0608 0.1588  0.1292
0.9, 0.999 0.0443 0.0548 0.1582 0.1281
“0505 | T 0.0588 0.1485 0.1207 | « 0.0583  0.1568 0.1297
0.9,0.9 LAMB 0.0467 0.1268  0.0952 ADOPT 0.0536  0.1579 0.1281
0.9, 0.999 0.0463  0.1276  0.0974 0.0560  0.1593  0.1339
0.5,0.5 0.0938  0.1989  0.1602 0.1268 0.2157 0.1853
09,09 AMSGrad+ 0.0850 0.1867 0.1587 AMSGrad 0.0879 0.1885 0.1542
0.9, 0.999 0.0638 0.1663  0.1349 0.1718  0.2434  0.2098
0.9,0.999 | AdaBelief 0.0549 0.1583 0.1271 | RMSprop (81 =0) 0.0597 0.1698  0.1459
0.9,0.999 | AdaShift  0.1687 0.2286 0.1958 AdaBound 0.0882  0.1707  0.1460
Custom Lion 0.0335  0.1090 0.0863 PIDAOSI 0.0441 0.1439 0.1100

and AdamW+NL3 yield an important result: although initially slower, as can be seen in the Fig.
[9] they eventually attain the lowest validation and test MAE. This improvement can be attributed
to their retention of gradient magnitude, which enables more confident update steps, particularly
under diminishing learning rates. The results in Table[I3]also confirm that our enhanced optimizers
consistently outperform the corresponding baselines within most of the groups, except for LAMB.

This experiment suggests the possibility of using smaller smoothing factors (3s) for our enhanced
Adam variants in training transformer architecture, which would be impossible without the replace-
ment of second raw moment in Adam variants with second central moment.
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Table 13: Molecular graph regression with graph transformers under cosine learning rate annealing

(smaller is better). Highlights are the best within each group, and the top first, , and third.
(B1, B2) Optimizer M—AE Optimizer M—AE
Loss val test Loss val test
0.5, 0.5 0.0268 0.1326 0.1051 0.0255 0.1313 0.1019
0.9,0.9 AdamW+NL3 0.1142 Adam+NL3 0.0166  0.1180  0.0834
09,0999 | 0.0175_ 01168 00012 | 0.0167 01161 0.0922
0.5,0.5 AdamW-NL2 0.0351 0.1440 0.1108 0.0342  0.1437 0.1069
0.9,0.9 0.0184 0.1258 0.0899 | Adam+NL2 0.0183 0.1218 0.0912
09,099 | 00190 01219 01015 | 0.0186 _0.1209  0.0970
0.5,0.5 0.0429  0.1548 0.1170 0.0425 0.1527 0.1213
0.9,0.9 AdamW+NL1 0.0396 0.1499  0.1192 | Adam+NL1 0.0456  0.1586 0.1182
09,099 | 0.0504 01568 01226 | 0.0503 _0.1588_ 0.1295
0.5,0.5 0.0365 0.1509 0.1172 0.0326 0.1444 0.1139
0.9,0.9 AdamW+ 0.0523  0.1596 0.1243 | Adam+ 0.0534 0.1666  0.1265
09,099 | 00579 01657 01276 | 0.059 _0.1678  0.1301
0.9,0.999 | AdamW 0.0543 0.1711 0.1316 | Adam 0.0546 0.1703 0.1318
0.9,0.999 | LAMB+ 0.0179  0.1208 0.0914 | LAMB 0.0179  0.1183  0.0891
0.5,0.5 0.0384 0.1476 0.1131 0.0484 0.1610 0.1256
0.9,0.9 ADOPT+ 0.0534 0.1633  0.1297 | ADOPT 0.0544 0.1654 0.1301
0.9, 0.999 0.0567 0.1651 0.1354 0.0582 0.1656 0.1329
0.9,0.999 | AMSGrad+ 0.0646 0.1656 0.1346 | AMSGrad 0.0648 0.1733  0.1399
0.9,0.999 | AdaBelief 0.0559 0.1676  0.1313 | RMSprop (61 =0) 0.0553 0.1564 0.1286
0.9, 0.999 | AdaShift 0.1917 0.2435 0.2107 | AdaBound 0.0402 0.1377 0.1157
Custom Lion 0.0140  0.1217 0.0891 | PIDAOSI 0.0590 0.1598 0.1236
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G HYPERPARAMETERS AND TEST RESULTS FOR CARTPOLE-DQN

