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Abstract001

Traditional information retrieval (IR) methods002
excel at textual and semantic matching but003
struggle in reasoning-intensive retrieval tasks004
that require multi-hop inference or complex005
semantic understanding between queries and006
documents. One promising solution is to ex-007
plicitly rewrite or augment queries using large008
language models (LLMs) to elicit reasoning-009
relevant content prior to retrieval. However, the010
widespread use of large-scale LLMs like GPT-011
4 or LLaMA3-70B remains impractical due to012
their high inference cost and limited deploya-013
bility in real-world systems. In this work, we in-014
troduce Reinforced Query Reasoner (RQR),015
a family of small-scale language models for016
query reasoning and rewriting in reasoning-017
intensive retrieval. Our approach frames query018
reformulation as a reinforcement learning prob-019
lem and employs a novel semi-rule-based020
reward function. This enables smaller lan-021
guage models, e.g., Qwen2.5-7B-Instruct022
and Qwen2.5-1.5B-Instruct, to achieve rea-023
soning performance rivaling large-scale LLMs024
without their prohibitive inference costs. Ex-025
periment results on BRIGHT (Su et al., 2024)026
benchmark show that, with BM25 as retriev-027
ers, both RQR-7B and RQR-1.5B models signifi-028
cantly outperform existing baselines, including029
prompt-based query reasoners and some latest030
dense retrievers trained for reasoning-intensive031
retrieval tasks, offering superior adaptability032
for real-world deployment. All code, models033
and dataset will be publicly released.034

1 Introduction035

The Information retrieval system (IR) (Zhu et al.,036

2023) plays a critical role in satisfying information037

needs, enabling users to locate relevant materials038

from vast repositories of documents, Web pages,039

and structured records. While existing retrieval040

methods — including text matching (Robertson041

and Zaragoza, 2009) and semantic representation042

techniques (Devlin, 2018; Liu, 2019; Chen et al.,043

Query

RQR Query

Claim in article about why insects are attracted to light
[...] I don't see why attraction to LEDs shows they're not 
seeking heat. Could they for example be evolutionarily 
programmed to associate light with heat? So that even 
though they don't encounter heat near/on the LEDs they 
still "expect" to?

1. Identify the essential 
problem.
2. Think step by step
3. Draft an answer with 
as many thoughts as
you have

Docs

Retriever ......
...........
....
......

Okay, let's tackle this question about why insects are 
attracted to light despite LEDs emitting little infrared (heat) 
radiation.
The user is confused because the article says that LEDs, 
which have low infrared, still trap lots of insects, so maybe 
the attraction isn't to heat.
……
First, I need to recall what‘s known about insect phototaxis 

Figure 1: An example query reasoning with LLM.
The query is sampled from the Biology Subtask of
BRIGHT (Su et al., 2024) benchmark.

2024a; Ma et al., 2024) — have achieved consid- 044

erable success, they often fall short in scenarios 045

demanding intensive reasoning and modeling the 046

implicit correlations between documents and user 047

queries (Su et al., 2024), where the problem is even 048

more severe for recent retrieval-augmented gener- 049

ation (RAG) applications (Zhao et al., 2024). In 050

real-world scenarios and tasks, user queries are 051

frequently complex and underspecified, requiring 052

intensive reasoning to uncover latent relationships 053

that transcend surface-level semantic or textual sim- 054

ilarity. For example, an economist may seek articles 055

that apply the same economic theory to different 056

cases, or a programmer may need to find an alterna- 057

tive function with the same implementation logic. 058
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We refer to such task as reasoning-intensive re-059

