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ABSTRACT

Gradient-based multi-step iteration has been widely used to enhance attack ef-
ficiency of adversarial examples. In this work, we propose a Fixed Strength
Optimization (FSO) method to accelerate the convergence of adversarial examples
with a fixed preset attack strength. FSO can be easily combined with existing attack
techniques to achieve fast convergence and well-controlled attack strength. We
further introduce a combined norm based on L5 and L., norms to modulate the
attacking direction. This combined norm can help to balance the attack strength in
the directions of semantic information and noise components in the model gradients.
By incorporating the combined norm into FSO, our numerical experiments show
improved attack transferability and high imperceptibility of perturbations.

1 INTRODUCTION

Adversarial examples [Szegedy et al.| (2013); |Goodfellow et al.| (2014); Bai et al.| (2019) and the
transferability of adversarial perturbations |(Goodfellow et al.|(2014); Liu et al.|(2016)) initially raised
significant security concerns |Sharif et al.[(2016); |[Eykholt et al. (2018); Ma et al.|(2021) of deep neural
networks (DNNs). However, following studies and applications have demonstrated various benefits
derived from adversarial examples. For instance, training with adversarial examples enhances DNN
robustness Madry et al.|(2017);[Ma et al.| (2018)); Wang et al.|(2021b)); Tlyas et al.|(2018a); |Duan et al.
(2020); 'Wu et al.[(2020b); Ma et al.| (2021)); |Wang et al.| (2019)), allowing stable performance against
unknown or malicious inputs. Recent studies also showed that adversarial examples can protect
intellectual property by preventing diffusion models from generating painting imitations |Liang et al.
(2023). In these applications, it is essential to develop methods that generate highly transferable
adversarial examples in an efficient way.

This paper considers generating adversarial examples with a constant fixed attack strength. The
motivation arises from observations regarding existing attack methods during multi-step attacks. To
illustrate our observations, we conducted an experiment using black-box attacks across four methods
(Projected Gradient Decent (PGD) [Madry et al.| (2017), Skip Gradient Method (SGM) [Wu et al.
(2020a), Variance Reduction Method (VR) Wu et al.|(2018), Interaction Reduction Method (IR)Wang
et al[(2021a)). As we can see from Figure [I|(a), (1) Given an attack method, the actual perturbation
strength (perturbation radius) gradually increases during the multi-step process until it reaches the
preset upper limit, or never reaches the upper limit until the end; (2) For each attack method, the
increase in transferability is accompanied by the increase in attack strength; (3) Methods having
larger perturbation strength achieve higher transferability. These observations lead us to the question:
Is the "poor” transferability of a few methods simply due to their low perturbation strength of the
adversarial examples? For instance, the PGD method exhibits the lowest transferability, yet it also
maintains the lowest perturbation strength, indicating the potential of improving its transferability by
simply increasing the perturbation strength.
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Figure 1: (a) left: The black-box success rate (i.e., transferability) over 100 steps. a) right:
Perturbation radius, characterized by the mean of the Lo/L., norm of perturbations across all
samples. The shaded area represents the standard deviation. (b): Intuitive illustration of attack
strategies. Traditional methods apply incremental perturbations from the original sample x,,;. In
contrast, FSO optimizes adversarial examples on the sphere.

Motivated by this observation, we propose the Fixed Strength Optimization (FSO) method to directly
optimize adversarial examples on the e-neighboring sphere of the original sample, where the attacking
strength ¢ is the norm of the perturbation (as depicted in Figure [1|(b)). In the optimization, we
simply use the tangential component of the gradient (or the variants of gradient as proposed in SGM,
VR, IR, etc.) to update the adversarial example and use projection operation to keep it on the sphere.
Compared to previous multi-step methods, FSO can achieve both faster convergence and higher
transferability under the same attack strength. Furthermore, FSO allows for a fairer comparison of
different attack methods since the perturbation strength is fixed.

