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Abstract

Answering complex real-world questions often
requires accurate retrieval from textual knowl-
edge graphs (TKGs), as the relational path
information from TKGs could enhance the
inference ability of Large Language Models
(LLMs). However, the bottlenecks include the
scarcity of existing TKGs, the limited expres-
siveness of their topological structures, and the
lack of comprehensive evaluations of current
retrievers on TKGs. To tackle these challenges,
we first develop a Dataset' for LLMs Complex
Reasoning over Textual Knowledge Graphs
(RiTeK) with a broad topological structure cov-
erage. We synthesize realistic user queries that
integrate diverse topological structures, rela-
tional information, and complex textual de-
scriptions. We conduct rigorous expert eval-
uation to validate the quality of our synthesized
queries. RiTeK also serves as a comprehen-
sive benchmark dataset designed to evaluate
the capabilities of retrieval systems built on
LLMs. By assessing 11 representative retriev-
ers on this benchmark, we observe that existing
methods struggle to perform well, revealing
notable limitations in current LLM-driven re-
trieval approaches. These findings highlight
the pressing need for more effective retrieval
systems tailored for semi-structured data.

1 Introduction

Although large language models (LLMs) have
made a significant stride in natural language pro-
cessing (NLP), complex question answering re-
mains a challenge. Medical professionals, for in-
stance, often need to express complex information
that combines flexible inputs with specific, struc-
tured constraints. Consider the query: “Which or-
gan or tissue function, that circulates mother and
fetus blood, is affected by Fetal Distress?” com-

'The dataset is available here: https://anonymous.
4open.science/r/Riteck_sumission_version-026B/
readme . md

pared to the simpler version: “What does Fetal Dis-
tress affect?” Accurately addressing such complex
queries is critical, as it directly impacts healthcare
diagnoses and treatment plans.

To effectively answer these queries, organizing
the underlying knowledge using textual knowledge
graphs (TKGs) becomes essential. TKGs inte-
grate unstructured data—such as textual descrip-
tions of nodes (e.g., the definition of the medical
term Placental Circulation)—with structured data,
like the relationships between entities within the
graph (e.g., the relationship between Fetal Distress
and Placental Circulation is affects). This inte-
gration enables TKGs to represent comprehensive
knowledge tailored to specific applications, ren-
dering them invaluable, especially in the medical
field, where accuracy and reliability are critically
important.

However, existing datasets (Wu et al., 2024b,a)
exhibit one or more of the following limitations:
they are overly simplistic, involving only 1-2 hop
reasoning paths; they lack diverse topological struc-
ture templates > and rich relation types; or they
fail to incorporate complex constraints *. Conse-
quently, these datasets fall short in addressing the
complexity of retrieval tasks involving TKGs, es-
pecially within the medical domain, where queries
require more complex multi-hop reasoning, diverse
topological structure templates, and multiple in-
terdependent constraints. Moreover, the absence
of textual properties in existing TKGs limits their
effectiveness in delivering comprehensive answers.

To address this gap, we present a large-scale
complex reasoning dataset over textual knowledge
graphs (RiTeK) within the medical domain. In

%A topological structure is a graph that is an abstract of
the query graphs of the same pattern, as shown in Li and Ji
(2022).

3Constraints are particularly important in KBQA as they
help filter out irrelevant information from large knowledge
bases, narrowing the search space and improving both effi-
ciency and accuracy
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this progress, one primary technical challenge we
address is the accurate simulation of user queries
with different reasoning types (e.g., six topologi-
cal structures in Figure 1) within TKGs, ensuring
that these queries are relevant and reflective of real-
world medical scenarios involving patients, doctors,
and medical scientists. This challenge arises from
the interdependence of textual and relational infor-
mation, the complexity of medical terminology and
relationships, and the lack of textual descriptions
of medical terms. We refer to the framework of Wu
et al. (2024b) to simulate user queries and construct
precise ground truth answers. However, our focus
is primarily on the medical domain, incorporating
richer topological structures that extend beyond the
traditional 2- and 3-hop structures to better reflect
real-world scenarios in the medical domain. Addi-
tionally, the textual descriptions of each node are
more detailed, enhancing the overall context and
understanding. With RiTeK, we delve deeper into
retrieval tasks on TKGs, evaluate the capability of
current retrieval systems, and provide insights for
future advancement.

Key features of RiTeK include the following:
(1) it incorporates rich ontological structures and
detailed textual descriptions, with content quality
rigorously validated by medical experts to ensure
high reliability; (2) the benchmark queries are con-
structed to capture complex relational dependen-
cies and nuanced linguistic characteristics; and (3)
the queries demand context-sensitive reasoning,
where effective retrieval hinges not only on the
model’s reasoning capabilities but also on its abil-
ity to semantically align with the entity constraints
embedded within the question.

We also delve deeper into retrieval tasks on
RiTeK, evaluate the capability of current retrieval
systems, and provide insights for future advance-
ment, and , highlighting challenges in handling
textual and relational data with more compelxy on-
tology structure and latency on large-scale SKBs
with millions of entities or relations

2 Related Work

Datasets of Question Answering over Document.
This area of research centers on extracting answers
from document sources (Rajpurkar, 2016; Dunn
etal., 2017; Joshi et al., 2017; Trischler et al., 2016;
Welbl et al., 2018; Yang et al., 2018; Jin et al.,
2021, 2019; Hendrycks et al., 2020). For example,
SQuAD (Rajpurkar, 2016) assesses a model’s abil-

ity to interpret and retrieve answers from a single
document, focusing on comprehension within a de-
fined context. PubMedQA (Jin et al., 2019) focuses
on understanding and reasoning within the context
of complex biomedical scientific texts. MedQA-
CS (Yao et al., 2024b) aims at simulating authentic
clinical scenarios encountered in the clinical ex-
amination tasks of medical education. However,
unstructured QA datasets often fall short in provid-
ing the depth needed for complex relational reason-
ing to effectively tackle complex user inquiries. In
contrast, our research involves queries that demand
more complex relational reasoning, challenging the
model’s ability to navigate and utilize structured
information effectively.

Datasets of Question Answering over Knowl-
edge Graph. The structure QA dataset chal-
lenges models to retrieve answers from the struc-
tured database, such as knowledge graph (Zhang
et al., 2018; Yih et al., 2016; Gu et al., 2021; Bao
et al., 2016; Trivedi et al., 2017). For example,
MetaQA (Zhang et al., 2018) challenges models to
generate the relational path with multi-hops. To test
the models’ abilities to decompose the constraint
information in the queries, WebQuestionsSP (Yih
et al., 2016) is proposed. GrailQA (Gu et al., 2021)
aims to facilitate the answering of more complex
questions, as it allows queries to involve up to four
relations and optionally includes functions such
as counting, superlatives, and comparatives. How-
ever, these datasets primarily focus on relational
information, the lack of textual information lim-
its questions within predefined relationships and
entities, which constrains the breadth of available
information.

Datasets of Question Answering over Textual
Knowledge Graph. To integrate textual informa-
tion into knowledge graphs and queries, STARK
(Prime, Amazon, Mag) (Wu et al., 2024b) is pro-
posed. To the best of our knowledge, Stark is the
only work that focuses on combining relational in-
formation with textual information in the question
answering over TKGs. However, this dataset lacks
sufficient topological structure coverage, hindering
the ability to handle complex queries, particularly
in the medical domain. The absence of detailed
node descriptions further challenges the model’s
ability to understand the query information. RiTeK
addresses these issues by incorporating richer topo-
logical structures and more extensive textual infor-
mation into knowledge graphs and queries, result-
ing in more comprehensive and nuanced responses



with deeper insights drawn from abundant textual
data.