To illustrate the benefits of our enhanced Adam optimizers in reinforcement learning, we first evaluate
discrete control with DQN in the CartPole environment, with the hyperparameters listed in Table[T4]
The training return over global steps of five selected optimizers are presented in Fig. [I0]and the full
results of various optimizers and their parameter settings are listed in Table[I0]

Table 14: Training hyperparameters for CartPole-v1 with DQN

Hyperparameter Value

Environment CartPole-v1

Algorithm Deep Q-Network (DQN) (Mnih et al.| [2015)
Code base dgn.py in CleanRL (Huang et al.t 2022
Random seeds {20, 21, 22,23, 24, 25,26, 27, \W}_P
Replay buffer size 5000

Batch size 128

Gamma (discount factor) 0.99

Learning rate 2.5 x107*

Train start

Train freq

Target network update freq
Exploration schedule
Exploration fraction

End exploration rate

Max global steps

Weight decay

Loss function

After 10,000 steps

Every 10 steps

Every 500 steps

e-greedy (linear decay from 1.0 to 0.05)
0.1 (50,000) steps

0.05

500,000

1x107°

MSE

500

400 A

300 A

return

200 1

—— Adam

Adam+ (Acc), 0=0.001,p0=0dB
—— Adam+ (SNRIr), 0=0
—— Adam+, 0=0.001

AMSGrad

260 360 400 500
Global Step (x103)

Figure 10: DQN with Cartpole-v1, average over 10 seeds (20-29), 95% confidence interval in
errorband

To evaluate the performance of different optimizers for training DQN in CartPole, we run a total
of 10 training trajectories under 10 different random seeds (20-29), and present the average return
under the 10 seeds over the number of environment interactions (global steps). This representation is
fair since global steps represents the actual computing time for training compared to the number of
episodes, since an episode may contain different numbers of steps due to early termination.

To accurately reflect the performance of DQN, we split the total 500,000 global steps into chunks of
1000 steps, and find the average return of each chunk for each seed. In Fig. [I0] the average return and
its 95% confidence interval based on 10 different seeds are presented. In this way, we place equal
weights on different seeds in the averaging. This approach avoid over-representing failing cases that
would record small returns more frequently due to early termination of each episode.
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Table 15: Performance of Optimizers (larger is better) for Cartpole DQN at 81 = 0.9, 85 = 0.999,
from the average of 10 runs (random seeds 20-29) and reported using two metrics: normalized area
under the curve (nAUC) and the normalized full score duration (nFSD). Highlights are the top first,

, and third.

Optimizer Hyperparameters nAUC nFSD
Adam+ (SNR 1r) c=0 0.8580 0.420
Adam+ o = 0.001 0.330
AdamW+NL1 c=0 0.8450  0.155
AdamW+ o = 0.001 0.8367  0.200
Adam+NL1 c=0 0.8355 0.120
PIDAOSI (Chen et al., [2024) default 0.8344

AdaBeliefW 0.8335 0.145
ADOPT 0.8264 0.160
AdamW 0.8225 0.205
ADOPT+ c=0 0.8190  0.280
AMSGrad+ c=0 0.8166  0.230
Adam 0.8150 0.120
AMSGrad 0.8083  0.245
AdaBelief 0.7985 0.120
RMSProp (Tieleman & Hinton, 2012) 0.7899  0.146
Adam+NL2 c=0 0.7858  0.020
Adam+NL3 c=0 0.7585 0.010
LAMB+ c=0 0.6837  0.005
LAMB 0.6337  0.000
Lion (82 = 0.99) default 0.4564  0.000
AdaShift (Zhou et al., [2019) 0.3760  0.000
AdaBound 0.0323  0.000
AdaGrad 0.0213  0.000

The five evaluated optimizers in Fig. [T0[reach their initial convergence (reaching full return) during the
global step window between 155k to 200k global steps, however, due to disruptions from exploration
(0.05 end exploration rate), most of them experience drops in return after the initial convergence. This
instability can be attributed to a relatively high final exploration ratio of 0.05, which, while promoting
generalization, introduces increased variance in performance. Visually, it is evident that our enhanced
variants achieve faster convergence than AMSGrad and exhibit greater stability compared to Adam.