In defining adversarial examples, a distance metric is required to quantify similarity. A common
choice of the metric would be L,, norm. Here we point out a few facts about the Ly and Lo, norms,
which are the most used metric: (1) The optimization in FSO is difficult if the L., norm is used,
because the tangential component is always zero; (2) A perturbation obtained with a multi-step
L attack method is not an optimized perturbation based on L, norm. Namely, the perturbation
on many pixels are not maximized because the sign of the perturbation on these pixels changes
in different steps; (3) Adversarial examples obtained by L, attack method, while achieve higher
transferability compared to those obtained by L., attack method, also maintain greater visual
impairment. As a general assumption of gradient-based post-hoc interpretability methods Simonyan
et al.[(2013); |Smilkov et al|(2017), the magnitude of the input-gradient highlights task-relevant
features. Coordinates with larger input-gradient magnitude contain more semantic information, thus
being more relevant to model predictions than those with smaller magnitude.

In this work, we propose a combined norm, the Lo -, norm, to quantify the strength of perturbations.
The combined norm is determined by both the Ls norm and L., norm. As a consequence, the
combined norm helps to inhibit perturbations on large input-gradient directions compared to attacks
based on Ly norm. This is helpful to suppress attacks in the direction of semantic information. The
new norm also helps to inhibit strong perturbations on the small input-gradient directions compared
to attacks based on L, norm. This prevents from introducing strong noise into adversarial examples.
As a side benefit, the new norm can be smoothly incorporated in FSO.

Our contributions are summarized as follows.

- We introduce FSO to generate adversarial examples in an optimization fashion under fixed attacking
strength. FSO generates adversarial examples in only a few iteration steps, whereas improves the
state-of-the-art transferability benchmarks.

- We introduce combined norm that suppresses the shortcomings of Ly and L, norms in generating
adversarial examples. By incorporating the combined norm into FSO, perturbations in our numerical
experiments demonstrate enhanced attack transferability and high imperceptibility.

'The attacks are crafted on 1000 ImageNet validation images [Wang et al|(2021a) under maximum Lo
€

perturbation € = 16 (pixel values range from [0, 255]), corresponding to Lo radius r = 5= - vV dim ~ 24.3438.

255
All four methods are executed under the same parameter settings (perturbation radius, step size, number of
iterations, etc.). The black-box success rate is tested against a 154 layer Squeeze-and-Excitation network
(SE154) Hu et al.| (2018), using an ImageNet-trained ResNet-34 as the source model.
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2 RELATED WORKS

2.1 MULTI-STEP ATTACKS AND ADVERSARIAL TRANSFERABILITY.

Given a clean example x,,; with class label y and a target DNN model f, the goal of an adversary is
to find an adversarial example x,q4, that fools the network into making an incorrect prediction (i.e.
f(@adv) # y), while still remaining in the e-ball centered at & ,; (i.e. || Zady — Tori|| < € ). Existing
adversarial attacks can be broadly categorized into two types: white-box attacks|Goodfellow et al.
(2014); Madry et al.| (2017); Kurakin et al.|(2018)); |Papernot et al.| (2016);|Su et al.|(2019); Carlini &
‘Wagner| (2017); Szegedy et al.|(2016)); /Chen et al.|(2018)); Modas et al.| (2019)), where the adversary
has full access to the target model, and black-box attacks |Liu et al.| (2016); [lyas et al.| (2018a); Chen
et al.| (2017a)); Bhagoji et al.|(2018)); [Papernot et al.| (2017); Bai et al.| (2020), where the adversary
has no information about the target model. A specific type of black-box attack leverages adversarial
transferability [Wu et al.[ (2020a; [2018)); [Xie et al.| (2019); |Dong et al.| (2018), where adversarial
perturbations generated on a source DNN are transferred to other target DNNs.

Fast Gradient Sign Method (FGSM) Goodfellow et al.|(2014). FGSM lays the groundwork for
gradient-based adversarial attacks by perturbing clean example z,,; by the amount of ¢ along the
gradient direction:

Tadv = Tori + 67 0=¢c- Sign (vwe (f (wori) 7y)) ;

where £ is objective function. The Basic Iterative Method (BIM) |[Kurakin et al.|(2018) is an iterative
version of FGSM that perturbs for 7" steps with step size € /7.