3 Problem Statement

Textual Knowledge Graph A Textual Knowl-
edge Graph (TKG) is defined as a graph G =
(£,R, D), where £ denotes a set of entities and
‘R denotes the set of relations among these enti-
ties. In a TKG, the entities and relations are usually
organized as facts and each fact is defined as a
triplet (h,r,t) where h,t € £ and r € R denote
the head entity, tail entity and the relation between
the two entities, respectively. Each entity e (e = h
or e = t) in G has a textual document d¢ € D
describing the entity information.

Complex Question Answering over Textual
Knowledge Graph Given a textual knowledge
graph G and input query ¢, the model is expected
to generate the answers a € &£, which satisty the
relational constraints defined by the structure of G
as specified in ¢, and the associated document d*°
need to satisfy the the knowledge required to solve

q.

Textual Triple Graph Unlike traditional knowl-
edge graphs, where each node represents an entity
and each edge denotes the relationship between
nodes, in the textual triple graph, each node cor-
responds to a triple (head entity, relation, tail en-
tity) along with the textual description of each en-
tity. In this context, the relation indicates whether
the two triples are connected. To be specific, let
Gx = (V, E) denote a graph consisting of a set of
node V and a set of edges ¥ € V' x V. We denote
by n the number of nodes in G and by m its number
of edges. Eachnode v = (h,r,t,T'(h),T(t)) € V,
T'(x) is the textual description of entity.

4 Dataset for LLMs Complex Reasoning
over TKGs (RiTeK)

4.1 Medical Textual Knowledge Graph
Construction

We construct two medical TKGs based on
PharmKG (Zheng et al., 2021) and ADint (Xiao
et al., 2024), as the increased number of entity
and relation types introduces significant challenges
for path retrieval in the question answering over
textual knowledge graph. To enhance the entity
attributes, we incorporate textual details from var-
ious databases, including Ensembl, UMLS, and
Mondo Disease Ontology. As shown in Table 1,

TKG Dataset # Entities  # Relation # Triple # Coverage
Stark-Amazon 4 4 9,443,802 -
Stark-Mag 4 4 39,802,116 -
Stark-Prime 10 18 8,100,498 15.29%
RiTeK-PharmKG 3 29 500,958 95.61%
RiTeK-ADint 102 15 1,017,284 36.73%

Table 1: Datasets Statistics of constructed medical tex-
tual knowledge graphs. # Coverage refers to textual
description coverage of each node. # Entities is the
number of entity types. # Relation is the number of re-
lation types. As the textual information for the provided
nodes is difficult to analyze statistically, we have not
provided the statistical information for Stark Mag and
Amazon.

our constructed TKGs provide greater node textual
coverage, along with more entity types and rela-
tion types. For further details on these two medical
TKGs, please refer to Appendix A.2.

4.2 Question Answering Dataset Construction

topological # instance

QA Dataset # queries structure rate train/val/test
Stark-Amazon 9,100 1 4 0.65/0.17/0.18
Stark-Mag 13,323 4 1.25 0.60/0.20/0.20
Stark-Prime 1,1204 3 9.3 0.55/0.20/0.25
RiTeK-PharmKG  1,0235 6 11.33 0.80/0.10/0.10
RiTeK-ADint 5322 6 9.67 0.80/0.10/0.10

Table 2: Statistical Overview of the Textual KBQA
benchmark Datasets. Instance rate refers to the average
number of relational templates per topological structure.

4.2.1 Overview

We developed two question answering datasets
RiTeK PharmKG and RiTeK ADint based on two
textual knowledge graphs for complex reasoning.
These datasets notably feature queries that inte-
grate relational and textual knowledge, incorporat-
ing relational templates with broader coverage and
higher instance rates. Additionally, to enhance their
applicability in practical scenarios, these queries
mimic real-life query patterns, exhibiting a natural-
sounding quality and flexible formats. Specifically,
RiTeK-PharmKG consists of 10,235 synthesized
queries. To maximize the coverage of the ques-
tion topology, we generate the queries following
the six types of topological structure (e.g., multi-
hop and multi-hop with constraints). For the syn-
thesized queries, we developed 68 relational tem-
plates, crafted by a medical expert and detailed in
Appendix B.1, to encompass various relation types
and ensure practical relevance. The instance rate of
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Figure 1: The process of constructing textual structured retrieval datasets involves five main steps, 1) Relational
template construction: Create the relation template for TKG using the expert-designed topological structure. 2)
Extract Textual Properties: Choose one node as the answer node that meets the relational requirement, and extract
relevant textual properties. 3) Combine Information: Merge the relational information and textual properties to form
a natural-sounding query. 4) Filtering additional answers: Check if the left nodes satisfy the textual properties to
establish other ground truth nodes. 5) Expert Evaluation: The medical experts evaluate the naturalness, diversity,

and practicality of the dataset.

11.33, which is higher than that of the current TKG
dataset Start (Amazon, Mag, and Prime), highlights
the higher diversity of this dataset. RiTeK-ADint
consists of 5322 synthesized queries and convers
6 topological structures, with 58 relational tem-
plates. Further details are provided in Appendix
B.2. To capture the diverse language styles used by
different users, we follow Stark and simulate three
distinct roles: medical scientist, doctor, and patient.
We divide the synthesized queries on each dataset
into training, validation, and testing subsets, with
the ratios detailed in Table 2. Further details on
the scale of our QA benchmarks can be found in
Table 2.

4.2.2 Construction Pipline

We present the pipeline that generates the large-
scale medical QA datasets on TKGs. The core idea
is to entangle relational information and textual
properties into the query, and accurately construct
ground truth answers with more complex topologi-
cal structures. The construction of the QA datasets
(Figure 1) generally involves five steps, and the
specific processes vary depending on the character-
istics of each dataset. These steps are as follows:

Relational Template Construction. As shown in
Figure 1 Stepl, we first created templates based
on the 6 designed topological structures (Li and
Ji, 2022), which were evaluated by medical ex-
perts to ensure their practical relevance and value.
Afterward, the topological structures are instanti-
ated conceptually with experts. For instance, for
the topological structure Head entity—relation—tail
entity, the "(antibiotic) causes <pathologic func-

tion>" is a valid and common medical relation
template, as antibiotics, particularly penicillin and
cephalosporins, are well-known for triggering drug
hypersensitivity reactions. This makes it a medi-
cally reasonable and frequently observed relation-
ship. We then converted these relation templates
into specific relationship queries, such as "Anti-
Bacterial Agents causes pathologic function." Since
each query could correspond to one or more can-
didate entities, we matched the queries with the
textual KG to obtain k candidate entities.
Extracting Textual Properties. As shown in Fig-
ure 1 Step2, for the k candidate answers that meet
the relationship criteria, we select one entity as the
gold answer and use GPT-4 to extract textual prop-
erties from the entity’s associated document. For
instance, in the relationship "Anti-Bacterial Agents
causes pathologic function," we selected "Hyper-
sensitivity" as the gold answer and extracted its
textual properties. These textual properties expand
upon the concept of hypersensitivity, highlighting
their key characteristics, which make it more likely
to fulfill the inquirer’s needs.

