
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FIXED STRENGTH OPTIMIZATION ENHANCES
ADVERSARIAL ATTACKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient-based multi-step iteration has been widely used to enhance attack ef-
ficiency of adversarial examples. In this work, we propose a Fixed Strength
Optimization (FSO) method to accelerate the convergence of adversarial examples
with a fixed preset attack strength. FSO can be easily combined with existing attack
techniques to achieve fast convergence and well-controlled attack strength. We
further introduce a combined norm based on L2 and L∞ norms to modulate the
attacking direction. This combined norm can help to balance the attack strength in
the directions of semantic information and noise components in the model gradients.
By incorporating the combined norm into FSO, our numerical experiments show
improved attack transferability and high imperceptibility of perturbations.

1 INTRODUCTION

Adversarial examples Szegedy et al. (2013); Goodfellow et al. (2014); Bai et al. (2019) and the
transferability of adversarial perturbations Goodfellow et al. (2014); Liu et al. (2016) initially raised
significant security concerns Sharif et al. (2016); Eykholt et al. (2018); Ma et al. (2021) of deep neural
networks (DNNs). However, following studies and applications have demonstrated various benefits
derived from adversarial examples. For instance, training with adversarial examples enhances DNN
robustness Madry et al. (2017); Ma et al. (2018); Wang et al. (2021b); Ilyas et al. (2018a); Duan et al.
(2020); Wu et al. (2020b); Ma et al. (2021); Wang et al. (2019), allowing stable performance against
unknown or malicious inputs. Recent studies also showed that adversarial examples can protect
intellectual property by preventing diffusion models from generating painting imitations Liang et al.
(2023). In these applications, it is essential to develop methods that generate highly transferable
adversarial examples in an efficient way.

This paper considers generating adversarial examples with a constant fixed attack strength. The
motivation arises from observations regarding existing attack methods during multi-step attacks. To
illustrate our observations, we conducted an experiment using black-box attacks across four methods
(Projected Gradient Decent (PGD) Madry et al. (2017), Skip Gradient Method (SGM) Wu et al.
(2020a), Variance Reduction Method (VR) Wu et al. (2018), Interaction Reduction Method (IR) Wang
et al. (2021a)). As we can see from Figure 1 (a), (1) Given an attack method, the actual perturbation
strength (perturbation radius) gradually increases during the multi-step process until it reaches the
preset upper limit, or never reaches the upper limit until the end; (2) For each attack method, the
increase in transferability is accompanied by the increase in attack strength; (3) Methods having
larger perturbation strength achieve higher transferability. These observations lead us to the question:
Is the "poor" transferability of a few methods simply due to their low perturbation strength of the
adversarial examples? For instance, the PGD method exhibits the lowest transferability, yet it also
maintains the lowest perturbation strength, indicating the potential of improving its transferability by
simply increasing the perturbation strength.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: (a) left: The black-box success rate (i.e., transferability) over 100 steps. 1(a) right:
Perturbation radius, characterized by the mean of the L2/L∞ norm of perturbations across all
samples. The shaded area represents the standard deviation. (b): Intuitive illustration of attack
strategies. Traditional methods apply incremental perturbations from the original sample xori. In
contrast, FSO optimizes adversarial examples on the sphere.

Motivated by this observation, we propose the Fixed Strength Optimization (FSO) method to directly
optimize adversarial examples on the ε-neighboring sphere of the original sample, where the attacking
strength ε is the norm of the perturbation (as depicted in Figure 1 (b)). In the optimization, we
simply use the tangential component of the gradient (or the variants of gradient as proposed in SGM,
VR, IR, etc.) to update the adversarial example and use projection operation to keep it on the sphere.
Compared to previous multi-step methods, FSO can achieve both faster convergence and higher
transferability under the same attack strength. Furthermore, FSO allows for a fairer comparison of
different attack methods since the perturbation strength is fixed.

In defining adversarial examples, a distance metric is required to quantify similarity. A common
choice of the metric would be Lp norm. Here we point out a few facts about the L2 and L∞ norms,
which are the most used metric: (1) The optimization in FSO is difficult if the L∞ norm is used,
because the tangential component is always zero; (2) A perturbation obtained with a multi-step
L∞ attack method is not an optimized perturbation based on L∞ norm. Namely, the perturbation
on many pixels are not maximized because the sign of the perturbation on these pixels changes
in different steps; (3) Adversarial examples obtained by L2 attack method, while achieve higher
transferability compared to those obtained by L∞ attack method, also maintain greater visual
impairment. As a general assumption of gradient-based post-hoc interpretability methods Simonyan
et al. (2013); Smilkov et al. (2017), the magnitude of the input-gradient highlights task-relevant
features. Coordinates with larger input-gradient magnitude contain more semantic information, thus
being more relevant to model predictions than those with smaller magnitude.