Based on these insights, researchers have developed multi-step attack methods|Madry et al.|(2017);
Kurakin et al.[(2018)); (Carlini & Wagner|(2017);|Chen et al.|(2018)) to generate more potent adversarial
examples. These multi-step approaches typically perturb normal example z,,,.; for T steps with smaller
step size « (different to BIM, v > ¢/T is allowed). After each step of perturbation, if the adversarial
example goes out of the e-ball of z,,, it is projected back to the e-sphere.

Multi-step gradient-based attack methods have a generalized formula structured as follows:

it =11 (2, +6").6" =a-N,(g"), 60

adv

where II.(+) is the projection operation, g* is the perturbation direction, N,,(-) is a normalization
operator tailored for various p-norms, adjusting both the direction and magnitude of g* to meet
the constraints imposed by each norm. For example, N (g") = sign(g") limits each element’s

t
magnitude, NV>(g?) = H;W ensures uniform scaling, and Vi (g') selectively modifies the largest
components to enforce sparsity.
The essence of multi-step attack methods lies in the design of the perturbation direction g* to

iteratively refine adversarial perturbations, thereby enhancing their transferability and increasing the
difficulty for models to defend against them. Notable examples include:

Projected Gradient Descent (PGD) Madry et al.| (2017). PGD directly uses the gradient as a
perturbation direction:

9" =Vl (f (Zoaw) ) -

Momentum Iterative boosting (MI) Dong et al.|(2018). MI incorporates a momentum term into the
gradient to stabilize update directions, thereby boosting the transferability:

Vmg (f (wfzdv) 7y)

t t—1
g =u-g + s
||Vm€ (f (mgdv) 7y)||1

where g*~! represents the perturbation direction from the previous step, u is the decay factor, and
|| - ||1 denotes the L norm.
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Diverse Input (DI) Xie et al.| (2019). DI proposes to craft more universally effective perturbations
using gradient with respect to the randomly-transformed input example:

g' = Val (f (H (®54,50)) ) »

b . . . "
where H (!, ;p) is a stochastic transformation function on ! ;,

for a given probability p.

Translation Invariant (TT) Dong et al.| (2019). TI targets to evade robustly trained DNNs by
generating adversarial examples that are less sensitive to the discriminative regions of the surrogate
model. More specifically, TI computes the gradients with respect to a set of translated versions of the

original input:
9" =W Vol (f (Taan) . ¥)

where W is a predefined kernel (e.g., uniform, linear, and Gaussian) matrix of size (2k + 1)(2k + 1)
(k being the maximal number of pixels to shift). This kernel convolution is equivalent to the weighted
sum of gradients over (2k -+ 1)? shifted input examples.

Variance Reduction (VR) Wu et al.|(2018). VR employs smoothed gradients to generate pertur-
bations with high transferability by smoothing the classification loss with Gaussian noise during
attacking:

9' =Een0.oon) [Val (f (®han + &) . 9)]

where E ,indicates that an expectation (or average) is taken over Gaussian noise £, sampled

£~N(0,021)
from a multivariate normal distribution N(p = 0,02I). The noise £ is added to the adversarial
example to smooth the gradient.

Skip Gradient Method (SGM) Wu et al.| (2020a). SGM proposes to enhance the transferability of
adversarial examples by using the gradients of skip connections more than those of residual modules:

gt = V;];dpf (f (w(tzdv) ay> ’

ozy, i=0 0z, ox
gradients from skip connections over those from residual connections in L residual blocks. Here,
zo = « is the network input, and v € (0, 1] is the decay parameter to reduce the gradient from the
residual modules.

where ViyP¢ = 2L TTE 1 (VM + 1) 920 represents the neural network function that prioritizes

Furthermore, other adversarial attach methods include 1) sparsity-based methods such as Jacobian-
based Saliency Map Attack (JSMA)|Papernot et al.|(2016), sparse attack Modas et al.|(2019)), one-pixel
attack [Su et al.| (2019), 2) optimization-based methods such as Carlini and Wagner (CW) |Carlini
& Wagner| (2017)) and elastic-net (EAD)|Chen et al.|(2018)), decoupled direction and norm (DDN)
attack Rony et al.|[(2019), 3) query-based methods |Chen et al.| (2017a)); Ilyas et al.| (2018b}; [2019);
Uesato et al.| (2018)); /Andriushchenko et al.[(2020), 4) gradient estimation methods such as Finite
Differences(FD)|Chen et al.{(2017a); Bhagoji et al.|(2018)) or Natural Evolution Strategies (NES) Ilyas
et al.| (2018a)); Jiang et al.| (2019)), and 5) intermediate features-based methods such as Activation
Attack Inkawhich et al.| (2019) and Intermediate Level Attack [Huang et al.|(2019). In particular,
Interaction Reduction (IR) Attack |Wang et al.| (2021a) reduces interactions between input units to
create more transferable adversarial examples.