Combining Textual and Relational Information.
As shown in Figure 1 Step3, after obtaining the rela-
tionship templates and textual properties, we com-
bine these components to synthesize the queries.
We chose GPT-4 as the LLLM for query synthesis,
as it excels at generating natural, human-like ques-
tions. Additionally, we optimized the prompt and
incorporated instructions for different personas to
make the queries more diverse and realistic. This
approach enhances the quality of our dataset and
increases the demands on our model’s reasoning



capabilities.For details on using GPT-4 to generate
this query, please refer to Appendix A.3.
Filtering Additional Answers. As shown in Fig-
ure 1 Step4, in addition to the gold answer from
which the textual properties are extracted, we need
to evaluate whether other candidates meet the re-
quirements of the query in order to include them
in the final answer set. We use multiple LL.Ms to
assess whether each candidate’s description satis-
fies the textual requirements of the query. Only
candidates that pass validation by all LLMs will be
added to the final answer set.

Human Evaluation. We invited four medical ex-
perts to evaluate 1000 synthetic queries sampled
from two datasets. The evaluation was conducted
using a 5-point Likert-like scale across three di-
mensions. Naturalness refers to how grammatically
and logically human-like the queries sound. Diver-
sity assesses whether the queries exhibit complex
logical structures and encompass multiple entities,
relations, and textual requirements. Practicality
measures the real-world applicability of the gener-
ated queries and their likelihood of being used in
everyday scenarios.

The scores were ultimately converted into per-
centages representing the rates of Positive and Ac-
ceptable responses. We found that the evaluation
results provided by GPT-4 for our generated dataset
were largely consistent with assessments from med-
ical experts. For shorter queries, such as “What
gene is inhibited by naloxone?”, GPT-4 noted the
limited relational and textual information contained
within and consequently assigned a lower Diversity
score. Both GPT-4 and medical experts agreed that
certain rare relationship types, such as “an ances-
tor of”’, are infrequently encountered in everyday
Q&A scenarios and are more common in medical
education contexts. Only a very small number of
queries exhibited issues with insufficient Practical-
ity. The results of this evaluation are summarized
in the Table 3. The data in the table represents the
Positive/ Acceptable rates (%) from GPT-4.

Naturalness  Diversity  Practicality

RiTeK-PharmKG
RiTeK-ADint

81.80/99.60 81.6/99.40  67.4/97.8
81.20/99.20  74.80/100  68.60/96.60

Table 3: Positive/Acceptable rates(%) from experts

4.2.3 Data Distribution Analysis

We chose Shannon Entropy and Type-Token Ra-
tio (TTR) as the metrics to evaluate the query di-

versity generated in our two datasets. Shannon
Entropy takes into account the frequency of each
word, measuring the evenness of word distribution
in the text, while Type-Token Ratio reflects the vari-
ety of words, with a higher value indicating greater
diversity in the generated queries. As shown in
Table 6, the TTR values for both RiTeK-PharmKG
and RiTeK-ADint surpass those of STARK-Prime,
demonstrating that the queries generated in our
datasets exhibit high complexity and diversity. For
Shannon Entropy, our results are comparable to
STARK-Prime. Since our RiTeK-ADint dataset
involves a wide range of non-pharmacological in-
terventions (NPIs), lifestyle modifications, and en-
vironmental factors, it introduces a richer vari-
ety of specialized terminology and concepts into
the synthesized queries. This expanded vocabu-
lary diversity leads to significantly higher Shannon
Entropy compared to the other medical domain
datasets. However, since our two datasets are de-
rived from the medical domain, the frequent repe-
tition of specialized medical terminology, as well
as the more concentrated vocabulary compared to
general-domain texts, results in slightly lower Shan-
non Entropy for our datasets than for the other two
general-domain datasets. For more analysis about
the distribution of query lengths and answer length,
please refer Appendix A.4.

S Experiments

5.1 Retrieval Models and Evaluation Metrics

We evaluated the 9 representative retrieval models
on our benchmark datasets under both zero-shot
and few-shot settings. In addition to our bench-
mark dataset, we also evaluated the models on
Stark-Prime (Wu et al., 2024b), a textual question
answering dataset with minimal ontology in the
query, including:

e GPT-4 (Achiam et al., 2023): We use GPT-4 with
the instruction to generate the answers directly.

* Random Walk (Lovész, 1993): Starting from the
topic entity, a random walk algorithm is applied
to explore paths in the textual triple graph in the
maximum depth d.

* MCTS (Chaslot, 2010): Starting from the topic
entity, a monte carlo tree search algorithm is ap-
plied to explore paths in the textual triple graph
in the maximum depth d. In this work, we set the
d=3.

* Chain-of-Thought (COT) (Wei et al., 2022): We
designed the instruction to guide GPT-4 in gen-



RiTeK-PharmKG RiTeK-ADint Stark-Prime
Exact Match Rouge-1 Exact Match Rouge-1 Exact Match Rouge-1
Approach P R Fl1 P R F1 P R Fl P R Fl1 P R Fl1 P R Fl1
GPT-4 11.39 1090 11.03 | 1556 1550 1530 | 7.26  12.10 803 | 1371 27.64 1635 | 523 681 465 | 11.31 1635 1131
+Random Walk (Lovisz, 1993) 12.27 11.86 1196 | 14.69 14.15 1430 | 1512 2268 16.52 | 20.87 3292 2325 | 7.50 8.20 6.48 1390 17.31 13.32
+MCTS (Chaslot, 2010) 17.17 16.54  16.68 | 19.09 1844 18.60 | 16.97 2441 1835 | 22.82 34.69 2520 | 7.64 8.36 6.52 14.04 1745 1338
+COT (Wei et al., 2022) 13.11 1642 1370 | 17.53 2257 1840 | 1052 1978 1195 | 17.79 3725 2097 | 6.47 8.23 5.81 12.61 1799 1247
Zero-Shot | +TOT (Yao et al., 2024a) 7.31 7.32 7.22 1321 1467 1342 | 397 9.65 5.28 1290 2544 1596 | 2.99 3.08 2.55 9.50 9.81 8.65
+GOT (Besta et al., 2024) 3.56 420 375 | 1086 11.84 11.06 | 2.61 332 281 | 1509 17.63 1584 | 199 220 178 | 989 934 872
+ TOG (Sun et al., 2023) 2985 3819 3114 | 31.38 4037 3292 | 23.08 40.63 25.81 | 27.81 4893 31.54 | 12.14 1576 11.27 | 18.67 24.75 18.42
+G-retriver (He et al., 2024) .21 1339 11.60 | 1501 1854 1562 | 1097 19.05 1252 | 17.27 3299 2041 6.23 6.61 5.17 1201 1492 1140
+KAR (Xia et al., 2024) 3095 2399 2518 | 33.65 26.11 27.50 | 39.59 2400 27.29 | 46.54 28.87 32.80 | 12.02 1449 11.12| 18.04 2220 17.61
GPT-4 13.75 1554 1404 | 1684 19.84 1749 | 17.57 1791 17.48 | 2550 28.08 26.04 | 7.79 6.41 591 1403 1353 12.14
+Random Walk (Lovisz, 1993) 11.02 1328 1132 | 1446 17.88 1492 | 22.99 2279 2275 | 29.10 29.07 2895 | 9.93 6.93 7.34 16.54  13.02 1345
+MCTS (Chaslot, 2010) 1779 17.11  17.30 | 20.97 2029 2048 | 19.51 2732 2091 | 2471 3625 2696 | 9.57 6.89 7.14 1592 1255 1288
+COT (Wei et al., 2022) 1729 1691 16.99 | 21.55 2097 21.13 | 1857 18.12 1826 | 26.68 26.62 2653 | 8.13 591 5.99 1403 1353 1214
Few-Shot | +TOT (Yao et al., 2024a) 1474 1474  14.63 | 1922 19.14 1897 | 1328 13.17 1321 | 2465 2472 24.60 | 12.84 10.11 1036 | 693 485 5.06
+GOT (Besta et al., 2024) 1210 1222 12,06 | 17.38 1731 17.19 | 15.84 1532 1542 | 2620 2589 2591 | 537 373 378 | 1269 998 10.17
+TOG (Sun et al., 2023) 29.14 4233 3236 | 3040 44.00 33.88 | 26.50 47.13  33.83 | 29.46 49.69 36.43 | 1441 2039 16.40 | 19.75 26.61 20.14
+G-retriver (He et al., 2024) 1251 12.14 1222 | 1594 1544 1557 | 1747 1750 1732 | 24.87 2492 2471 7.72 5.75 5.86 1463 1192 1210
+KAR (Xia et al., 2024) 27.35 2743 2699 | 29.74 2976 29.34 | 34.68 3342 3348 | 40.15 3855 38.88 | 13.01 1550 1221 | 19.00 23.10 18.00
G-retriver (He et al., 2024) 38.71 37.11  37.62 | 39.78 39.18 3931 | 4793 47.16 4741 | 5468 5400 5424 | 16.14 1647 14.11 | 1721 27.86 19.21
Supervised | GCR (Luo et al., 2024) 4438 57.28 4771 | 46.04 58.83 4944 | 4352 60.78 48.07 | 49.47 6557 5424 | 19.03 26.89 18.94 | 28.01 37.18 28.75
GNN-RAG (Mavromatis and Karypis, 2024) | 50.78 49.28 49.72 | 51.66 5029 50.73 | 51.04 50.59 50.55 | 56.49 56.09 56.09 | 16.00 1504 1450 | 2478 23.51 22.99