trieval (Shao et al., 2025), which has been proved060

to be challenging with poor performance.061

To address this issue, two research directions062

have been proposed. One is to train novel retriever063

or reranker models (Shao et al., 2025; Weller064

et al., 2025), training on task-specific reasoning065

data. The other is to apply query reasoning and066

rewriting to the given query (Su et al., 2024; Niu067

et al., 2024), leveraging the frontier reasoning ca-068

pabilities of large language models (LLMs) with069

chain-of-thought reasoning (Wei et al., 2022) to070

generate an intermediate reasoning result as rea-071

soned query, which instead will be used to re-072

trieve the relevant documents. Figure 1 shows an073

example of query reasoning. Existing query reason-074

ing approaches mainly rely on large-scale LLMs075

(e.g., GPT-4o (OpenAI et al., 2024) or LLama3-076

70B (Grattafiori et al., 2024)) with a high computa-077

tional and deployment cost. Although they can be078

leveraged to optimize the problem with integrated079

reasoning and retrieval process, the inference la-080

tency of such LLMs hinders the applications and081

deployment on real-time or interactive retrieval.082

In this paper, we introduce RQR, a family of083

small-scale language models for query reasoning084

and rewriting. To the best of our knowledge, this085

is the first model family specifically trained for086

query reasoning in reasoning-intensive retrieval087

tasks. Inspired by previous works using Reinforce-088

ment Learning with Verifiable Rewards (RLVR) to089

enhance LLMs’ reasoning (Guo et al., 2025; Qwen090

et al., 2025), we developed a novel semi-rule-based091

reward function for GRPO(Group Relative Policy092

Optimization) (Shao et al., 2024; Guo et al., 2025),093

enabling reinforcement learning on the query rea-094

soning of smaller language models. Beyond that,095

we further propose an automatic data curation096

pipeline for training reasoning-based rewriting with097

public available dataset. Experiment results on098

BRIGHT (Su et al., 2024) benchmark show that099

our model can achieve the ndcg@10 metric at 27.9,100

outperforming the metric of GPT-4o at 26.5. This101

metric is comparable to some large-scale reason-102

ing models, e.g., o1-preview1, DeepSeek R1(Guo103

et al., 2025), and QwQ-32B (Qwen et al., 2025),104

with significantly lower cost of inference. Besides,105

our proposed models can also work with reasoning-106

intensive retrievers (Shao et al., 2025) to achieve107

1https://openai.com/index/introducing-openai-o1-
preview/

the best performance. This demonstrates that our 108

models possess strong flexibility to adapt to differ- 109

ent retrieval pipelines. 110

In summary, our main contributions are listed 111

as follows: 112

• Query rewriting models for reasoning- 113

intensive tasks: We propose RQR family 114

(7B and 1.5B) specifically trained for query 115

reasoning and rewriting in reasoning-intensive 116

retrieval tasks. Our models with extreme smaller 117

parameters are comparable to state-of-art large 118

reasoning models such as GPT-4o on specific 119

tasks with significantly reduced computational 120

cost and retrieval latency. Our query reasoning 121

and rewriting models is proved to be generalized 122

to various tasks and jointly applied to different 123

existing retrievers and rerankers to achieve better 124

performance. 125

• Semi-rule-based reward function for RL: The 126

reward function inherits the advantage of exist- 127

ing functions based on semantic similarity, which 128

evaluates the relevance enhancement between 129

queries and retrieval documents. It offers a range 130

of advantages, including strong robustness, high 131

computational efficiency in avoid of reward hack- 132

ing. 133

• Automatic data curation pipeline: The data cu- 134

ration pipeline proposed in this paper is specifi- 135

cally designed to build training data for query 136

rewriting tasks. It optimizes training without 137

the need of large-scale supervised rewrite data, 138

which are often unavailable in real applications 139

and scenarios. 140

2 Related works 141

Reasoning-intensive Retrieval In recent years, 142

dense retrieval has achieved remarkable progress 143

in retrieval accuracy, propelled by the rapid evolu- 144

tion of foundation models and innovative training 145

methodologies. Nowadays, BERT (Devlin, 2018)- 146

based and LLM-based (Wang et al., 2023) em- 147

bedding models have been widely used in mul- 148

tiple retrieval tasks, achieving great success as 149

general-purpose retrievers (Wang et al., 2022; Li 150

et al., 2023; Chen et al., 2024a; Khattab and 151

Zaharia, 2020). However, previous works (Su 152

et al., 2024) have demonstrated that most of 153

those existing BERT-based or LLM-based retriev- 154

ers and re-rankers cannot handle the task of 155

reasoning-intensive retrieval. Most of those sparse 156

or dense retrievers perform poorly on BRIGHT 157
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benchmark2. These results indicate that the tasks158

of reasoning-intensive retrieval should be han-159

dled with reasoning-enhanced models specifically.160

Some researchers tried to train reasoning-enhanced161

retrievers (Shao et al., 2025) or rerankers (Weller162

et al., 2025) with public or LLM-Synthesized163

datasets. Another way is to apply LLMs for query164

reasoning and rewriting. The LLMs take the origi-165

nal queries as input to generate Chain-of-Thought166

reasoning steps as pseudo queries. The pseudo167

queries will be issued to the retrievers instead of168

the original queries. These two approaches are or-169

thogonal and can be combined synergistically. To170

the best of our knowledge, most of those exist-171

ing query reasoning approaches (Su et al., 2024;172

Niu et al., 2024) are based on prompting large-173

scale LLMs, e.g., GPT-4o (OpenAI et al., 2024) or174

LLama3-70B (Grattafiori et al., 2024), which is too175

expensive and time-consuming. To the best of our176

knowledge, none of those previous works focus on177

training a small-scaled language model for query178

reasoning and rewriting tasks.179

Reasoning Enhanced by Reinforcement Learn-180

ing Large reasoning models, e.g., OpenAI o1,181

Gemini Flash-Thinking3, DeepSeek-R1 (Guo182

et al., 2025) and QwQ-32B (Qwen et al., 2025), have183

achieved great success in reasoning-intensive areas184

like coding and mathematical proofs. These mod-185

els adopt a "slow-thinking" (Wu et al., 2024; Chen186

et al., 2024b) approach when handling reasoning-187

intensive tasks: the models will first output a se-188

quence of thinking processes with the tags of189

“<think></think>” before providing the actual an-190

swer. This method has allowed LLMs to enhance191

reasoning capabilities. Based on the technical re-192

port released by DeepSeek (Guo et al., 2025), re-193

searchers (Face, 2025; Xie et al., 2025) have tried194

to reproduce the slow-thinking ability on smaller-195

scaled LLMs via reinforcement learning based on196

GRPO (Group Relative Policy Optimization) (Shao197

et al., 2024) and rule-based reward functions. Com-198

pared with process reward models (PRM), the rule-199

based reward functions have the advantages of be-200

ing simple and effective, making the model training201

process easier to scale up. Besides, the rule-based202

reward functions only focus on the correctness of203

output results, ignoring the intermediate process,204

making it immune to reward hacking and increas-205

ing the robustness of model training. Moreover,206

2https://brightbenchmark.github.io/
3https://deepmind.google/technologies/gemini/flash-

