
HiLD 2025: 3rd Workshop on High-dimensional Learning Dynamics

From Linear to Nonlinear: Provable Weak-to-Strong Generalization
through Feature Learning

author names withheld

Under Review for the Workshop on High-dimensional Learning Dynamics, 2025

Abstract
Weak-to-strong generalization refers to the phenomenon where a stronger model trained under
supervision from a weaker one can outperform its teacher. While prior studies aim to explain this
effect, most theoretical insights are limited to abstract frameworks or linear/random feature models.
In this paper, we provide a formal analysis of weak-to-strong generalization from a linear CNN
(weak) to a two-layer ReLU CNN (strong). We consider structured data composed of label-dependent
signals of varying difficulty and label-independent noise, and analyze gradient descent dynamics
when the strong model is trained on data labeled by the pretrained weak model. Our analysis
identifies two regimes—data-scarce and data-abundant—based on the signal-to-noise characteristics
of the dataset, and reveals distinct mechanisms of weak-to-strong generalization. In the data-scarce
regime, generalization occurs via benign overfitting or fails via harmful overfitting, depending on
the amount of data, and we characterize the transition boundary. In the data-abundant regime,
generalization emerges in the early phase through label correction, but we observe that overtraining
can subsequently degrade performance.

1. Introduction

Burns et al. [3] performed extensive experiments training strong student models, like GPT-4 [22],
with supervision from a weaker teacher model, such as a fine-tuned GPT-2 [23]. They observe that the
strong model consistently surpasses their supervisor’s performance, and refer to this phenomenon as
weak-to-strong generalization. This surprising phenomenon has attracted considerable attention, and
several recent studies have investigated it from theoretical perspectives. However, they are limited to
abstract frameworks or linear/random feature models (A detailed discussion of these related works is
provided in Appendix B). These limitations motivate the following question:

When and how does weak-to-strong generalization emerge through nonlinear feature learning?

1.1. Summary of Contributions

In this paper, we investigate a classification problem on structured data composed of patches, which
consist of signals and noise. We employ linear CNNs as the weak model and two-layer ReLU CNNs
as the strong model. We focus on the following training scenario: training the weak model under true
supervision and then training the strong model under supervision from the pretrained weak model.
We investigate how these scenarios perform, particularly focusing on when and how weak-to-strong
generalization emerges. We summarize our contributions as follows:
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• We compare the capability of weak models and strong models in our data distribution, showing
that any weak model makes non-negligible errors while there exists a strong model that exhibits
zero errors (Proposition 4).

• We prove that training a weak model using a finite number of training samples and gradient descent
can result in a test error that is close to the best possible error achievable by the weak model
architecture (Theorem 7).

• We also demonstrate that when a strong model is trained on a finite set of samples using supervision
from a weak model that makes non-negligible errors, it either achieves near-optimal generalization
via benign overfitting or suffers from degraded performance due to harmful overfitting. We further
characterize the conditions under which this transition occurs (Theorem 8).

• We further explore weak-to-strong training in the regime where more data is available than the
previously considered scenario, and perhaps surprisingly, we find that it exhibits a notably different
behavior. The strong model can achieve near-zero test error even while the training error on
pseudo-labels remains non-negligible (Theorem 10).

2. Problem Setting

We introduce the problem setting considered in our work with discussions provided in Appendix C.
We investigate a binary classification problem on data consisting of multiple patches. These

patches contain label-dependent vectors (called signal) and label-independent vectors (called noise).

Definition 1 We define a data distribution D on Rd×3 × {±1} such that a sample (X, y) ∼ D with
X =

(
x(1),x(2),x(3)

)
and y ∈ {±1} is constructed as follows.

1. Choose the label y ∈ {±1} uniformly at random.

2. Let {µ1,µ−1,ν1,ν−1} be a set of mutually orthogonal signal vectors. We choose two signal
vectors v(1),v(2) ∈ Rd for data point X associated with the label y as follows:

(
v(1),v(2)

)
∼


(µy,µy) with probability pe

Unif{(νy,νy), (νy,−νy), (−νy,νy), (−νy,−νy)} with probability ph

Unif{(µy,νy), (µy,−νy), (νy,µy), (−νy,µy)} with probability pb

For simplicity, we assume ∥µ1∥ = ∥µ−1∥ and ∥ν1∥ = ∥ν−1∥, and refer to their norms as ∥µ∥
and ∥ν∥, respectively, omitting the subscripts.

3. A noise vector ξ is drawn from a Gaussian distribution N
(
0, σ2

pΛ
)
, where the covariance matrix

is given by Λ = Id −
µ1µ⊤

1

∥µ∥2 − µ−1µ⊤
−1

∥µ∥2 − ν1ν⊤
1

∥ν∥2 − ν−1ν⊤
−1

∥ν∥2 .

4. The components x(1),x(2),x(3) of the data point X are formed by assigning the generated vectors
v(1),v(2), ξ in a randomly shuffled order.

We refer to µ1,µ−1 as easy signals and ν1,ν−1 as hard signals. These signal types have different
levels of learning difficulty within the architectures we focus on. We categorize a data point having
only easy signals as easy-only data, only hard signals as hard-only data, and both types of signals as
both-signal data. We denote by Se, Sh, and Sb the supports of these data categories, respectively.
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We now define the weak and strong model architectures for our analysis. The weak model is a
linear, patch-wise convolutional neural network (CNN). The strong model is a 2-layer, patch-wise
ReLU CNN with a trainable first layer and fixed second-layer weights.

Definition 2 (Weak Model) Our weak model is linear CNN fwk(w, ·) : Rd×3 → R parameterized
by w ∈ Rd defined as follows. For each input X =

(
x(1),x(2),x(3)

)
∈ Rd×3, we define

fwk(w,X) =
〈
w,x(1)

〉
+
〈
w,x(2)

〉
+
〈
w,x(3)

〉
Definition 3 (Strong Model) Our strong model is 2-layer CNN fst(W , ·) : Rd×3 → R parame-
terized by W = {W1,W−1} where Ws = {ws,r}r∈[m] for s ∈ {±1} represents the set of posi-
tive/negative filters, each containing m filters ws,r ∈ Rd. For each input X =

(
x(1),x(2),x(3)

)
∈

Rd×3, we define fst(W ,X) = F1(W1,X)− F−1(W−1,X), where for each s ∈ {±1},

Fs(Ws,X) =
1

m

∑
r∈[m]

[
σ
(〈

ws,r,x
(1)
〉)

+ σ
(〈

ws,r,x
(2)
〉)

+ σ
(〈

ws,r,x
(3)
〉)]

and σ(·) denotes the ReLU activation function.

Our choice of weak and strong models has contrasting capabilities for learning our data distribu-
tion D. These are formalized below, with their proofs provided in Appendix D.

Proposition 4 Let (X, y) ∼ D be a test example. For any weak model fwk(w, ·), it satisfies
P[yfwk(w,X) < 0 | (X, y) ∈ Sh] =

1
2 . In contrast, if m ≥ 2, then there exists a strong model with

parameter W ∗ that achieves zero test error: P [yfst(W
∗,X) < 0] = 0.

Our goal is to train the weak and strong models, using a finite training set sampled from the
distribution D, to correctly classify unseen examples from D. We first outline the training procedure
of the weak model and then describe the training of the strong model supervised by the weak model.

Weak Model Training. In weak model training, we use nwk labeled datapoints {(Xi, yi)}nwk
i=1

i.i.d.∼
D and training loss is defined as

Lwk (w) =
1

nwk

∑
i∈[nwk]

ℓ (yifwk (w,Xi)) ,

where ℓ(z) = log(1+exp(−z)) is the logistic loss. We consider using gradient descent with learning
rate η to minimize training loss Lwk(w) and model parameters are initialized as w(0) = 0.

Weak-to-Strong Training. Let {(X̃i, ỹi)}nst
i=1

i.i.d.∼ D denote a dataset drawn from the data distribu-
tion D. Then the strong model is trained on the dataset {(X̃i, ŷi)}nst

i=1, where the supervision ŷi is
provided by a pretrained weak model fwk(w

∗, ·), i.e., ŷi = sign(fwk(w
∗, X̃i)) instead of using true

label ỹi. The training objective is defined as

Lst(W ) =
1

nst

∑
i∈[nst]

ℓ
(
ŷifst(W , X̃i)

)
and we use gradient descent with learning rate η to minimize Lst(W ), where the model parameters
are initialized as w(0)

s,r ∼ N (0, σ2
0Id) for all s ∈ {±1} and r ∈ [m].
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3. Provable Weak-to-Strong Generalization

In this section, we provide theoretical results on when and how weak-to-strong generalization occurs
in our setting. For our analysis, we denote by T ∗ the maximum admissible training iterates and
we assume T ∗ = η−1poly(ε−1, d, nst, nwk,m), where ε is a target training loss and poly(·) is a
sufficiently large polynomial. Our main results depend on the regularity conditions detailed below.

Condition 5 There exists a sufficiently large constant C > 0 such that the following hold:

(C1) d ≥ Cmax
{
n2
wk log

(
Cnwk

δ

)
, n2

st log
(
Cnst
δ

)}
(log T ∗)2

(C2) nwk, nst ≥ Cmax
{
p−2
e , p−2

b , p−2
h

}
log
(
C
δ

)
, m ≥ C log

(
Cnst
δ

)
(C3) σ0 ≤ C−1min

{
1

∥µ∥ ,
1

∥ν∥ ,
1

σp

√
d

}
min

{
nstpb∥ν∥2

σ2
pd

,
σ2
pd

(2pe+pb)n
1
st∥µ∥2

}(
log
(
Cmnst

δ

))− 1
2

(C4) η ≤ C−1σ−2
p d−

3
2 .

(C5) (2pe + pb)∥µ∥2 ≥ Cpb∥ν∥2, nwk, nst = ω
(

σ4
pd

(2pe+pb)2∥µ∥4

)
.

(C6) pb ≥ Cmax{ph, σp ∥µ∥ ∥ν∥−2 (log T ∗)
1
2 }.

In our analysis, we consider two regimes based on the amount of available data: the data-scarce
regime and the data-abundant regime.

3.1. Data-Scarce Regime.

In this regime, the amount of available data is small. We formalize this regime as follows.

Condition 6 (Data-Scarce Regime) Condition 5 holds, using the same constant C > 0 as intro-
duced therein, and the following condition holds: nwk, nst ≤ C−1σ2

pd/((2pe + pb) ∥µ∥2 log T ∗).

The following theorem provides convergence and test error guarantees for weak model training.

Theorem 7 (Weak Model Training) Let w(t) be the iterates of weak model training. For any
ε > 0 and δ ∈ (0, 1) satisfying Condition 6, with probability at least 1 − δ, there exists Twk =
Õ(η−1ε−1nwkd

−1σ−2
p ) such that for all t ∈ [Twk, T

∗], the following statements hold:

1. The training loss converges below ε: Lwk

(
w(t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(Xi, yi)}nwk
i=1 . Then,

we have

P
[
yfwk

(
w(t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nwk(2pe + pb)

2∥µ∥4

C1σ4
pd

)
= o(1).

Here, C1 > 0 is a constant.

Theorem 7 guarantees the convergence of training loss and shows that the trained weak model
achieves low test error on easy-only data and both-signal data, while performing random guessing on
unseen hard-only data. This corresponds to the near optimal error attainable by the weak model, but
not perfect because the overall test error will be of order ph

2 + o(1).
The following theorem provides convergence and test error for weak-to-strong training.
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Theorem 8 (Weak-to-Strong Training, Data-Scarce Regime) Let W (t) be the iterates of weak-
to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 7. For
any ε > 0 and δ ∈ (0, 1) satisfying Condition 6, with probability at least 1 − δ, there exists
Tw2s = O(η−1ε−1mnstd

−1σ−2
p ) such that for any t ∈ [Tw2s, T

∗] the following statements hold:
1. The training loss converges below ε: Lst

(
W (t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1.