Table 4: Results of various approaches for question answering with complex reasoning on RiTeK-PharmKG,
RiTeK-ADint and Stark-Prime. P refers to the Precision, R refers to the recall. In the experiments, the GPT-4

version is GPT4o0-mini.

erating the answer step by step, with the output
formatted as step-by-step reasoning: explanation,

answer: medical terms.
* Tree-of-Thought (TOT) (Yao et al., 2024a):We

structured the reasoning process as a tree search,
where multiple intermediate reasoning paths are
explored in parallel. GPT-4 evaluates and ex-
pands promising paths based on a voting or scor-

ing mechanism.

* Graph-of-Thought (GOT) (Besta et al., 2024):
We represented the reasoning process as a graph
structure, where nodes capture different reason-
ing states and edges denote transitions. GPT-4
traverses the graph to aggregate information and
synthesize the final answer.

* Think-on-Graph (TOG) (Sun et al., 2023): is a
reasoning framework that enables large language
models to interactively perform beam search over
knowledge graphs, discovering and evaluating
promising reasoning paths without additional
training.

* G-retriever (He et al., 2024): A RAG-based ap-
proach that retrieves query-relevant subgraphs
using the Prize-Collecting Steiner Tree (PCST)
algorithm to enhance LLM understanding and

reasoning over textual graphs.
* KAR (Xia et al., 2024): A knowledge-aware

query expansion method that augments LLMs
with structured document relations from a knowl-
edge graph, using relation-aware filtering to im-
prove retrieval for semi-structured queries.
We evaluated the 3 representative retrieval mod-
els on our benchmark datasets and Stark-Prime

under supervised learning settings, including:

* G-retriever (He et al., 2024):A RAG-based ap-
proach that retrieves query-relevant subgraphs
using the Prize-Collecting Steiner Tree (PCST)
algorithm to enhance LLM understanding and
reasoning over textual graphs.

* GCR (Luo et al., 2024): A knowledge-aware
query expansion method that augments LLMs
with document-based relational signals to im-
prove retrieval for semi-structured queries.

* GNN-RAG (Mavromatis and Karypis, 2024). A
method that uses a GNN to retrieve relevant an-
swers and extract the shortest paths connecting
the topic entity and answers, which are then ver-
balized and fed into the LLM to enhance retrieval-
augmented generation (RAG) performance.

We evaluated the outputs of different methods
using several metrics, including Exact Match
(EM)(Rajpurkar, 2016; Li and Huang, 2023),
which assesses whether the predicted sequence ex-
actly matches the reference, awarding credit only
for perfect matches. Additionally, we employed
ROUGE-1(Cohan and Goharian, 2016) to measure
unigram overlap between the predicted and refer-
ence sequences, providing partial credit for shared
words even when the sequences are not identical.
To ensure fairness in the comparison, the instruc-
tions and examples are the same for both the zero-
shot and few-shot settings, respectively.



5.2 Results and Discussion

Table 4 shows the experiment results of various
approaches based on Excat Match and Rougle-1.
We have the following observations. Zero-shot and
few-shot setting: (1) We observed that the baseline
models struggle to generate the correct answers
on RiTeK-PharmKG and RiTeK-ADint. For GPT-
4 and GPT+COT, they are challenges in utilizing
reasoning information from the graph. Although
GPT+COT can utilize step-by-step reasoning, it
still relies on the inherent knowledge of the LLM,
which limits its ability to apply clear logical rea-
soning based on knowledge graphs. For the Ran-
dom Walk, while it can provide reasoning paths,
its random nature limits its ability to accurately
identify the correct path information. However, it
could get the better performance than GPT-4 in
RiTek-Adint and Stark-Prime in the zero/few-shot
setting. (2) Tree-of-Thought (ToT) and Graph-of-
Thought (GoT) attempt to guide LLM reasoning
through structured prompting, encouraging step-
by-step or graph-based logical thinking. However,
on complex textual KBQA datasets like RiTeK-
PharmKG and RiTeK-ADint, both methods con-
sistently underperform, with F1 scores far below
those of retrieval-augmented approaches like KAR
(e.g., ToT: 13.42 vs. KAR: 27.50 in zero-shot).
This suggests that the internal knowledge and rea-
soning capabilities of LLMs alone are insufficient
for tasks that require fine-grained relational under-
standing and the integration of attribute information
from the query. Despite their logical scaffolding,
ToT and GoT struggle to recover factual precision
without access to external structured knowledge.
(3) KAR achieves strong performance on medical
datasets like RiTeK-PharmKG and RiTeK-ADint,
outperforming baselines in both zero-shot and few-
shot settings. Its main strength lies in combin-
ing textual semantics with structured KG relations
to generate accurate and context-aware query ex-
pansions. However, KAR relies on retrieving the
top-n relevant documents; however, determining
an appropriate value for n and the optimal order
in which to select documents is non-trivial. (4)
G-Retriever shows moderate performance across
medical datasets, but generally underperforms com-
pared to methods like KAR or TOG in both zero-
shot and few-shot settings. For example, on Stark-
Prime, its ROUGE-1 F1 score (5.17 vs. 11.12 zero-
shot) lags significantly behind KAR, This indicates
a weaker ability to handle complex relational con-

straints, particularly when the answer’s attributes
are embedded in the query. Its main strength lies
in interpretable subgraph selection using PCST,
which enhances explainability and helps mitigate
hallucinations. (5)TOG performs moderately in
zero-shot settings but shows strong gains in few-
shot scenarios, achieving top-tier ROUGE-1 F1
scores like 37.11 on Riteck-ADint and 36.43 on
Stark-Prime. This highlights its ability to leverage
demonstrations to guide accurate reasoning over
knowledge graphs, especially in complex biomedi-
cal tasks.