thinking/

unlike supervised fine-tuning (SFT), reinforcement 207

learning based methods do not force the model to 208

fit every generated token, thereby yielding superior 209

generalization capabilities. 210

3 Reinforced Query Reasoner 211

3.1 Task formulation 212

Given a query q and a set of candidate documents 213

D = {d1, ..., dn}, the objective is to identify and 214

retrieve a subset of relevant documents from D: 215

D+ = {d+1 , ..., d
+
i , ..., d

+
m}, where m << n lever- 216

aging a retriever RT . In the scenario of reasoning- 217

intensive retrieval, we leverage a large language 218

model LLM to generate the rewritten query q
′

af- 219

ter query reasoning based on q. RT will later use 220

q
′

to retrieve the documents relevant to q. The pro- 221

cesses mentioned above can be described with the 222

following equations: 223

q
′
= LLM(Inst; q), D+ = RT (q

′
) 224

where Inst denotes the instructions for query rea- 225

soning and rewriting. 226

3.2 Reinforcement Learning with 227

Semi-Rule-Based Reward 228

Preliminary Inspired by previous works of large 229

reasoning models e.g., DeepSeek R1 (Guo et al., 230

2025), we employ the GRPO-based reinforcement 231

learning algorithm to train the LLMs for query 232

reasoning, where the model takes the given query 233

q as input and generates a reasoned query q
′
. The 234

GRPO objective is defined as: 235

LGRPO(θ) = E(q,a)∼πθ

[
wg ·min

(
rθ(q, q

′
) · Â(q, q

′
),

clip(rθ(q, q
′
), 1− ϵ, 1 + ϵ) · Â(q, q

′
)
)] 236

Here, rθ(q, q
′
) = πθ(q

′ |q)
πθold (q

′ |q) is the importance 237

ratio between the current and reference policy. The 238

advantage function Â(q, q
′
) is computed based on 239

the group-normalized reward: 240

Â(q, q
′
) =

R(q, q
′
)− µg

σg + δ
241

where R(q, q
′
) is the reward assigned to the rea- 242

soned query q
′
, µg and σg denote the mean and 243

standard deviation of rewards within the group g, 244

and δ is a small constant to avoid division by zero. 245

The weight wg optionally re-scales the advantage 246

based on group-level reward variance. This formu- 247

lation stabilizes training when rewards are sparse 248

or highly variable across different query groups. 249
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Limitations for Previous Rule-based Reward250

