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Abstract001

Answering complex real-world questions often002
requires accurate retrieval from textual knowl-003
edge graphs (TKGs), as the relational path004
information from TKGs could enhance the005
inference ability of Large Language Models006
(LLMs). However, the bottlenecks include the007
scarcity of existing TKGs, the limited expres-008
siveness of their topological structures, and the009
lack of comprehensive evaluations of current010
retrievers on TKGs. To tackle these challenges,011
we first develop a Dataset1 for LLMs Complex012
Reasoning over Textual Knowledge Graphs013
(RiTeK) with a broad topological structure cov-014
erage. We synthesize realistic user queries that015
integrate diverse topological structures, rela-016
tional information, and complex textual de-017
scriptions. We conduct rigorous expert eval-018
uation to validate the quality of our synthesized019
queries. RiTeK also serves as a comprehen-020
sive benchmark dataset designed to evaluate021
the capabilities of retrieval systems built on022
LLMs. By assessing 11 representative retriev-023
ers on this benchmark, we observe that existing024
methods struggle to perform well, revealing025
notable limitations in current LLM-driven re-026
trieval approaches. These findings highlight027
the pressing need for more effective retrieval028
systems tailored for semi-structured data.029

1 Introduction030

Although large language models (LLMs) have031

made a significant stride in natural language pro-032

cessing (NLP), complex question answering re-033

mains a challenge. Medical professionals, for in-034

stance, often need to express complex information035

that combines flexible inputs with specific, struc-036

tured constraints. Consider the query: “Which or-037

gan or tissue function, that circulates mother and038

fetus blood, is affected by Fetal Distress?” com-039

1The dataset is available here: https://anonymous.
4open.science/r/Riteck_sumission_version-026B/
readme.md

pared to the simpler version: “What does Fetal Dis- 040

tress affect?” Accurately addressing such complex 041

queries is critical, as it directly impacts healthcare 042

diagnoses and treatment plans. 043

To effectively answer these queries, organizing 044

the underlying knowledge using textual knowledge 045

graphs (TKGs) becomes essential. TKGs inte- 046

grate unstructured data—such as textual descrip- 047

tions of nodes (e.g., the definition of the medical 048

term Placental Circulation)—with structured data, 049

like the relationships between entities within the 050

graph (e.g., the relationship between Fetal Distress 051

and Placental Circulation is affects). This inte- 052

gration enables TKGs to represent comprehensive 053

knowledge tailored to specific applications, ren- 054

dering them invaluable, especially in the medical 055

field, where accuracy and reliability are critically 056

important. 057

However, existing datasets (Wu et al., 2024b,a) 058

exhibit one or more of the following limitations: 059

they are overly simplistic, involving only 1-2 hop 060

reasoning paths; they lack diverse topological struc- 061

ture templates 2 and rich relation types; or they 062

fail to incorporate complex constraints 3. Conse- 063

quently, these datasets fall short in addressing the 064

complexity of retrieval tasks involving TKGs, es- 065

pecially within the medical domain, where queries 066

require more complex multi-hop reasoning, diverse 067

topological structure templates, and multiple in- 068

terdependent constraints. Moreover, the absence 069

of textual properties in existing TKGs limits their 070

effectiveness in delivering comprehensive answers. 071

To address this gap, we present a large-scale 072

complex reasoning dataset over textual knowledge 073

graphs (RiTeK) within the medical domain. In 074

2A topological structure is a graph that is an abstract of
the query graphs of the same pattern, as shown in Li and Ji
(2022).

3Constraints are particularly important in KBQA as they
help filter out irrelevant information from large knowledge
bases, narrowing the search space and improving both effi-
ciency and accuracy
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this progress, one primary technical challenge we075

address is the accurate simulation of user queries076

with different reasoning types (e.g., six topologi-077

cal structures in Figure 1) within TKGs, ensuring078

that these queries are relevant and reflective of real-079

world medical scenarios involving patients, doctors,080

and medical scientists. This challenge arises from081

the interdependence of textual and relational infor-082

mation, the complexity of medical terminology and083

relationships, and the lack of textual descriptions084

of medical terms. We refer to the framework of Wu085

et al. (2024b) to simulate user queries and construct086

precise ground truth answers. However, our focus087

is primarily on the medical domain, incorporating088

richer topological structures that extend beyond the089

traditional 2- and 3-hop structures to better reflect090

real-world scenarios in the medical domain. Addi-091

tionally, the textual descriptions of each node are092

more detailed, enhancing the overall context and093

understanding. With RiTeK, we delve deeper into094

retrieval tasks on TKGs, evaluate the capability of095

current retrieval systems, and provide insights for096

future advancement.097

Key features of RiTeK include the following:098

(1) it incorporates rich ontological structures and099

detailed textual descriptions, with content quality100

rigorously validated by medical experts to ensure101

high reliability; (2) the benchmark queries are con-102

structed to capture complex relational dependen-103

cies and nuanced linguistic characteristics; and (3)104

the queries demand context-sensitive reasoning,105

where effective retrieval hinges not only on the106

model’s reasoning capabilities but also on its abil-107

ity to semantically align with the entity constraints108

embedded within the question.109

We also delve deeper into retrieval tasks on110

RiTeK, evaluate the capability of current retrieval111

systems, and provide insights for future advance-112

ment, and , highlighting challenges in handling113

textual and relational data with more compelxy on-114

tology structure and latency on large-scale SKBs115

with millions of entities or relations116

2 Related Work117

Datasets of Question Answering over Document.118

This area of research centers on extracting answers119

from document sources (Rajpurkar, 2016; Dunn120

et al., 2017; Joshi et al., 2017; Trischler et al., 2016;121

Welbl et al., 2018; Yang et al., 2018; Jin et al.,122

2021, 2019; Hendrycks et al., 2020). For example,123

SQuAD (Rajpurkar, 2016) assesses a model’s abil-124

ity to interpret and retrieve answers from a single 125

document, focusing on comprehension within a de- 126

fined context. PubMedQA (Jin et al., 2019) focuses 127

on understanding and reasoning within the context 128

of complex biomedical scientific texts. MedQA- 129

CS (Yao et al., 2024b) aims at simulating authentic 130

clinical scenarios encountered in the clinical ex- 131

amination tasks of medical education. However, 132

unstructured QA datasets often fall short in provid- 133

ing the depth needed for complex relational reason- 134

ing to effectively tackle complex user inquiries. In 135

contrast, our research involves queries that demand 136

more complex relational reasoning, challenging the 137

model’s ability to navigate and utilize structured 138

information effectively. 139

Datasets of Question Answering over Knowl- 140

edge Graph. The structure QA dataset chal- 141

lenges models to retrieve answers from the struc- 142

tured database, such as knowledge graph (Zhang 143

et al., 2018; Yih et al., 2016; Gu et al., 2021; Bao 144

et al., 2016; Trivedi et al., 2017). For example, 145

MetaQA (Zhang et al., 2018) challenges models to 146

generate the relational path with multi-hops. To test 147

the models’ abilities to decompose the constraint 148

information in the queries, WebQuestionsSP (Yih 149

et al., 2016) is proposed. GrailQA (Gu et al., 2021) 150

aims to facilitate the answering of more complex 151

questions, as it allows queries to involve up to four 152

relations and optionally includes functions such 153

as counting, superlatives, and comparatives. How- 154

ever, these datasets primarily focus on relational 155

information, the lack of textual information lim- 156

its questions within predefined relationships and 157

entities, which constrains the breadth of available 158

information. 159

Datasets of Question Answering over Textual 160

Knowledge Graph. To integrate textual informa- 161

tion into knowledge graphs and queries, STARK 162

(Prime, Amazon, Mag) (Wu et al., 2024b) is pro- 163

posed. To the best of our knowledge, Stark is the 164

only work that focuses on combining relational in- 165

formation with textual information in the question 166

answering over TKGs. However, this dataset lacks 167

sufficient topological structure coverage, hindering 168

the ability to handle complex queries, particularly 169

in the medical domain. The absence of detailed 170

node descriptions further challenges the model’s 171

ability to understand the query information. RiTeK 172

addresses these issues by incorporating richer topo- 173

logical structures and more extensive textual infor- 174

mation into knowledge graphs and queries, result- 175

ing in more comprehensive and nuanced responses 176
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with deeper insights drawn from abundant textual177