More specifically, the noise injection introduced in Adam+, o = 0.001 allows for faster convergence
and higher returns compared to Adam. Adam+ (SNR Ir), o = 0, shows that adapting the learning
rate based on SNR results in smooth and consistent performance, showing one of the most stable
trajectories.

To further quantify the visual inspection, we consider two performance metrics, a normalized
Area Under Curve (nAUC), and normalized full score duration (nFSD), which measure the portion
of chunks with full score return. These quantitative results are partially listed in Table [I0] and
comprehensively in Table [T5] which contains more optimizers and hyperparameter combinations
for our enhanced optimizers. Adam+ (SNR Ir), ¢ = 0 achieves the highest nAUC and nFSD,
demonstrating the benefit of SNR-adaptive learning rate. The Adam+ with noise injection, o = 0.001,
achieves a very competitive performance and is ranked second in nAUC.

On the other hand, signed and logarithmic optimizers perform poorly, showing that reinforcement
learning depends on linear (or quadratic) optimizers for fast response. AdamW and LAMB also
perform poorly due to the small and shallow neural network architecture in this task.

H CONVERGENCE ANALYSIS ON A QUADRATIC FUNCTION

We study the behavior of Adam+ and AdaBelief on the one-dimensional stochastic quadratic model

min J(6) = A

min S0=07)% A0, (13)
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with stochastic gradients
g =MN0; —0%) + &, & ~N(0,0%)iid (14)

We analyze the asymptotic behavior of the optimizer near the optimum 6*. In this regime, the gradient
is dominated by the stochastic noise, i.e., g; =~ & where & ~ N (0, 02) (Balles & Hennigl 2018).
Since the input to the second-moment estimator is effectively i.i.d., the estimator v, converges to a
stationary distribution.

Furthermore, to isolate the effect of v; (the distinct feature of Adam+ and AdaBelief), we abstract
away the effect of the first-order moment. We approximate m; = g, treating the numerator as an
unfiltered gradient. Consequently, both optimizers reduce to the simplified update rule

@Hza—ag%. (15)
We omit the bias-correction terms as is often done in the related work |[Zhuang et al.| (2020).

Define the error z; = 6; — 0*. With that (I3) becomes

Ti4+1 = (1-\/@) xt—aﬁ. (16)

To derive the convergence rate, we employ a mean-field approximation, replacing the random variable
vy with its steady-state expectation E [v;]. This approximation assumes that the fluctuations of v,
around its mean are negligible compared to the dynamics of the parameter 6;, a standard simplification
in the analysis of adaptive moment estimation (Balles & Hennig, [2018; Défossez et al.l 2022]).

Under this assumption, v; is treated as a constant scalar E [v;], simplifying to the stochastic
linear recursion

Ao «
Ter1 = pxe — &, p:=1- , ni= (17
I [vy] IE [vy]
Since &; has zero mean and is independent of x;, the mean error satisfies
E [$t+1] = ,DE [I’f] , (18)

so the mean converges whenever |p| < 1.

An optimizer will converge to the error ball of a radius given by the variance of the error z;. This

yields
2

Varlz,1] = p* Vare:] +1° Varlg] = p* Varlz] + ﬁo? (19)
Ut
due to the mean-field approximation of v, and the i.i.d. assumption of the gradient noise.

For |p| < 1, the steady-state variance is given by

2.2
Var[zoo] := lim Var[z,] = aa

— 7 20
R Efu] (1= ) 20

All optimizer-dependent behavior now arises from the stationary scale E [vy].