Function Previous approaches (Jiang et al.,251

2025) of rule-based reward for retrieval tasks are252

usually calculated based on retrieval evaluation253

metrics like Recall@K. The metric-based reward254

function requires both annotated training data and255

an existing large-scale document collection to serve256

as the retrieval source, which is difficult to access257

in reasoning-intensive retrieval tasks.258

Semi-Rule-Based Reward for Query Reason-259

ing In this work, we introduce a reward function260

to evaluate the incremental relevance score from261

< q,D+ > to < q
′
, D+ > . For an reasoning-262

intensive task, the goal of query reasoning and263

rewriting is to improve the retrieval performance264

using reasoned query q
′
with higher relevance score265

compared to q. Since the relevance score is com-266

puted via an existing relevance model, the reward267

function is defined as “semi-rule-based reward268

function”.269

Each training sample consists of < q,D+ >,270

where D+ indicates single or multiple positive doc-271

uments for q. We define scoreq as the sum of the272

relevance scores between q and each positive docu-273

ment in D+:274

scoreq = Σi∈D+Rel(q, d+i )275

where Rel(q, d+i ) denotes the relevance score be-276

tween q and d+i computed via a relevance model.277

Here we use a pretrained embedding model to en-278

code queries and documents into embeddings, with279

the cosine similarities as relevance scores. The pa-280

rameters of the relevance model will not be updated281

during the model training process. Similarly, the282

score of the reasoned query scoreq′ is also com-283

puted as:284

scoreq′ = Σi∈D+Rel(q
′
, d+i )285

The overall reward is defined as the average rele-286

vance score increment from q to q
′

of each positive287

document:288

R(q, q
′
) =

scoreq′ − scoreq

|D+|
289

Our semi-rule-based reward function inherits a290

few advantages from the existing rule-based re-291

wards as below: Firstly, the function depicts the292

semantic relevance based on the existing embed-293

ding model like bge-base-en (Chen et al., 2024a),294

which has been proved to exhibit good performance295

with robustness and low computational cost. Sec- 296

ondly, unlike the process reward models (PRMs), 297

our method does not rely on intermediate processes 298

supervision, and is therefore inherently immune 299

to reward hacking. These properties collectively 300

contribute to the high computational efficiency and 301

robustness of our method, enhancing its tolerance 302

to noise present in the training data. 303

3.3 Training Data Curation 304

Existing training datasets like e.g., MS- 305

MACRO (Bajaj et al., 2018) are helpful for 306

semantic-based retrieval tasks, which are not 307

specifically designed for reasoning-intensive 308

retrieval. Inspired by the data construction process 309

in benchmark BRIGHT (Su et al., 2024), we 310

use the publicly available H4 Stack Exchange 311

Preferences (Lambert et al., 2023) dataset to 312

construct our training data. The dataset contains 313

questions and answers from the Stack Overflow 314

Data Dump for the purpose of preference model 315

training. Each question in the dataset includes 316

at least two answers, and each answer is labeled 317

“is_selected” or not, indicating if the answer is 318

selected and marked as useful by the real users 319

who issued the question. We select QAs with texts 320

only for data curation. 321

Here are two ways we further obtain the rewrit- 322

ten queries as the “supervision” for query reasoning 323

training: 324

(1) Given a query for reasoning, a large rea- 325

soning model, e.g., QwQ-32B or DeepSeek-R1 is 326

asked to generate the rewritten query based on 327

Chain-of-Thought(CoT) reasoning. The curated 328

data is denoted as V1-R1 and V1-QwQ. 329

(2) For each question, we use the answer with 330

“selected” tag as the reasoned query from Stack- 331

Exchange by real users, which is denoted as V2. 332

Notice that not every question includes a selected 333

answer. 334

4 Experiment 335

4.1 Experiment setting 336

4.1.1 Dataset and metrics 337

Training We employ two types of the con- 338

structed data mentioned in Section 3.3 for training: 339

V1-R1, V1-QwQ and V2. For V2, we use the user- 340

selected answers since the size of V2 is too large to 341

afford the inference cost of large reasoning models. 342

More details can be found in Appendix B. 343
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StackExchange Coding Theorem-based Avg

Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

Retrievers with Original Queries
BM25 18.9 27.2 14.9 12.5 13.6 18.4 15.0 24.4 7.9 6.2 10.4 4.9 14.5
BGE 11.7 24.6 16.6 17.5 11.7 10.8 13.3 26.7 5.7 6.0 13.0 6.9 13.7
ReasonIR 26.2 31.4 23.3 30.0 18.0 23.9 20.5 35.0 10.5 14.7 31.9 27.2 24.4
Seed1.5-Embedding 34.8 46.9 23.4 31.6 19.1 25.4 21.0 43.2 4.9 12.2 33.3 30.5 27.2

Query Reasoner with BM25
GPT-4o 53.6 53.6 24.3 38.6 18.8 22.7 25.9 19.3 17.7 3.9 18.9 20.2 26.5
Doubao 54.8 53.3 23.7 37.2 22.2 28.1 25.0 21.2 16.4 7.8 21.8 22.7 27.8
Deepseek-V3 56.6 54.2 25.8 38.8 19.9 26.7 26.4 19.8 15.1 6.7 22.5 20.7 27.8
o1-mini 60.2 57.4 24.7 39.3 23.3 26.4 25.4 23.5 13.4 6.9 22.8 16.5 28.3
o1-preview 64.2 57.9 27.6 43.1 25.6 29.1 28.0 21.2 15.9 5.6 24.0 20.5 30.2
Deepseek-R1 62.7 58.3 26.0 42.9 21.8 28.1 30.3 19.6 10.7 6.0 25.8 22.4 29.6
R1-distill-qwen-7B 33.9 41.6 19.9 31.8 15.1 18.8 16.4 19.7 10.7 6.8 24.5 22.2 21.8
R1-distill-qwen-32B 50.6 49.9 22.9 38.1 20.3 24.6 19.2 19.5 11.3 5.6 24.2 20.2 25.5
QwQ-32B 57.5 56.3 29.9 41.8 19.2 25.7 27.2 21.5 12.8 6.5 25.4 22.8 28.9

RQR-1.5B 46.0 47.1 21.1 31.2 19.8 21.7 24.3 22.5 21.7 4.3 19.7 15.9 24.6
RQR-7B 57.9 50.9 21.9 37.0 21.3 27.0 25.6 23.6 14.4 7.0 26.1 22.0 27.9

Query Reasoner with ReasonIR
LLama3.1-8B-Instruct 37.8 39.6 29.6 35.3 24.1 31.1 27.4 28.8 14.5 9.2 26.6 32.3 28.0
GPT-4 43.6 42.9 32.7 38.8 20.9 25.8 27.5 31.5 19.6 7.4 33.1 35.7 29.9
RQR-1.5B 36.4 41.1 29.9 34.0 25.2 30.7 25.6 33.3 16.8 9.7 35.7 32.7 29.3
RQR-7B 46.2 45.1 31.2 39.6 25.3 28.7 28.4 31.2 16.3 10.8 40.0 39.3 31.9

Table 1: Performance comparison on BRIGHT. The best score is shown in bold and the second best is underlined.