data.178

3 Problem Statement179

Textual Knowledge Graph A Textual Knowl-180

edge Graph (TKG) is defined as a graph G =181

(E ,R,D), where E denotes a set of entities and182

R denotes the set of relations among these enti-183

ties. In a TKG, the entities and relations are usually184

organized as facts and each fact is defined as a185

triplet (h, r, t) where h, t ∈ E and r ∈ R denote186

the head entity, tail entity and the relation between187

the two entities, respectively. Each entity e (e = h188

or e = t) in G has a textual document de ∈ D189

describing the entity information.190

Complex Question Answering over Textual191

Knowledge Graph Given a textual knowledge192

graph G and input query q, the model is expected193

to generate the answers a ∈ E , which satisfy the194

relational constraints defined by the structure of G195

as specified in q, and the associated document de196

need to satisfy the the knowledge required to solve197

q.198

Textual Triple Graph Unlike traditional knowl-199

edge graphs, where each node represents an entity200

and each edge denotes the relationship between201

nodes, in the textual triple graph, each node cor-202

responds to a triple (head entity, relation, tail en-203

tity) along with the textual description of each en-204

tity. In this context, the relation indicates whether205

the two triples are connected. To be specific, let206

G∗ = (V,E) denote a graph consisting of a set of207

node V and a set of edges E ∈ V × V . We denote208

by n the number of nodes in G and by m its number209

of edges. Each node v = (h, r, t, T (h), T (t)) ∈ V ,210

T (∗) is the textual description of entity.211

4 Dataset for LLMs Complex Reasoning212

over TKGs (RiTeK)213

4.1 Medical Textual Knowledge Graph214

Construction215

We construct two medical TKGs based on216

PharmKG (Zheng et al., 2021) and ADint (Xiao217

et al., 2024), as the increased number of entity218

and relation types introduces significant challenges219

for path retrieval in the question answering over220

textual knowledge graph. To enhance the entity221

attributes, we incorporate textual details from var-222

ious databases, including Ensembl, UMLS, and223

Mondo Disease Ontology. As shown in Table 1,224

TKG Dataset # Entities # Relation # Triple # Coverage

Stark-Amazon 4 4 9,443,802 –

Stark-Mag 4 4 39,802,116 –

Stark-Prime 10 18 8,100,498 15.29%

RiTeK-PharmKG 3 29 500,958 95.61%

RiTeK-ADint 102 15 1,017,284 36.73%

Table 1: Datasets Statistics of constructed medical tex-
tual knowledge graphs. # Coverage refers to textual
description coverage of each node. # Entities is the
number of entity types. # Relation is the number of re-
lation types. As the textual information for the provided
nodes is difficult to analyze statistically, we have not
provided the statistical information for Stark Mag and
Amazon.

our constructed TKGs provide greater node textual 225

coverage, along with more entity types and rela- 226

tion types. For further details on these two medical 227

TKGs, please refer to Appendix A.2. 228

4.2 Question Answering Dataset Construction 229

QA Dataset # queries #
topological
structure

# instance
rate

train/val/test

Stark-Amazon 9,100 1 4 0.65/0.17/0.18

Stark-Mag 13,323 4 1.25 0.60/0.20/0.20

Stark-Prime 1,1204 3 9.3 0.55/0.20/0.25

RiTeK-PharmKG 1,0235 6 11.33 0.80/0.10/0.10

RiTeK-ADint 5322 6 9.67 0.80/0.10/0.10

Table 2: Statistical Overview of the Textual KBQA
benchmark Datasets. Instance rate refers to the average
number of relational templates per topological structure.

4.2.1 Overview 230

We developed two question answering datasets 231

RiTeK PharmKG and RiTeK ADint based on two 232

textual knowledge graphs for complex reasoning. 233

These datasets notably feature queries that inte- 234

grate relational and textual knowledge, incorporat- 235

ing relational templates with broader coverage and 236

higher instance rates. Additionally, to enhance their 237

applicability in practical scenarios, these queries 238

mimic real-life query patterns, exhibiting a natural- 239

sounding quality and flexible formats. Specifically, 240

RiTeK-PharmKG consists of 10,235 synthesized 241

queries. To maximize the coverage of the ques- 242

tion topology, we generate the queries following 243

the six types of topological structure (e.g., multi- 244

hop and multi-hop with constraints). For the syn- 245

thesized queries, we developed 68 relational tem- 246

plates, crafted by a medical expert and detailed in 247

Appendix B.1, to encompass various relation types 248

and ensure practical relevance. The instance rate of 249
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Conceptual Instantiation
with expert

Medical Textual Knowledge Graph

Topological Structures

e.g.

Relation template

antibiotic

causes

pathologic function

Topic entity
Instantiation

anti-bacterial 
agents

cauces pathologic function

Find k candidate instance
for pathologic function

Gold answer:
Hypersensitivity

It involves an abnormal immune response
to an antigen, leading to excessive or

inappropriate reactions. These responses
can cause pathological conditions, such as
allergies, hypersensitivity, or autoimmune

disorders.

Textual properties

Step3: Combining textual and relational 
information

LLM

LLM

Step1: Relational template construction

Step2: Textual properties
extraction

Query: Does the Anti-Bacterial Agents
cause any Pathologic Function

that can result in pathologic reactions or
relates to altered reactivity to an antigen?

Step5: Expert evaluation

Step4: Filtering 
additional answers

Figure 1: The process of constructing textual structured retrieval datasets involves five main steps, 1) Relational
template construction: Create the relation template for TKG using the expert-designed topological structure. 2)
Extract Textual Properties: Choose one node as the answer node that meets the relational requirement, and extract
relevant textual properties. 3) Combine Information: Merge the relational information and textual properties to form
a natural-sounding query. 4) Filtering additional answers: Check if the left nodes satisfy the textual properties to
establish other ground truth nodes. 5) Expert Evaluation: The medical experts evaluate the naturalness, diversity,
and practicality of the dataset.

11.33, which is higher than that of the current TKG250

dataset Start (Amazon, Mag, and Prime), highlights251

the higher diversity of this dataset. RiTeK-ADint252

consists of 5322 synthesized queries and convers253

6 topological structures, with 58 relational tem-254

plates. Further details are provided in Appendix255

B.2. To capture the diverse language styles used by256

different users, we follow Stark and simulate three257

distinct roles: medical scientist, doctor, and patient.258

We divide the synthesized queries on each dataset259

into training, validation, and testing subsets, with260

the ratios detailed in Table 2. Further details on261

the scale of our QA benchmarks can be found in262

Table 2.263

4.2.2 Construction Pipline264

We present the pipeline that generates the large-265

scale medical QA datasets on TKGs. The core idea266

is to entangle relational information and textual267

properties into the query, and accurately construct268

ground truth answers with more complex topologi-269

cal structures. The construction of the QA datasets270

(Figure 1) generally involves five steps, and the271

specific processes vary depending on the character-272

istics of each dataset. These steps are as follows:273

Relational Template Construction. As shown in274

Figure 1 Step1, we first created templates based275

on the 6 designed topological structures (Li and276

Ji, 2022), which were evaluated by medical ex-277

perts to ensure their practical relevance and value.278

Afterward, the topological structures are instanti-279

ated conceptually with experts. For instance, for280

the topological structure Head entity–relation–tail281

entity, the "(antibiotic) causes <pathologic func-282

tion>" is a valid and common medical relation 283

template, as antibiotics, particularly penicillin and 284

cephalosporins, are well-known for triggering drug 285

hypersensitivity reactions. This makes it a medi- 286

cally reasonable and frequently observed relation- 287

ship. We then converted these relation templates 288

into specific relationship queries, such as "Anti- 289

Bacterial Agents causes pathologic function." Since 290

each query could correspond to one or more can- 291

didate entities, we matched the queries with the 292

textual KG to obtain k candidate entities. 293

Extracting Textual Properties. As shown in Fig- 294

ure 1 Step2, for the k candidate answers that meet 295

the relationship criteria, we select one entity as the 296

gold answer and use GPT-4 to extract textual prop- 297

erties from the entity’s associated document. For 298

instance, in the relationship "Anti-Bacterial Agents 299

causes pathologic function," we selected "Hyper- 300

sensitivity" as the gold answer and extracted its 301

textual properties. These textual properties expand 302

upon the concept of hypersensitivity, highlighting 303

their key characteristics, which make it more likely 304

to fulfill the inquirer’s needs. 305

Combining Textual and Relational Information. 306

As shown in Figure 1 Step3, after obtaining the rela- 307

tionship templates and textual properties, we com- 308

bine these components to synthesize the queries. 309

We chose GPT-4 as the LLM for query synthesis, 310

as it excels at generating natural, human-like ques- 311

tions. Additionally, we optimized the prompt and 312

incorporated instructions for different personas to 313

make the queries more diverse and realistic. This 314

approach enhances the quality of our dataset and 315

increases the demands on our model’s reasoning 316
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capabilities.For details on using GPT-4 to generate317