The second central moment v, is constructed from the centered quantity g, — wy, where w, is an
exponential moving average with parameter 3, such that 5 = ; for AdaBelief and § = S5 for
Adam+

wy = Pwi—1 + (1 — B)ge (21)
ve = for-1 + (1= B)(we — g1)*. (22)
Then the mean-field approximation equals
E [’Ut] =E [51)1571 + (1 — B)(gt — wt)Q] (23)
= BE [vi—1] + E [(g9: — we)?] — BE [(g: — wy)?] (24)
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At the steady-state, E [v;_1] = E [v;]. Then based on Lemma [H.1] we obtain

E o] =E [(g: —w)?] = 25" g
J=E (g —we)’] = 750" (25)
Substituting (23) into (20) gives
_ a? 1+8
Var|z o) =2 2 (26)
L V1+B (27)

By plugging (27) into (26) and assuming sufficiently small « such that we can ignore second-order
terms arising in p? we get

o2 145 _aoy1+p
L—p2 262 7 2208
This expression quantifies the trade-off between AdaBelief (5 = 1) and Adam+ (8 = (32): for the
default choice 81 < (3,

Var[zo] = (28)

* the contraction factor |p| is smaller for AdaBelief, giving faster convergence

* the variance of the steady-state error is a monotonically decreasing function in 8. It is
smaller for Adam+, giving smaller steady-state error.

This captures the fundamental trade-off: AdaBelief converges faster but to a noisier solution, while
Adam+ converges more slowly, but to a more accurate one due to a more faithful estimation of the
gradient signal-to-noise ratio.

Lemma H.1 (Steady-state variance estimate). Under the model (14) and the EMA definition (21)),
and assuming stationarity of w, we have
232
Elv:.] = E —w)?] = 2, 29
[ve] [(gt wt) ] 1+ 8 g (29)

Proof. From (14) we can write
gt =9 +&.
Taking expectations in (2T)) and using linearity,
E[wi] = BE [wi—1] + (1 — B)E [g¢] -
In steady state, E [w;] = E [w;—1] =: w, and E [¢¢] = g, so
w=pw+(1-p8)g = w=g.

Thus, we can decompose

Wy = g+ 2,
where z, is a zero-mean random process capturing the EMA of the noise. In particular,
g—we=(g+&) - (G+z)==&— 2 (30)

Then using the decomposition in 1)),

wy = Pwi—1 + (1= B)g + (1 - B)&,
and hence
zp=wp —g=Bwi—1 —g) + (1= B)& = Bzi—1 + (1 = B)&:.
Since &; is independent of z;_; and has zero mean, the variance of z; satisfies
Var[z] = 87 Var[z—1] + (1 — ) Var[¢,] = 8% Var[zi—1] + (1 — B)%0°.
At stationarity, Var[z:] = Var[z;_1], giving

Var[z:] = 1 J_r 5 o’
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Since wy = § + 2, we also have Var|w;] = Var([z].
From (2I)) we have
gt —wi =g — (Bwi—1 + (1 = B)gi) = Blge — wi—1),
and using (30) yields
E [(gt - wt)z] = 52E [(gt - wt—1)2] = 52 E [(ft - Zt—l)z] = 52 (02 +E [Z?—l]),
using independence of &; and z,_1. At stationarity E [27_;| = E [27] = Var[z], so
2 2
L
1+p
which is the desired expression. O

E [(g: — w)?] = B*(0” + Var[z]) =

Comparison with standard Adam. Finally, we compare the convergence behavior with standard
Adam. Unlike Adam+ and AdaBelief, standard Adam uses an uncentered second moment estimator
v;. Under the mean-field approximation in the quadratic regime, the expected second moment for
Adam is

E [0f%"] ~E [g}] = Varlg,] + (E[g:])* = 0® + NE[z]. (31)
Comparing this to the Adam+ estimator (E [v;] ~ 02), we observe that
E [v;%"] > E[v] whenever E [z;] # 0. (32)
The spectral radius p (27) that governs the convergence is given by
1
p=1-)a . (33)
E [v¢]

Since the denominator for Adam is larger, the effective step size is smaller, resulting in a spectral
radius closer to 1 (slower convergence). This result indicates that standard Adam dampens the useful
gradient signal that unnecessarily slowing down the optimization process. Based on SNR-centering,
Adam+ maintains a lower spectral radius that is a function only of the noise level.