Evaluation We use BRIGHT (Su et al., 2024), a344

novel benchmark for reasoning-intensive retrieval345

that aims to evaluate the ability of retrieval models346

to handle complex queries that require deep reason-347

ing. It consists of 1,384 real-world queries from348

diverse domains with 12 sub-tasks. We adopt the349

metric nDCG@10 for the following evaluations.350

4.1.2 Baselines351

The baselines in our experiments can be divided352

into these three categories:353

Retrievers with Original Queries There are354

two types of baselines: 1) Traditional baselines in355

IR systems like BM25 (Robertson and Zaragoza,356

2009) for sparse retrieval and bge-large-en (Chen357

et al., 2024a)for dense retrieval; 2) Reasoning-358

intensive retrievers like ReasonIR (Shao et al.,359

2025) and Seed 1.5-Embedding4. We keep the same360

with the experiments reported in (Su et al., 2024)361

for fair comparison and all the retrievers use the362

original queries in BRIGHT to retrieve documents.363

Since Seed1.5-Embedding is not public available364

when this work is done, we directly use the experi-365

ment results reported on their model card.366

Query Reasoner with BM25 We include two367

types of baselines using state-of-the-art large368

4https://huggingface.co/ByteDance-Seed/Seed1.5-
Embedding

language models: 1) Non-reasoning models in- 369

cluding GPT-4o, doubao-1.5-pro 5, DeepSeek- 370

V3 (DeepSeek-AI et al., 2025); 2) Reasoning mod- 371

els including DeepSeek R1 (Guo et al., 2025), o1- 372

mini6, o1-preview7, DeepSeek-R1-Distill-Qwen- 373

7B8, DeepSeek-R1-Distill-Qwen-32B9 and QwQ- 374

32B (Qwen et al., 2025). All the models use the 375

prompt in Appendix A for reaoning. For each base- 376

line, we only remain the prediction result of after 377

reasoning and use BM25 for further retrieval. 378

Query Reasoner with Reasoning-Intensive Re- 379

trievers (ReasonIR) ReasonIR (Shao et al., 380

2025) is the most recently acknowledged retriever 381

specifically trained for reasoning-intensive retrieval 382

tasks. We further combine RQR with ReasonIR for 383

comparsion to explore further improvements with 384

the specialized reasoner and retriever in this task. 385

5https://seed.bytedance.com/en/special/doubao_1_5_pro
6https://openai.com/index/openai-o1-mini-advancing-

cost-efficient-reasoning/
7https://openai.com/index/introducing-openai-o1-

preview/
8https://huggingface.co/deepseek-ai/DeepSeek-R1-

Distill-Qwen-7B
9https://huggingface.co/deepseek-ai/DeepSeek-R1-

Distill-Qwen-32B
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4.1.3 Implementation Details386

With the initial checkpoint of Qwen2.5-7B-387

Instruct10 and Qwen2.5-1.5B-Instruct11, RQR 7B388

and 1.5B are both trained with TRL12 on a single389

node with 4 NVIDIA A800-80G GPUs. Following390

the instructions of Open-R1 (Face, 2025), we use 1391

GPU for vLLM (Kwon et al., 2023) serving and the392

rest 3 GPUs for model training. DeepSpeed (Rasley393

et al., 2020) ZeRO-3 and Gradient Checkpoint are394

applied to reduce the cost of VRAM. It takes about395

16 hours for 1.5B model training and about 48396

hours for 7B model training. We set the learning397

rate 1e − 6, the batch size per device 16, and the398

KL coefficient 0.008. For each input prompt, 16399

samples are generated to estimate the advantage in400

GRPO. Since we use bge-base-en-v1.513 embed-401

ding model to compute relevance, the maximum402

completion length is set to 500 to avoid exceeding403

the input length limitation of the embedding model.404

Experiments on all the above-mentioned baselines405

are conducted without reranking.406

4.2 Main results407

Table 1 shows that our 7B model outperforms all408

query reasoning baselines of non-reasoning LLMs,409

including GPT-4o and DeepSeek V3, performing410

comparable to the large reasoning models, e.g., o1-411

mini, QwQ-32B and DeepSeek R1. Our 7B model412

strikes a favorable balance between inference effi-413

ciency and reasoning performance, offering a com-414

pelling trade-off for query reasoning tasks. Besides,415

our 1.5B model also achieves performance compa-416

rable to that of large-scale language models, mak-417

ing it an effective solution for resource-constrained418

scenarios.419

To quantitatively assess the efficiency of differ-420

ent models, we report both their Performance and421

Cost in Table 2. Here, Performance is defined422

as the nDCG@10 score achieved by each model423

on the BRIGHT benchmark (Su et al., 2024) with424

BM25 retriever. Meanwhile, Cost represents the425

price of each model (USD per 1M output tokens)426

when accessed via the OpenRouter platform14, in-427

dicating the actual monetary expense required to428

obtain outputs from the model15. Based on the429

10https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
11https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
12https://github.com/huggingface/trl
13https://huggingface.co/BAAI/bge-base-en-v1.5
14https://openrouter.ai
15We use the price of Qwen2.5-7B-Instruct as the price of

RQR-7B, and we define the price of RQR-1.5B as 0.01 since

calculated efficiency (Eff = Performance / Cost), 430

RQR-1.5B and RQR-7B achieve the highest cost- 431

effectiveness among all evaluated models, with ef- 432

ficiency scores of 2460.0 and 279.0, respectively. 433

This highlights the strong cost-performance advan- 434

tage of the our method.