this query, please refer to Appendix A.3.318

Filtering Additional Answers. As shown in Fig-319

ure 1 Step4, in addition to the gold answer from320

which the textual properties are extracted, we need321

to evaluate whether other candidates meet the re-322

quirements of the query in order to include them323

in the final answer set. We use multiple LLMs to324

assess whether each candidate’s description satis-325

fies the textual requirements of the query. Only326

candidates that pass validation by all LLMs will be327

added to the final answer set.328

Human Evaluation. We invited four medical ex-329

perts to evaluate 1000 synthetic queries sampled330

from two datasets. The evaluation was conducted331

using a 5-point Likert-like scale across three di-332

mensions. Naturalness refers to how grammatically333

and logically human-like the queries sound. Diver-334

sity assesses whether the queries exhibit complex335

logical structures and encompass multiple entities,336

relations, and textual requirements. Practicality337

measures the real-world applicability of the gener-338

ated queries and their likelihood of being used in339

everyday scenarios.340

The scores were ultimately converted into per-341

centages representing the rates of Positive and Ac-342

ceptable responses. We found that the evaluation343

results provided by GPT-4 for our generated dataset344

were largely consistent with assessments from med-345

ical experts. For shorter queries, such as “What346

gene is inhibited by naloxone?”, GPT-4 noted the347

limited relational and textual information contained348

within and consequently assigned a lower Diversity349

score. Both GPT-4 and medical experts agreed that350

certain rare relationship types, such as “an ances-351

tor of”, are infrequently encountered in everyday352

Q&A scenarios and are more common in medical353

education contexts. Only a very small number of354

queries exhibited issues with insufficient Practical-355

ity. The results of this evaluation are summarized356

in the Table 3. The data in the table represents the357

Positive/ Acceptable rates (%) from GPT-4.358

Naturalness Diversity Practicality

RiTeK-PharmKG 81.80/99.60 81.6/99.40 67.4/97.8
RiTeK-ADint 81.20/99.20 74.80/100 68.60/96.60

Table 3: Positive/Acceptable rates(%) from experts

4.2.3 Data Distribution Analysis359

We chose Shannon Entropy and Type-Token Ra-360

tio (TTR) as the metrics to evaluate the query di-361

versity generated in our two datasets. Shannon 362

Entropy takes into account the frequency of each 363

word, measuring the evenness of word distribution 364

in the text, while Type-Token Ratio reflects the vari- 365

ety of words, with a higher value indicating greater 366

diversity in the generated queries. As shown in 367

Table 6, the TTR values for both RiTeK-PharmKG 368

and RiTeK-ADint surpass those of STARK-Prime, 369

demonstrating that the queries generated in our 370

datasets exhibit high complexity and diversity. For 371

Shannon Entropy, our results are comparable to 372

STARK-Prime. Since our RiTeK-ADint dataset 373

involves a wide range of non-pharmacological in- 374

terventions (NPIs), lifestyle modifications, and en- 375

vironmental factors, it introduces a richer vari- 376

ety of specialized terminology and concepts into 377

the synthesized queries. This expanded vocabu- 378

lary diversity leads to significantly higher Shannon 379

Entropy compared to the other medical domain 380

datasets. However, since our two datasets are de- 381

rived from the medical domain, the frequent repe- 382

tition of specialized medical terminology, as well 383

as the more concentrated vocabulary compared to 384

general-domain texts, results in slightly lower Shan- 385

non Entropy for our datasets than for the other two 386

general-domain datasets. For more analysis about 387

the distribution of query lengths and answer length, 388

please refer Appendix A.4. 389

5 Experiments 390

5.1 Retrieval Models and Evaluation Metrics 391

We evaluated the 9 representative retrieval models 392

on our benchmark datasets under both zero-shot 393

and few-shot settings. In addition to our bench- 394

mark dataset, we also evaluated the models on 395

Stark-Prime (Wu et al., 2024b), a textual question 396

answering dataset with minimal ontology in the 397

query, including: 398

• GPT-4 (Achiam et al., 2023): We use GPT-4 with 399

the instruction to generate the answers directly. 400

• Random Walk (Lovász, 1993): Starting from the 401

topic entity, a random walk algorithm is applied 402

to explore paths in the textual triple graph in the 403

maximum depth d. 404

• MCTS (Chaslot, 2010): Starting from the topic 405

entity, a monte carlo tree search algorithm is ap- 406

plied to explore paths in the textual triple graph 407

in the maximum depth d. In this work, we set the 408

d = 3. 409

• Chain-of-Thought (COT) (Wei et al., 2022): We 410

designed the instruction to guide GPT-4 in gen- 411
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RiTeK-PharmKG RiTeK-ADint Stark-Prime

Exact Match Rouge-1 Exact Match Rouge-1 Exact Match Rouge-1

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

Zero-Shot

GPT-4 11.39 10.90 11.03 15.56 15.50 15.30 7.26 12.10 8.03 13.71 27.64 16.35 5.23 6.81 4.65 11.31 16.35 11.31

+Random Walk (Lovász, 1993) 12.27 11.86 11.96 14.69 14.15 14.30 15.12 22.68 16.52 20.87 32.92 23.25 7.50 8.20 6.48 13.90 17.31 13.32

+MCTS (Chaslot, 2010) 17.17 16.54 16.68 19.09 18.44 18.60 16.97 24.41 18.35 22.82 34.69 25.20 7.64 8.36 6.52 14.04 17.45 13.38

+COT (Wei et al., 2022) 13.11 16.42 13.70 17.53 22.57 18.40 10.52 19.78 11.95 17.79 37.25 20.97 6.47 8.23 5.81 12.61 17.99 12.47

+TOT (Yao et al., 2024a) 7.31 7.32 7.22 13.21 14.67 13.42 3.97 9.65 5.28 12.90 25.44 15.96 2.99 3.08 2.55 9.50 9.81 8.65

+GOT (Besta et al., 2024) 3.56 4.20 3.75 10.86 11.84 11.06 2.61 3.32 2.81 15.09 17.63 15.84 1.99 2.20 1.78 9.89 9.34 8.72

+ TOG (Sun et al., 2023) 29.85 38.19 31.14 31.38 40.37 32.92 23.08 40.63 25.81 27.81 48.93 31.54 12.14 15.76 11.27 18.67 24.75 18.42
+G-retriver (He et al., 2024) 11.21 13.39 11.60 15.01 18.54 15.62 10.97 19.05 12.52 17.27 32.99 20.41 6.23 6.61 5.17 12.01 14.92 11.40

+KAR (Xia et al., 2024) 30.95 23.99 25.18 33.65 26.11 27.50 39.59 24.00 27.29 46.54 28.87 32.80 12.02 14.49 11.12 18.04 22.20 17.61

Few-Shot

GPT-4 13.75 15.54 14.04 16.84 19.84 17.49 17.57 17.91 17.48 25.50 28.08 26.04 7.79 6.41 5.91 14.03 13.53 12.14

+Random Walk (Lovász, 1993) 11.02 13.28 11.32 14.46 17.88 14.92 22.99 22.79 22.75 29.10 29.07 28.95 9.93 6.93 7.34 16.54 13.02 13.45

+MCTS (Chaslot, 2010) 17.79 17.11 17.30 20.97 20.29 20.48 19.51 27.32 20.91 24.71 36.25 26.96 9.57 6.89 7.14 15.92 12.55 12.88

+COT (Wei et al., 2022) 17.29 16.91 16.99 21.55 20.97 21.13 18.57 18.12 18.26 26.68 26.62 26.53 8.13 5.91 5.99 14.03 13.53 12.14