In this work, we propose a combined norm, the L2_∞ norm, to quantify the strength of perturbations.
The combined norm is determined by both the L2 norm and L∞ norm. As a consequence, the
combined norm helps to inhibit perturbations on large input-gradient directions compared to attacks
based on L2 norm. This is helpful to suppress attacks in the direction of semantic information. The
new norm also helps to inhibit strong perturbations on the small input-gradient directions compared
to attacks based on L∞ norm. This prevents from introducing strong noise into adversarial examples.
As a side benefit, the new norm can be smoothly incorporated in FSO.

Our contributions are summarized as follows.

- We introduce FSO to generate adversarial examples in an optimization fashion under fixed attacking
strength. FSO generates adversarial examples in only a few iteration steps, whereas improves the
state-of-the-art transferability benchmarks.

- We introduce combined norm that suppresses the shortcomings of L2 and L∞ norms in generating
adversarial examples. By incorporating the combined norm into FSO, perturbations in our numerical
experiments demonstrate enhanced attack transferability and high imperceptibility.

1The attacks are crafted on 1000 ImageNet validation images Wang et al. (2021a) under maximum L2

perturbation ε = 16 (pixel values range from [0, 255]), corresponding to L2 radius r = ε
255
·
√

dim ≈ 24.3438.
All four methods are executed under the same parameter settings (perturbation radius, step size, number of
iterations, etc.). The black-box success rate is tested against a 154 layer Squeeze-and-Excitation network
(SE154) Hu et al. (2018), using an ImageNet-trained ResNet-34 as the source model.
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2 RELATED WORKS

2.1 MULTI-STEP ATTACKS AND ADVERSARIAL TRANSFERABILITY.

Given a clean example xori with class label y and a target DNN model f , the goal of an adversary is
to find an adversarial example xadv that fools the network into making an incorrect prediction (i.e.
f(xadv) ̸= y), while still remaining in the ε-ball centered at x ori (i.e. ∥xadv−x ori∥ ≤ ε ). Existing
adversarial attacks can be broadly categorized into two types: white-box attacks Goodfellow et al.
(2014); Madry et al. (2017); Kurakin et al. (2018); Papernot et al. (2016); Su et al. (2019); Carlini &
Wagner (2017); Szegedy et al. (2016); Chen et al. (2018); Modas et al. (2019), where the adversary
has full access to the target model, and black-box attacks Liu et al. (2016); Ilyas et al. (2018a); Chen
et al. (2017a); Bhagoji et al. (2018); Papernot et al. (2017); Bai et al. (2020), where the adversary
has no information about the target model. A specific type of black-box attack leverages adversarial
transferability Wu et al. (2020a; 2018); Xie et al. (2019); Dong et al. (2018), where adversarial
perturbations generated on a source DNN are transferred to other target DNNs.

Fast Gradient Sign Method (FGSM) Goodfellow et al. (2014). FGSM lays the groundwork for
gradient-based adversarial attacks by perturbing clean example xori by the amount of ε along the
gradient direction:

xadv = xori + δ, δ = ε · sign (∇xℓ (f (xori) , y)) ,

where ℓ is objective function. The Basic Iterative Method (BIM) Kurakin et al. (2018) is an iterative
version of FGSM that perturbs for T steps with step size ε/T .

Based on these insights, researchers have developed multi-step attack methods Madry et al. (2017);
Kurakin et al. (2018); Carlini & Wagner (2017); Chen et al. (2018) to generate more potent adversarial
examples. These multi-step approaches typically perturb normal example xori for T steps with smaller
step size α (different to BIM, α > ε/T is allowed). After each step of perturbation, if the adversarial
example goes out of the ε-ball of xori, it is projected back to the ε-sphere.