In the setting of supervised fine tuning, GCR
achieves the best overall performance across all
three medical benchmarks in the supervised setting,
with scores like 57.28 ROUGE-1 F1 on ADint and
49.72 on Stark-Prime, demonstrating its strength in
generating faithful, KG-grounded answers. How-
ever, GCR relies on pre-constructed KG-Trie in-
dices. We found that GNN-RAG achieves better
performance on the RiTeK-PharmKG and RiTeK-
ADint datasets, demonstrating its ability to retrieve
relevant path information from the graph. However,
since it primarily relies on shortest paths, it may
overlook critical reasoning information embedded
in more complex or indirect graph structures.

5.3 Analysis

5.3.1 Effect of Different LLMs on Retriever
Effectiveness

In this part, we analyze the influence of differ-
ent LLMs on the retrievers. Table 5 presents the
performance of three retrieval settings, G-retriver,
GNN-RAG, and without retriever, in three LLMs
of the backbone: Llama 3.1 8b, Llama2-chat-7b,
and Biomixtral 7b, on three datasets. Overall, G-
retriver consistently outperforms other approaches
across most metrics, particularly in Rouge-1 F1
scores. For instance, on RiTeK-ADint, G-retriver
with Llama 3.1 8b achieves the highest F1 score
of 56.87, while the GNN-RAG and no retriever
baselines lag behind. Similarly, G-retriver reaches
55.02 F1 on Biomixtral for the same dataset,
showcasing its robustness across model sizes. In
contrast, GNN-RAG shows variable performance,
sometimes underperforming even compared to the
no-retriever baseline, such as on Stark-Prime using
Biomixtral. The "w/o retriever" baseline, repre-
senting an LLM without retrieval augmentation,
performs surprisingly well in some settings, indi-
cating that strong LLMs alone can capture a sig-



llama 3.1 8b llama2-chat-7b Biomixtral 7b
Exact Match Rouge-1 Exact Match Rouge-1 Exact Match Rouge-1
Approach P R Fl P R FI P R Fl P R FI P R Fl P R Fl
G-retriver (He et al., 2024) | 36.97 46.07 3831 | 33.04 47.03 3841 | 3871 37.11 37.62 | 39.78 39.18 39.31 | 43.01 4159 42.01 | 4395 42.69 43.10
RiTeK-PharmKG | GNN-RAG 3321 4301 3731 | 21.00 44.89 26.00 | 50.78 49.28 49.72 | 51.66 5029 50.73 | 39.93 39.12 39.26 | 41.69 40.89 41.08
w/o retriever 3245 4340 3423 | 47.60 4659 46.84 | 3891 37.63 38.02 | 40.57 3931 39.72 | 4149 3943 40.05 | 4125 4106 40.99
G-retriver (He et al., 2024) | 50.83  50.07 50.31 | 57.34 56.61 56.87 | 47.93 47.16 4741 | 5468 54.00 5424 | 4834 4748 4775 | 5558 5473 55.02
RiTeK-ADint GNN-RAG 40.88 4090 4043 | 4443 4501 4549 | 51.04 50.59 50.55 | 5649 56.09 56.09 | 50.83 50.07 50.31 | 57.34 56.61 56.87
w/o retriever 4959 4848 48.82 | 5523 5429 54.61 | 46.58 4582 46.06 | 51.66 49.91 4647 | 49.79 4893 4920 | 56.43 53.80 54.15
G-retriver (He et al., 2024) | 16.14 1647 14.11 | 17.21 2786 19.21 | 10.15 845 817 | 21.75 18.08 1840 | 1222 11.54 1058 | 23.15 21.37 20.72
Stark-Prime GNN-RAG 7.81 16.67 935 | 1813 27.50 19.65 | 16.00 15.04 14.50 | 24.78 2351 2299 | 11.20 1031 10.65 | 17.98 18.09 1832
w/o retriever 1296 1499 1191 | 1680 2575 1841 | 11.77 1038 9.68 | 20.65 21.59 17.66 | 12.96 11.12 10.73 | 24.83 21.59 21.68

Table 5: Performance of different retrieval models across backbone LLMs.

retrieval augmentation.

Question: How does Small RNA affect Organism Function that leads o Pathologic Function
involving damaged myocardium?
Ground Truth Path: Small RNA -> affects - Immune response -> af fects
->Myocardial Reperfusion Injury
Answers: Myocardial Reperfusion Injury

Path: Small RNA -> CAUSES - Fibrosis,
MicroRNAS -> ASSOCTATED_WITH -> Myacardial Reperfusion Injury,
Functional RNA -> AFFECTS > biological adaptation fo stress
Answer:

G-retriever

6eR Answer: Myocardial Infarction

Path: Small RNA -> AFFECTS -> Immune response,
Immune response-> AFFECTS -> Myocardial Reperfusion Injury,
Small RNA -> AFFECTS - Cell physiology,

Small RNA > AFFECTS -> Virulence

Answer:

GNN-RAG

Question: What disease is associated with the chi3I1 mutations affecting biomarkers
linked to npy, characterized by overexpression in alb and known for leading to
regressive behavior?

Ground Truth Path: chi3I1 - Mutations af fect, or polymorphisms alter risk -> schizophrenia

-> Biomarkers (diagnostic), or regulation linked to disease
-> npy, schizophrenia -> Overexpression in disease -> alb
Answers: Schizophrenia

Path: CHI3L1 -> AFFECTS -> tube morphogenesis,
CHI3L1 -> PREDISPOSES -> Alzheimer's Disease,
CHI3L1 > ASSOCTATED_WLTH -> Alzheimer's Disease,
Alzheimer's Disease -> AFFECTS -> Abnormal behavior,
Alzheimer's Disease -» ASSOCIATED_WITH -> Gene Mutation,
Alzheimer's iseuse > AFFECTS - Newodegenerative Disorders,
Neurodegenerative Disorders - COEXISTS_WITH -> Abnormal degeneration,
Neur md:g:n:mr ive Disorders > COEXISTS_WITH -> Death (finding),
Neurodegenerative Disorders - COEXISTS_WITH -> Impaired cognition
Answer: Alzheimer's Disease; Neurodegenerative Disorders

Path: CHI3L1 -> PREDISPOSES -» Alzheimer's Disease -» COEXISTS_WITH
-> Elevated serum protein -» COEXISTS_WITH -> Juvenile Hunfington Disease
-> COEXISTS_WITH -> Elevated serum protein

Answer: Juvenile Hintington bisease

MCTS

6PT-4 Answer: Autism Spectrum isorder (ASD)

Figure 2: A case study on RiTeK

nificant amount of relevant knowledge. For exam-
ple, on RiTeK-ADint with Biomixtral, it achieves
a Rouge-1 F1 score of 54.15, close to the GNN-
RAG. However, in most cases, retrieval-augmented
methods still yield superior performance. Notably,
Biomixtral 7b tends to outperform the other two
LLMs when combined with retrieval, especially in
recall and F1. These results suggest that both the
choice of retrieval strategy and the backbone LLM
significantly impact end-task performance.

5.3.2 Case Study of Path and Answer Quality

We conduct a qualitative analysis to compare the
reasoning paths and predicted answers from differ-
ent retrieval models on two biomedical question-
answering examples. As shown in Figure 2, all
models successfully predicted the correct answer
Myocardial Reperfusion Injury in the first case, al-
though their reasoning paths varied in granularity
and relevance. G-RETRIEVER and GNN-RAG
produced informative multi-hop paths that partially

“wi/o retriever” denotes an LLM without

overlapped with the ground truth.