• (Benign Overfitting) When nstp
2
b ∥ν∥

4 /(σ4
pd) ≥ C2, we have

P
[
yfst

(
W (t),X

)
<0
]
≤ (pe+pb) exp

(
−nst(2pe + pb)

2∥µ∥4

C3σ4
pd

)
+ph exp

(
−
nstp

2
b∥ν∥4

C3σ4
pd

)
.

• (Harmful Overfitting) When nstp
2
b ∥ν∥

4 /(σ4
pd) ≤ C4, P

[
yfst

(
W (t),X

)
< 0
]
≥ 0.12ph.

Here, C2, C3, C4 > 0 are constants.

Theorem 8 guarantees training loss convergence and characterizes the test error. Specifically, it
shows that the error is near-zero when the number of data nst exceeds a certain threshold, but is
lower-bounded by a constant multiple of ph when this term falls below a similar threshold.

3.2. Data-Abundant Regime

In this regime, a sufficient amount of data is available. We formalize this regime as follows.

Condition 9 (Data-Abundant Regime) Condition 5 holds, using the same constant C > 0 as
introduced therein, and the following condition holds: nst ≥ Cσ2

pd log T
∗/(pb ∥ν∥2).

The following theorem demonstrates the emergence of weak-to-strong generalization in the early
phase, where training loss remains large.

Theorem 10 (Weak-to-Strong Training, Data-Abundant Regime) Let W (t) be the iterates of
the weak-to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 7.
For any δ ∈ (0, 1) satisfying Condition 9, with probability at least 1− δ, there exists early stopping
time Tes = O(η−1m(2pe + pb)

−2 ∥µ∥−2) such that the following statements hold:

1. The early stopped strong model fst
(
W (Tes), ·

)
perfectly fits training data having correct label

(i.e. ŷi = ỹi) but fails to training data with flipped label (i.e. ŷi ̸= ỹi). In other words, the model
predicts the true label ỹi for any training data point X̃i.

2. Let (X, y) ∼ D be an unseen example, independent of the training set {(X̃i, ŷi)}nst
i=1. We have

P
[
yfst

(
W (Tes),X

)
<0
]
≤ (pe+pb) exp

(
−nst(2pe + pb)

2∥µ∥4

C5σ4
pd

)
+ph exp

(
−
nstp

2
b∥ν∥4

C5σ4
pd

)
.

Here, C5 > 0 is a constant.

Theorem 10 shows that weak-to-strong generalization can arise via early stopping in this regime.
It provides guarantees for an early-stopped model and thus does not provide guarantees on the
model’s performance at convergence. One might therefore be curious how training until convergence
influences performance. We conducted experiments in our setting and observed that after this early
phase, performance often degrades and then plateaus, exhibiting accuracy similar to or even lower
than that of the supervising weak model. While we leave a rigorous proof for this late-phase behavior
open, we provide an intuitive explanation in Section E.
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Appendix A. Conclusion

We theoretically investigated weak-to-strong generalization by analyzing the training of a two-layer
ReLU CNN using supervision from a pre-trained linear CNN on patch-wise data containing both
signals and noise. Interestingly, our results reveal that weak-to-strong training exhibits distinct
behaviors across different data regimes. In the data-scarce regime, we prove that weak-to-strong
training converges and that generalization can emerge via benign overfitting when data availability
is not extremely limited. Furthermore, we characterize the conditions leading to a sharp transition
from this benign overfitting to harmful overfitting. In the data-abundant regime, we show that
weak-to-strong generalization arises in an early phase of training, and we observe that overtraining
leads to performance degradation. We hope our theoretical approaches provide valuable insights into
weak-to-strong training, and analyzing methods for improving weak-to-strong generalization (e.g.,
auxiliary confidence loss [3]) could be an important future direction.

Appendix B. Related Works

Lang et al. [16] introduce a theoretical framework that establishes weak-to-strong generalization
when the strong model is unable to fit the weak model’s mistakes. Building on this framework, Shin
et al. [25] propose a mechanism for weak-to-strong generalization in data exhibiting both easy and
hard patterns. Concurrently, another line of work has focused on quantifying the weak-to-strong
gain. Charikar et al. [5] investigate the relationship between weak-to-strong gains and the misfit
between weak and strong models in regression with squared loss. Specifically, they show that the
gain in weak-to-strong generalization correlates with the degree of misfit between the weak and
strong models. Mulgund and Pabbaraju [20] and Yao et al. [28] extend this analysis to a broader
class of loss functions, including the reversed Kullback–Leibler divergence. However, both lines
of work often rely on abstract theoretical frameworks and typically do not guarantee that weak-to-
strong generalization can be achieved through practical training procedures such as gradient-based
optimization.

Wu and Sahai [27] explore weak-to-strong generalization in an overparameterized spiked covari-
ance model and prove transitions between generalization and random guessing by considering both
weak and strong models as minimum ℓ2 norm interpolating solutions on feature spaces of differing
expressivity. Ildiz et al. [12] investigate a more general form of knowledge distillation [10] in a
high-dimensional regression setting and show that distillation from a weak model can outperform
distillation from a strong model, while it fails to improve the overall scaling law. Dong et al. [9] also
study a linear regression setting from a variance reduction perspective via the intrinsic dimension of
feature spaces. However, these works are limited to linear models and rely on specific assumptions
on structural differences between the feature spaces of weak and strong models. A more recent work
by Medvedev et al. [18] alleviates some of these limitations by using random feature networks of
differing widths for the strong and weak models. However, in their approach, the trainable component
is still linear.

Appendix C. Discussion on Problem Setting

Our data distribution is based on characteristics of image data, where inputs consist of multiple
patches. Some patches contain information relevant to the label (such as a face or a tail for “dog”),
while others contain irrelevant information, like grass in the background. Intuitively, a model can fit

10
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data by learning signals and/or memorizing noise. However, relying primarily on noise memorization
instead of learning signals leads to poor generalization since noise is label-irrelevant. Therefore,
effectively learning signals is crucial for achieving better generalization.

Real-world data often contains multiple types of label-relevant information, and these corre-
sponding signals can exhibit varying levels of learning difficulty. For example, both a face and a
tail are useful for recognizing “dog”, but learning the tail could be harder since it occupies only a
small region of the image or appears only in a small number of images. To reflect this property, we
consider two types of signals.

The data distribution and model architecture we use follow a recent line of work on feature
learning theory starting from Allen-Zhu and Li [1]. This type of setting provides a simple but useful
framework for studying the behaviors of deep learning. Similar problem settings have been widely
used to understand several aspects of deep learning, such as benign overfitting [4, 15, 19], training
algorithm [6, 13, 30], data augmentation [7, 17, 21, 24, 29], and architecture [11, 14]. The broad
utility of such settings confirms their value in understanding fundamental aspects of deep learning.

Appendix D. Proof of Proposition 4

First, we consider the weak model part. Consider a hard-only data (X, y) ∈ Sh with the noise vector
ξ. If the two underlying signals in a hard-only data point have opposite signs, the weak model’s
output fwk(w,X) simplifies to ⟨w, ξ⟩. This results in a 1/2 conditional error rate due to symmetry
of noise. For a hard-only data having two signal vectors of identical signs, we may assume two signal
vectors of (X, y) ∈ Sh are both νy, without loss of generality. Define (X̃, y) ∈ Sh to be a data point
where both signal vectors are −νy and the noise vector is −ξ. Then, yfwk(w,X) = −yfwk(w, X̃).
From symmetry of ξ, it implies the model has 1/2 error rate conditioned on the case where two
signal vectors are identical. By combining two cases, we have the desired conclusion. □

Next, we prove the strong model part. We construct W ∗ by defining, for each s ∈ {±1}, the
filters w∗

s,1 = µs + νs, w∗
s,2 = µs − νs, and setting w∗

s,r = 0 for r > 2. Direct calculation shows
that yfst(W ∗,X) > 0 for all (X, y) ∼ D, leading to zero test error. □

Appendix E. Key Theoretical Insights

In this section, we provide key insights behind our theoretical analysis. We formally prove this
intuition using several theoretical tools, such as the signal-noise decomposition [4].

For weak model training, its update rule implies that the model weight vector w is updated in
directions determined by the signal and noise vectors within the training samples. The evolution
of w along each such vector’s direction is influenced by that vector’s strength and its frequency of
appearance in the dataset. Due to the limited capability of the weak model, it cannot learn hard
signals with opposite signs (e.g., ν1,−ν1). Furthermore, the cancellation of updates along hard
signal directions and our condition (C5) ensure that the learning of easy signals predominates over
that of hard signals. This dominance means that while easy signals are effectively learned, the
learning of hard signals is largely suppressed. Consequently, in both-signal data, the contribution
from the poorly learned hard signal component is insufficient to disrupt the classification guided by
the well-learned easy signals. Therefore, the weak model can correctly predict not only easy-only
data but also both-signal data.

11
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We now explain how the supervision from the pretrained weak model affects the learning
dynamics of weak-to-strong training. Let us first introduce some notation. For each i ∈ [nst], we
denote by ṽ

(1)
i , ṽ(2)

i , and ξ̃i the signal vectors and noise vector of the i-th input X̃i, respectively. For
each v ∈ {µ1,µ−1,±ν1,±ν−1} and l ∈ [2], we define C(l)

v and F (l)
v as the sets of indices i ∈ [nst]

such that ṽ(l)
i = v and the supervision corresponds to the clean label (i.e., ŷi = ỹi) or the flipped

label (i.e., ŷi = −ỹi), respectively. Lastly, g̃(t)i = −ℓ′(ŷifst(W
(t), X̃i)) denotes the negative of the

loss derivative for i-th sample.
Update rule for weak-to-strong training implies that for any s ∈ {±1} and r ∈ [m],〈
w(t+1)

s,r ,µs

〉
=
〈
w(t)

s,r,µs

〉
+

η

mnst

∑
l∈[2]

( ∑
i∈C(l)

µs

g̃
(t)
i −

∑
i∈F(l)

µs

g̃
(t)
i

)
∥µ∥2 1

[〈
w(t)

s,r,µs

〉
> 0
]
.

Since the supervising weak model achieves low test error on easy-only and both-signal data, the
pseudo-labels for training samples involving µs have a low flipping probability, and this implies
|F (l)

µs |/nst ≈ 0. This ensures that, in both data-scarce and data-abundant regimes, ⟨w(t)
s,r,µs⟩

increases if it is positive.
Similarly, an update for learning hard signals can be written as follows:〈
w(t+1)

s,r ,νs

〉
=
〈
w(t)

s,r,νs

〉
+

η

mnst

∑
l∈[2]

( ∑
i∈C(l)

νs

g̃
(t)
i −

∑
i∈F(l)

νs

g̃
(t)
i

)
∥ν∥2 1

[〈
w(t)

s,r,νs

〉
> 0
]

− η

mnst

∑
l∈[2]

( ∑
i∈C(l)

−νs

g̃
(t)
i −

∑
i∈F(l)

−νs

g̃
(t)
i

)
∥ν∥2 1

[〈
w(t)

s,r,νs

〉
< 0
]
.

However, weak-to-strong generalization exhibits different behaviors across the two regimes, in-
fluenced by the presence of a non-negligible fraction of data containing hard signals with flipped
pseudo-labels. In the data-scarce regime, noise memorization is a dominant component of the
learning process. This can lead to the learning effort being more balanced across different data points.
A sufficient fraction of both-signal data guarantees |C(l)

νs |, |C
(l)
−νs

| ≫ |F (l)
νs |, |F

(l)
−νs

| and this indicates

⟨w(t)
s,r,νs⟩ increases if it is positive and decreases if it is negative. Therefore, the strong model can

learn hard signals with opposite effective signs (such as νs and −νs), simultaneously, by utilizing
different sets of filters that start with differing alignments with these respective signal directions.