3  FIXED STRENGTH OPTIMIZATION

3.1 MOTIVATION

The generation of adversarial examples can be obtained by the following optimization equation:

d = argmax {(f(xor; +9),y). 2)

ll6ll<e

The loss function ¢( f (x4, ), y) measures the performance of model f, where €y, = Xori + 0 is
the adversarial example, and § is the adversarial perturbation. The adversarial example lies within an
e-ball around x,,; (i.e., |[Tage — Tori|| < €).
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Multi-step gradient-based attack methods are not efficient in performing the optimization in Equation
(2). First, as shown in Figure[l] (a), although the optimized adversarial example is usually on the
e-sphere, multi-step methods requires many iteration steps to progressively increase the perturbation
strengtlﬂ second, the tangential component (to the e-sphere) of the perturbation direction gt is
usually small compared to the normal component, which lead to slow convergence of the multi-step
methods. In particular, when the L., norm is used, adversarial examples obtained by multi-step
methods usually do not stay on the e-sphere, since the sign of the perturbation direction g* on many
pixels changes from step to step.

Next, we propose a method, Fixed Strength Optimization (FSO), to directly optimize adversarial
examples on the e-sphere, i.e., |Zaqy — Tori|]| = €. Existing attack methods can be naturally
incorporated to determine the tangential perturbation direction to update adversarial examples. FSO
significantly reduces the number of iterations while improving the transferability.

3.2 ALGORITHM

In FSO, we use the tangential component of the perturbation direction g* to update the adversarial
example, where g* can be obtained with the attack method list in Section 2. The initial example is
directly obtained by scaling g° to meet the perturbation strength. In order to keep the adversarial
example on the sphere, a normalization is used for the updated example. Details of FSO is included
in Algorithm

Algorithm 1 FSO Method for Adversarial Example Generation.
gt Perturbation direction at step t.

at Step size at step t.

N,(-) Normalization operator for a general norm.

II.(-) Projection operator to constrain the adversarial example on the e-sphere.

1: Imput: z,,;: original sample, ¢: maximum perturbation constraint, 7': total number of attack steps,

2: Initialize: 22, < Tori,

3: fort <~ 0to7T — 1do

4: if £ = O then

5: it al, +e-Np(gh), > Initialize to fiexed strength perturbation
6: else

7: g normal, g_tangent < g°, > Gradient decomposition
8: it !, +a' - N,(g_tangent), > Update along the tangential direction
9: a:’:gi =1II. (mf;gi) , > Project to the e-sphere
10: end if
11: end for

12: Output: =7, : the final adversarial example.

t

In practical implementation, for a general norm, the normal direction at §° = &', — @,,; is simply

t
the gradient direction n! = %. In particular, for the Ly-norm case, n! = ﬁ. The tangential

component of g¢ can be easily obtained by subtracting the normal component from g*. Since a
normalization of the tangent component is used, we set a decaying step size o' = g/t to ensure
convergence of the adversarial example.

4 Ly oo NORM

It is worth noting that FSO cannot be used under the L, norm because the tangential component is
always zero. Since limiting the L, norm of the perturbation of adversarial examples is important in
suppressing the attack of semantic information, we need further effort to deal with this case.