+TOT (Yao et al., 2024a) 14.74 14.74 14.63 19.22 19.14 18.97 13.28 13.17 13.21 24.65 24.72 24.60 12.84 10.11 10.36 6.93 4.85 5.06

+GOT (Besta et al., 2024) 12.10 12.22 12.06 17.38 17.31 17.19 15.84 15.32 15.42 26.20 25.89 25.91 5.37 3.73 3.78 12.69 9.98 10.17

+TOG (Sun et al., 2023) 29.14 42.33 32.36 30.40 44.00 33.88 26.50 47.13 33.83 29.46 49.69 36.43 14.41 20.39 16.40 19.75 26.61 20.14
+G-retriver (He et al., 2024) 12.51 12.14 12.22 15.94 15.44 15.57 17.47 17.50 17.32 24.87 24.92 24.71 7.72 5.75 5.86 14.63 11.92 12.10

+KAR (Xia et al., 2024) 27.35 27.43 26.99 29.74 29.76 29.34 34.68 33.42 33.48 40.15 38.55 38.88 13.01 15.50 12.21 19.00 23.10 18.00

Supervised

G-retriver (He et al., 2024) 38.71 37.11 37.62 39.78 39.18 39.31 47.93 47.16 47.41 54.68 54.00 54.24 16.14 16.47 14.11 17.21 27.86 19.21

GCR (Luo et al., 2024) 44.38 57.28 47.71 46.04 58.83 49.44 43.52 60.78 48.07 49.47 65.57 54.24 19.03 26.89 18.94 28.01 37.18 28.75
GNN-RAG (Mavromatis and Karypis, 2024) 50.78 49.28 49.72 51.66 50.29 50.73 51.04 50.59 50.55 56.49 56.09 56.09 16.00 15.04 14.50 24.78 23.51 22.99

Table 4: Results of various approaches for question answering with complex reasoning on RiTeK-PharmKG,
RiTeK-ADint and Stark-Prime. P refers to the Precision, R refers to the recall. In the experiments, the GPT-4
version is GPT4o-mini.

erating the answer step by step, with the output412

formatted as step-by-step reasoning: explanation,413

answer: medical terms.414
• Tree-of-Thought (TOT) (Yao et al., 2024a):We415

structured the reasoning process as a tree search,416

where multiple intermediate reasoning paths are417

explored in parallel. GPT-4 evaluates and ex-418

pands promising paths based on a voting or scor-419

ing mechanism.420
• Graph-of-Thought (GOT) (Besta et al., 2024):421

We represented the reasoning process as a graph422

structure, where nodes capture different reason-423

ing states and edges denote transitions. GPT-4424

traverses the graph to aggregate information and425

synthesize the final answer.426
• Think-on-Graph (TOG) (Sun et al., 2023): is a427

reasoning framework that enables large language428

models to interactively perform beam search over429

knowledge graphs, discovering and evaluating430

promising reasoning paths without additional431

training.432
• G-retriever (He et al., 2024): A RAG-based ap-433

proach that retrieves query-relevant subgraphs434

using the Prize-Collecting Steiner Tree (PCST)435

algorithm to enhance LLM understanding and436

reasoning over textual graphs.437
• KAR (Xia et al., 2024): A knowledge-aware438

query expansion method that augments LLMs439

with structured document relations from a knowl-440

edge graph, using relation-aware filtering to im-441

prove retrieval for semi-structured queries.442

We evaluated the 3 representative retrieval mod-443

els on our benchmark datasets and Stark-Prime444

under supervised learning settings, including: 445

• G-retriever (He et al., 2024):A RAG-based ap- 446

proach that retrieves query-relevant subgraphs 447

using the Prize-Collecting Steiner Tree (PCST) 448

algorithm to enhance LLM understanding and 449

reasoning over textual graphs. 450

• GCR (Luo et al., 2024): A knowledge-aware 451

query expansion method that augments LLMs 452

with document-based relational signals to im- 453

prove retrieval for semi-structured queries. 454

• GNN-RAG (Mavromatis and Karypis, 2024). A 455

method that uses a GNN to retrieve relevant an- 456

swers and extract the shortest paths connecting 457

the topic entity and answers, which are then ver- 458

balized and fed into the LLM to enhance retrieval- 459

augmented generation (RAG) performance. 460

We evaluated the outputs of different methods 461

using several metrics, including Exact Match 462

(EM)(Rajpurkar, 2016; Li and Huang, 2023), 463

which assesses whether the predicted sequence ex- 464

actly matches the reference, awarding credit only 465

for perfect matches. Additionally, we employed 466

ROUGE-1(Cohan and Goharian, 2016) to measure 467

unigram overlap between the predicted and refer- 468

ence sequences, providing partial credit for shared 469

words even when the sequences are not identical. 470

To ensure fairness in the comparison, the instruc- 471

tions and examples are the same for both the zero- 472

shot and few-shot settings, respectively. 473
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5.2 Results and Discussion474