In the early phase of the data-abundant regime, the strong model can learn hard signals quickly,
even faster than noise is memorized, due to the significant abundance of signal vectors from the
clean-labeled training data. This leads to almost perfect generalization on unseen data. Let us
describe our intuition for why overtraining can lead to performance degradation. Rapid learning of
signals also creates a growing discrepancy in the negative loss derivatives g̃(t)i ’s between clean-label
data and flipped-label data. The non-negligible portion of flipped-label hard-only data combined with
the imbalance in loss derivatives can lead to the contributions from these flipped-label data points
(e.g.,

∑
i∈F(l)

νs
g̃
(t)
i ) predominating over those from clean-labeled data points (e.g.,

∑
i∈C(l)

νs
g̃
(t)
i ).

Consequently, the strong model may start “forgetting” learned signals as it continues to minimize the
training loss defined by these pseudo-labels.

Appendix F. Experiments

We conduct experiments in our setting to support our findings, using NVIDIA RTX A6000 GPUs.
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In our data distribution, we set the dimension d = 2000. The signal vectors µ1,µ−1,ν1,ν−1 are
constructed from randomly generated orthonormal vectors, which are subsequently scaled so that
their respective norms are ∥µ∥ = 0.4 and ∥ν∥ = 0.35. The noise strength is σp = 0.1 and the data
type probabilities are pe = 0.4 and ph = pb = 0.3.

We first train the weak model using nwk = 5000 true-labeled data points. The training is
conducted for 1000 epochs using stochastic gradient descent with batch size 256 and learning
rate η = 0.1, which results in a test accuracy of 0.851. For weak-to-strong training, we use the
strong model with m = 50 filters and an initialization scale σ0 = 0.01. We train the strong model
using stochastic gradient descent with batch size 256 and learning rate η = 0.1 on the dataset
labeled by the pretrained weak model. We use three different values for the number of data points,
nst = 75, 2000, 20000.

Figure 1 provides the training and test accuracy for weak-to-strong training with three different
training dataset sizes. We train the strong model for 2000 training epochs when nst = 75 or
nst = 2000, and for 10000 epochs when nst = 20000, as this requires more iterations for convergence
compared to the other cases. We observe three different types of results revealed in our analysis.

The cases nst = 75 and nst = 2000 support our analysis in the data-scarce regime. In both
cases, the training accuracy initially increases faster than the test accuracy. However, their final test
accuracies differ. In the case of nst = 75, the strong model achieves perfect training accuracy, while
its test accuracy remains close to that of the supervising weak model. This aligns with our findings on
the failure of weak-to-strong generalization due to harmful overfitting. In contrast, for nst = 2000,
the increased amount of data allows the test accuracy to sufficiently increase, eventually exceeding
the weak model’s test accuracy. This aligns with our findings on the emergence of weak-to-strong
generalization via benign overfitting.

The case of nst = 20000 corresponds to the data-abundant regime in our analysis. Unlike the
prior two cases, test accuracy grows faster than training accuracy and achieves near-perfect accuracy,
while training accuracy remains comparable to that of the weak model; this aligns with Theorem 10.
We also observe that continued training deteriorates test accuracy, while training accuracy increases.
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(a) nst = 75
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(b) nst = 2000

0 2000 4000 6000 8000 10000
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Train
Test
Weak Model Test = 0.851

(c) nst = 20000

Figure 1: Weak-to-strong training with varying training dataset sizes (nst). These align with our
theoretical findings: (a) harmful overfitting for nst = 75; (b) benign overfitting for nst = 2000; and
(c) for nst = 20000, an early emergence of generalization and degradation with overtraining.
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Appendix G. Proof Preliminaries

We use the following notaion for the proof.

Notation. We define SNRµ = ∥µ∥ /(σp
√
d), SNRν = ∥ν∥ /(σp

√
d). Let S be the orthogonal

complement of the span of the signal vectors {µ1,µ−1,ν1,ν−1}. We denote an orthonormal basis
for S by {b1, . . . , bd−4}. For any vector v ∈ Rd, ΠSv represents the projection of v onto S.

G.1. Proof Preliminaries for Weak Model Training

In this subsection, we sequentially introduce signal-noise decomposition [4, 15] in our setting, high-
probability properties of data sampling, and quantitative properties frequently used throughout the
proof for weak model training.

We use the following notation for the analysis of weak model training.

Notation. For each i ∈ [nwk], we denote by v
(1)
i , v(2)

i , and ξi the signal vectors and noise vector
of the i-th input Xi, respectively. For each v ∈ {µ1,µ−1,±ν1,±ν−1}, we define S(1)

v and S(2)
v as

the sets of indices i ∈ [nwk] such that v(1)
i = v and v

(2)
i = v, respectively.

G.1.1. SIGNAL-NOISE DECOMPOSITION

Lemma 11 For any iteration t ≥ 0, we can write w(t) as

w(t) = M
(t)
1

µ1

∥µ∥2
−M

(t)
−1

µ−1

∥µ∥2
+N

(t)
1

ν1
∥ν∥2

−N
(t)
−1

ν−1

∥ν∥2
+
∑

i∈[nwk]

yiρ
(t)
i

ξi
∥ξi∥2

,

where M
(t)
s , N

(t)
s , ρ

(t)
i are recursively defined as

M (t+1)
s = M (t)

s +
η

nwk

 ∑
i∈S(1)

µs

g
(t)
i +

∑
i∈S(2)

µs

g
(t)
i

 ∥µ∥2

N (t+1)
s = N (t)

s +
η

nwk

 ∑
i∈S(1)

νs

g
(t)
i +

∑
i∈S(2)

νs

g
(t)
i −

∑
i∈S(1)

−νs

g
(t)
i −

∑
i∈S(2)

−νs

g
(t)
i

 ∥ν∥2

ρ
(t+1)
i = ρ

(t)
i +

η

nwk
g
(t)
i ∥ξi∥2,

starting from M
(0)
s = N

(0)
s = ρ

(0)
i = 0. It follows that M (t)

s and ρ
(t)
i are increasing in iteration t.

Proof It is trivial for the case t = 0. Suppose it holds at iteration τ . From the update rule, we have

w(τ+1) = w(τ) +
η

nwk

∑
i∈[nwk]

yig
(τ)
i

∑
p∈[3]

x
(p)
i

= M
(τ)
1

µ1

∥µ∥2
−M

(τ)
−1

µ−1

∥µ∥2
+N

(τ)
1

ν1
∥ν∥2

−N
(τ)
−1

ν−1

∥ν∥2
+
∑

i∈[nwk]

yiρ
(τ)
i

ξi
∥ξi∥2
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+
η

nwk

∑
i∈[nwk]

yig
(τ)
i

∑
p∈[3]

x
(p)
i .

Here x
(p)
i ’s are one of µ1,µ−1,ν1,ν−1, and ξ1, . . . , ξnwk

. By grouping the terms accordingly, we
obtain

w(τ+1) = M
(τ+1)
1

µ1

∥µ∥2
−M

(τ+1)
−1

µ−1

∥µ∥2
+N

(τ+1)
1

ν1
∥ν∥2

−N
(τ+1)
−1

ν−1

∥ν∥2
+
∑

i∈[nwk]

yiρ
(τ+1)
i

ξi
∥ξi∥2

,

with

M (τ+1)
s = M (τ)

s +
η

nwk

 ∑
i∈S(1)

µs

g
(τ)
i +

∑
i∈S(2)

µs

g
(τ)
i

 ∥µ∥2

N (τ+1)
s = N (τ)

s +
η

nwk

 ∑
i∈S(1)

νs

g
(τ)
i +

∑
i∈S(2)

νs

g
(τ)
i −

∑
i∈S(1)

−νs

g
(τ)
i −

∑
i∈S(2)

−νs

g
(τ)
i

 ∥ν∥2

ρ
(τ+1)
i = ρ

(τ)
i +

η

nwk
g
(τ)
i ∥ξi∥2.

Hence, we have desired conclusion.

G.1.2. PROPERTIES OF DATA SAMPLING

We establish concentration results for the data sampling

Lemma 12 Let Ewk denote the event in which all the following hold for some large enough universal
constant Cwk>0:

1. For each s, l ∈ {±1}, we have∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣, ∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≤
√

nwk

2
log

(
Cwk

δ

)

2. For any i ∈ [nwk],

∣∣∣∥ξi∥2 − σ2
p(d− 4)

∣∣∣ ≤ Cwkσ
2
pd

1
2

√
log

(
Cwknwk

δ

)
.

3. For any i, j ∈ [nwk] with i ̸= j,

|⟨ξi, ξj⟩| ≤ Cwkσ
2
pd

1
2

√
log

(
Cwkn

2
wk

δ

)
.

Then, the event Ewk occurs with probability at least 1− δ.
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Proof For each s, l ∈ {±1} and i ∈ [nwk],

P[v(l)
i = µs] =

pe
2

+
pb
4
, P[v(l)

i = νs] = P[v(l)
i = −νs] =

ph
4

+
pb
8
.

Hence, by Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣ ≥
√

nwk

2
log

(
Cwk

δ

)]
≤ 2δ

Cwk

and

P

[∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≥
√

nwk

2
log

(
Cwk

δ

)]
≤ 2δ

Cwk
.

Note that for each i ∈ [nwk], we can write ξi as

ξi = σp
∑

h∈[d−4]

zi,hbh,

where zi,h
i.i.d.∼ N (0, 1). The sub-gaussian norm of standard normal distribution N (0, 1) is

√
8
3

and then (zi,h)
2 − 1’s are mean zero sub-exponential with sub-exponential norm 8

3 (Lemma 2.7.6
in Vershynin [26]). In addition, zi,hzj,h’s with i ̸= j are mean zero sub-exponential with sub-
exponential norm less than or equal to 8

3 (Lemma 2.7.7 in Vershynin [26]). We use Bernstein’s
inequality (Theorem 2.8.1 in Vershynin [26]), with c being the absolute constant stated therein. We
then have the following:

P

[∣∣∣∥ξi∥2 − σ2
p(d− 4)

∣∣∣ ≥ Cwkσ
2
pd

1
2

√
log

(
Cwknwk

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zi,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cwkd

1
2

√
log

(
Cwknwk

δ

)
≤ 2 exp

(
−

9cC2
wkd

64(d− 4)
log

(
Cwknwk

δ

))
≤ 2 exp

(
− log

(
Cwknwk

δ

))
≤ 2δ

Cwknwk
.

In addition, for i, j ∈ [nwk] with i ̸= j, we have

P

|⟨ξi, ξj⟩| ≥ Cwkσ
2
pd

1
2

√
log

(
Cwkn

2
wk

δ

)
= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzj,h

∣∣∣∣∣∣ ≥ Cwkd
1
2

√
log

(
Cwkn

2
wk

δ

)
≤ 2 exp

(
−

9cC2
wkd

64(d− 4)
log

(
Cwkn

2
wk

δ

))
≤ 2δ

Cwkn
2
wk

From union bound and a large choice of universal constant Cwk > 0, we conclude that the event Ewk

occurs with probability at least 1− δ.
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G.1.3. PROPERTIES USED THROUGHOUT THE PROOF

We introduce some notation and properties that are frequently used throughout the proof.
Let us define

βwk := 4Cwknwk

√
1

d
log

(
Cwknwk

δ

)
, γwk =

√
1

2nwk
log

(
Cwk

δ

)
,

and
κwk := 1152nwk(2pe + pb)SNR

2
µ log T ∗.

Under Condition 6 and the event Ewk, the following hold:

• By combining (C1) and (C5), applying (C2), and from Condition 6, βwk, γwk, and κwk satisfy the
following:

βwk ≤ κwk

256 log T ∗ , γwk ≤ min{pe, ph, pb}
8

, κwk ≤ 1

2
. (1)

• From (C1), the following holds for any i, j ∈ [nwk] with i ̸= j:

σ2
pd

2
≤ ∥ξi∥2 ≤

3σ2
pd

2
,

|⟨ξi, ξj⟩|
∥ξi∥2

≤ βwk

nwk
,

∣∣∣∣∣1− ∥ξj∥2

∥ξi∥2

∣∣∣∣∣ ≤ βwk

nwk
. (2)

• For any s, l ∈ {±1}, we have∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− (pe
2

+
pb
4

)
nwk

∣∣∣∣, ∣∣∣∣ ∣∣∣S(l)
±νs

∣∣∣− (ph
4

+
pb
8

)
nwk

∣∣∣∣ ≤ nwkγwk. (3)

• From (C4) and (C5), the learning rate η is small enough to satisfy

η ≤ κwknwk

12σ2
pd

,
2

σ2
pd

. (4)

G.2. Proof Preliminaries for Weak-to-Strong Training

In this subsection, we sequentially introduce signal-noise decomposition [4, 15] in our setting, high-
probability properties of data sampling, quantitative properties frequently used throughout the proof,
and a technical lemma [19] for the analysis of weak-to-strong training.