Meanwhile, as mentioned above and can be seen from Figure 2] (a), adversarial examples obtained

by the multi-step attack methods using L, norm is not optimized on the corresponding e-sphere

(the attack strength on many pixels is smaller than the preset strength €., = 21565). This is because

“Figure|l|(a) shows that the perturbation radius of the SGM method reaches the surface of the neighboring
sphere at around 40 steps, while the PGD method does not reach it even after 100 steps.
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Figure 2: (a): The sorted pixel-wise perturbation strength obtained with multi-step PGD L, attack
forad = 3 x 224 x 224 image. (b): Convergence of the perturbation strength (the Ly o, norm)

towards the preset value, €, - V.

the sign of the perturbation direction g¢ can change on many pixels during the multi-step process.
These pixels with unstable sign of gt usually also maintains relatively small abstract value. From
this point of view, the multi-step attack method based on L., norm indirectly suppresses the attack
on the pixels with weak semantic information in fact. This suppression is helpful to prevent from
introducing too strong noise (in the sense of Ly norm) into the adversarial examples.

Based on the above observation, we introduce the Ly ,, norm,

Vd
19]l2_00,m = max{[|d]|z, —=][lloc}, )

where 1 < m < /d is a hyper-parameter, where d is the dimension of §. In particular, when m = 1,
the norm reduces to v/d times the Lo, norm; whereas when m = \/&, the norm is equivalent to
the Lo norm. In other words, the e —sphere under the L o, norm is obtained by cutting off the
corresponding Euclidean sphere by parallel planes in each coordinate axis direction. The distance
from the origin to the planes is equal to %

Therefore, compared to a perturbation ' obtained with the Ly norm satisfying ||6’||2 = [|6]|2_co,m.
d has smaller L, norm, namely, |||l < ||0’|o0; Whereas compared to a perturbation 6" obtained
with the Lo, norm satisfying ||0’||cc = ||8]/2_co,m, 0 has smaller Ly norm, namely, ||d]|2 < [|6’||2. In

particular, when we have ||6]|2_co,m = €oo V/d, the largest possible Lo, norm of 8 is meoo.

This new norm is potential to achieve good balance of the perturbation: It both suppresses the attack
on the large component directions of 4, thus helping to keep the semantic information of data, and
suppresses attack on small component directions, thus reducing noise introduction on these directions.
In other words, for generation of adversarial examples, the new norm achieves both advantages of Lo
norm and L, norm.

Using the Ly o, norm, the projection operator Il (-) in Algorithmis realized by an Ly projection
step (8 < ¢- ﬁ) followed by an L, projection step (resetting the components satisfying |d;| > %

to sign(d;) - %, where 7 is the index of the components of §). This realization is not the exact

projection II.. In fact, the Ly ., norm of the perturbation is usually smaller than € after this projection.
Nevertheless, as shown in Figure 2(b), the norm converges to € quickly in the optimization process
(see curves with legend “single Proj”’). When m is small, we can repeat the projection step for once
to even accelerate the convergence (see curves with legend “double Proj”).

5 EXPERIMENTS

Next, we use numerical experiments to show the fast convergence rate, the enhanced transferability,

and the ballaced perturbation of FSO under the Ly ., norm. Unless otherwise specified, the preset

attack strength under the L., L2, and Ly o, norms are set to £, = 1765, g9 = \/aeoo, and
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Figure 3: Top: The black-box transferability (i.e., success rate of the transfer attack) of the adversarial
examples obtained with the regular model to three target models. The left panel is for the original
perturbation and the right 4 panels are for the rescaled perturbations to €, k = 1, 2, 3, 4, respectively.
The blue, orange, and green curves correspond to the transferability on VGG16, SE-154, and
IncResV2, respectively. Bottom: Average perturbation radius ||8¢||2, with the shaded area indicating
the standard deviation. The horizontal blue straight lines shows the attack strength after rescaling,
whereas the vertical dash-black line shows the step at which [|§? || = &j.

€2 0o = Vdeo, respectively, following the setting in [Dong et al.[(2018). The dimension for images
used in this work is d = 3 x 224 x 224. The step size in multi-step attack methods is set to 2/255.

5.1 TRANSFERABILIY ANALYSIS OF MULTI-STEP METHODS

We use a numerical experiment to illustrate the transferability of traditional multi-step attack methods.
To this end, we first performed an Lo attack using SGM [Wu et al.[(2020a)) on a source DNN (RN-34)
and transferred the adversarial perturbations to three target DNNs (VGG16|Simonyan & Zisserman
(2015)), SE-154 |Hu et al.|(2018)), and IncResV2 |Szegedy et al.|(2017)), referred to as “regular mode”.
The attacks were executed over 100 steps on validation images Wang et al.|(2021a) from the ImageNet
dataset Russakovsky et al.[(2015). To our experience, other multi-step attack methods and model
architectures similar results.