In contrast, for the second question involving
CHI3LI and schizophrenia, only the ground truth
path led to the correct answer. All baseline models
failed: TOG and MCTS generated incorrect rea-
soning chains centered around Alzheimer’s Disease
and Juvenile Huntington Disease, while GPT-4 hal-
lucinated Autism Spectrum Disorder. These errors
reveal the challenge of modeling rare or indirect
biomedical associations, especially when entity re-
lations involve subtle phenotypic markers. This
case highlights the importance of precise multi-hop
reasoning and clinically aligned retrieval in semi-
structured biomedical graphs.

6 Conclusion

We present RiTeK, the first dataset specifically de-
signed to evaluate the capability of models in han-
dling complex reasoning over textual knowledge
graphs (TKGs). This dataset offers diverse topolog-
ical structures, relational types, entity types, and
queries that integrate relational and textual infor-
mation, requiring sophisticated reasoning across
TKGs. RiTeK also includes rich textual descrip-
tions for each node. To ensure the authenticity
and accuracy of the queries, medical experts per-
formed stringent validation. RiTeK sets a new stan-
dard for evaluating real-world retrieval systems.
We evaluated 11 retrieval models on our bench-
mark dataset. Our experiments on RiTeK reveal
significant challenges faced by current models in
effectively handling both textual and relational in-
formation, especially under complex topological
structures involving intricate relations and entities.
RiTeK paves the way for future research aimed
at advancing retrieval systems by emphasizing the
need to enhance reasoning capabilities, particularly
in retrieving complex reasoning paths under answer
attribute constraints.



7 Limitations

RiTeK is currently limited to queries that involve
only a single topic entity and rely solely on the
textual and structural information present in the
graph. Future work should explore the inclusion of
multiple topic entities and incorporate additional
modalities, such as images, to enable a more com-
prehensive and robust information retrieval system.

Although we employed four medical experts for
human evaluation, increasing the number of quali-
fied domain experts would improve the statistical
significance and robustness of our findings. Future
work should consider expanding the pool of experts
and addressing issues of fairness, and potential bi-
ases inherent in LLMs.
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A Appendix

A.1 TKG resources

Ensembl 4, >, and Mondo Disease Ontology °.

A.2 Medical textual knowledge graph
construction

We construct two medical TKGs based on
PharmKG (Zheng et al., 2021) and ADint (Xiao
et al., 2024), as the increased number of entity and
relation types introduces significant challenges for
path retrieval in the question answering over textual
knowledge graph. We present the statistics of the
relational structure in Table 1 and introduce each
TKG as follows:

PharmKG Textual Knowledge Graph: We
leverage the existing medical knowledge graph
PharmKG (Zheng et al., 2021) which is a multi-
relational, attribute-rich biomedical knowledge
graph (KG) constructed from six publicly available
databases that provide high-quality structured in-
formation. These databases include OMIM, Drug-
Bank, PharmGKB, Therapeutic Target Database
(TTD), SIDER, and HumanNet. PharmKG consists
of over 500,000 distinct interconnections between
genes, drugs, and diseases, encompassing 29 types
of relationships within a vocabulary of approxi-
mately 8,000 disambiguated entities. To enhance
the entity attributes, we incorporate textual details
from various databases, including Ensembl, UMLS,

*https://useast.ensembl.org/index.html
Shttps://www.nlm.nih.gov/research/umls/index html
®https://mondo.monarchinitiative.org/



and Mondo Disease Ontology, as supplementary
data sources.

ADInt  Textual Knowledge  Graph:
ADInt(Xiao et al., 2024) is a comprehensive
knowledge graph (KG) constructed from biomed-
ical literature, focusing on non-pharmacological
interventions (NPI) and their associations with
Alzheimer’s disease (AD). ADInt includes 162,212
entities spanning 113 UMLS semantic types,
which, upon further classification, consist of
25,604 drugs, 16,474 diseases, 46,060 genes
and proteins, 2,525 dietary supplements (DS),
and 128 complementary and integrative health
(CIH) interventions. Moreover, ADInt contains
1,017,284 triples, capturing 15 distinct relation
types, offering a rich dataset for exploring the intri-
cate relationships between NPIs and AD. Same as
PharmKG, we also incorporate textual details from
various databases, including Ensembl, UMLS, and
Mondo Disease Ontology, as supplementary data
sources.

A.3 Thr prompt of Combining Textual and
Relational Information

You are a creative assistant tasked with generating
natural, diverse, and realistic queries by combining
textual properties and relational templates. Write
the query from the perspective of a <persona>, en-
suring it is concise, human-like, and paraphrased
while retaining the original meaning.

Consider the following characteristics for the
persona:

* Doctor: Formulate direct and practical ques-
tions aimed at diagnosing and treating. These
questions should focus on side effects, symp-
toms, complications, and other clinically rele-
vant aspects.

* Medical Scientist: Generate detailed and spe-
cific questions reflecting the complexity of
scientific inquiry. These questions should ex-
plore etiology, pathophysiology, genetic fac-
tors, pathways, proteins, or molecular func-
tions.

» Patient: Create straightforward questions
that avoid professional medical terminology.
These questions should focus on practical con-
cerns, such as symptoms, effects, inheritance,
or other relatable aspects, and may include
more context from daily life.
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Figure 3: Distribution of query lengths and answer
lengths on RiTeK-ADint and RiTeK-PharmKG datasets

Textual Properties: [<in-
put_textual_properties>]
Relational Templates: [<in-

put_relational _templates>]

Persona: <input_persona> (e.g., Doctor, Medi-
cal Scientist, Patient)

Ensure the query is realistic and diverse, lever-
aging flexibility in how the textual and relational
elements are presented. Avoid directly copying the
input phrases; instead, paraphrase them while re-
taining their original meaning. Please output only
the generated query without any additional com-
ments or explanations.

A.4 Data Analysis of query length and answer
length

We analyzed the distribution of query lengths (i.e.,
the number of words in each query) to assess the
complexity of the queries and the amount of in-
formation they contain. As shown in the Figure 3,
the query lengths range from 5 to 40 words, with
approximately 69% and 61% of queries in the two
datasets having lengths between 15 and 25 words.

Then, we analyzed the proportion of ground truth
answers associated with each query. Generally,
the more ground truth answers there are, the less
precise the textual requirements in the query tend
to be. To increase the difficulty of the question-
answering task, we filtered out queries with too
many ground truth answers during the dataset cre-
ation process, retaining only those with a maximum
of three ground truth answers. In both datasets,
over 90% of queries have a single ground truth an-
swer, indicating that our queries are enriched with
detailed textual information from entity attributes.
This introduces more challenges when developing
new graph retrieval methods

B Relational Template

B.1 RiTeK-PharmKG

1. Gene -> [Production by cell population] ->
Gene



10.
11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene

Gene -> [Relationships involving regulation
and pathways] -> Gene

Gene -> [Binding, ligand] -> Gene

Gene -> [Affects expression/production] ->
Gene

Gene -> [Gene-Gene] -> Gene

. Chemical -> [Chemical-Chemical] -> Chemi-

cal

Disease -> [Ancestors of disease] -> Disease

. Disease -> [Associations between diseases] ->

Disease

Gene -> [Interactions] -> Chemical
Chemical -> [Interactions] -> Gene
Gene -> [Interactions] -> Gene
Gene -> [Interactions] -> Disease
Gene -> [Drug targets] -> Disease

Gene -> [Role in pathogenesis, or promotes
progression] -> Disease

Gene -> [Mutations affect, or polymorphisms
alter risk] -> Disease

Disease -> [Biomarkers (diagnostic), or regu-
lation linked to disease] -> Gene

Disease -> [Overexpression in disease] ->
Gene

Chemical -> [Treatment or therapy] -> Dis-
ease

Chemical -> [Side effect or adverse event] ->
Disease

Chemical -> [Inhibits cell growth] -> Disease

Chemical -> [Role in pathogenesis] -> Dis-
ease

Chemical -> [Prevents, suppresses, or allevi-
ates, reduces] -> Disease

Disease -> [Biomarkers (progression)] ->
Chemical
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25.