We use the following notaion for the analysis of weak-to-strong training.

Notation. For each i ∈ [nst], we denote by ṽ
(1)
i , ṽ(2)

i , and ξ̃i the signal vectors and noise vector of
the i-th input X̃i, respectively. For each v ∈ {µ1,µ−1,±ν1,±ν−1} and l ∈ {1, 2}, we define C(l)

v

and F (l)
v as the sets of indices i ∈ [nst] such that ṽ(l)

i = v and the supervision corresponds to the
clean label (i.e., ŷi = ỹi) or the flipped label (i.e., ŷi = −ỹi), respectively.
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G.2.1. SIGNAL-NOISE DECOMPOSITION

Lemma 13 For any iteration t ≥ 0, we can write each weights w(t)
s,r with s ∈ {±1}, r ∈ [m] as

w(t)
s,r = w(0)

s,r +M
(t)
s,r

µs

∥µ∥2
+M (t)

s,r

µ−s

∥µ∥2
+N

(t)
s,r

νs

∥ν∥2
+N (t)

s,r

ν−s

∥ν∥2
+ ρ

(t)
s,r,i

ξ̃i

∥ξ̃i∥2
,

where M
(t)
s,r,M

(t)
s,r, N

(t)
s,r, N

(t)
s,r, ρ

(t)
s,r,i are recursively defined as

M
(t+1)
s,r = M

(t)
s,r +

η

mnst

∑
l∈[2]

∑
i∈C(l)

µs

g̃
(t)
i −

∑
i∈F(l)

µs

g̃
(t)
i

 ∥µ∥2 · 1
[〈

w(t)
s,r,µs

〉
> 0
]
,

M (t+1)
s,r = M (t)

s,r −
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µ−s

g̃
(t)
i −

∑
i∈F(l)

µ−s

g̃
(t)
i

 ∥µ∥2 · 1
[〈

w(t)
s,r,µ−s

〉
> 0
]
,

N
(t+1)
s,r = N

(t)
s,r +

η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(t)
i −

∑
i∈F(l)

νs

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,νs

〉
> 0
]
,

− η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−νs

g̃
(t)
i −

∑
i∈F(l)

−νs

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,νs

〉
< 0
]
,

N (t+1)
s,r = N (t)

s,r −
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

ν−s

g̃
(t)
i −

∑
i∈F(l)

ν−s

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,ν−s

〉
> 0
]

+
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−ν−s

g̃
(t)
i −

∑
i∈F(l)

−ν−s

g̃
(t)
i

 ∥ν∥2 · 1
[〈

w(t)
s,r,ν−s

〉
< 0
]
,

ρ
(t+1)
s,r,i = ρ

(t)
s,r,i +

sŷiη

mnst
g̃
(t)
i ∥ξ̃i∥2 · 1

[〈
w(t)

s,r, ξ̃i

〉
> 0
]
,

starting from M
(t)
s,r = M

(t)
s,r = N

(t)
s,r = N

(t)
s,r = ρ

(t)
s,r,i = 0. For simplicity, for any iteration t ∈ [0, T ∗],

r ∈ [m] and i ∈ [nst], we define ρ
(t)
r,i := ρ

(t)
ŷi,r,i

and ρ
(t)
r,i := ρ

(t)
−ŷi,r,i

. It follows that ρ(t)r,i is increasing

and ρ
(t)
r,i is decreasing in iteration t.

Proof It is trivial for the case t = 0. Suppose it holds at iteration τ . From the update rule, we have

w(τ+1)
s,r = w(τ)

s,r +
sη

mnst

∑
p∈[3]

∑
i∈[nst]

ŷi g̃
(τ)
i 1

[〈
w(τ)

s,r , x̃
(p)
i

〉
> 0
]
x̃
(p)
i

= w(0)
s,r +M

(τ)
s,r

µs

∥µ∥2
+M (τ)

s,r

µ−s

∥µ∥2
+N

(τ)
s,r

νs

∥ν∥2
+N (τ)

s,r

ν−s

∥ν∥2
+ ρ

(τ)
s,r,i

ξ̃i

∥ξ̃i∥2
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+
sη

mnst

∑
p∈[3]

∑
i∈[nst]

ŷi g̃
(τ)
i 1

[〈
w(τ)

s,r , x̃
(p)
i

〉
> 0
]
x̃
(p)
i .

Here, x̃(p)i ’s are one of µ1,µ−1,ν1,ν−1, and ξ̃1, . . . , ξ̃nst . By grouping the terms accordingly, we
obtain

w(τ+1)
s,r = w(0)

s,r +M
(τ+1)
s,r

µs

∥µ∥2
+M (τ+1)

s,r

µ−s

∥µ∥2
+N

(τ+1)
s,r

νs

∥ν∥2
+N (τ+1)

s,r

ν−s

∥ν∥2
+ ρ

(τ+1)
s,r,i

ξ̃i

∥ξ̃i∥2
,

with

M
(τ+1)
s,r = M

(τ)
s,r +

η

mnst

∑
l∈[2]

∑
i∈C(l)

µs

g̃
(τ)
i −

∑
i∈F(l)

µs

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]
,

M (τ+1)
s,r = M (τ)

s,r − η

mnst

∑
l∈[2]

 ∑
i∈C(l)

µ−s

g̃
(τ)
i −

∑
i∈F(l)

µ−s

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µ−s

〉
> 0
]
,

N
(τ+1)
s,r = N

(τ)
s,r +

η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(τ)
i −

∑
i∈F(l)

νs

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,νs

〉
> 0
]
,

− η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−νs

g̃
(τ)
i −

∑
i∈F(l)

−νs

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,νs

〉
< 0
]
,

N (τ+1)
s,r = N (τ)

s,r − η

mnst

∑
l∈[2]

 ∑
i∈C(l)

ν−s

g̃
(τ)
i −

∑
i∈F(l)

ν−s

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,ν−s

〉
> 0
]

+
η

mnst

∑
l∈[2]

 ∑
i∈C(l)

−ν−s

g̃
(τ)
i −

∑
i∈F(l)

−ν−s

g̃
(τ)
i

 ∥ν∥2 · 1
[〈

w(τ)
s,r ,ν−s

〉
< 0
]
,

ρ
(τ+1)
s,r,i = ρ

(τ)
s,r,i +

sŷiη

mnst
g̃
(τ)
i ∥ξ̃i∥2 · 1

[〈
w(τ)

s,r , ξ̃i

〉
> 0
]
.

Hence, we have desired conclusion.

G.2.2. PROPERTIES OF DATA SAMPLING AND MODEL INITIALIZATION

We establish concentration results for data sampling and model initialization.
Throughout the proof, we frequently use the following quantities. For each s ∈ {±1} and

i ∈ [nst], we define:

• nµ = (2pe+pb)nst

4 , nν = pbnst

8 .
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• Ms :=
{
r ∈ [m] :

〈
w

(0)
s,r ,µs

〉
> 0
}

.

• As :=
{
r ∈ [m] :

〈
w

(0)
s,r ,νs

〉
> 0
}

, Bs :=
{
r ∈ [m] :

〈
w

(0)
s,r ,νs

〉
< 0
}

.

• Xi :=
{
r ∈ [m] :

〈
w

(0)
ŷi,r

, ξ̃i

〉
> 0
}

.

Lemma 14 Let Est denote the event in which all the following hold for some large enough universal
constant Cst > 0:

1. For each s ∈ {±1}, l ∈ [2], we have(
1− C−1

st

)
· nµ ≤

∣∣∣C(l)
µs

∣∣∣ ≤ (1 + C−1
st

)
· nµ,

∣∣∣F (l)
µs

∣∣∣ ≤ C−1
st · nµ

and (
1− C−1

st

)
· nν ≤

∣∣∣C(l)
νs

∣∣∣ , ∣∣∣C(l)
−νs

∣∣∣ ≤ (1 + C−1
st

)
· nν ,

∣∣∣F (l)
νs

∣∣∣ , ∣∣∣F (l)
−νs

∣∣∣ ≤ C−1
st · nν

2. For each s ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣|Ms| −
m

2

∣∣∣ , ∣∣∣|As| −
m

2

∣∣∣ , ∣∣∣|Bs| −
m

2

∣∣∣ ≤√m

2
log

(
Cst

δ

)
and ∣∣∣|Xi| −

m

2

∣∣∣ ≤√m

2
log

(
Cstnst

δ

)
.

3. For each s, s′ ∈ {±1} and r ∈ [m],∣∣∣∣〈w(0)
s,r ,

µs′

∥µ∥

〉∣∣∣∣ , ∣∣∣∣〈w(0)
s,r ,

νs′

∥ν∥

〉∣∣∣∣ ≤ σ0

√
2 log

(
Cstm

δ

)
.

4. For any i ∈ [nst], ∣∣∣∥ξ̃i∥2 − σ2
p(d− 4)

∣∣∣ ≤ Cstσ
2
pd

1
2

√
log

(
Cstnst

δ

)
.

5. For any i, j ∈ [nst] with i ̸= j,

∣∣∣〈ξ̃i, ξ̃j〉∣∣∣ ≤ Cstσ
2
pd

1
2

√
log

(
Cstn2

st

δ

)
.

6. For any s ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≤ Cstσ0σpd
1
2

√
log

(
Cstmnst

δ

)
.
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7. For any s ∈ {±1} and r ∈ [m], ∥∥∥ΠSw
(0)
s,r

∥∥∥2 ≤ 2σ2
0d.

Then, the event Est occurs with probability at least 1− δ.

Proof We begin by showing that each statement holds with high probability, and conclude the
proof by applying a union bound. We prove the statements one by one, marking each with ■ once
established.

We fix an arbitrary s ∈ {±1}, l ∈ {±1} and i ∈ [nst]. We have

P
[
i ∈ S(l)

µs

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
· pe
2

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
· pb
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
· pb
8
.

From the conclusion of Theorem 7, we have

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,µs)

]
≥ 1− 1

2Cst
,

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,νs)

]
≥ 1− 1

2Cst
,

and
P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (µs,−νs)

]
≥ 1− 1

2Cst
.

Therefore, (
1− 1

2Cst

)
· nµ ≤ E

[∣∣∣C(l)
µs

∣∣∣] ≤ nµ

and
E
[∣∣∣F (l)

µs

∣∣∣] = nµ − E
[∣∣∣C(l)

µs

∣∣∣] ≤ nµ

2Cst

By Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣S(l)
µs

∣∣∣− E
[∣∣∣S(l)

µs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst

and

P

[∣∣∣∣ ∣∣∣F (l)
µs

∣∣∣− E
[∣∣∣F (l)

µs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst
.
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Hence, combining with (C2),(
1− C−1

st

)
· nµ ≤

∣∣∣C(l)
µs

∣∣∣ ≤ (1 + C−1
st

)
· nµ,

∣∣∣F (l)
µs

∣∣∣ ≤ C−1
st · nµ,

with probability at least 1− 4δ
Cst

.
Now we address the case νs. We have

P
[
i ∈ S(l)

νs

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
+ P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
P
[(

ṽ
(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
= P

[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
· pb
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,νs)

]
· ph
8

+ P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,−νs)

]
· ph
8
.