Table 4 shows the experiment results of various475

approaches based on Excat Match and Rougle-1.476

We have the following observations. Zero-shot and477

few-shot setting: (1) We observed that the baseline478

models struggle to generate the correct answers479

on RiTeK-PharmKG and RiTeK-ADint. For GPT-480

4 and GPT+COT, they are challenges in utilizing481

reasoning information from the graph. Although482

GPT+COT can utilize step-by-step reasoning, it483

still relies on the inherent knowledge of the LLM,484

which limits its ability to apply clear logical rea-485

soning based on knowledge graphs. For the Ran-486

dom Walk, while it can provide reasoning paths,487

its random nature limits its ability to accurately488

identify the correct path information. However, it489

could get the better performance than GPT-4 in490

RiTek-Adint and Stark-Prime in the zero/few-shot491

setting. (2) Tree-of-Thought (ToT) and Graph-of-492

Thought (GoT) attempt to guide LLM reasoning493

through structured prompting, encouraging step-494

by-step or graph-based logical thinking. However,495

on complex textual KBQA datasets like RiTeK-496

PharmKG and RiTeK-ADint, both methods con-497

sistently underperform, with F1 scores far below498

those of retrieval-augmented approaches like KAR499

(e.g., ToT: 13.42 vs. KAR: 27.50 in zero-shot).500

This suggests that the internal knowledge and rea-501

soning capabilities of LLMs alone are insufficient502

for tasks that require fine-grained relational under-503

standing and the integration of attribute information504

from the query. Despite their logical scaffolding,505

ToT and GoT struggle to recover factual precision506

without access to external structured knowledge.507

(3) KAR achieves strong performance on medical508

datasets like RiTeK-PharmKG and RiTeK-ADint,509

outperforming baselines in both zero-shot and few-510

shot settings. Its main strength lies in combin-511

ing textual semantics with structured KG relations512

to generate accurate and context-aware query ex-513

pansions. However, KAR relies on retrieving the514

top-n relevant documents; however, determining515

an appropriate value for n and the optimal order516

in which to select documents is non-trivial. (4)517

G-Retriever shows moderate performance across518

medical datasets, but generally underperforms com-519

pared to methods like KAR or TOG in both zero-520

shot and few-shot settings. For example, on Stark-521

Prime, its ROUGE-1 F1 score (5.17 vs. 11.12 zero-522

shot) lags significantly behind KAR, This indicates523

a weaker ability to handle complex relational con-524

straints, particularly when the answer’s attributes 525

are embedded in the query. Its main strength lies 526

in interpretable subgraph selection using PCST, 527

which enhances explainability and helps mitigate 528

hallucinations. (5)TOG performs moderately in 529

zero-shot settings but shows strong gains in few- 530

shot scenarios, achieving top-tier ROUGE-1 F1 531

scores like 37.11 on Riteck-ADint and 36.43 on 532

Stark-Prime. This highlights its ability to leverage 533

demonstrations to guide accurate reasoning over 534

knowledge graphs, especially in complex biomedi- 535

cal tasks. 536

In the setting of supervised fine tuning, GCR 537

achieves the best overall performance across all 538

three medical benchmarks in the supervised setting, 539

with scores like 57.28 ROUGE-1 F1 on ADint and 540

49.72 on Stark-Prime, demonstrating its strength in 541

generating faithful, KG-grounded answers. How- 542

ever, GCR relies on pre-constructed KG-Trie in- 543

dices. We found that GNN-RAG achieves better 544

performance on the RiTeK-PharmKG and RiTeK- 545

ADint datasets, demonstrating its ability to retrieve 546

relevant path information from the graph. However, 547

since it primarily relies on shortest paths, it may 548

overlook critical reasoning information embedded 549

in more complex or indirect graph structures. 550

5.3 Analysis 551

5.3.1 Effect of Different LLMs on Retriever 552

Effectiveness 553

In this part, we analyze the influence of differ- 554

ent LLMs on the retrievers. Table 5 presents the 555

performance of three retrieval settings, G-retriver, 556

GNN-RAG, and without retriever, in three LLMs 557

of the backbone: Llama 3.1 8b, Llama2-chat-7b, 558

and Biomixtral 7b, on three datasets. Overall, G- 559

retriver consistently outperforms other approaches 560

across most metrics, particularly in Rouge-1 F1 561

scores. For instance, on RiTeK-ADint, G-retriver 562

with Llama 3.1 8b achieves the highest F1 score 563

of 56.87, while the GNN-RAG and no retriever 564

baselines lag behind. Similarly, G-retriver reaches 565

55.02 F1 on Biomixtral for the same dataset, 566

showcasing its robustness across model sizes. In 567

contrast, GNN-RAG shows variable performance, 568

sometimes underperforming even compared to the 569

no-retriever baseline, such as on Stark-Prime using 570

Biomixtral. The "w/o retriever" baseline, repre- 571

senting an LLM without retrieval augmentation, 572

performs surprisingly well in some settings, indi- 573

cating that strong LLMs alone can capture a sig- 574
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llama 3.1 8b llama2-chat-7b Biomixtral 7b

Exact Match Rouge-1 Exact Match Rouge-1 Exact Match Rouge-1

Approach P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

RiTeK-PharmKG

G-retriver (He et al., 2024) 36.97 46.07 38.31 33.04 47.03 38.41 38.71 37.11 37.62 39.78 39.18 39.31 43.01 41.59 42.01 43.95 42.69 43.10
GNN-RAG 33.21 43.01 37.31 21.00 44.89 26.00 50.78 49.28 49.72 51.66 50.29 50.73 39.93 39.12 39.26 41.69 40.89 41.08

w/o retriever 32.45 43.40 34.23 47.60 46.59 46.84 38.91 37.63 38.02 40.57 39.31 39.72 41.49 39.43 40.05 41.25 41.06 40.99

RiTeK-ADint

G-retriver (He et al., 2024) 50.83 50.07 50.31 57.34 56.61 56.87 47.93 47.16 47.41 54.68 54.00 54.24 48.34 47.48 47.75 55.58 54.73 55.02

GNN-RAG 40.88 40.90 40.43 44.43 45.01 45.49 51.04 50.59 50.55 56.49 56.09 56.09 50.83 50.07 50.31 57.34 56.61 56.87
w/o retriever 49.59 48.48 48.82 55.23 54.29 54.61 46.58 45.82 46.06 51.66 49.91 46.47 49.79 48.93 49.20 56.43 53.80 54.15

Stark-Prime

G-retriver (He et al., 2024) 16.14 16.47 14.11 17.21 27.86 19.21 10.15 8.45 8.17 21.75 18.08 18.40 12.22 11.54 10.58 23.15 21.37 20.72

GNN-RAG 7.81 16.67 9.35 18.13 27.50 19.65 16.00 15.04 14.50 24.78 23.51 22.99 11.20 10.31 10.65 17.98 18.09 18.32

w/o retriever 12.96 14.99 11.91 16.80 25.75 18.41 11.77 10.38 9.68 20.65 21.59 17.66 12.96 11.12 10.73 24.83 21.59 21.68

Table 5: Performance of different retrieval models across backbone LLMs. “w/o retriever” denotes an LLM without
retrieval augmentation.

G-retriever

GCR

GNN-RAG

Path: Small RNA -> CAUSES -> Fibrosis, 
MicroRNAs -> ASSOCIATED_WITH -> Myocardial Reperfusion Injury, 
Functional RNA -> AFFECTS -> biological adaptation to stress

Answer: Myocardial Reperfusion Injury

Answer: Myocardial Reperfusion Injury, Myocardial Infarction

Path: Small RNA -> AFFECTS -> Immune response,  
Immune response-> AFFECTS -> Myocardial Reperfusion Injury, 
Small RNA -> AFFECTS -> Cell physiology, 
Small RNA -> AFFECTS -> Virulence

Answer: Myocardial Reperfusion Injury

TOG

MCTS

GPT-4

Path: CHI3L1 -> AFFECTS -> tube morphogenesis, 
CHI3L1 -> PREDISPOSES -> Alzheimer's Disease, 
CHI3L1 -> ASSOCIATED_WITH -> Alzheimer's Disease, 
Alzheimer's Disease -> AFFECTS -> Abnormal behavior, 
Alzheimer's Disease -> ASSOCIATED_WITH -> Gene Mutation, 
Alzheimer's Disease -> AFFECTS -> Neurodegenerative Disorders, 
Neurodegenerative Disorders -> COEXISTS_WITH -> Abnormal degeneration, 
Neurodegenerative Disorders -> COEXISTS_WITH -> Death (finding), 
Neurodegenerative Disorders -> COEXISTS_WITH -> Impaired cognition

Answer: Alzheimer's Disease; Neurodegenerative Disorders

Path: CHI3L1 -> PREDISPOSES -> Alzheimer's Disease -> COEXISTS_WITH
 -> Elevated serum protein -> COEXISTS_WITH -> Juvenile Huntington Disease
 -> COEXISTS_WITH -> Elevated serum protein

Answer: Juvenile Huntington Disease

Answer: Autism Spectrum Disorder (ASD)

Question: What disease is associated with the chi3l1 mutations affecting biomarkers 
linked to npy, characterized by overexpression in alb and known for leading to 
regressive behavior?

Ground Truth Path: chi3l1 -> Mutations affect, or polymorphisms alter risk -> schizophrenia 
-> Biomarkers (diagnostic), or regulation linked to disease 
-> npy, schizophrenia -> Overexpression in disease -> alb

Answers: Schizophrenia

Question: How does Small RNA affect Organism Function that leads to Pathologic Function 
involving damaged myocardium?

Ground Truth Path: Small RNA -> affects -> Immune response -> affects 
->Myocardial Reperfusion Injury

Answers: Myocardial Reperfusion Injury

Figure 2: A case study on RiTeK

nificant amount of relevant knowledge. For exam-575

ple, on RiTeK-ADint with Biomixtral, it achieves576

a Rouge-1 F1 score of 54.15, close to the GNN-577

RAG. However, in most cases, retrieval-augmented578

methods still yield superior performance. Notably,579

Biomixtral 7b tends to outperform the other two580

LLMs when combined with retrieval, especially in581

recall and F1. These results suggest that both the582

choice of retrieval strategy and the backbone LLM583

significantly impact end-task performance.584

5.3.2 Case Study of Path and Answer Quality585

We conduct a qualitative analysis to compare the586

reasoning paths and predicted answers from differ-587

ent retrieval models on two biomedical question-588

answering examples. As shown in Figure 2, all589

models successfully predicted the correct answer590

Myocardial Reperfusion Injury in the first case, al-591

though their reasoning paths varied in granularity592

and relevance. G-RETRIEVER and GNN-RAG593

produced informative multi-hop paths that partially594

overlapped with the ground truth. 595

In contrast, for the second question involving 596

CHI3L1 and schizophrenia, only the ground truth 597

path led to the correct answer. All baseline models 598

failed: TOG and MCTS generated incorrect rea- 599

soning chains centered around Alzheimer’s Disease 600

and Juvenile Huntington Disease, while GPT-4 hal- 601

lucinated Autism Spectrum Disorder. These errors 602

reveal the challenge of modeling rare or indirect 603

biomedical associations, especially when entity re- 604

lations involve subtle phenotypic markers. This 605

case highlights the importance of precise multi-hop 606

reasoning and clinically aligned retrieval in semi- 607

structured biomedical graphs. 608

6 Conclusion 609

We present RiTeK, the first dataset specifically de- 610

signed to evaluate the capability of models in han- 611

dling complex reasoning over textual knowledge 612

graphs (TKGs). This dataset offers diverse topolog- 613

ical structures, relational types, entity types, and 614

queries that integrate relational and textual infor- 615

mation, requiring sophisticated reasoning across 616

TKGs. RiTeK also includes rich textual descrip- 617

tions for each node. To ensure the authenticity 618

and accuracy of the queries, medical experts per- 619

formed stringent validation. RiTeK sets a new stan- 620

dard for evaluating real-world retrieval systems. 621

We evaluated 11 retrieval models on our bench- 622

mark dataset. Our experiments on RiTeK reveal 623

significant challenges faced by current models in 624

effectively handling both textual and relational in- 625

formation, especially under complex topological 626

structures involving intricate relations and entities. 627

RiTeK paves the way for future research aimed 628

at advancing retrieval systems by emphasizing the 629

need to enhance reasoning capabilities, particularly 630

in retrieving complex reasoning paths under answer 631

attribute constraints. 632
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7 Limitations633