To further support our derivations, we evaluate the convergence behavior of Adam+ and AdaBelief
on the Rosenbrock function. The result is shown in the Fig. [T} While AdaBelief exhibits faster
initial descent, Adam+ demonstrates lower final loss. Specifically, Adam+ converges closer to the
global optimum and maintains a smaller oscillation radius (steady-state variance) around the optimal
point compared to AdaBelief. This confirms our theoretical result that the additional state w, enables
convergence to a smaller steady-state error ball.

3.0 Rosenbrock function, AdaBelief with Ir=0.1 Rosenbrock function, Adam+ with Ir=0.1
: v —>~ Optimization palhl
4 Global minimum
4 Final point
25 \ 2
2.0 ‘\\\ 3
TN %

15

1

.0

-0.5 0.0 0.5 1.0 15 2.0 -0.5 0.0 0.5 1.0 15 2.0

(a) AdaBelief (b) Adam+

Figure 11: Convergence on the Rosenbrock function. Although AdaBelief achieves faster early-stage conver-
gence, Adam+ ultimately reaches a lower loss value and settles into a tighter error bound around the optimum.
This aligns with our theoretical analysis.
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I HYPERPARAMETERS SAC IN MUJOCO ENVIRONMENTS

The hyperparameters and the results for SAC in the MuJoCo environment are given in Table[16]

Table 16: Training hyperparameters for SAC in MuJoCo environments

Hyperparameter Value

Environment Hopper-v5, HalfCheetah-v5, Humanoid-v5

Algorithm Soft Actor-Critic (SAC) (Haarnoja et al.}2018) (Spinning Up)
Code base sac_continuous_action.py in CleanRL (Huang et al., 2022)
Random seed 1

num_envs 1

Replay buffer size 10°

Batch size 256

Gamma 0.99

Tau 0.005

Alpha 0.2

Autotune True

Learning rate 3 x 10™* (for both policy and target networks)

Train start After 10,000 steps

Policy network train freq Every 1 step

Target network update freq  Every 1 step

Max global steps {1 x 10%,3 x 10%,3 x 10°}

Weight decay 0 (none)

J ABLATION: DISENTANGLING THE NOISE INJECTION EFFECT

To understand whether the noise injection effect is complementary or orthogonal to SNR-centering,
we conducted an ablation in which we added the noise of o ~ 0.03 (—50dB) and o = 0.01 (—60dB)
to both Adam and Adam+ when training an RL agent on the Hopper-v5 environment. The hyperpa-
rameters are given in the Table[I6] The results averaged over 3 seeds are shown in Fig.[T2] Three
observations are in order: first, for the noiseless case, there is a clear effect of SNR-centering resulting
in a higher return of Adam+ compared to vanilla Adam. Second, the noise injection of ¢ ~ 0.03
improves the return of Adam+ toward the end of the training. For the same o, Adam also exhibits a
performance boost at the final training steps. For a lower noise level of o = 0.01, both optimizers
experience a performance drop. This indicates that for the considered setting, the noise injection
effect is orthogonal to SNR-centering, i.e., Adam can also benefit from it, and it should be treated as
a hyperparameter that encourages exploration, achieving an effect similar to that of e-greedy.

35001
—— Adam

30001 Adam (o= 0.03)
—— Adam (0=0.01)

250011 Adam+ QO T T
c 2000 Adam+ (¢=0.03)
2 ~ Adam+ (0=0.01) } ‘
1500 Ll !

1000 d e SR

500

OA

00 02 04 06 08 10
Global steps (millions)

Figure 12: Noise injection effect on Adam and Adam+ optimizers for different levels of noise ¢ in
Hopper-v5 environment.
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J.1 USE OF LARGE LANGUAGE MODELS (LLMS)
We used LLMs as a writing assistant during the preparation of this manuscript. Specifically, it was

employed to (i) improve the clarity and fluency of text passages, (ii) suggest alternative phrasings,
and (iii) help structure certain sections.
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