Multi-step gradient-based attack methods have a generalized formula structured as follows:

xt+1
adv = Πε

(
xt
adv + δt

)
, δt = α · Np

(
gt
)
, (1)

where Πε(·) is the projection operation, gt is the perturbation direction, Np(·) is a normalization
operator tailored for various p-norms, adjusting both the direction and magnitude of gt to meet
the constraints imposed by each norm. For example, N∞(gt) = sign(gt) limits each element’s
magnitude, N2(g

t) = gt

∥gt∥2
ensures uniform scaling, and N1(g

t) selectively modifies the largest
components to enforce sparsity.

The essence of multi-step attack methods lies in the design of the perturbation direction gt to
iteratively refine adversarial perturbations, thereby enhancing their transferability and increasing the
difficulty for models to defend against them. Notable examples include:

Projected Gradient Descent (PGD) Madry et al. (2017). PGD directly uses the gradient as a
perturbation direction:

gt = ∇xℓ
(
f
(
xt
adv

)
, y
)
.

Momentum Iterative boosting (MI) Dong et al. (2018). MI incorporates a momentum term into the
gradient to stabilize update directions, thereby boosting the transferability:

gt = µ · gt−1 +
∇xℓ (f (xt

adv) , y)

∥∇xℓ (f (xt
adv) , y)∥1

,

where gt−1 represents the perturbation direction from the previous step, µ is the decay factor, and
∥ · ∥1 denotes the L1 norm.
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Diverse Input (DI) Xie et al. (2019). DI proposes to craft more universally effective perturbations
using gradient with respect to the randomly-transformed input example:

gt = ∇xℓ
(
f
(
H

(
xt
adv; p

))
, y
)
,

where H (xt
adv; p) is a stochastic transformation function on xt

adv for a given probability p.

Translation Invariant (TI) Dong et al. (2019). TI targets to evade robustly trained DNNs by
generating adversarial examples that are less sensitive to the discriminative regions of the surrogate
model. More specifically, TI computes the gradients with respect to a set of translated versions of the
original input:

gt = W ∗ ∇xℓ
(
f
(
xt
adv

)
, y
)
,

where W is a predefined kernel (e.g., uniform, linear, and Gaussian) matrix of size (2k + 1)(2k + 1)
(k being the maximal number of pixels to shift). This kernel convolution is equivalent to the weighted
sum of gradients over (2k + 1)2 shifted input examples.

Variance Reduction (VR) Wu et al. (2018). VR employs smoothed gradients to generate pertur-
bations with high transferability by smoothing the classification loss with Gaussian noise during
attacking:

gt = Eξ∼N(0,σ2I)

[
∇xℓ

(
f
(
xt
adv + ξ

)
, y
)]

,

where Eξ∼N(0,σ2I),indicates that an expectation (or average) is taken over Gaussian noise ξ, sampled
from a multivariate normal distribution N(µ = 0, σ2I). The noise ξ is added to the adversarial
example to smooth the gradient.

Skip Gradient Method (SGM) Wu et al. (2020a). SGM proposes to enhance the transferability of
adversarial examples by using the gradients of skip connections more than those of residual modules:

gt = ∇skip
x ℓ

(
f
(
xt
adv

)
, y
)
,

where ∇skip
x ℓ = ∂ℓ

∂zL

∏L−1
i=0

(
γ

∂fi+1

∂zi
+ 1

)
∂z0
∂x

represents the neural network function that prioritizes
gradients from skip connections over those from residual connections in L residual blocks. Here,
z0 = x is the network input, and γ ∈ (0, 1] is the decay parameter to reduce the gradient from the
residual modules.

Furthermore, other adversarial attach methods include 1) sparsity-based methods such as Jacobian-
based Saliency Map Attack (JSMA) Papernot et al. (2016), sparse attack Modas et al. (2019), one-pixel
attack Su et al. (2019), 2) optimization-based methods such as Carlini and Wagner (CW) Carlini
& Wagner (2017) and elastic-net (EAD) Chen et al. (2018), decoupled direction and norm (DDN)
attack Rony et al. (2019), 3) query-based methods Chen et al. (2017a); Ilyas et al. (2018b; 2019);
Uesato et al. (2018); Andriushchenko et al. (2020), 4) gradient estimation methods such as Finite
Differences(FD) Chen et al. (2017a); Bhagoji et al. (2018) or Natural Evolution Strategies (NES) Ilyas
et al. (2018a); Jiang et al. (2019), and 5) intermediate features-based methods such as Activation
Attack Inkawhich et al. (2019) and Intermediate Level Attack Huang et al. (2019). In particular,
Interaction Reduction (IR) Attack Wang et al. (2021a) reduces interactions between input units to
create more transferable adversarial examples.