RiTeK is currently limited to queries that involve634

only a single topic entity and rely solely on the635

textual and structural information present in the636

graph. Future work should explore the inclusion of637

multiple topic entities and incorporate additional638

modalities, such as images, to enable a more com-639

prehensive and robust information retrieval system.640

Although we employed four medical experts for641

human evaluation, increasing the number of quali-642

fied domain experts would improve the statistical643

significance and robustness of our findings. Future644

work should consider expanding the pool of experts645

and addressing issues of fairness, and potential bi-646

ases inherent in LLMs.647
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A Appendix 814

A.1 TKG resources 815

Ensembl 4, 5, and Mondo Disease Ontology 6. 816

A.2 Medical textual knowledge graph 817

construction 818

We construct two medical TKGs based on 819

PharmKG (Zheng et al., 2021) and ADint (Xiao 820

et al., 2024), as the increased number of entity and 821

relation types introduces significant challenges for 822

path retrieval in the question answering over textual 823

knowledge graph. We present the statistics of the 824

relational structure in Table 1 and introduce each 825

TKG as follows: 826

PharmKG Textual Knowledge Graph: We 827

leverage the existing medical knowledge graph 828

PharmKG (Zheng et al., 2021) which is a multi- 829

relational, attribute-rich biomedical knowledge 830

graph (KG) constructed from six publicly available 831

databases that provide high-quality structured in- 832

formation. These databases include OMIM, Drug- 833

Bank, PharmGKB, Therapeutic Target Database 834

(TTD), SIDER, and HumanNet. PharmKG consists 835

of over 500,000 distinct interconnections between 836

genes, drugs, and diseases, encompassing 29 types 837

of relationships within a vocabulary of approxi- 838

mately 8,000 disambiguated entities. To enhance 839

the entity attributes, we incorporate textual details 840

from various databases, including Ensembl, UMLS, 841

4https://useast.ensembl.org/index.html
5https://www.nlm.nih.gov/research/umls/index.html
6https://mondo.monarchinitiative.org/
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and Mondo Disease Ontology, as supplementary842

data sources.843

ADInt Textual Knowledge Graph:844

ADInt(Xiao et al., 2024) is a comprehensive845

knowledge graph (KG) constructed from biomed-846

ical literature, focusing on non-pharmacological847

interventions (NPI) and their associations with848

Alzheimer’s disease (AD). ADInt includes 162,212849

entities spanning 113 UMLS semantic types,850

which, upon further classification, consist of851

25,604 drugs, 16,474 diseases, 46,060 genes852

and proteins, 2,525 dietary supplements (DS),853

and 128 complementary and integrative health854

(CIH) interventions. Moreover, ADInt contains855

1,017,284 triples, capturing 15 distinct relation856

types, offering a rich dataset for exploring the intri-857

cate relationships between NPIs and AD. Same as858

PharmKG, we also incorporate textual details from859

various databases, including Ensembl, UMLS, and860

Mondo Disease Ontology, as supplementary data861

sources.862

A.3 Thr prompt of Combining Textual and863

Relational Information864

You are a creative assistant tasked with generating865

natural, diverse, and realistic queries by combining866

textual properties and relational templates. Write867

the query from the perspective of a <persona>, en-868

suring it is concise, human-like, and paraphrased869

while retaining the original meaning.870

Consider the following characteristics for the871

persona:872

• Doctor: Formulate direct and practical ques-873

tions aimed at diagnosing and treating. These874

questions should focus on side effects, symp-875

toms, complications, and other clinically rele-876

vant aspects.877

• Medical Scientist: Generate detailed and spe-878

cific questions reflecting the complexity of879

scientific inquiry. These questions should ex-880

plore etiology, pathophysiology, genetic fac-881

tors, pathways, proteins, or molecular func-882

tions.883

• Patient: Create straightforward questions884

that avoid professional medical terminology.885

These questions should focus on practical con-886

cerns, such as symptoms, effects, inheritance,887

or other relatable aspects, and may include888

more context from daily life.889

Figure 3: Distribution of query lengths and answer
lengths on RiTeK-ADint and RiTeK-PharmKG datasets

Textual Properties: [<in- 890

put_textual_properties>] 891

Relational Templates: [<in- 892

put_relational_templates>] 893

Persona: <input_persona> (e.g., Doctor, Medi- 894

cal Scientist, Patient) 895

Ensure the query is realistic and diverse, lever- 896

aging flexibility in how the textual and relational 897

elements are presented. Avoid directly copying the 898

input phrases; instead, paraphrase them while re- 899

taining their original meaning. Please output only 900

the generated query without any additional com- 901

ments or explanations. 902

A.4 Data Analysis of query length and answer 903

length 904

We analyzed the distribution of query lengths (i.e., 905

the number of words in each query) to assess the 906

complexity of the queries and the amount of in- 907

formation they contain. As shown in the Figure 3, 908

the query lengths range from 5 to 40 words, with 909

approximately 69% and 61% of queries in the two 910

datasets having lengths between 15 and 25 words. 911

Then, we analyzed the proportion of ground truth 912

answers associated with each query. Generally, 913

the more ground truth answers there are, the less 914

precise the textual requirements in the query tend 915

to be. To increase the difficulty of the question- 916

answering task, we filtered out queries with too 917

many ground truth answers during the dataset cre- 918

ation process, retaining only those with a maximum 919

of three ground truth answers. In both datasets, 920

over 90% of queries have a single ground truth an- 921

swer, indicating that our queries are enriched with 922

detailed textual information from entity attributes. 923

This introduces more challenges when developing 924

new graph retrieval methods 925

B Relational Template 926

B.1 RiTeK-PharmKG 927

1. Gene -> [Production by cell population] -> 928

Gene 929
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2. Gene -> [Enhance response, or activate, stim-930