Model Performance Cost Efficiency

GPT-4o 26.5 10.0 2.7
DeepSeek V3 27.8 0.9 31.6
DeepSeek R1 29.6 2.2 13.6
QwQ-32B 28.9 0.2 144.5
o1-preview 30.2 60.0 0.5
o1-mini 28.3 4.4 6.4
RQR-7B 27.9 0.1 279.0
RQR-1.5B 24.6 0.01 2460.0

Table 2: Model performance (Perf.), cost, and efficiency
(Eff. = Perf. / Cost).

435
Compared to the retrievers specifically trained 436

for reasoning, both the 7B and 1.5B models can 437

both outperform ReasonIR with original query, and 438

our 7B model can outperform Seed 1.5-Embedding. 439

Since ReasonIR is an embedding model based on 440

the backbone of LLaMA3.1-8B, the computational 441

cost of pre-encoding documents can be prohibitive 442

when the corpus is large. In contrast, RQR can work 443

with BM25 retrievers, incurring significantly lower 444

pre-processing costs than LLM-based embedding 445

models. 446

As ReasonIR can work with reasoned queries 447

to achieve better performance, we apply the rea- 448

soned queries generated by our method for further 449

exploring the effect of combining reasoned queries 450

with reasoning-intensive retrievers. We confirmed 451

that our method can achieve further improvements 452

based on ReasonIR. Our 1.5B model can outper- 453

form LLama3.1-8B-Instruct which is more than 454

5 times larger in parameters, and our 7B model 455

can outperform GPT-4. Comparing with the rea- 456

soned queries of GPT-4 and our 7B model , the per- 457

formance improvement based on ReasonIR (29.9- 458

>31.9) is higher than the improvement based on 459

BM25 (26.5->27.9). These results incidate that our 460

method is flexible and can work with different re- 461

trievers, the improvement of retriever will further 462

expand the advantage of our method. 463

4.3 Ablation studies 464

4.3.1 Effect of Data Size and Quality 465

DeepSeek R1 performs better than QwQ-32B while 466

the performance of V1-R1 and V1-QwQ is close 467

the price of Qwen2.5-1.5B is free.
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Dataset Bio. Earth. Econ. Psy. Rob. SO SL LC Pony AoPS TQ TT Avg

V1-QwQ 42.3 43.6 19.1 31.9 18.6 23.7 22.8 21.5 17.7 4.0 17.2 10.1 22.7
V1-R1 48.0 46.5 19.9 31.4 15.2 23.6 22.3 21.2 18.0 5.3 18.8 11.3 23.5
V2 46.0 47.1 21.1 31.2 19.8 21.7 24.3 22.5 21.8 4.3 19.7 15.9 24.6

Table 3: Results on different training data for RQR-1.5B with BM25 retriever.

on most BRIGHT subtasks. V1-R1 exhibits a no-468

table advantage only in the Biology and Earth Sci-469

ence subtasks. We hypothesize that this may be at-470

tributed to the fact that these two subtasks are more471

knowledge-intensive compared to others, thereby472

granting the larger-parameter DeepSeek R1 model473

with 671B parameters a more pronounced advan-474

tage over QwQ-32B. The V2 dataset with more475

samples leads to the best performance. Instead of476

using large reasoning models to generate answers477

for distillation, a better approach may be to use the478

answers selected by the users in the StackExchange479

datasets. It can be easily scaled since generating480

answers with large reasoning models on large-scale481

question set is too expensive.482

4.3.2 Effect of Reinforcement Learning with483

Semi-Rule-Based Rewards484

We further explore the effect of our proposed ap-485

proaches with semi-rule-based reward functions486

compared to traditional supervised fine-tuning487

(SFT). Following the same experimental settings in488

Section 4.3.1, we use Qwen2.5-1.5B-Instruct, with489

BM25 as retrievers. With the dataset of V1-QwQ490

and V2, we separately trained the model with SFT491

and RL. Results are shown in Table 4, where “RL”492

is for our proposed reinforced learning approaches493

and “SFT” is for supervised fine-tuning. Both RL494

and SFT are in full parameters.495

These results indicate that when using the train-496

ing data generated by large reasoning models, the497

performance of RL is slightly higher than SFT. -498

While using the user-selected answer data for train-499

ing, the performance of SFT experienced a sig-500

nificant decline. This is likely because the user-501

selected answers written by actual users may ex-502

hibit substantial quality deficiencies (e.g., higher503

perplexity) compared to data synthesized by large504

reasoning models. In addition, we did not apply505

fine-grained data cleaning for the answer. As a re-506

sult, the answers of the questions may include URL507

links of pictures which do not include available508

information. Using such data for supervised fine-509

tuning may lead to catastrophic forgetting in the510

model. In contrast, our proposed reinforcement 511

learning approach with semi-rule-based reward 512

functions does not strictly require the model to fit 513

the answers per token exactly. Since the relevance 514

score in reward function is based on the embed- 515

ding similarity of generated answers and selected 516

answers, the noisy signals in selected answers may 517

not explicitly affect the similarity scores. As a re- 518

sult, our proposed approach demonstrates stronger 519

generalization capabilities and greater tolerance for 520

noisy data.