From the conclusion of Theorem 7, we have

P
[
ỹifwk

(
w∗, X̃i

)
> 0

∣∣∣ (ṽ(l)
i , ṽ

(3−l)
i

)
= (νs,µs)

]
≥ 1− 1

2Cst
,

From (C5), we have

E
[∣∣∣C(l)

µs

∣∣∣] ≤ pb
8

+
ph
4

≤
(
1 +

1

2Cst

)
· nν

and

E
[∣∣∣C(l)

µs

∣∣∣] ≥ (1− 1

2Cst

)
· pb
8

=

(
1− 1

2Cst

)
· nν .

In addition, we have∣∣∣E [∣∣∣F (l)
µs

∣∣∣]∣∣∣ = ∣∣∣∣(2ph + pb)nst

8
− E

[∣∣∣C(l)
µs

∣∣∣]∣∣∣∣ ≤ 1

4Cst
· pb
8

+
ph
4

≤ nν

2Cst
.

By Höeffding’s inequality, we have

P

[∣∣∣∣ ∣∣∣S(l)
νs

∣∣∣− E
[∣∣∣S(l)

νs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst

and

P

[∣∣∣∣ ∣∣∣F (l)
νs

∣∣∣− E
[∣∣∣F (l)

νs

∣∣∣] ∣∣∣∣ ≥
√

nst

2
log

(
Cst

δ

)]
≤ 2δ

Cst
.

From (C2), we have(
1− C−1

st

)
· nν ≤

∣∣∣C(l)
ν

∣∣∣ ≤ (1 + C−1
st

) pbnst

8
,
∣∣∣F (l)

µs

∣∣∣ ≤ C−1
st · nν

22



PROVABLE WEAK-TO-STRONG GENERALIZATION THROUGH FEATURE LEARNING

with probability at least 1− 4δ
Cst

, where the last inequality follows from Condition 5.
Using a similar argument, we also have the desired conclusion for the case −νs. ■
Let us prove that the third statement holds with high probability. we fix arbitrary s ∈ {±1} and

i ∈ [n]. For each r ∈ [m], P[r ∈ Ms] = P[r ∈ As] = P[r ∈ Bs] = P[r ∈ Xi] =
1
2 . By Höeffding’s

inequality, we have

P

[∣∣∣|Ms| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

Cst
,

P

[∣∣∣|As| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

Cst
,

P

[∣∣∣|Bs| −
m

2

∣∣∣ ≥√m

2
log

(
Cst

δ

)]
≤ 2δ

Cst
,

and

P

[∣∣∣|Xi| −
m

2

∣∣∣ ≥√m

2
log

(
Cstnst

δ

)]
≤ 2δ

Cstnst
.

■
We fix arbitrary s, s′ ∈ {±1} and r ∈ [m]. We have〈

w(0)
s,r ,

µs′

∥µ∥

〉
,

〈
w(0)

s,r ,
νs′

∥ν∥

〉
i.i.d.∼ N (0, σ2

0).

Hence, by Höeffding’s inequality, we have

P

[∣∣∣∣〈w(0)
s,r ,

µs′

∥µ∥

〉∣∣∣∣ > σ0

√
2 log

(
Cstm

δ

)]
≤ 2δ

Cstm
.

Similarly, we also have

P

[∣∣∣∣〈w(0)
s,r ,

νs′

∥ν∥

〉∣∣∣∣ > σ0

√
2 log

(
Cstm

δ

)]
≤ 2δ

Cstm
.

■
Before moving on to the remaining part, note that for each i ∈ [nst], s ∈ {±1}, and r ∈ [m], we

can write ξ̃i and ΠSw
(0)
s,r as

ξ̃i = σp
∑

h∈[d−4]

zi,hbh, ΠSw
(0)
s,r = σ0

∑
h∈[d−4]

zs,r,hbh

where zi,h, zs,r,h
i.i.d.∼ N (0, 1). The sub-gaussian norm of standard normal distribution N (0, 1) is√

8
3 and then (zi,h)

2 − 1, (zs,r,h)
2 − 1’s are mean zero sub-exponential with sub-exponential norm

8
3 (Lemma 2.7.6 in Vershynin [26]). In addition, zs,r,hzi,h’s and zi,hzj,h’s with i ̸= j are mean zero
sub-exponential with sub-exponential norm less than or equal to 8

3 (Lemma 2.7.7 in Vershynin [26]).
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We use Bernstein’s inequality (Theorem 2.8.1 in Vershynin [26]), with c being the absolute
constant stated therein. We then have the following for any i ∈ [nst]:

P

[∣∣∣∥ξ̃i∥2 − σ2
p(d− 4)

∣∣∣ ≥ Cstσ
2
pd

1
2

√
log

(
Cstnst

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zi,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cstd

1
2

√
log

(
Cstnst

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstnst

δ

))
≤ 2 exp

(
− log

(
Cstnst

δ

))
≤ 2δ

Cstnst
.

■
For i, j ∈ [nst] with i ̸= j, we have

P

[∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ≥ Cstσ
2
pd

1
2

√
log

(
Cstn2

st

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzj,h

∣∣∣∣∣∣ ≥ Cstd
1
2

√
log

(
Cstn2

st

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstn

2
st

δ

))
≤ 2δ

Cstn2
st

.

■
For any s ∈ {±1}, r ∈ [m] and i ∈ [nst], by applying Bernstein’s inequality, we have

P

[∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≥ Cstσ0σpd
1
2

√
log

(
Cstmnst

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

zi,hzs,r,h

∣∣∣∣∣∣ ≥ Cstd
1
2

√
log

(
Cstmnst

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstmnst

δ

))
≤ 2δ

16mnst
.

■
By applying Bernstein’s inequality, for any s ∈ {±1} and r ∈ [m], we have

P
[∥∥∥ΠSw

(0)
s,r

∥∥∥2 ≤ 2σ2
pd

]
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≤ P

[∣∣∣∣∥∥∥ΠSw
(0)
s,r

∥∥∥2 − σ2
p(d− 4)

∣∣∣∣ ≥ Cstσ
2
pd

1
2

√
log

(
Cstm

δ

)]

= P

∣∣∣∣∣∣
∑

h∈[d−4]

(
(zs,r,h)

2 − 1
)∣∣∣∣∣∣ ≥ Cstd

1
2

√
log

(
Cstm

δ

)
≤ 2 exp

(
− 9cC2

std

64(d− 4)
log

(
Cstm

δ

))
≤ 2 exp

(
− log

(
Cstnst

δ

))
≤ 2δ

Cstm
,

where the first inequality follows from (C1). ■
From union bound and a large choice of universal constant Cst > 0, we conclude that the event

Est occurs with probability at least 1− δ.

G.2.3. PROPERTIES USED THROUGHOUT THE PROOF

We introduce some notation and properties that are frequently used throughout the proof.
Let us define

αst := 2Cstσ0max
{
∥µ∥ , ∥ν∥ , σpd

1
2

}√
2 log

(
Cstmnst

δ

)
,

βst := 4Cstnst

√
1

d
log

(
Cstnst

δ

)
,

and
κst := 8 log(12), λst := exp(2κst).

Under Condition 5 and the event Est, the following hold:

• αst and βst are small enough to satisfy

αst ≤
1

100
,
pbnst ∥ν∥2

σ2
pd

,
σ2
pd

(2pe + pb)nst ∥µ∥2
, βst log T

∗ ≤ 1

100
. (5)

• For any s, s′ ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣〈w(0)
s,r ,µs′

〉∣∣∣ , ∣∣∣〈w(0)
s,r ,νs′

〉∣∣∣ , ∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣ ≤ αst. (6)

• From (C3), for any i, j ∈ [nst] with i ̸= j, we have

σ2
pd

2
≤ ∥ξ̃i∥2 ≤

3σ2
pd

2
,

∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃i∥2

≤ βst
nst

,

∣∣∣∣∣1− ∥ξ̃j∥2

∥ξ̃i∥2

∣∣∣∣∣ ≤ βst
nst

,
∣∣∣∥ξ̃i∥2 − σ2

p(d− 4)
∣∣∣ ≤ βstσ

2
pd.

(7)
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• For any s ∈ {±1}, r ∈ [m], and i ∈ [nst], we have∣∣∣∣ |Ms|
m

− 1

2

∣∣∣∣ , ∣∣∣∣ |As|
m

− 1

2

∣∣∣∣ , ∣∣∣∣ |Bs|
m

− 1

2

∣∣∣∣ , ∣∣∣∣ |Xi|
m

− 1

2

∣∣∣∣ ≤ 1

10
. (8)

• The learning rate η is small enough to satisfy

η ≤ βstmnst

2σ2
pd

and under Condition 6, η ≤ βstm

2λst ∥µ∥2
,

βstm

2λst ∥ν∥2
. (9)

G.2.4. TECHNICAL LEMMA

We also introduce a technical lemma that enables a tight characterization of the learning dynamics.

Lemma 15 (Lemma D.1 in Meng et al. [19]) Suppose that a sequence at, t ≥ 0 follows the itera-
tive formula

at+1 = at +
c

1 + beat
,

for some c ∈ [0, 1] and b ≥ 0. Then it holds that

xt ≤ at ≤
c

1 + bea0
+ xt

for all t ≥ 0. Here, xt is the unique solution of

xt + bext = ct+ a0 + bea0 .
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Appendix H. Proof of Theorem 7

For the proof, we first introduce properties preserved during training (Appendix H.1), then prove
the convergence of the training loss (Appendix H.2), and finally establish a bound on the test error
(Appendix H.3).

H.1. Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Lemma 16 Under Condition 6 and the event Ewk, we have the following for any iteration t ∈
[0, T ∗]:

(W1) 0 ≤ ρ
(t)
i ≤ 4 log T ∗ for any i ∈ [nwk].

(W2) nwk(2pe+pb)
12 SNR2

µ · ρ(t)i ≤ M
(t)
s ≤ 3nwk(2pe+ pb)SNR

2
µ · ρ(t)i for any i ∈ [nwk], s ∈ {±1}.

(W3)
∣∣∣ρ(t)i − ρ

(t)
j

∣∣∣ ≤ κwk
4 for any i, j ∈ [nwk].

(W4)
∣∣yifwk

(
w(t),Xi

)
− yjfwk

(
w(t),Xj

)∣∣ ≤ κwk
2 for any i, j ∈ [nwk].

(W5) 1− κwk ≤ g
(t)
j

g
(t)
i

≤ 1 + κwk for any i, j ∈ [nwk].

(W6)
∣∣∣N (t)

s

∣∣∣ ≤ 2(2ph + pb)nwkSNR
2
ν · ρ(t)i for any s ∈ {±1}, i ∈ [n].

Proof It is trivial for the case t = 0. Assume the conclusions hold at iteration t = τ and we will
prove for the case t = τ + 1. Note that (W2) and (W6) at iteration t = τ , along with (1) and (C5)
imply that∣∣∣N (τ)

s

∣∣∣ ≤ 2(2ph + pb)nwkSNR
2
ν · ρ(τ)i ≤ 1

24
nwk(2pe + pb)SNR

2
µ · ρ(τ)i ≤ 1

2
M

(τ)
s′ , (10)

for any s, s′ ∈ {±1} and i ∈ [n].
(W1): We fix an arbitrary i ∈ [nwk] and we want to show ρ

(τ+1)
i ≤ 4 log T ∗. If ρ(τ)i ≤ 2 log T ∗,

then we have

ρ
(τ+1)
i = ρ

(τ)
i +

η

nwk
g
(τ)
i ∥ξi∥2 ≤ 2 log T ∗ +

η

nwk
·
3σ2

pd

2
≤ 4 log T ∗,

where the first inequality follows from g
(τ)
i ≤ 1 and (2), and the last inequality follows from (4).

Otherwise, there exists t̂ < τ such that ρ(t̂)i ≤ 2 log T ∗ < ρ
(t̂+1)
i since ρ

(t)
i is increasing in

iteration t.
From g

(t̂)
i ≤ 1, (2), and (4), we have

ρ
(τ+1)
i = ρ

(t̂)
i +

(
ρ
(t̂+1)
i − ρ

(t̂)
i

)
+

τ∑
t=t̂+1

(
ρ
(t+1)
i − ρ

(t)
i

)
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= ρ
(t̂)
i +

η

nwk
g
(t̂)
i ∥ξi∥2 +

η

nwk

τ∑
t=t̂+1

g
(t)
i ∥ξi∥2

≤ 2 log T ∗ +
η

nwk
· 3
2
σ2
pd+

η

nwk
· 3
2
σ2
pd

τ∑
t=t̂+1

g
(t)
i

≤ 3 log T ∗ +
3ησ2

pd

2nwk

τ∑
t=t̂+1

exp
(
−yifwk

(
w(t),Xi

))
.