ulate] -> Gene931

3. Gene -> [Relationships involving regulation932

and pathways] -> Gene933

4. Gene -> [Binding, ligand] -> Gene934

5. Gene -> [Affects expression/production] ->935

Gene936

6. Gene -> [Gene-Gene] -> Gene937

7. Chemical -> [Chemical-Chemical] -> Chemi-938

cal939

8. Disease -> [Ancestors of disease] -> Disease940

9. Disease -> [Associations between diseases] ->941

Disease942

10. Gene -> [Interactions] -> Chemical943

11. Chemical -> [Interactions] -> Gene944

12. Gene -> [Interactions] -> Gene945

13. Gene -> [Interactions] -> Disease946

14. Gene -> [Drug targets] -> Disease947

15. Gene -> [Role in pathogenesis, or promotes948

progression] -> Disease949

16. Gene -> [Mutations affect, or polymorphisms950

alter risk] -> Disease951

17. Disease -> [Biomarkers (diagnostic), or regu-952

lation linked to disease] -> Gene953

18. Disease -> [Overexpression in disease] ->954

Gene955

19. Chemical -> [Treatment or therapy] -> Dis-956

ease957

20. Chemical -> [Side effect or adverse event] ->958

Disease959

21. Chemical -> [Inhibits cell growth] -> Disease960

22. Chemical -> [Role in pathogenesis] -> Dis-961

ease962

23. Chemical -> [Prevents, suppresses, or allevi-963

ates, reduces] -> Disease964

24. Disease -> [Biomarkers (progression)] ->965

Chemical966

25. Chemical -> [Agonism, activation, or antago- 967

nism, blocking] -> Gene 968

26. Chemical -> [Binding, ligand] -> Gene 969

27. Chemical -> [Affects expression/production] 970

-> Gene 971

28. Chemical -> [Inhibits] -> Gene 972

29. Gene -> [Transport, channels] -> Chemical 973

30. Gene -> [Metabolism, pharmacokinetics] -> 974

Chemical 975

31. Gene -> [Enzyme activity] -> Chemical 976

32. Gene -> [Enhance response, or activate, stim- 977

ulate] -> Gene -> [Drug targets] -> Disease 978

33. Gene -> [Enhance response, or activate, stim- 979

ulate] -> Gene -> [Role in pathogenesis, or 980

promotes progression] -> Disease 981

34. Gene -> [Enhance response, or activate, stim- 982

ulate] -> Gene -> [Mutations affect, or poly- 983

morphisms alter risk] -> Disease 984

35. Gene -> [Relationships involving regulation 985

and pathways] -> Gene -> [Binding, ligand] 986

-> Gene 987

36. Gene -> [Binding, ligand] -> Gene -> [Affects 988

expression/production] -> Gene 989

37. Gene -> [Interactions] -> Gene -> [Interac- 990

tions] -> Chemical 991

38. Gene -> [Transport, channels] -> Chemical -> 992

[Agonism, activation, or antagonism, block- 993

ing] -> Gene 994

39. Gene -> [Metabolism, pharmacokinetics] -> 995

Chemical -> [Binding, ligand] -> Gene 996

40. Gene -> [Enhance response, or activate, stim- 997

ulate] -> Gene -> [Enhance response, or acti- 998

vate, stimulate] -> Gene 999

41. Gene -> [Interactions] -> Chemical -> [Treat- 1000

ment or therapy] -> Disease 1001

42. Gene -> [Interactions] -> Chemical -> [Side 1002

effect or adverse event] -> Disease 1003

43. Gene -> [Interactions] -> Disease -> 1004

[Biomarkers (diagnostic), or regulation linked 1005

to disease] -> Gene 1006
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44. Chemical -> [Treatment or therapy] -> Dis-1007

ease -> [Biomarkers (diagnostic), or regula-1008

tion linked to disease] -> Gene1009

45. Disease -> [Associations between diseases] ->1010

Disease -> [Ancestors of disease] -> Disease1011

46. Disease -> [Biomarkers (diagnostic), or reg-1012

ulation linked to disease] -> Disease ->1013

[Biomarkers (diagnostic), or regulation linked1014

to disease] -> Gene1015

47. Gene -> [Interactions] -> Gene -> [Transport,1016

channels] -> Chemical1017

48. Gene -> [Metabolism, pharmacokinetics] ->1018

Chemical -> [Binding, ligand] -> Gene1019

49. Gene -> [Enhance response, or activate, stim-1020

ulate] -> Gene -> [Drug targets] -> Disease ->1021

[Biomarkers (diagnostic), or regulation linked1022

to disease] -> Gene1023

50. Gene -> [Enhance response, or activate, stim-1024

ulate] -> Gene -> [Mutations affect, or poly-1025

morphisms alter risk] -> Disease -> [Overex-1026

pression in disease] -> Gene1027

51. Gene -> [Transport, channels] -> Chemical ->1028

[Agonism, activation, or antagonism, block-1029

ing] -> Gene -> [Binding, ligand] -> Chemical1030

52. Gene -> [Metabolism, pharmacokinetics] ->1031

Chemical -> [Binding, ligand] -> Gene -> [In-1032

hibits] -> Chemical1033

53. Gene -> [Interactions] -> Chemical -> [Treat-1034

ment or therapy] -> Disease -> [Biomarkers1035

(diagnostic), or regulation linked to disease]1036

-> Gene1037

54. Gene -> [Interactions] -> Disease ->1038

[Biomarkers (diagnostic), or regulation linked1039

to disease] -> Gene -> [Transport, channels]1040

-> Chemical1041

55. Gene -> [Role in pathogenesis, or promotes1042

progression] -> Disease -> [Biomarkers (di-1043

agnostic), or regulation linked to disease] ->1044

Gene -> [Metabolism, pharmacokinetics] ->1045

Chemical1046

56. Chemical -> [Agonism, activation, or antago-1047

nism, blocking] -> Gene -> [Drug targets] ->1048

Disease -> [Biomarkers (diagnostic), or regu-1049

lation linked to disease] -> Gene1050

57. Disease -> [Biomarkers (diagnostic), or reg- 1051

ulation linked to disease] -> Disease -> 1052

[Biomarkers (diagnostic), or regulation linked 1053

to disease] -> Gene -> [Role in pathogenesis, 1054

or promotes progression] -> Disease 1055

58. Disease -> [Biomarkers (diagnostic), or 1056

regulation linked to disease] -> Gene -> 1057

[Metabolism, pharmacokinetics] -> Chemical 1058

-> [Side effect or adverse event] -> Disease 1059

59. Gene -> [Production by cell population] -> 1060

Gene -> [Enhance response, or activate, stim- 1061

ulate] -> Gene -> [Relationships involving 1062

regulation and pathways] -> Gene 1063

60. Gene -> [Enhance response, or activate, stim- 1064

ulate] -> Gene -> [Binding, ligand] -> Gene 1065

-> [Affects expression/production] -> Gene 1066

61. Gene -> [Relationships involving regulation 1067

and pathways] -> Gene -> [Gene-Gene] -> 1068

Gene -> [Binding, ligand] -> Gene 1069

62. Gene -> [Interactions] -> Gene -> [Interac- 1070

tions] -> Gene -> [Transport, channels] -> 1071

Chemical 1072

63. Gene -> [Interactions] -> Gene -> [Interac- 1073

tions] -> Gene -> [Metabolism, pharmacoki- 1074

netics] -> Chemical 1075

64. Gene -> [Enhance response, or activate, stim- 1076

ulate] -> Gene -> [Mutations affect, or poly- 1077

morphisms alter risk] -> Disease -> [Overex- 1078

pression in disease] -> Gene 1079

65. Gene -> [Enzyme activity] -> Chemical -> 1080

[Affects expression/production] -> Gene -> 1081

[Chemical-Chemical] -> Chemical 1082

66. Gene -> [Interactions] -> Chemical -> [Role 1083

in pathogenesis] -> Disease -> [Overexpres- 1084

sion in disease] -> Gene 1085

67. Chemical -> [Side effect or adverse event] -> 1086

Disease -> [Biomarkers (diagnostic), or reg- 1087

ulation linked to disease] -> Gene -> [Muta- 1088

tions affect, or polymorphisms alter risk] -> 1089

Disease 1090

68. Chemical -> [Inhibits cell growth] -> Dis- 1091

ease -> [Overexpression in disease] -> Gene 1092

-> [Role in pathogenesis, or promotes progres- 1093

sion] -> Disease 1094
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B.2 RiTeK-ADint1095