Training Data Training Method Avg

V1-QwQ SFT 22.4
V1-QwQ RL 22.7
V2 SFT 12.8
V2 RL 24.6

Table 4: Results on different training data and methods.

521

4.3.3 Effect of Relevance Model in Reward 522

Functions 523

As we mentioned in Section 3.2, the relevance 524

model is playing an important role in our proposed 525

semi-rule-based reward functions. We further ex- 526

plore the effect of different relevance models in 527

our proposed reward functions. Besides the dense 528

embedding model of bge-base-en-v1.5, we also 529

implement the relevance function via the sparse 530

model of bge-m3 (Chen et al., 2024a). As the bge- 531

m3 model can accept a longer input length, we 532

also explore the effect of extending the maximum 533

completion length to 1000. With Qwen2.5-1.5B- 534

Instruct as base model and BM25 as retriever, we 535

train the model on different reward functions and 536

completion length settings on the training data of 537

V1-R1. Results are shown in Table 5. 538

Since all experiments are conducted with the 539

sparse retriever of BM25, we initially expected bge- 540

m3, as a sparse relevance model, to offer perfor- 541

mance improvements. However, bge-m3 actually 542

underperforms compared to the dense embedding 543

model bge-base-en-v1.5, which has fewer param- 544
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Model Type Length Avg

bge-base-en-v1.5 Dense 500 23.5
bge-m3 Sparse 500 23.1
bge-m3 Sparse 1000 22.9

Table 5: Results on different relevance model types and
competition length settings.

eters (110M vs 550M)16. This result suggests that545

for our proposed semi-rule-based reward function,546

overly fine-grained relevance matching signals may547

harm the model’s generalization ability. It is worth548

noting that our training data is based on V1-R1549

rather than V2, these results are unlikely to be pri-550

marily attributed to data noise since the answers551

are generated by DeepSeek R1. Furthermore, we552

observed that even increasing the output length553

did not improve performance, indicating that ex-554

cessively long outputs might dilute the effective555

relevance signals, thus providing no benefit to final556

retrieval performance.557

4.3.4 Effect of Explicit Thinking558

Content Explicit Thinking Avg

Answer No 22.7
Thinking+Answer Yes 21.4
Answer Yes 20.9

Table 6: Results on explicit thinking process.

Inspired by DeepSeek R1 (Guo et al., 2025)559

and some recent works (Weller et al., 2025; Xie560

et al., 2025), we further investigate the effect of561

explicit thinking process. When the explicit think-562

ing process is applied, the model will first think563

about the reasoning process explicitly and then564

provide the actual answer. The reasoning process565

and answer are enclosed with “<think></think>”566

and “<answer></answer>” tags. With the dataset567

of V1-QwQ, we train the model on Qwen2.5-568

1.5B-Instruct, and evaluate the query reasoners569

with BM25 retriever. Since the thinking process570

requires external output tokens, the max comple-571

tion length is set to 1000 when the explicit think-572

ing process is applied. Details about the prompt573

and reward settings are listed in Appendix C. Re-574

sults are shown in Table 6. In the table, “Explicitly575

Thinking” denotes if the explicitly thinking pro-576

cess is applied for model training, and “Content”577

16bge-m3 is based on XLM-RoBERTa-Large

denotes if the output query contains the thinking 578

process within the “<think></think>” tags. “Think- 579

ing+Answer” means that the contents within the 580

“<think></think>” and “<answer></answer>” tags 581

are concatenated as the reasoned queries, and “An- 582

swer” means that only the answer content is re- 583

turned. 584

Experimental results indicate that applying ex- 585

plicit thinking process does not improve perfor- 586

mance on query reasoning tasks. Previous stud- 587

ies (Weller et al., 2025) have shown that explic- 588

itly generating the reasoning process within the 589

“<think></think>” tags can be beneficial for cer- 590

tain reasoning-intensive tasks, possibly because 591

these tasks require the model to produce answers 592

in specific output formats. For example, in rank- 593

ing tasks, the model receives a query and a docu- 594

ment as input and must output a binary relevance 595

judgment (true or false). In such cases, applying 596

explicit thinking process can help the model fully 597

leverage its reasoning capabilities through chain- 598

of-thought prompting, thereby enhancing inference 599

performance. However, in the case of query reason- 600

ing tasks, the generated reasoned query inherently 601

encapsulates the reasoning process and is not con- 602

strained by output format requirements. As a result, 603

explicitly generating the reasoning process does 604

not lead to further performance gains. 605

5 Conclusion 606

In this work, we present RQR, a family of compact 607

and efficient language models tailored for query 608

reasoning and rewriting in reasoning-intensive re- 609

trieval. By leveraging the learning algorithm of 610

GRPO with a novel semi-rule-based reward func- 611

tion, our approach enables effective and robust re- 612

inforcement learning without relying on expensive 613

human-annotated datasets and retrieval sources. 614

Our proposed models demonstrate strong perfor- 615

mance on the BRIGHT benchmark, rivaling or even 616

surpassing large-scale commercial LLMs, while 617

significantly reducing inference cost and latency. 618

Furthermore, RQR models exhibit strong compati- 619

bility with both traditional and reasoning-intensive 620

retrievers, making them highly versatile for real- 621

world deployment. Our findings highlight a promis- 622

ing direction toward building lightweight, afford- 623

able, and high-performing reasoning components 624

for retrieval-augmented generation pipelines and 625

the latest deep research products. 626
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Limitations627