For any iteration t ∈
[
t̂+ 1, τ

]
, we have

yifwk

(
w(t),Xi

)
=
〈
w(t), yiv

(1)
i

〉
+
〈
w(t), yiv

(2)
i

〉
+
〈
w(t), yiξi

〉
≥ −2max

{∣∣∣N (t)
1

∣∣∣ , ∣∣∣N (t)
−1

∣∣∣}+ ρ
(t)
i +

∑
j∈[nwk]\{i}

yiyjρ
(t)
j

⟨ξi, ξj⟩
∥ξj∥2

≥ −2max
{∣∣∣N (t)

1

∣∣∣ , ∣∣∣N (t)
−1

∣∣∣}+ ρ
(t)
i −

∑
j∈[nwk]\{i}

ρ
(t)
j

|⟨ξi, ξj⟩|
∥ξj∥2

≥ −4κwknwk(2ph + pb)SNR
2
ν · ρ(t)i + ρ

(t)
i −

∑
j∈[nwk]\{i}

ρ
(t)
j

|⟨ξi, ξj⟩|
∥ξj∥2

≥ −4κwknwk(2ph + pb)SNR
2
ν · 4 log T ∗ + 2 log T ∗ − 4 log T ∗ · βwk

=
(
1− 8κwknwk(2ph + pb)SNR

2
ν − 2βwk

)
· 2 log T ∗

≥ log T ∗,

where the first inequality follows from the fact that M (t)
1 ,M

(t)
−1 ≥ 0, the third from applying (W2) at

iteration t, the fourth from (W1) at iteration t and (2), and the last from (1) and (C5).
Now, we have our conclusion

ρ
(τ+1)
i ≤ 3 log T ∗ +

3ησ2
pd

2nwk

τ∑
t=t̂+1

exp
(
−yifwk

(
w(t),Xi

))

≤ 3 log T ∗ +
3ησ2

pd

2nwk

τ∑
t=t̂+1

exp (− log T ∗)

≤ 3 log T ∗ +
3ησ2

pd

2nwk
T ∗ exp (− log T ∗)

≤ 4 log T ∗,

where we applied (4) for the last inequality.
(W2): We fix arbitrary s ∈ {±1} and i ∈ [nwk]. We have

M (τ+1)
s −M (τ)

s =
η

nwk

 ∑
j∈S(1)

µs

g
(τ)
j +

∑
j∈S(2)

µs

g
(τ)
j

 · ∥µ∥2
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≤ η

nwk
· 2 ·

(pe
2

+
pb
4

+ γwk

)
nwk ·

(
g
(τ)
i (1 + κwk)

)
· ∥µ∥2

≤ η

nwk
· 2 · 3

2

(pe
2

+
pb
4

)
nwk · 2g

(τ)
i · ∥µ∥2

=
3

2
η (2pe + pb) g

(τ)
i ∥µ∥2,

where the first inequality follows from (W3) at iteration τ and (3), the second follows from (1).
From (2), we have

ρ
(τ+1)
i − ρ

(τ)
i =

η

nwk
g
(τ)
i ∥ξi∥2 ≥

ησ2
pd

2nwk
g
(τ)
i ,

and thus,
M (τ+1)

s −M (τ)
s ≤ 3nwk (2pe + pb) SNR

2
µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
.

Combining with (W2) at iteration τ , we have

M (τ+1)
s = M (τ)

s +
(
M (τ+1)

s −M (τ)
s

)
≤ 3nwk(2pe + pb)SNR2

µ · ρ(τ)i + 3nwk (2pe + pb) SNR
2
µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
= 3nwk(2pe + pb)SNR2

µ · ρ(τ+1)
i .

Similarly, we have

M (τ+1)
s −M (τ)

s =
η

nwk

 ∑
j∈S(1)

µs

g
(τ)
j +

∑
j∈S(2)

µs

g
(τ)
j

 ∥µ∥2

≥ η

nwk
· 2 ·

(pe
2

+
pb
4

− γwk

)
nwk ·

(
g
(τ)
i (1− κwk)

)
∥µ∥2

≥ η

nwk
· 2 · 1

2

(pe
2

+
pb
4

)
nwk ·

1

2
g
(τ)
i · ∥µ∥2

=
1

8
η (2pe + pb) g

(τ)
i · ∥µ∥2,

where the first inequality follows from (W5) at iteratiou τ and (3), and the second follows from (1).
From (2), we have

ρ
(τ+1)
i − ρ

(τ)
i =

η

nwk
g
(τ)
i ∥ξi∥2 ≤

3ησ2
pd

2nwk
g
(τ)
i ,

and thus, we have

M (τ+1)
s −M (τ)

s ≤ 1

12
nwk (2pe + pb) SNR

2
µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
.

Combining with (W2) at iteration τ , we have

M (τ+1)
s = M (τ)

s +
(
M (τ+1)

s −M (τ)
s

)
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≥ 1

12
nwk(2pe + pb)SNR

2
µ · ρ(τ)i +

1

12
nwk (2pe + pb) SNR

2
µ

(
ρ
(τ+1)
i − ρ

(τ)
i

)
=

1

12
nwk(2pe + pb)SNR

2
µ · ρ(τ+1)

i .

(W3): We fix arbitrary i, j ∈ [nwk] with i ̸= j. Without loss of generality, we assume that ρ(τ)i ≥ ρ
(τ)
j .

From (2) and (4), we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≥ − η

nwk
·
3σ2

pd

2
≥ −κwk

4
.

Thus, we want to show that ρ(τ+1)
i − ρ

(τ+1)
j ≤ κwk

4 .

If ρ(τ)i − ρ
(τ)
j < κwk

8 , from triangular inequality, (2), and (4), we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≤ κwk

8
+

η

nwk
·
3σ2

pd

2
≤ κwk

4
.

Otherwise, we have

yifwk

(
w(τ),Xi

)
− yjfwk

(
w(τ),Xj

)
=
〈
w(τ), yi

(
v
(1)
i + v

(2)
i + ξi

)〉
−
〈
w(τ), yj

(
v
(1)
j + v

(2)
j + ξj

)〉
≥
(
ρ
(τ)
j − ρ

(τ)
j

)
− 3M (τ)

yj +
∑

i′∈[nwk]\{i}

yiyi′ρ
(τ)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

yjyj′ρ
(τ)
j′

∣∣〈ξj , ξj′〉∣∣∥∥ξj′∥∥2
≥
(
ρ
(τ)
j − ρ

(τ)
j

)
− 3M (τ)

yj −
∑

i′∈[nwk]\{i}

ρ
(τ)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

ρ
(τ)
j′

∣∣〈ξj , ξj′〉∣∣∥∥ξj′∥∥2
≥ κwk

8
− 3 · 3nwk(2pe + pb)SNR

2
µ · 4 log T ∗ − 2 · 4 log T ∗ · βwk

≥ κwk

16
> 0,

where the first inequality follows from (10), and the fourth inequality follows from (1). Then, we
have

g
(τ)
i ∥ξi∥2

g
(τ)
j ∥ξj∥2

=
1 + exp

(
yjfwk

(
w(τ),Xj

))
1 + exp

(
yifwk

(
w(τ),Xi

)) · ∥ξi∥
2

∥ξj∥2

≤ exp
[
yjfwk

(
w(τ),Xj

)
− yifwk

(
w(τ),Xi

)]
·
(
1 +

βwk

nwk

)
≤ exp

[
−κwk

16
+

βwk

nwk

]
≤ 1.

Therefore, we have

ρ
(τ+1)
i − ρ

(τ+1)
j = ρ

(τ)
i − ρ

(τ)
j +

η

nwk

(
g
(τ)
i ∥ξi∥2 − g

(τ)
j ∥ξj∥2

)
≤ ρ

(τ)
i − ρ

(τ)
j ≤ κwk

4
.
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(W4): For any i, j ∈ [nwk], we have

yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)
=
〈
w(τ+1), yi

(
v
(1)
i + v

(2)
i + ξi

)〉
−
〈
w(τ+1), yj

(
v
(1)
j + v

(2)
j + ξj

)〉
≤
(
ρ
(τ+1)
j − ρ

(τ+1)
j

)
+ 3M (τ+1)

yj

+
∑

i′∈[nwk]\{i}

yiyi′ρ
(τ+1)
i′

⟨ξi, ξi′⟩
∥ξi′∥2

−
∑

j′∈[nwk]\{j}

yjyj′ρ
(τ+1)
j′

〈
ξj , ξj′

〉∥∥ξj′∥∥2
≤
(
ρ
(τ+1)
j − ρ

(τ+1)
j

)
+ 3M (τ+1)

yj +
∑

i′∈[nwk]\{i}

ρ
(τ+1)
i′

|⟨ξi, ξi′⟩|
∥ξi′∥2

+
∑

j′∈[nwk]\{j}

ρ
(τ+1)
j′

∣∣〈ξj , ξj′〉∣∣∥∥ξj′∥∥2
≤ κwk

8
+ 3 · 3nwk(2pe + pb)SNR

2
µ · 4 log T ∗ + 2 · 4 log T ∗ · βwk

≤ κwk

2
,

where the first inequality follows from (10), the third inequality follows from (W1) and (W2) at
iteration τ + 1, which we have shown earlier, and the last inequality is due to (1).

(W5): Let us fix arbitrary i, j ∈ [nwk] and assume yifwk

(
w(τ+1),Xi

)
≥ yjfwk

(
w(τ+1),Xj

)
,

without loss of generality. Then, we have

1 ≤
g
(τ+1)
j

g
(τ+1)
i

=
1 + exp

(
yifwk

(
w(τ+1),Xi

))
1 + exp

(
yjfwk

(
w(τ+1),Xj

))
≤ exp

[
yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)]
≤ 1 + 2

[
yifwk

(
w(τ+1),Xi

)
− yjfwk

(
w(τ+1),Xj

)]
≤ 1 + κwk,

where we use the inequality ez ≤ 1 + 2z for any z ∈ (0, 1), which is applicable due to (1). In
addition, we have

1 ≥
g
(τ+1)
i

g
(τ+1)
j

=
1 + exp

(
yjfwk

(
w(τ+1),Xj

))
1 + exp

(
yifwk

(
w(τ+1),Xi

))
≥ exp

[
yjfwk

(
w(τ+1),Xj

)
− yifwk

(
w(τ+1),Xi

)]
≥ 1 +

[
yjfwk

(
w(τ+1),Xj

)
− yifwk

(
w(τ+1),Xi

)]
≥ 1− κwk,

where we use the inequality ez ≥ 1 + z for any z ∈ R.
(W6): We fix arbitrary s ∈ {±1} and i ∈ [nwk]. We have

N (τ+1)
s −N (τ)

s
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=
η

nwk

 ∑
j∈S(1)

νs

g
(τ)
j +

∑
j∈S(2)

νs

g
(τ)
j −

∑
j∈S(1)

−νs

g
(τ)
j −

∑
j∈S(2)

−νs

g
(τ)
j

 ∥ν∥2

≤ η

nwk

[(∣∣∣S(1)
νs

∣∣∣+ ∣∣∣S(2)
νs

∣∣∣) (1 + κwk)−
(∣∣∣S(1)

−νs

∣∣∣+ ∣∣∣S(2)
−νs

∣∣∣) (1− κwk)
]
g
(τ)
i ∥ν∥2

≤ η
[
2
(ph
4

+
pb
8

+ γwk

)
(1 + κwk)− 2

(ph
4

+
pb
8

− γwk

)
(1− κwk)