26.
27.

28.
29.
30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Chemical -> [Agonism, activation, or antago-
nism, blocking] -> Gene

Chemical -> [Binding, ligand] -> Gene

Chemical -> [Affects expression/production]
-> Gene

Chemical -> [Inhibits] -> Gene
Gene -> [Transport, channels] -> Chemical

Gene -> [Metabolism, pharmacokinetics] ->
Chemical

Gene -> [Enzyme activity] -> Chemical

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Drug targets] -> Disease

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Role in pathogenesis, or
promotes progression] -> Disease

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Mutations affect, or poly-
morphisms alter risk] -> Disease

Gene -> [Relationships involving regulation
and pathways] -> Gene -> [Binding, ligand]
-> Gene

Gene -> [Binding, ligand] -> Gene -> [Affects
expression/production] -> Gene

Gene -> [Interactions] -> Gene -> [Interac-
tions] -> Chemical

Gene -> [Transport, channels] -> Chemical ->
[Agonism, activation, or antagonism, block-
ing] -> Gene

Gene -> [Metabolism, pharmacokinetics] ->
Chemical -> [Binding, ligand] -> Gene

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Enhance response, or acti-
vate, stimulate] -> Gene

Gene -> [Interactions] -> Chemical -> [Treat-
ment or therapy] -> Disease

Gene -> [Interactions] -> Chemical -> [Side
effect or adverse event] -> Disease

Gene -> [Interactions] -> Disease ->
[Biomarkers (diagnostic), or regulation linked
to disease] -> Gene



44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Chemical -> [Treatment or therapy] -> Dis-
ease -> [Biomarkers (diagnostic), or regula-
tion linked to disease] -> Gene

Disease -> [Associations between diseases] ->
Disease -> [Ancestors of disease] -> Disease

Disease -> [Biomarkers (diagnostic), or reg-
ulation linked to disease] -> Disease ->
[Biomarkers (diagnostic), or regulation linked
to disease] -> Gene

Gene -> [Interactions] -> Gene -> [Transport,
channels] -> Chemical

Gene -> [Metabolism, pharmacokinetics] ->
Chemical -> [Binding, ligand] -> Gene

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Drug targets] -> Disease ->
[Biomarkers (diagnostic), or regulation linked
to disease] -> Gene

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Mutations affect, or poly-
morphisms alter risk] -> Disease -> [Overex-
pression in disease] -> Gene

Gene -> [Transport, channels] -> Chemical ->
[Agonism, activation, or antagonism, block-
ing] -> Gene -> [Binding, ligand] -> Chemical

Gene -> [Metabolism, pharmacokinetics] ->
Chemical -> [Binding, ligand] -> Gene -> [In-
hibits] -> Chemical

Gene -> [Interactions] -> Chemical -> [Treat-
ment or therapy] -> Disease -> [Biomarkers
(diagnostic), or regulation linked to disease]
-> Gene

Gene -> [Interactions] -> Disease ->
[Biomarkers (diagnostic), or regulation linked
to disease] -> Gene -> [Transport, channels]
-> Chemical

Gene -> [Role in pathogenesis, or promotes
progression] -> Disease -> [Biomarkers (di-
agnostic), or regulation linked to disease] ->
Gene -> [Metabolism, pharmacokinetics] ->
Chemical

Chemical -> [Agonism, activation, or antago-
nism, blocking] -> Gene -> [Drug targets] ->
Disease -> [Biomarkers (diagnostic), or regu-
lation linked to disease] -> Gene
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57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Disease -> [Biomarkers (diagnostic), or reg-
ulation linked to disease] -> Disease ->
[Biomarkers (diagnostic), or regulation linked
to disease] -> Gene -> [Role in pathogenesis,
or promotes progression] -> Disease

Disease -> [Biomarkers (diagnostic), or
regulation linked to disease] -> Gene ->
[Metabolism, pharmacokinetics] -> Chemical
-> [Side effect or adverse event] -> Disease

Gene -> [Production by cell population] ->
Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Relationships involving
regulation and pathways] -> Gene

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Binding, ligand] -> Gene
-> [Affects expression/production] -> Gene

Gene -> [Relationships involving regulation
and pathways] -> Gene -> [Gene-Gene] ->
Gene -> [Binding, ligand] -> Gene

Gene -> [Interactions] -> Gene -> [Interac-
tions] -> Gene -> [Transport, channels] ->
Chemical

Gene -> [Interactions] -> Gene -> [Interac-
tions] -> Gene -> [Metabolism, pharmacoki-
netics] -> Chemical

Gene -> [Enhance response, or activate, stim-
ulate] -> Gene -> [Mutations affect, or poly-
morphisms alter risk] -> Disease -> [Overex-
pression in disease] -> Gene

Gene -> [Enzyme activity] -> Chemical ->
[Affects expression/production] -> Gene ->
[Chemical-Chemical] -> Chemical

Gene -> [Interactions] -> Chemical -> [Role
in pathogenesis] -> Disease -> [Overexpres-
sion in disease] -> Gene

Chemical -> [Side effect or adverse event] ->
Disease -> [Biomarkers (diagnostic), or reg-
ulation linked to disease] -> Gene -> [Muta-
tions affect, or polymorphisms alter risk] ->
Disease

Chemical -> [Inhibits cell growth] -> Dis-
ease -> [Overexpression in disease] -> Gene
-> [Role in pathogenesis, or promotes progres-
sion] -> Disease



B.2 RiTeK-ADint

1.

10.
11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Amino Acid, Peptide, or Protein -> [affects]
-> Cell Function

. Amino Acid, Peptide, or Protein -> [affects]

-> Disease or Syndrome

. Amino Acid, Peptide, or Protein -> [causes]

-> Anatomical Abnormality

. Amino Acid, Peptide, or Protein -> [interacts

with] -> Pharmacologic Substance

. Anatomical Abnormality -> [affects] -> Organ

or Tissue Function

. Anatomical Abnormality -> [complicates] ->

Disease or Syndrome

. Anatomical Abnormality -> [manifestation of]

-> Genetic Function

. Antibiotic -> [affects] -> Molecular Function

. Antibiotic -> [causes] -> Pathologic Function

Antibiotic -> [disrupts] -> Cell Component
Antibiotic -> [treats] -> Disease or Syndrome

Bacterium -> [causes] -> Cell or Molecular
Dysfunction

Bacterium -> [interacts with] -> Human

Biologically Active Substance -> [affects] ->
Organism Function

Biologically Active Substance -> [causes] ->
Injury or Poisoning

Biologically Active Substance -> [disrupts] ->
Gene or Genome

Body Part, Organ, or Organ Component ->
[produces] -> Immunologic Factor

Cell Component -> [affects] -> Molecular
Function

Cell Component -> [produces] -> Nucleic
Acid, Nucleoside, or Nucleotide

Cell Function -> [affects] -> Mental or Behav-
ioral Dysfunction

Cell Function -> [produces] -> Biologically
Active Substance
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22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

36.