3 FIXED STRENGTH OPTIMIZATION

3.1 MOTIVATION

The generation of adversarial examples can be obtained by the following optimization equation:

δ = argmax
∥δ∥≤ε

ℓ(f(xori + δ), y). (2)

The loss function ℓ(f(xadv), y) measures the performance of model f , where xadv = xori + δ is
the adversarial example, and δ is the adversarial perturbation. The adversarial example lies within an
ε-ball around xori (i.e., ∥xadv − xori∥ ≤ ε).
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Multi-step gradient-based attack methods are not efficient in performing the optimization in Equation
(2). First, as shown in Figure 1 (a), although the optimized adversarial example is usually on the
ε-sphere, multi-step methods requires many iteration steps to progressively increase the perturbation
strength2; second, the tangential component (to the ε-sphere) of the perturbation direction gt is
usually small compared to the normal component, which lead to slow convergence of the multi-step
methods. In particular, when the L∞ norm is used, adversarial examples obtained by multi-step
methods usually do not stay on the ε-sphere, since the sign of the perturbation direction gt on many
pixels changes from step to step.

Next, we propose a method, Fixed Strength Optimization (FSO), to directly optimize adversarial
examples on the ε-sphere, i.e., ∥xadv − x ori∥ ≡ ε. Existing attack methods can be naturally
incorporated to determine the tangential perturbation direction to update adversarial examples. FSO
significantly reduces the number of iterations while improving the transferability.

3.2 ALGORITHM

In FSO, we use the tangential component of the perturbation direction gt to update the adversarial
example, where gt can be obtained with the attack method list in Section 2. The initial example is
directly obtained by scaling g0 to meet the perturbation strength. In order to keep the adversarial
example on the sphere, a normalization is used for the updated example. Details of FSO is included
in Algorithm 1.

Algorithm 1 FSO Method for Adversarial Example Generation.
gt Perturbation direction at step t.
αt Step size at step t.
Np(·) Normalization operator for a general norm.
Πϵ(·) Projection operator to constrain the adversarial example on the ϵ-sphere.
1: Input: x ori: original sample, ε: maximum perturbation constraint, T : total number of attack steps,
2: Initialize: x0

adv ← xori,
3: for t← 0 to T − 1 do
4: if t = 0 then
5: xt+1

adv ←xt
adv + ε · Np(g

t), ▷ Initialize to fiexed strength perturbation
6: else
7: g_normal, g_tangent← gt, ▷ Gradient decomposition
8: xt+1

adv ←xt
adv + αt · Np(g_tangent), ▷ Update along the tangential direction

9: xt+1
adv = Πε

(
xt+1

adv

)
, ▷ Project to the ε-sphere

10: end if
11: end for
12: Output: xT

adv : the final adversarial example.

In practical implementation, for a general norm, the normal direction at δt = xt
adv − xori is simply

the gradient direction nt = ∇∥δt∥
∥∇∥δt∥∥ . In particular, for the L2-norm case, nt = δt

∥δt∥2
. The tangential

component of gt can be easily obtained by subtracting the normal component from gt. Since a
normalization of the tangent component is used, we set a decaying step size αt = α0/t to ensure
convergence of the adversarial example.

4 L2_∞ NORM

It is worth noting that FSO cannot be used under the L∞ norm because the tangential component is
always zero. Since limiting the L∞ norm of the perturbation of adversarial examples is important in
suppressing the attack of semantic information, we need further effort to deal with this case.

Meanwhile, as mentioned above and can be seen from Figure 2 (a), adversarial examples obtained
by the multi-step attack methods using L∞ norm is not optimized on the corresponding ε-sphere
(the attack strength on many pixels is smaller than the preset strength ε∞ = 16

255 ). This is because

2Figure 1 (a) shows that the perturbation radius of the SGM method reaches the surface of the neighboring
sphere at around 40 steps, while the PGD method does not reach it even after 100 steps.
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Figure 2: (a): The sorted pixel-wise perturbation strength obtained with multi-step PGD L∞ attack
for a d = 3 × 224 × 224 image. (b): Convergence of the perturbation strength (the L2_∞ norm)
towards the preset value, ε∞ ·

√
d.

the sign of the perturbation direction gt can change on many pixels during the multi-step process.
These pixels with unstable sign of gt usually also maintains relatively small abstract value. From
this point of view, the multi-step attack method based on L∞ norm indirectly suppresses the attack
on the pixels with weak semantic information in fact. This suppression is helpful to prevent from
introducing too strong noise (in the sense of L2 norm) into the adversarial examples.