]
g
(τ)
i ∥ν∥2

= ηg
(τ)
i

(
2ph + pb

2
· κwk + 4γwk

)
∥ν∥2

≤ η(2ph + pb)g
(τ)
i ∥ν∥2

=
(2ph + pb)nwk∥ν∥2

∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
,

where the inequalities follow from (W5) at iteration τ , (1), and (2) , respectively. Hence, we obtain

N (τ+1)
s ≤ N (τ)

s +
(2ph + pb)nwk∥ν∥2

∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≤ N (τ)

s + 2(2ph + pb)nwkSNR
2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≤ 2(2ph + pb)nwkSNR

2
ν · ρ(τ)i + 2(2ph + pb)nwkSNR

2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
= 2(2ph + pb)nwkSNR

2
ν · ρ(τ+1)

i ,

where the second and last inequalities follow from (3) and (W6) at iteration τ , respectively. Similarly,
we have

N (τ+1)
s −N (τ)

s

=
η

nwk

 ∑
j∈S(1)

νs

g
(τ)
j +

∑
j∈S(2)

νs

g
(τ)
j −

∑
j∈S(1)

−νs

g
(τ)
j −

∑
j∈S(2)

−νs

g
(τ)
j

 ∥ν∥2

≥ η

nwk

[(∣∣∣S(1)
νs

∣∣∣+ ∣∣∣S(2)
νs

∣∣∣) (1− κwk)−
(∣∣∣S(1)

−νs

∣∣∣+ ∣∣∣S(2)
−νs

∣∣∣) (1 + κwk)
]
g
(τ)
i ∥ν∥2

≥ η
[
2
(ph
4

+
pb
8

+ γwk

)
(1− κwk)− 2

(ph
4

+
pb
8

− γwk

)
(1 + κwk)

]
g
(τ)
i ∥ν∥2

= −ηg
(τ)
i

(
2ph + pb

2
· κwk + 4γwk

)
∥ν∥2

≥ −η(2ph + pb)g
(τ)
i ∥ν∥2

= −(2ph + pb)nwk∥ν∥2

∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
,

where the inequalities follow from (W5) at iteration τ , (3), and (1), respectively. Hence, we obtain

N (τ+1)
s ≥ N (τ)

s − (2ph + pb)nwk∥ν∥2

∥ξi∥2
(
ρ
(τ+1)
i − ρ

(τ)
i

)
≥ N (τ)

s − 2(2ph + pb)nwkSNR
2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
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≥ −2(2ph + pb)nwkSNR2
ν · ρ(τ)i − 2(2ph + pb)nwkSNR

2
ν ·
(
ρ
(τ+1)
i − ρ

(τ)
i

)
= −2(2ph + pb)nwkSNR2

ν · ρ(τ+1)
i ,

where the second and last inequalities follow from (2) and (W6) at iteration τ , respectively.
Therefore, the conclusions hold at any iteration t ∈ [0, T ∗].

H.2. Convergence of Training Loss

In this subsection, we prove that the training loss converges below ε within Õ
(
η−1ε−1nwkd

−1σ−2
p

)
.

Let us define
ŵ := 2 log(4/ε)

∑
i∈[nwk]

yiξi ∥ξi∥−2 ,

which plays a crucial role in proving convergence.

Lemma 17 Under Condition 6 and the event Ewk, we have the following:

• ∥ŵ∥ ≤ 3 log(4/ε)n
1
2
wkd

− 1
2σ−1

p .

• yi
〈
∇wfwk

(
w(t),Xi

)
, ŵ
〉
≥ log(4/ε) for any t ∈ [T, T ∗].

•
∥∥∇wLwk

(
w(t)

)∥∥2 ≤ 2σ2
pd · Lwk

(
w(t)

)
for any t ∈ [0, T ∗].

Proof The first statement follows from

∥ŵ∥2 = (2 log(4/ε))2

 ∑
i∈[nwk]

yiξi ∥ξi∥−2

2

= 4 log2(4/ε)

 ∑
i∈[nwk]

∥ξi∥−2 +
∑
i ̸=j

yiyj
⟨ξi, ξj⟩

∥ξi∥2 ∥ξj∥2


≤ 4 log2(4/ε)

 ∑
i∈[nwk]

∥ξi∥−2 +
∑
i ̸=j

|⟨ξi, ξj⟩|
∥ξi∥2 ∥ξj∥2


≤ 4 log2(4/ε)

(
nwk ·

2

σ2
pd

+ n2
wk ·

βwk

nwk
· 2

σ2
pd

)
= 4 log2(4/ε)

2nwk(1 + βwk)

σ2
pd

≤ 9 log2(4/ε)
nwk

σ2
pd

,

where the second inequality follows from (2) and the last inequality follows from (1).
Next, let us prove the second statement. For any t ∈ [0, T ∗], we have

yi

〈
∇wfwk

(
w(t),Xi

)
, ŵ
〉
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= yi

〈
v
(1)
i + v

(2)
i + ξi, 2 log(4/ε)

∑
j∈[nwk]

yjξj ∥ξj∥−2

〉

= 2 log(4/ε)
∑

j∈[nwk]

yiyj
⟨ξi, ξj⟩
∥ξj∥2

≥ 2 log(4/ε)−
∑

j∈[nwk]\{i}

2 log(4/ε)
|⟨ξi, ξj⟩|
∥ξj∥2

≥ 2(1− βwk) log(4/ε)

≥ log(4/ε)

where the second inequality follows from (2) and the last inequality follows from (1).
Let us prove the last statement. For any t ∈ [0, T ∗], we have

∥∥∥∇wLwk

(
w(t)

)∥∥∥2 =
∥∥∥∥∥∥ 1

nwk

∑
i∈[nwk]

g
(t)
i yi

(
v
(1)
i + v

(2)
i + ξi

)∥∥∥∥∥∥
2

≤

 1

nwk

∑
i∈[nwk]

g
(t)
i

∥∥∥v(1)
i + v

(2)
i + ξi

∥∥∥
2

≤

 1

nwk

∑
i∈[nwk]

g
(t)
i

2

2σ2
pd

≤ 2σ2
pd ·

 1

nwk

∑
i∈[nwk]

g
(t)
i


≤ 2σ2

pd ·

 1

nwk

∑
i∈[nwk]

ℓ (yifwk (w,Xi))


= 2σ2

pd · Lwk

(
w(t)

)
,

where the first inequality follows from the triangle inequality, the second follows from (2) and the

bound ∥µ∥2 , ∥ν∥2 ≤ σ2
pd

4 implied by Condition 6, the third follows from 1
nwk

∑
i∈[nwk]

g
(t)
i ≤ 1,

and the last follows from −ℓ′(z) ≤ ℓ(z) for all z ∈ R.

Lemma 18 Under Condition 5 and the event Ewk, for any iteration T ∈ [0, T ∗], we have

1

T

T∑
t=0

Lwk

(
w(t)

)
≤ ∥ŵ∥2

ηT
+

ε

2
.

Proof For any t ∈ [0, T ∗], we have∥∥∥w(t) − ŵ
∥∥∥2 − ∥∥∥w(t+1) − ŵ

∥∥∥2
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=
∥∥∥w(t) − ŵ

∥∥∥2 − ∥∥∥w(t) − ŵ − η∇Lwk

(
w(t)

)∥∥∥2
= 2η

〈
∇Lwk

(
w(t)

)
,w(t) − ŵ

〉
− η2

∥∥∥∇Lwk

(
w(t)

)∥∥∥2
=

2η

nwk

∑
i∈[nwk]

g
(t)
i

(〈
yi∇fwk

(
w(t),Xi

)
, ŵ
〉
− yifwk

(
w(t),Xi

))
− η2

∥∥∥∇Lwk

(
w(t)

)∥∥∥2
≥ 2η

nwk

∑
i∈[nwk]

g
(t)
i

(
log(4/ε)− yifwk

(
w(t),Xi

))
− η2

∥∥∥∇Lwk

(
w(t)

)∥∥∥2
≥ 2η

nwk

∑
i∈[nwk]

[
ℓ

(
yi f

(
w(t),Xi

))
− ε

4

]
− η2

∥∥∥∇Lwk

(
w(t)

)∥∥∥2
≥ ηLwk

(
w(t)

)
− ηε

2
,

where the first inequality follows from Lemma 17, the second follows from the convexity of ℓ and
the bound ℓ(log(4/ε)) ≥ ε/4, and the last follows from Lemma 17 and (4).

By applying a telescoping sum and using the fact that w(0) = 0, we obtain the desired conclusion.

Using lemmas above, we can prove that the training loss converges to below ε. By applying
Lemma 18 with iteration T̃ = ⌈18η−1ε−1 log(4/ε)nwkd

−1σ−2
p ⌉ = Õ(η−1ε−1nwkd

−1σ−2
p ) and

using Lemma 17, we obtain

1

T̃

T̃∑
t=0

Lwk

(
w(t)

)
≤ ∥ŵ∥2

ηT̃
+

ε

2
≤

9 log2(4/ε)nwkd
−1σ−2

p

ηT̃
+

ε

2
≤ ε.

Therefore, there exists Twk ∈ [0, T̃ ] such that Lwk(w
(Twk)) ≤ ε. In addition, for any w1,w2 ∈ Rd,

we have

∥∇wLwk(w1)−∇wLwk(w2)∥

=
1

nwk

∥∥∥∥∥∥
∑

i∈[nwk]

[
yi(ℓ

′(yifwk(w1,Xi)
)
− ℓ′

(
yifwk(w1,Xi)

) (
v
(1)
i + v

(2)
i + ξi

)]∥∥∥∥∥∥
≤ 1

nwk

∑
i∈[nwk]

[∣∣ℓ′(yifwk(w1,Xi)
)
− ℓ′

(
yifwk(w1,Xi)

)∣∣ · ∥∥∥v(1)
i + v

(2)
i + ξi

∥∥∥]

≤
√
2σpd

1
2

2nwk

∑
i∈[nwk]

∣∣(fwk(w1,Xi)− fwk(w1,Xi)
)∣∣

≤
√
2σpd

1
2

2nwk

∑
i∈[nwk]

∥∥∥v(1)
i + v

(2)
i + ξi

∥∥∥ · ∥w1 −w2∥

≤ σ2
pd∥w1 −w2∥,

where the first and third inequalities follow from the Cauchy-Schwarz inequality, the second and last

inequalities follow from (2) and the bound ∥µ∥2 , ∥ν∥2 ≤ σ2
pd

4 implied by Condition 6, and for the
second inequality, we also use the fact that 0 ≤ ℓ′ ≤ 1

4 .
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Since Lwk(w) is σ2
pd-smooth and the learning rate satisfies (9), we can apply the descent lemma

(Lemma 3.4 in Bubeck [2]). This proves the first part of our conclusion.
□

H.3. Test Error

In this subsection, we prove the second part of our conclusion. All arguments in this subsection are
under Condition 6 and the event Ewk.

Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test data (X, y),
respectively.

For any iteration t ∈ [Twk, T
∗] and for the case given (X, y) ∈ Se ∪ Sb, we can express the test

accuracy as

P
[
yfwk

(
w(t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
= P

[〈
yw(t), ξ

〉
< −

〈
yw(t),v(1)

〉
−
〈
yw(t),v(2)

〉 ∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ P

[〈
yw(t), ξ

〉
< −M

(t)
y

2

]

= P

[
z < −M

(t)
y

2

]
,

where z ∼ N
(
0, σ2

p

∥∥ΠSw
(t)
∥∥2), and the inequality follows from (10). By Höeffding’s inequality,

we have

P
[
yfwk

(
w(t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

−

(
M

(t)
y

)2
8σ2

p

∥∥ΠSw(t)
∥∥2
 .