Our work still has several limitations that we plan628

to address in future works:629

• Besides reasoning-intensive retrieval, due to630

the limitation of time and computational cost,631

we omit the effect of query reasoning in632

other reasoning-intentsive RAG tasks includ-633

ing MMLU (Hendrycks et al., 2021) and634

GPQA (Rein et al., 2024).635

• We directly used the publicly available Stack-636

Exchange dataset to build our training data,637

and we did not wash the answers carefully.638

Although our proposed approach may not be639

easily affected by the noisy training data, it640

may still be beneficial to use a high-quality641

training set.642

• By the time this work is done, the latest643

Qwen317 model family is released. Replac-644

ing the initial checkpoints to Qwen3-1.7B, 8B645

and 14B may lead to further improvements.646
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A Prompt Templates 823

Figure 2 shows the prompt template for the instructions of chain-of-thought query reasoning. The reasoner 824

model takes the instructions and original query as input, and return a “pseudo-answer” with thoughts 825

including as much relevant information as possible. The “pseudo-answer” can be used as the reasoned 826

query, and the retriever can benefit from the external information provided by the reasoned query.

Instructions:

1. Identify the essential problem.

2. Think step by step to reason and describe what information could be relevant 

and helpful to address the questions in detail.

3. Draft an answer with as many thoughts as you have

Query: {query}

Instruction Templates for Query-Reasoning

Figure 2: The prompt template for the instructions of Chain-of-Thought query reasoning.

827

B Training Data 828

Details about the construction of training data are described as follows: 829

• Version 1: sampling at most 1200 questions for each selected category to generate answers with 830

large reasoning models. The selected categories include: ’biology’, ’chemistry’, ’codereview’, ’cs’, 831

’earthscience’, ’economics’, ’math’, ’physics’, ’robotics’. The Version 1 dataset includes around 10k 832

sampled questions. In this paper, the corresponding datasets are denoted as V1-R1 and V1-QwQ, 833

indicating that the answers are generated by DeepSeek R1 or QwQ-32B. 834

• Version 2: sampling at most 1500 questions for each selected category with selected answers. Those 835

questions can also be used to generate answers via large reasoning models. The categories include: 836

’ai’, ’biology’, ’chemistry’,’codereview’, ’cs’, ’earthscience’, ’economics’, ’computergraphics’, 837

’math’, ’mathoverflow’, ’philosophy’, ’physics’, ’robotics’, ’stackoverflow’, ’sustainability’, ’soft- 838

wareengineering’, ’bioinformatics’. The Version 2 dataset includes around 30k sampled questions, 839

nearly three times as many as Version 1, making answer generation with large reasoning models 840

unaffordable since the inference time is too long. In this paper, the dataset is denoted as V2. 841

C System Prompt and Reward for Explicit Thinking 842

Inspired by previous works (Xie et al., 2025; Weller et al., 2025), we use the following system prompt 843

to instruct the model to output the thinking process explicitly in the format of “<think>thinking pro- 844

cess</think><answer>the answer</answer>”. 845

System Prompt

You are a helpful assistant. The assistant first thinks about the reasoning process in the mind and
then provides the user with the answer. The reasoning process and answer are enclosed within
<think> </think> and <answer> </answer> tags, respectively, i.e., <think> reasoning process here
</think> <answer> answer here </answer>.

846

When the explicit thinking process is applied, we also design a format reward to force the model 847

returning an output in the correct format. Our format checking strategy is identical to (Xie et al., 2025). If 848
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the model’s output fails the format checking, the reward function will immediately return a score of -1,849

and the subsequent computation of the query reasoning reward will be skipped.850

D License851

In this section we list the artifacts we used and the corresponding URL and licenses:852

Name Type URL License

StackExchange-Preferences Dataset https://huggingface.co/
datasets/HuggingFaceH4/
stack-exchange-preferences

cc-by-sa-4.0

BRIGHT Benchmark Dataset https://huggingface.co/datasets/
xlangai/BRIGHT

cc-by-4.0

Qwen2.5-1.5B-Instruct Model https://huggingface.co/Qwen/Qwen2.
5-1.5B-Instruct

apache-2.0

Qwen2.5-7B-Instruct Model https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

apache-2.0

bge-base-en-v1.5 Model https://huggingface.co/BAAI/
bge-base-en-v1.5

mit

bge-m3 Model https://huggingface.co/BAAI/bge-m3 mit
QwQ-32B Model https://huggingface.co/Qwen/QwQ-32B mit
DeepSeek R1 Model https://huggingface.co/deepseek-ai/

DeepSeek-R1
mit

DeepSeek V3 Model https://huggingface.co/deepseek-ai/
DeepSeek-V3-0324

mit

ReasonIR Model https://huggingface.co/reasonir/
ReasonIR-8B

cc-by-nc-4.0

Table 7: List of datasets and models used, along with their URLs and licenses.
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