Based on the above observation, we introduce the L2_∞ norm,

∥δ∥2_∞,m = max{∥δ∥2,
√
d

m
∥δ∥∞}, (3)

where 1 ≤ m ≤
√
d is a hyper-parameter, where d is the dimension of δ. In particular, when m = 1,

the norm reduces to
√
d times the L∞ norm; whereas when m =

√
d, the norm is equivalent to

the L2 norm. In other words, the ε−sphere under the L2_∞ norm is obtained by cutting off the
corresponding Euclidean sphere by parallel planes in each coordinate axis direction. The distance
from the origin to the planes is equal to mε√

d
.

Therefore, compared to a perturbation δ′ obtained with the L2 norm satisfying ∥δ′∥2 = ∥δ∥2_∞,m,
δ has smaller L∞ norm, namely, ∥δ∥∞ ≤ ∥δ′∥∞; whereas compared to a perturbation δ′ obtained
with the L∞ norm satisfying ∥δ′∥∞ = ∥δ∥2_∞,m, δ has smaller L2 norm, namely, ∥δ∥2 ≤ ∥δ′∥2. In
particular, when we have ∥δ∥2_∞,m = ε∞

√
d, the largest possible L∞ norm of δ is mε∞.

This new norm is potential to achieve good balance of the perturbation: It both suppresses the attack
on the large component directions of δ, thus helping to keep the semantic information of data, and
suppresses attack on small component directions, thus reducing noise introduction on these directions.
In other words, for generation of adversarial examples, the new norm achieves both advantages of L2

norm and L∞ norm.

Using the L2_∞ norm, the projection operator Πε (·) in Algorithm 1 is realized by an L2 projection
step (δ ← ε · δ

∥δ∥2
) followed by an L∞ projection step (resetting the components satisfying |δi| > mε√

d

to sign(δi) · mε√
d

, where i is the index of the components of δ). This realization is not the exact
projection Πε. In fact, the L2_∞ norm of the perturbation is usually smaller than ε after this projection.
Nevertheless, as shown in Figure 2(b), the norm converges to ε quickly in the optimization process
(see curves with legend “single Proj”). When m is small, we can repeat the projection step for once
to even accelerate the convergence (see curves with legend “double Proj”).

5 EXPERIMENTS

Next, we use numerical experiments to show the fast convergence rate, the enhanced transferability,
and the ballaced perturbation of FSO under the L2_∞ norm. Unless otherwise specified, the preset
attack strength under the L∞, L2, and L2_∞ norms are set to ε∞ = 16

255 , ε2 =
√
dε∞, and

6
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Figure 3: Top: The black-box transferability (i.e., success rate of the transfer attack) of the adversarial
examples obtained with the regular model to three target models. The left panel is for the original
perturbation and the right 4 panels are for the rescaled perturbations to ε̃k, k = 1, 2, 3, 4, respectively.
The blue, orange, and green curves correspond to the transferability on VGG16, SE-154, and
IncResV2, respectively. Bottom: Average perturbation radius ∥δt∥2, with the shaded area indicating
the standard deviation. The horizontal blue straight lines shows the attack strength after rescaling,
whereas the vertical dash-black line shows the step at which ∥δt∥2 = ε̃k.

ε2_∞ =
√
dε∞, respectively, following the setting in Dong et al. (2018). The dimension for images

used in this work is d = 3× 224× 224. The step size in multi-step attack methods is set to 2/255.

5.1 TRANSFERABILIY ANALYSIS OF MULTI-STEP METHODS

We use a numerical experiment to illustrate the transferability of traditional multi-step attack methods.
To this end, we first performed an L2 attack using SGM Wu et al. (2020a) on a source DNN (RN-34)
and transferred the adversarial perturbations to three target DNNs (VGG16 Simonyan & Zisserman
(2015), SE-154 Hu et al. (2018), and IncResV2 Szegedy et al. (2017)), referred to as “regular mode”.
The attacks were executed over 100 steps on validation images Wang et al. (2021a) from the ImageNet
dataset Russakovsky et al. (2015). To our experience, other multi-step attack methods and model
architectures similar results.