The transferability to the three target models is collected in the top-left panel in Figure 3] whereas
the evolution of attack strength (||8*||2 obtained with the regular model) is shown in the bottom-left
panel. We can see that the transferability increases with the step, acompanied with the increase of the
attack strength.

In order to see whether the increase of the transferability is simply due to the increase of attack strength,
. . ~ ~ t
we rescales the perturbation to different attack strengths &, = % and :Bfldv, k= Tori + €k - Ht;sW'

The transferability for k¥ = 1,2, 3,4 is included in the top-right 4 columns in Figure [3] Roughly
speaking, as the iteration step increases, all transferability curves increase first to their maximums
and then decrease. The maximums are obtained when ||6%]|2 ~ &.

This result shows that the optimal perturbation direction is dependent on the perturbation strength.
Aside from the perturbation strength, the perturbation direction also plays an important role in the
transferability. Interestingly, the transferability curves for all three models peak at almost the same
step, indicating that the optimal perturbation direction is independent of the model.

Based on the above observations, we can conclude that optimizing the perturbation directly on the
fixed-strength e— sphere is advantageous. It avoid the slow growth of attack strength and optimize
the perturbation direction under a specific attack strength.

5.2 EFFECTS OF m IN THE Ly o, NORM

Based on the same source model and experiment setting as Figure |1} we conduct black-box attack
to determine suitable values of m introduced in the Ly o, norm. We tested the transferability of the
generated perturbations on seven target DNNs, including VGG-16, ResNet-152 (RN-152), DenseNet-
201 (DN-201), SENet-154 (SE- 154) |Hu et al.| (2018)), InceptionV3 (IncV3)|Szegedy et al. (2016),
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Figure 4: The transferability of FSO combined with SGM attack method, under the L o, norm with
different m.

InceptionV4 (IncV4) |Szegedy et al.| (2017), and Inception-ResNetV2 (IncResV?2) |Szegedy et al.
(2017).

In Figure [4} we show the transfer attack performance of FSO using the Ly o, norm with different 1.
The performance on all seven target models exhibit the same trend:

1. Each curve increases with the iteration step and converge to a plateau in a few (< 10) steps.
This shows the fast convergence rate of FSO. As a comparison, the multi-step attack shown in
Figure [3|requires more than 20 iteration steps to converge to the plateau. Thus FSO can accelerate the
convergence (by 2 ~ 3 folds) and reduce iteration steps. Compared to results shown in Figure[T] (a),
where the attack strength may increases slowly, the acceleration rate can be even larger.

2. The transferability increases with m for all test networks. For the first three target networks,
m = 2 is sufficiently large that further increment of m only leads to insignificant increase of the
transferability. Since larger m means larger allowed L, norm of the perturbation while the largest
possible Ly norm remains unchanged, the monotonically increasing property is natural. It is important
to see that m ~ 2 or 3 is sufficient to achieve nearly best performance. This means that we can still
control the L., norm of the perturbation well (< me), thus suppressing strong attack of semantic
information. The small saturation number of m allows us to achieve balanced attack—with both weak
semantic attack and weak noise introduction.

In summary, we can achieve fast convergence and balanced attack using FSO under the Ly -, norm.

5.3 TRANSFERABILITY ENHANCEMENT OF FSO UNDER Ly , NORM

Next we systematically study the transferability enhancement of FS Ounder Ly o, norm compared
with multi-step attack methods with Ly and L., norms. We generated adversarial perturbations
on six source DNNs, including VGG16 [Simonyan & Zisserman| (2015)), and IncResV2 |Szegedy
et al.| (2017)), Alexnet Krizhevsky et al.|(2012), ResNet-34/152 (RN-34/152) He et al.|(2016), and
DenseNet-121/201 (DN-121/201) Huang et al.| (2017). The target test networks are the same as that
in FigureE} In additon, we used the Dual-Path-Network (DPN-68)|Chen et al.| (2017b)) to evaluate the
ensemble source modeﬂ following the setting in|Wang et al.|(2021a)).