1. Amino Acid, Peptide, or Protein -> [affects]1096

-> Cell Function1097

2. Amino Acid, Peptide, or Protein -> [affects]1098

-> Disease or Syndrome1099

3. Amino Acid, Peptide, or Protein -> [causes]1100

-> Anatomical Abnormality1101

4. Amino Acid, Peptide, or Protein -> [interacts1102

with] -> Pharmacologic Substance1103

5. Anatomical Abnormality -> [affects] -> Organ1104

or Tissue Function1105

6. Anatomical Abnormality -> [complicates] ->1106

Disease or Syndrome1107

7. Anatomical Abnormality -> [manifestation of]1108

-> Genetic Function1109

8. Antibiotic -> [affects] -> Molecular Function1110

9. Antibiotic -> [causes] -> Pathologic Function1111

10. Antibiotic -> [disrupts] -> Cell Component1112

11. Antibiotic -> [treats] -> Disease or Syndrome1113

12. Bacterium -> [causes] -> Cell or Molecular1114

Dysfunction1115

13. Bacterium -> [interacts with] -> Human1116

14. Biologically Active Substance -> [affects] ->1117

Organism Function1118

15. Biologically Active Substance -> [causes] ->1119

Injury or Poisoning1120

16. Biologically Active Substance -> [disrupts] ->1121

Gene or Genome1122

17. Body Part, Organ, or Organ Component ->1123

[produces] -> Immunologic Factor1124

18. Cell Component -> [affects] -> Molecular1125

Function1126

19. Cell Component -> [produces] -> Nucleic1127

Acid, Nucleoside, or Nucleotide1128

20. Cell Function -> [affects] -> Mental or Behav-1129

ioral Dysfunction1130

21. Cell Function -> [produces] -> Biologically1131

Active Substance1132

22. Cell or Molecular Dysfunction -> [affects] -> 1133

Neoplastic Process 1134

23. Cell or Molecular Dysfunction -> [manifesta- 1135

tion of] -> Pathologic Function 1136

24. Cell -> [produces] -> Organic Chemical 1137

25. Congenital Abnormality -> [affects] -> Virus 1138

26. Congenital Abnormality -> [manifestation of] 1139

-> Organism Function 1140

27. Diagnostic Procedure -> [affects] -> Genetic 1141

Function 1142

28. Disease or Syndrome -> [affects] -> Organ or 1143

Tissue Function 1144

29. Disease or Syndrome -> [associated with] -> 1145

Therapeutic or Preventive Procedure 1146

30. Disease or Syndrome -> [manifestation of] -> 1147

Cell or Molecular Dysfunction 1148

31. Finding -> [manifestation of] -> Pathologic 1149

Function 1150

32. Gene or Genome -> [produces] -> Amino 1151

Acid, Peptide, or Protein 1152

33. Genetic Function -> [affects] -> Human 1153

34. Genetic Function -> [produces] -> Cell Com- 1154

ponent 1155

35. Hazardous or Poisonous Substance -> [af- 1156

fects] -> Mental or Behavioral Dysfunction 1157

36. Hazardous or Poisonous Substance -> [dis- 1158

rupts] -> Organ or Tissue Function 1159

37. Health Care Activity -> [affects] -> Disease 1160

or Syndrome 1161

38. Human -> [interacts with] -> Human 1162

39. Immunologic Factor -> [affects] -> Pathologic 1163

Function 1164

40. Indicator, Reagent, or Diagnostic Aid -> [in- 1165

teracts with] -> Hazardous or Poisonous Sub- 1166

stance 1167

41. Injury or Poisoning -> [disrupts] -> Genetic 1168

Function 1169

42. Medical Device -> [treats] -> Mental or Be- 1170

havioral Dysfunction 1171
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43. Mental or Behavioral Dysfunction -> [affects]1172

-> Organism Function1173

44. Molecular Function -> [affects] -> Virus1174

45. Neoplastic Process -> [affects] -> Bacterium1175

46. Neoplastic Process -> [associated with] ->1176

Neoplastic Process1177

47. Nucleic Acid, Nucleoside, or Nucleotide ->1178

[interacts with] -> Immunologic Factor1179

48. Organ or Tissue Function -> [produces] ->1180

Immunologic Factor1181

49. Organic Chemical -> [affects] -> Pathologic1182

Function1183

50. Organic Chemical -> [interacts with] -> Phar-1184

macologic Substance1185

51. Organism Function -> [affects] -> Disease or1186

Syndrome1187

52. Pathologic Function -> [associated with] ->1188

Therapeutic or Preventive Procedure1189

53. Pathologic Function -> [manifestation of] ->1190

Organ or Tissue Function1191

54. Pharmacologic Substance -> [affects] -> Ge-1192

netic Function1193

55. Pharmacologic Substance -> [treats] -> Sign1194

or Symptom1195

56. Sign or Symptom -> [manifestation of] -> Ge-1196

netic Function1197

57. Therapeutic or Preventive Procedure -> [af-1198

fects] -> Neoplastic Process1199

58. Virus -> [interacts with] -> Human1200

C Relational MCTS1201

C.1 Motivation and Approach Overview1202

Monte Carlo Tree Search (MCTS) has made signif-1203

icant advancements in mathematics, as it dynam-1204

ically explores and evaluates potential solutions,1205

balancing exploration and exploitation to optimize1206

decision-making in complex, high-dimensional1207

spaces. However, the effectiveness of MCTS in1208

TKGs has not yet been explored. To address this1209

gap, this paper investigates the effectiveness of1210

MCTS and proposes an improved version Rela-1211

tional MCTS that dynamically retrieves relational1212

Shannon Entropy Type-Token Ratio

Medical domain

RiTeK-ADint 10.04 0.187
RiTeK-PharmKG 9.61 0.157
STARK-PRIME 9.63 0.143

General domain

STARK-AMAZON 10.39 0.179
STARK-MAG 10.25 0.180

Table 6: Query diversity measurement
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Figure 4: Expansion progress of MCTS and Relational
MCTS. The pink shallow circle refers to the Stop sign.
Each node tn refers to a triple.

paths from the TKGs for the special query. Specif- 1213

ically, it involves four steps: 1) To improve the 1214

retrieval efficiency, we begin our path retrieval by 1215

creating the textual triple graph (TTG) for each tex- 1216

tual KG. 2) Subsequently, the node embeddings in 1217

the TTG and the input query embedding are com- 1218

puted using a pre-trained language model, such as 1219

a SentenceBERT (Baek et al., 2023). Notably, each 1220

node embedding includes its associated textual in- 1221

formation. These embeddings will be used to calcu- 1222

late the reward in the MCTS and Relational MCTS. 1223

3) Proposed Relation MCTS is used to search the 1224

relational path information. 4) Finally, the retrieved 1225

relational path information will be verbalized and 1226

fed into the LLM, such as GPT-4, along with the 1227

input query to predict the final answers. Please 1228

refer to Appendix ?? for detailed information on 1229

steps 2 and 3. 1230

C.2 MCTS vs Relational MCTS 1231

In traditional MCTS, a trajectory typically extends 1232

from the root to a terminal node. However, in the 1233

context of QA tasks over textual knowledge graphs, 1234

many relational templates incorporate constraints, 1235

which pose challenges for standard MCTS. Fur- 1236

thermore, the depth of the reasoning path can vary 1237

depending on the specific question being posed; 1238

for example, some queries may require a reasoning 1239

depth of three hops, while others may only require 1240

two. Consequently, MCTS is hard to appropriately 1241

recognize or adapt to the required depth for each 1242

individual query. To address this issue, we pro- 1243

pose an enhanced MCTS specifically designed to 1244

retrieve the relevant inference path information for 1245

the input query, which we refer to as Relational 1246

MCTS. 1247

Same as traditional MCTS, starting from the 1248
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initial topic entity e, we perform multiple searches1249

consisting of selection, expansion, simulations, and1250

back-propagation. The key distinction between1251

MCTS and Relational MCTS lies in the expansion1252

phase, as illustrated in Figure 4. In the expansion1253

phase of MCTS, the next move is typically selected1254

from the set of children of the current node. For1255

instance, in MCTS, the candidate moves from node1256

t1 are t3 and t4. In contrast, in Relational MCTS,1257

the candidate moves from node t1 include t3, t4,1258

a Stop action, and the sibling nodes of t1. At1259

the same depth level, if two sibling nodes exist,1260

such as in Step 4 of Relational MCTS, the next1261

move is selected from the children of these sibling1262

nodes. For example, when node t4 is selected, its1263

candidate moves are t5, t6, and the Stop action.1264

The inclusion of the Stop action allows Relational1265

MCTS to automatically halt and generate a relevant1266

relational path (1 or 2 hops) for the input query.1267

Selection Starting from the topic entity, the al-1268

gorithm navigates through promising child nodes1269

based on specific strategies (e.g., UCT), continuing1270

until a leaf node is reached.1271

Expansion: At the leaf node, unless it represents1272

a terminal state of the game, one or more feasible1273

new child nodes are added to illustrate potential1274

future moves.1275

Simulation or Evaluation: From the newly1276

added node, the algorithm conducts random sim-1277

ulations— often termed "rollouts"—by selecting1278

moves arbitrarily until a game’s conclusion is1279

reached, thereby evaluating the node’s potential.1280

Backpropagation: Post-simulation, the out-1281

come (win, loss, or draw) is propagated back to1282

the root, updating the statistical data (e.g., wins,1283

losses) of each traversed node to inform future de-1284

cisions.1285

C.3 Answer Generation1286

In the progress of inference path generation, we en-1287

countered challenges in recognizing the internal en-1288

tity within the inference path. This difficulty arose1289

because some internal entities were not present in1290

the query. Therefore, after obtaining the reasoning1291

paths using Relational MCTS, we utilized only the1292

relations within these paths that form the relational1293

information. We then verbalized this information1294

and provided it as input to a downstream LLM,1295

such as GPT-4 or LLaMA.1296
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