The transferability to the three target models is collected in the top-left panel in Figure 3, whereas
the evolution of attack strength (∥δt∥2 obtained with the regular model) is shown in the bottom-left
panel. We can see that the transferability increases with the step, acompanied with the increase of the
attack strength.

In order to see whether the increase of the transferability is simply due to the increase of attack strength,
we rescales the perturbation to different attack strengths ε̃k = kε

4 and xt
adv,k = xori + ε̃k · δt

∥δt∥2
.

The transferability for k = 1, 2, 3, 4 is included in the top-right 4 columns in Figure 3. Roughly
speaking, as the iteration step increases, all transferability curves increase first to their maximums
and then decrease. The maximums are obtained when ∥δt∥2 ∼ ε̃k.

This result shows that the optimal perturbation direction is dependent on the perturbation strength.
Aside from the perturbation strength, the perturbation direction also plays an important role in the
transferability. Interestingly, the transferability curves for all three models peak at almost the same
step, indicating that the optimal perturbation direction is independent of the model.

Based on the above observations, we can conclude that optimizing the perturbation directly on the
fixed-strength ε− sphere is advantageous. It avoid the slow growth of attack strength and optimize
the perturbation direction under a specific attack strength.

5.2 EFFECTS OF m IN THE L2_∞ NORM

Based on the same source model and experiment setting as Figure 1, we conduct black-box attack
to determine suitable values of m introduced in the L2_∞ norm. We tested the transferability of the
generated perturbations on seven target DNNs, including VGG-16, ResNet-152 (RN-152), DenseNet-
201 (DN-201), SENet-154 (SE- 154) Hu et al. (2018), InceptionV3 (IncV3) Szegedy et al. (2016),

7
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Figure 4: The transferability of FSO combined with SGM attack method, under the L2_∞ norm with
different m.

InceptionV4 (IncV4) Szegedy et al. (2017), and Inception-ResNetV2 (IncResV2) Szegedy et al.
(2017).

In Figure 4, we show the transfer attack performance of FSO using the L2_∞ norm with different m.
The performance on all seven target models exhibit the same trend:

1. Each curve increases with the iteration step and converge to a plateau in a few (≤ 10) steps.
This shows the fast convergence rate of FSO. As a comparison, the multi-step attack shown in
Figure 3 requires more than 20 iteration steps to converge to the plateau. Thus FSO can accelerate the
convergence (by 2 ∼ 3 folds) and reduce iteration steps. Compared to results shown in Figure 1 (a),
where the attack strength may increases slowly, the acceleration rate can be even larger.

2. The transferability increases with m for all test networks. For the first three target networks,
m = 2 is sufficiently large that further increment of m only leads to insignificant increase of the
transferability. Since larger m means larger allowed L∞ norm of the perturbation while the largest
possible L2 norm remains unchanged, the monotonically increasing property is natural. It is important
to see that m ∼ 2 or 3 is sufficient to achieve nearly best performance. This means that we can still
control the L∞ norm of the perturbation well (≤ mε∞), thus suppressing strong attack of semantic
information. The small saturation number of m allows us to achieve balanced attack–with both weak
semantic attack and weak noise introduction.

In summary, we can achieve fast convergence and balanced attack using FSO under the L2_∞ norm.

5.3 TRANSFERABILITY ENHANCEMENT OF FSO UNDER L2_∞ NORM

Next we systematically study the transferability enhancement of FS Ounder L2_∞ norm compared
with multi-step attack methods with L2 and L∞ norms. We generated adversarial perturbations
on six source DNNs, including VGG16 Simonyan & Zisserman (2015), and IncResV2 Szegedy
et al. (2017)), Alexnet Krizhevsky et al. (2012), ResNet-34/152 (RN-34/152) He et al. (2016), and
DenseNet-121/201 (DN-121/201) Huang et al. (2017). The target test networks are the same as that
in Figure 4. In additon, we used the Dual-Path-Network (DPN-68) Chen et al. (2017b) to evaluate the
ensemble source model3 following the setting in Wang et al. (2021a).

We used the widely used PGD Attack Madry et al. (2017) as the baseline method to compare the
results. All attacks executed over 30 steps on validation images Wang et al. (2021a) from the ImageNet
dataset Russakovsky et al. (2015). To enable fair comparisons, the transferability is computed with
the best adversarial perturbation during the 30 steps via the leave-one-out (LOO) validation in Wang
et al. (2021a). All attacks were conducted with three different random samplings of grids or different
initial perturbations.