We used the widely used PGD Attack [Madry et al.|(2017)) as the baseline method to compare the
results. All attacks executed over 30 steps on validation images Wang et al.|(2021a) from the ImageNet
dataset Russakovsky et al.|(2015)). To enable fair comparisons, the transferability is computed with
the best adversarial perturbation during the 30 steps via the leave-one-out (LOO) validation in Wang
et al. (2021a). All attacks were conducted with three different random samplings of grids or different
initial perturbations.

Table [T| reports the success rates of the multi-step PGD attack under L, and Ly norms and FSO
PGD attack under Ly and Ly o, norms. Compared with the baseline attack, the transferability is
significantly improved by using FSO. In particular, although constraints on the L., norm are applied
to the perturbation in the Ly, norm, the transferability obtained with the Ly ., norm is comparable
with that obtained simply with the Ly norm in FSO. Compared to the multi-step method, the large
improvement is partly due to the slow increase of the perturbation strength for PGD attack method

3Besides above adversarial transferring from a single-source model, the ensemble source model [Liu et al.
(2016)) generate adversarial perturbations on the ensemble of RN-34, RN-152, and DN-121.
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Table 1: The success rates of adversarial examples generated from six source models against seven
target models using PGD black-box attack under L., and Lo norms and FSO under Ly o, norm.

Source Method Target Models
VGG-16 RNI152 DN-201 SE-154 IncV3 IncV4 IncResV?2
PGD L, 589+1.2 22.8+0.7 27.2+£09 23.64+0.5 232+04 1934+03 14.7+0.5
AlexNet PGD L, 74.6+1.5 447+£22 455+04 38.6+£0.7 43.1£19 345414 305423
PGD+FSO L3%_ | 87.941.0 57.7+1.5 59.4+0.4 525+0.6 58.6+0.5 473+1.5 42.5+1.0
PGD Lo, - 38.8+1.1 42.4+09 46.4+03 33.0£1.2 43.8+0.7 27.8%£1.3
VGG-16 PGD L, - 52.1+1.7 57.6+£04 56.840.7 524415 59.8404 42.7+14
PGD+FSO L3% - 73.7+1.5 79.840.3 81.1+£0.6 76.1+0.5 81.5+1.5 64.7+1.0
PGD L 61.0£0.6 59.3£13 623+04 324404 26.3+0.6 244+04 21.3%1.1
RN-34 PGD L, 68.6+1.2 70.5£1.1 71.4+£0.8 39.8+0.7 37.8+1.5 36.5+24 28.1£1.5
PGD+FSO L3%X_ | 9514+1.0 92.5+1.5 93.5+14 79.6+0.6 76.4+09 69.9+1.5 68.6+1.0
PGD Lo 47.8+2.5 - 61.4+09 36.8£1.0 279+19 243+I1.1 23.4£1.6
RN-152 PGD Ly 55.6+2.6 - 72.1£1.2  45.6£19 389422 372413 341424
PGD+FSO L3*_ | 87.6+1.0 - 93.2+1.1 774+1.6 73.7+14 66.5+0.8 66.6 +1.2
PGD L, 649+19 62.6 1.4 855+1.1 43.1+1.1 347+23 349409 27.9+1.6
DN-121 PGD L, 704+2.6 709+1.7 90.2+£0.9 485+1.7 474+14 455414 392423
PGD+FSO L3%_ | 943+1.1 91.8+1.1 98.7+1.1 84.9+13 804+15 76.6+0.9 72.7+13
PGD Lo 58.6£1.5 683 £I1.0 - 49.6+1.3 39.5+2.6 383+14 32.3%+1.2
DN-201 PGD L, 63.7£1.9 76.2£1.1 - 552422 51.0£24 49.1+£19 429+1.6
PGD+FSO L3%_ | 92.6+1.0 94.3+1.4 - 87.6+1.8 82.3+14 80.2+0.9 76.6 +1.5

Table 2: The success rates of comparison of black-box attacks crafted on the ensemble model
(RN-34+RN-152+DN-121) against target models.