37.

38.
39.

40.

41.

42.

Cell or Molecular Dysfunction -> [affects] ->
Neoplastic Process

Cell or Molecular Dysfunction -> [manifesta-
tion of] -> Pathologic Function

Cell -> [produces] -> Organic Chemical
Congenital Abnormality -> [affects] -> Virus

Congenital Abnormality -> [manifestation of]
-> Organism Function

Diagnostic Procedure -> [affects] -> Genetic
Function

Disease or Syndrome -> [affects] -> Organ or
Tissue Function

Disease or Syndrome -> [associated with] ->
Therapeutic or Preventive Procedure

Disease or Syndrome -> [manifestation of] ->
Cell or Molecular Dysfunction

Finding -> [manifestation of] -> Pathologic
Function

Gene or Genome -> [produces] -> Amino
Acid, Peptide, or Protein

Genetic Function -> [affects] -> Human

Genetic Function -> [produces] -> Cell Com-
ponent

Hazardous or Poisonous Substance -> [af-
fects] -> Mental or Behavioral Dysfunction

Hazardous or Poisonous Substance -> [dis-
rupts] -> Organ or Tissue Function

Health Care Activity -> [affects] -> Disease
or Syndrome

Human -> [interacts with] -> Human

Immunologic Factor -> [affects] -> Pathologic
Function

Indicator, Reagent, or Diagnostic Aid -> [in-
teracts with] -> Hazardous or Poisonous Sub-
stance

Injury or Poisoning -> [disrupts] -> Genetic
Function

Medical Device -> [treats] -> Mental or Be-
havioral Dysfunction



43. Mental or Behavioral Dysfunction -> [affects]

-> Organism Function

44. Molecular Function -> [affects] -> Virus

45. Neoplastic Process -> [affects] -> Bacterium

46. Neoplastic Process -> [associated with] ->

Neoplastic Process

47. Nucleic Acid, Nucleoside, or Nucleotide ->

[interacts with] -> Immunologic Factor

48. Organ or Tissue Function -> [produces] ->

Immunologic Factor

49. Organic Chemical -> [affects] -> Pathologic

Function

50. Organic Chemical -> [interacts with] -> Phar-

macologic Substance

51. Organism Function -> [affects] -> Disease or

Syndrome

52. Pathologic Function -> [associated with] ->

Therapeutic or Preventive Procedure

53. Pathologic Function -> [manifestation of] ->

Organ or Tissue Function

54. Pharmacologic Substance -> [affects] -> Ge-

netic Function

55. Pharmacologic Substance -> [treats] -> Sign

or Symptom

56. Sign or Symptom -> [manifestation of] -> Ge-

netic Function

57. Therapeutic or Preventive Procedure -> [af-

fects] -> Neoplastic Process
58.

C

Cl1

Monte Carlo Tree Search (MCTS) has made signif-
icant advancements in mathematics, as it dynam-
ically explores and evaluates potential solutions,
balancing exploration and exploitation to optimize
decision-making in complex, high-dimensional
spaces. However, the effectiveness of MCTS in
TKGs has not yet been explored. To address this
gap, this paper investigates the effectiveness of
MCTS and proposes an improved version Rela-
tional MCTS that dynamically retrieves relational

Virus -> [interacts with] -> Human

Relational MCTS

Motivation and Approach Overview
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Shannon Entropy ~ Type-Token Ratio

Medical domain

RiTeK-ADint 10.04 0.187
RiTeK-PharmKG 9.61 0.157
STARK-PRIME 9.63 0.143
General domain
STARK-AMAZON 10.39 0.179
STARK-MAG 10.25 0.180
Toarm e ?Fa Quer;uzhyerm urement

”‘Q"ff“’-

Figure 4: Expansion progress of MCTS and Relational
MCTS. The pink shallow circle refers to the Stop sign.
Each node tn refers to a triple.

paths from the TKGs for the special query. Specif-
ically, it involves four steps: 1) To improve the
retrieval efficiency, we begin our path retrieval by
creating the textual triple graph (TTG) for each tex-
tual KG. 2) Subsequently, the node embeddings in
the TTG and the input query embedding are com-
puted using a pre-trained language model, such as
a SentenceBERT (Baek et al., 2023). Notably, each
node embedding includes its associated textual in-
formation. These embeddings will be used to calcu-
late the reward in the MCTS and Relational MCTS.
3) Proposed Relation MCTS is used to search the
relational path information. 4) Finally, the retrieved
relational path information will be verbalized and
fed into the LLM, such as GPT-4, along with the
input query to predict the final answers. Please
refer to Appendix ?? for detailed information on
steps 2 and 3.

C.2 MCTS vs Relational MCTS

In traditional MCTS, a trajectory typically extends
from the root to a terminal node. However, in the
context of QA tasks over textual knowledge graphs,
many relational templates incorporate constraints,
which pose challenges for standard MCTS. Fur-
thermore, the depth of the reasoning path can vary
depending on the specific question being posed;
for example, some queries may require a reasoning
depth of three hops, while others may only require
two. Consequently, MCTS is hard to appropriately
recognize or adapt to the required depth for each
individual query. To address this issue, we pro-
pose an enhanced MCTS specifically designed to
retrieve the relevant inference path information for
the input query, which we refer to as Relational
MCTS.

Same as traditional MCTS, starting from the



initial topic entity e, we perform multiple searches
consisting of selection, expansion, simulations, and
back-propagation. The key distinction between
MCTS and Relational MCTS lies in the expansion
phase, as illustrated in Figure 4. In the expansion
phase of MCTS, the next move is typically selected
from the set of children of the current node. For
instance, in MCTS, the candidate moves from node
tl are t3 and ¢4. In contrast, in Relational MCT'S,
the candidate moves from node ¢1 include ¢3, ¢4,
a Stop action, and the sibling nodes of t1. At
the same depth level, if two sibling nodes exist,
such as in Step 4 of Relational MCTS, the next
move is selected from the children of these sibling
nodes. For example, when node t4 is selected, its
candidate moves are t5, t6, and the Stop action.
The inclusion of the Stop action allows Relational
MCTS to automatically halt and generate a relevant
relational path (1 or 2 hops) for the input query.

Selection Starting from the topic entity, the al-
gorithm navigates through promising child nodes
based on specific strategies (e.g., UCT), continuing
until a leaf node is reached.

Expansion: At the leaf node, unless it represents
a terminal state of the game, one or more feasible
new child nodes are added to illustrate potential
future moves.

Simulation or Evaluation: From the newly
added node, the algorithm conducts random sim-
ulations— often termed "rollouts"—by selecting
moves arbitrarily until a game’s conclusion is
reached, thereby evaluating the node’s potential.

Backpropagation: Post-simulation, the out-
come (win, loss, or draw) is propagated back to
the root, updating the statistical data (e.g., wins,
losses) of each traversed node to inform future de-
cisions.

C.3 Answer Generation

In the progress of inference path generation, we en-
countered challenges in recognizing the internal en-
tity within the inference path. This difficulty arose
because some internal entities were not present in
the query. Therefore, after obtaining the reasoning
paths using Relational MCTS, we utilized only the
relations within these paths that form the relational
information. We then verbalized this information
and provided it as input to a downstream LLM,
such as GPT-4 or LLaMA.
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