Table 1 reports the success rates of the multi-step PGD attack under L∞ and L2 norms and FSO
PGD attack under L2 and L2_∞ norms. Compared with the baseline attack, the transferability is
significantly improved by using FSO. In particular, although constraints on the L∞ norm are applied
to the perturbation in the L2_∞ norm, the transferability obtained with the L2_∞ norm is comparable
with that obtained simply with the L2 norm in FSO. Compared to the multi-step method, the large
improvement is partly due to the slow increase of the perturbation strength for PGD attack method

3Besides above adversarial transferring from a single-source model, the ensemble source model Liu et al.
(2016) generate adversarial perturbations on the ensemble of RN-34, RN-152, and DN-121.
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Table 1: The success rates of adversarial examples generated from six source models against seven
target models using PGD black-box attack under L∞ and L2 norms and FSO under L2_∞ norm.

Source Method Target Models
VGG-16 RN152 DN-201 SE-154 IncV3 IncV4 IncResV2

AlexNet
PGD L∞ 58.9±1.2 22.8±0.7 27.2±0.9 23.6±0.5 23.2±0.4 19.3±0.3 14.7±0.5
PGD L2 74.6±1.5 44.7±2.2 45.5±0.4 38.6±0.7 43.1±1.9 34.5±1.4 30.5±2.3

PGD+FSO L3X
2_∞ 87.9±1.0 57.7±1.5 59.4±0.4 52.5±0.6 58.6±0.5 47.3±1.5 42.5±1.0

VGG-16
PGD L∞ - 38.8±1.1 42.4±0.9 46.4±0.3 33.0±1.2 43.8±0.7 27.8±1.3
PGD L2 - 52.1±1.7 57.6±0.4 56.8±0.7 52.4±1.5 59.8±0.4 42.7±1.4

PGD+FSO L3X
2_∞ - 73.7±1.5 79.8±0.3 81.1±0.6 76.1±0.5 81.5±1.5 64.7±1.0

RN-34
PGD L∞ 61.0±0.6 59.3±1.3 62.3±0.4 32.4±0.4 26.3±0.6 24.4±0.4 21.3±1.1
PGD L2 68.6±1.2 70.5±1.1 71.4±0.8 39.8 ±0.7 37.8±1.5 36.5±2.4 28.1±1.5

PGD+FSO L3X
2_∞ 95.1±1.0 92.5±1.5 93.5±1.4 79.6±0.6 76.4±0.9 69.9±1.5 68.6±1.0

RN-152
PGD L∞ 47.8±2.5 - 61.4±0.9 36.8±1.0 27.9±1.9 24.3±1.1 23.4±1.6
PGD L2 55.6±2.6 - 72.1±1.2 45.6±1.9 38.9±2.2 37.2±1.3 34.1±2.4

PGD+FSO L3X
2_∞ 87.6±1.0 - 93.2±1.1 77.4±1.6 73.7±1.4 66.5±0.8 66.6 ±1.2

DN-121
PGD L∞ 64.9±1.9 62.6 ±1.4 85.5±1.1 43.1±1.1 34.7±2.3 34.9±0.9 27.9±1.6
PGD L2 70.4±2.6 70.9±1.7 90.2±0.9 48.5±1.7 47.4±1.4 45.5±1.4 39.2±2.3

PGD+FSO L3X
2_∞ 94.3±1.1 91.8±1.1 98.7±1.1 84.9±1.3 80.4±1.5 76.6±0.9 72.7 ±1.3

DN-201
PGD L∞ 58.6±1.5 68.3 ±1.0 - 49.6±1.3 39.5±2.6 38.3±1.4 32.3±1.2
PGD L2 63.7±1.9 76.2±1.1 - 55.2±2.2 51.0±2.4 49.1±1.9 42.9±1.6

PGD+FSO L3X
2_∞ 92.6±1.0 94.3±1.4 - 87.6±1.8 82.3±1.4 80.2±0.9 76.6 ±1.5

Table 2: The success rates of comparison of black-box attacks crafted on the ensemble model
(RN-34+RN-152+DN-121) against target models.