Target Models

Source Method VGG-16  RNIS2  DN-20T  SE-I54  Tncv3  [ncV4  IncResV2  DPN-63
PGD T 85516 T00.0F0.2 O7.1E06 T49F08 658%0.7 63.0509 564E05 64806

Ensemble PGD L, 870405 99.6402 982104 798407 759+09 728104 688103 782405
PGD+FSO Lo 98.6-0.1 100-0.0 100.0£0.0 944-0.1 94.0+0.1 921402 92.4+0.1 94.4+0.1

PGD4+FSO L3X_ 983+0.1 100.040.0 999+0.1 96.1-0.1 94.0+02 922403 917102 93.6-0.3

PGD+FSO L3%, 362 o0 | 887209 100.0£0.1 97.8£1.2 78.9+1.1 735+0.6 687104 647£0.5 69.5£0.5
PGD+FSO L3%, 262 oo | 775207  100£0.2  93.0£0.1  61.6£0.3 59.1+£0.6 587+0.1 50.2£0.1 57.1£0.3
3€

2_
PGD+FSO L3%, 265 o | 942405  100£0.1 98.84+0.1 88.44+0.2 83.840.1 80.2+£0.3 78.6+0.4 83.140.1

(thus after 30 steps, the attack strength is still smaller then the control value). For other attack method,
the improvement of FSO becomes less but FSO still maintains the best performance.

Ensemble models are useful to enhance the transferability in general. In Table |2} we show the results
obtained by an ensemble model (RN-34+RN-152+DN-121). The transferability of multi-step PGD
attack with L, and L., norms improves a lot by this ensemble model, partly due to the stabler
perturbation direction which leads to faster growth of perturbation strength. Again, the transferability
is still significantly improved by FSO under the L -, norm. The transferability is even better for
FSO under the L, norm, because there is no constraint on the L., norm of perturbations.

By using the Ly o, norm, the L, norm is allowed to be m times e,,. We further conducted the
experiment for FSO under smaller perturbation strengths: %52_00 form = 2 and %52_00 for m = 3.
In these cases, the upper limit of L., norm for the perturbation is also €., (but the upper limit of Lo
norm is only half or one third €5). The results are also shown in TableFor the case %52_00 and
m = 2, We can see that FSO still achieves better results compared to PGD with L., norm; For the
case %52700 and m = 3, the performance obtained with FSO becomes inferior because the limit of
L5 norm is too small.

Other attack methods such as MI, VR, SGM, IR, and TI, can also be naturally incorporated in FSO.
For these attack methods, we also observed significant enhancement of transferability by using FSO
under the Ly o, norm.

5.4 COMPARISON OF PERTURBED IMAGES

In Figure[5] we show the comparison of perturbed images using different attack methods. The six
columns of images are obtained by PGD, SGM, VR, TI, MI, and IR attack methods to obtain g’,
respectively; whereas the five rows are obtained by traditional multi-step attack method (with Ly and
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L, norms) and FSO under Ly o, norm with (1) m =2 and e = %52_00; 2)ym=3ande =e3 ,
and FSO under Ly norm, respectively. In general, we can see that perturbations obtained with FSO
under Ls o, norm are more unconspicuous. In particular, perturbations in the second row are much
more imperceptible because the small attack strength, while it maintains comparable or even better
transferability than perturbations obtained with multi-step attack under L., norm.

PGD SGM VR TI M1 IR

L., multi-step

L, multi-step

FsoL3X,,

FSO L,

Figure 5: Visualization of adversarial examples generated by various methods and their combination
with FSO.

6 CONCLUSION

We developed a Fixed Strength Optimization (FSO) method to generate adversarial examples. In
FSO, the optimization of adversarial examples are directly performed under the constraint of fixed
perturbation strength, where the strength is defined as the norm of the perturbation. FSO can
significantly improve both the convergence speed and transferability. The perturbation is well
optimized in a few (< 10) steps. We also propose a combined norm, the Lo ~, norm, for adversarial
examples to balance the attack on semantic information and introduction of noise. By incorporating
the combined norm into FSO, our numerical experiments show improved attack transferability and
high imperceptibility of perturbations.
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