Source Method Target Models
VGG-16 RN152 DN-201 SE-154 IncV3 IncV4 IncResV2 DPN-68

Ensemble
PGD L∞ 85.5±1.6 100.0±0.2 97.1 ± 0.6 74.9±0.8 65.8±0.7 63.0±0.9 56.4±0.5 64.8±0.6
PGD L2 87.9±0.5 99.6±0.2 98.2±0.4 79.8±0.7 75.9±0.9 72.8±0.4 68.8±0.3 78.2±0.5

PGD+FSO L2 98.6±0.1 100±0.0 100.0±0.0 94.4±0.1 94.0±0.1 92.1±0.2 92.4±0.1 94.4±0.1
PGD+FSO L3X

2_∞ 98.3±0.1 100.0±0.0 99.9±0.1 96.1±0.1 94.0±0.2 92.2±0.3 91.7±0.2 93.6±0.3
PGD+FSO L2X

2_∞, 1
2ε2_∞ 88.7±0.9 100.0±0.1 97.8±1.2 78.9±1.1 73.5±0.6 68.7±0.4 64.7±0.5 69.5±0.5

PGD+FSO L3X
2_∞, 1

3ε2_∞ 77.5±0.7 100±0.2 93.0±0.1 61.6±0.3 59.1±0.6 58.7±0.1 50.2±0.1 57.1±0.3

PGD+FSO L3X
2_∞, 2

3ε2_∞ 94.2±0.5 100±0.1 98.8±0.1 88.4±0.2 83.8±0.1 80.2±0.3 78.6±0.4 83.1±0.1

(thus after 30 steps, the attack strength is still smaller then the control value). For other attack method,
the improvement of FSO becomes less but FSO still maintains the best performance.

Ensemble models are useful to enhance the transferability in general. In Table 2, we show the results
obtained by an ensemble model (RN-34+RN-152+DN-121). The transferability of multi-step PGD
attack with L2 and L∞ norms improves a lot by this ensemble model, partly due to the stabler
perturbation direction which leads to faster growth of perturbation strength. Again, the transferability
is still significantly improved by FSO under the L2_∞ norm. The transferability is even better for
FSO under the L2 norm, because there is no constraint on the L∞ norm of perturbations.

By using the L2_∞ norm, the L∞ norm is allowed to be m times ε∞. We further conducted the
experiment for FSO under smaller perturbation strengths: 1

2ε2_∞ for m = 2 and 1
3ε2_∞ for m = 3.

In these cases, the upper limit of L∞ norm for the perturbation is also ε∞ (but the upper limit of L2

norm is only half or one third ε2). The results are also shown in Table 2. For the case 1
2ε2_∞ and

m = 2, We can see that FSO still achieves better results compared to PGD with L∞ norm; For the
case 1

3ε2_∞ and m = 3, the performance obtained with FSO becomes inferior because the limit of
L2 norm is too small.

Other attack methods such as MI, VR, SGM, IR, and TI, can also be naturally incorporated in FSO.
For these attack methods, we also observed significant enhancement of transferability by using FSO
under the L2_∞ norm.

5.4 COMPARISON OF PERTURBED IMAGES

In Figure 5, we show the comparison of perturbed images using different attack methods. The six
columns of images are obtained by PGD, SGM, VR, TI, MI, and IR attack methods to obtain gt,
respectively; whereas the five rows are obtained by traditional multi-step attack method (with L2 and
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L∞ norms) and FSO under L2_∞ norm with (1) m = 2 and ε = 1
2ε2_∞; (2) m = 3 and ε = ε2_∞,

and FSO under L2 norm, respectively. In general, we can see that perturbations obtained with FSO
under L2_∞ norm are more unconspicuous. In particular, perturbations in the second row are much
more imperceptible because the small attack strength, while it maintains comparable or even better
transferability than perturbations obtained with multi-step attack under L∞ norm.

Figure 5: Visualization of adversarial examples generated by various methods and their combination
with FSO.

6 CONCLUSION

We developed a Fixed Strength Optimization (FSO) method to generate adversarial examples. In
FSO, the optimization of adversarial examples are directly performed under the constraint of fixed
perturbation strength, where the strength is defined as the norm of the perturbation. FSO can
significantly improve both the convergence speed and transferability. The perturbation is well
optimized in a few (≤ 10) steps. We also propose a combined norm, the L2_∞ norm, for adversarial
examples to balance the attack on semantic information and introduction of noise. By incorporating
the combined norm into FSO, our numerical experiments show improved attack transferability and
high imperceptibility of perturbations.
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