Let us characterize
∥∥ΠSw

(t)
∥∥2. We have

∥∥∥ΠSw
(t)
∥∥∥2 =

∥∥∥∥∥∥
∑

i∈[nwk]

yiρ
(t)
i ξi ∥ξi∥−2

∥∥∥∥∥∥
2

≤
∑

i∈[nwk]

(
ρ
(t)
i

)2
∥ξi∥−2 +

∑
i∈[nwk]

∑
j∈[nwk]\{i}

ρ
(t)
i ρ

(t)
j

|⟨ξi, ξj⟩|
∥ξi∥2 ∥ξj∥2

≤ 2

σ2
pd

∑
i∈[nwk]

(
ρ
(t)
i

)2
+
∑

i∈[nwk]

∑
j∈[nwk]

(
ρ
(t)
i

)2
+
(
ρ
(t)
j

)2
2

· βwk

nwk
· 2

σ2
pd

≤ 4

σ2
pd

∑
i∈[nwk]

(
ρ
(t)
i

)2

≤ 4

σ2
pd

nwk

(
12

nwk(2pe + pb) · SNR2
µ

)2 (
M (t)

y

)2
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=
576σ2

pd

nwk(2pe + pb)2 ∥µ∥4
(
M (t)

y

)2
,

where the second and third inequality follows from (2) and AM–GM inequality and the last inequality
follows from (W2). Hence, we have

P
[
yfwk

(
w(t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nwk(2pe + pb)

2 ∥µ∥4

4608σ4
pd

)
.
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Appendix I. Proof of Theorem 8

By Condition (C5), it suffices to prove the following restatement of Theorem 8.

Theorem 19 (Weak-to-Strong Training, Data-Scarce Regime) Let W (t) be the iterates of weak-
to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 7. For
any ε > 0 and δ ∈ (0, 1) satisfying Condition 6, with probability at least 1 − δ, there exists
Tw2s = O(η−1ε−1mnstd

−1σ−2
p ) such that for any t ∈ [Tw2s, T

∗] the following statements hold:

1. The training loss converges below ε: Lst

(
W (t)

)
< ε.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1.

• (Benign Overfitting) When nstp
2
b ∥ν∥

4 /(σ4
pd) ≥ C2, we have

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−nst(2pe + pb)

2∥ν∥4

C ′
3σ

4
pd

)
,

and

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ exp

(
−
nstp

2
b∥µ∥4

C ′
3σ

4
pd

)
.

• (Harmful Overfitting) When nstp
2
b ∥ν∥

4 /(σ4
pd) ≤ C4,

P
[
yfst

(
W (t),X

)
< 0
]
≥ 0.12ph.

Here, C2, C
′
3, C4 > 0 are constants.

For the proof, we first introduce properties preserved during training (Appendix I.1), then prove
the convergence of the training loss (Appendix I.2), and finally establish a bound on the test error
(Appendix I.3).

I.1. Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Lemma 20 Suppose for some iteration t ∈ [0, T ∗], it satisfies
∣∣∣M (t)

s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ ≤ αst + βst, 0 ≤

ρ
(t)
r,i ≤ 4 log T ∗, and −αst − 5βst log T

∗ ≤ ρ
(t)
r,i ≤ 0 for any s ∈ {±1}, r ∈ [m], and i ∈ [nst]. Then,

for any i ∈ [nst] it holds that

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
≤ κst

16
,
∣∣∣σ (〈w(t)

ŷi,r
, ξ̃i

〉)
− ρ

(t)
r,i

∣∣∣ ≤ κst
16

.

Proof For any i ∈ [nst], we have

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
=

1

m

∑
r∈[m]

[
σ
(〈

w
(t)
−ŷi,r

, ṽ
(1)
i

〉)
+ σ

(〈
w

(t)
−ŷi,r

, ṽ
(2)
i

〉)
+ σ

(〈
w

(t)
−ŷi,r

, ξ̃i

〉)]
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≤ 1

m

∑
r∈[m]

[∣∣∣〈w(t)
−ŷi,r

, ṽ
(1)
i

〉∣∣∣+ ∣∣∣〈w(t)
−ŷi,r

, ṽ
(2)
i

〉∣∣∣+ ∣∣∣〈w(t)
−ŷi,r

, ξ̃i

〉∣∣∣]
≤ 1

m

∑
r∈[m]

[∣∣∣〈w(0)
−ŷi,r

, ṽ
(1)
i

〉∣∣∣+ ∣∣∣〈w(0)
−ŷi,r

, ṽ
(2)
i

〉∣∣∣+ 2 · (αst + βst) +
∣∣∣〈w(t)

−ŷi,r
, ξ̃i

〉∣∣∣]
≤ (4αst + 2βst) +

1

m

∑
r∈[m]

∣∣∣〈w(t)
−ŷi,r

, ξ̃i

〉∣∣∣ ,
where the last two inequalities follow from the given bounds on

∣∣∣M (t)
s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ and (6). In addition,
for any r ∈ [m], we have〈

w
(t)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

ρ
(t)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≥
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
−

∑
j∈[nst]\{i}

∣∣∣ρ(t)−ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃j∥2

≥ −2αst − 9βst log T
∗,

where the last inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i , (6), and (7). Similarly, for any

r ∈ [m], we have〈
w

(t)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

ρ
(t)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≤
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(t)

r,i
+

∑
j∈[nst]\{i}

∣∣∣ρ(t)−ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃j∥2

≤ αst + 4βst log T
∗,

where the last inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i , (6), and (7). Hence, we have

F−ŷi

(
W

(t)
−ŷi

, X̃i

)
≤ 6αst + 2βst + 9βst log T

∗ ≤ κst
16

,

where the last inequality follows from (5).
Next, we prove the second part. For any i ∈ [nst] and r ∈ [m], we have∣∣∣σ (〈w(t)

ŷi,r
, ξ̃i

〉)
− ρ

(t)
r,i

∣∣∣ = ∣∣∣σ (〈w(t)
ŷi,r

, ξ̃i

〉)
− σ

(
ρ
(t)
r,i

)∣∣∣
≤
∣∣∣〈w(t)

ŷi,r
, ξ̃i

〉
− ρ

(t)
r,i

∣∣∣
≤
〈
w

(0)
ŷi,r

, ξ̃i

〉
+

∑
j∈[nst]\{i}

∣∣∣ρ(t)ŷi,r,j

∣∣∣ |⟨ξ̃i, ξ̃j⟩|
∥ξ̃i∥2

≤ αst + 4βst log T
∗

≤ κst
16

,
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where the last inequality follows from the given bound on ρ
(t)
r,i , ρ

(t)
r,i , (6), and (7).

Lemma 21 Under Condition 6 and the event Est, we have the following for any iteration t ∈ [0, T ∗]:

(S1) −αst − 5βst log T
∗ ≤ ρ

(t)
r,i ≤ 0 and 0 ≤ ρ

(t)
r,i ≤ 4 log T ∗ for any i ∈ [nst] and r ∈ [m].

(S2) If t ≥ 1, then for any s ∈ {±1}, we have M
(t)
s,r ≥ M

(t−1)
s,r for all r ∈ [m], N (t)

s,r ≥ N
(t−1)
s,r for

all r ∈ As, and N
(t)
s,r ≤ N

(t−1)
s,r for all r ∈ Bs. In addition,

∣∣∣M (t)
s,r

∣∣∣ , ∣∣∣N (t)
s,r

∣∣∣ ≤ αst + βst for all
r ∈ [m].

(S3) For any s ∈ {±1} and i ∈ [nst], we have

nµSNR
2
µ

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤

∑
r∈[m]

M
(t)
s,r ≤ 6λstnµSNR

2
µ ·

∑
r∈[m]

ρ
(t)
r,i

nνSNR
2
ν

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤

∑
r∈As

N
(t)
s,r ≤ 6λstnνSNR

2
ν ·
∑
r∈[m]

ρ
(t)
r,i

nνSNR
2
ν

12λst
·
∑
r∈[m]

ρ
(t)
r,i ≤−

∑
r∈Bs

N
(t)
s,r ≤ 6λstnνSNR

2
ν ·
∑
r∈[m]

ρ
(t)
r,i .

(S4)
∣∣∣ŷifst (W (t), X̃i

)
− 1

m

∑
r∈[m] ρ

(t)
r,i

∣∣∣ ≤ κst
4 for any i ∈ [nst]

(S5) 1
m

∣∣∣∑r∈[m] ρ
(t)
r,i −

∑
r∈[m] ρ

(t)
r,j

∣∣∣ ≤ κst for any i, j ∈ [nst].

(S6)
g̃
(t)
j

g̃
(t)
i

≤ λst for any i, j ∈ [nst].

(S7) For any i ∈ [nst] and r ∈ [m],
〈
w

(t)
ŷi,r

, ξ̃i

〉
> 0 if

〈
w

(0)
ŷi,r

, ξ̃i

〉
> 0. Furthermore, for any

i ∈ [nst] and r ∈ Xi, ρ
(t)
r,i = maxr′∈[m] ρ

(t)
r′,i.

(S8) Let xt be the unique solution of

xt + exp(xt + κst/16) =
ησ2

pd

8mnst
t+ exp(κst/4).

It holds that for any i ∈ [nst],

xt ≤
1

m

∑
r∈[m]

ρ
(t)
r,i .

Proof It is trivial for the case t = 0. Assume the conclusions hold at iteration t ≤ τ and we will
prove for the case t = τ + 1.

(S1): We fix arbitrary i ∈ [nst] and r ∈ [m].
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Let us prove the first statement. If ρ(τ)r,i ≥ −αst − 4βst log T
∗, then we have

ρ(τ+1)
r,i

= ρ(τ)
r,i

− η

mnst
g̃
(τ)
i ∥ξ̃i∥2 ≥ −αst − 4βst log T

∗ −
3ησ2

pd

2mnst
≥ −αst − 5βst log T

∗,

where the first inequality follows from (7) and the second inequality follows from (9). Otherwise, we
have 〈

w
(τ)
−ŷi,r

, ξ̃i

〉
=
〈
w

(0)
−ŷi,r

, ξ̃i

〉
+ ρ(τ)

r,i
+

∑
j∈[nst]\{i}

ρ
(τ)
−ŷi,r,j

⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≤ αst + (−αst − 4βst log T
∗) +

∑
j∈[nst]\{i}

∣∣∣ρ(τ)−ŷi,r,i

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

≤ −4βst log T
∗ + nst · 4 log T ∗ · βst

nst

= 0.

It implies ρ(τ+1)
r,i = ρ

(τ)
r,i ≥ −αst − 5βst log T

∗ and we have desired conclusion.

Next, we prove the second statement. If ρ(τ)r,i < 3 log T ∗, then we have

ρ
(τ+1)
r,i ≤ ρ

(τ)
r,i +

η

mnst
g̃
(τ)
i ∥ξ̃i∥2 ≤ 3 log T ∗ +

3ησ2
pd

2mnst
≤ 4 log T ∗,

where the second inequality follows from (7) and the third inequality follows from (9). Otherwise,
there exists t̂ < τ such that ρ(t̂)r,i ≤ 3 log T ∗ < ρ

(t̂+1)
r,i . Then, we have

ρ
(τ+1)
r,i = ρ

(t̂)
r,i +

(
ρ
(t̂+1)
r,i − ρ

(t̂)
r,i

)
+

τ∑
t=t̂+1

(
ρ
(t+1)
r,i − ρ

(t)
r,i

)

≤ 3 log T ∗ +
η

mnst
g̃
(t̂)
i ∥ξ̃i∥2 +

η∥ξ̃i∥2

mnst

τ∑
t=t̂+1

g̃
(t)
i

≤ 3 log T ∗ +
log T ∗

2
+

3ησ2
pd

2mnst

τ∑
t=t̂+1

1

1 + exp
(
Fŷi

(
W

(t)
ŷi

, X̃i

)
− F−ŷi

(
W

(t)
−ŷi

, X̃i

))
≤ 7

2
log T ∗ +

3ησ2
pd

2mnst

τ∑
t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

)
+ F−ŷi

(
W

(t)
−ŷi

, X̃i

))

≤ 7

2
log T ∗ +

3ησ2
pd

2mnst

τ∑
t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

)
+

κst
16

)
,

where the second inequality follows from (9) and (7) and the last inequality follows from Lemma 20.
For any t = t̂+ 1, · · · , τ and r′ ∈ Xi, by applying (S7) with iteration t, we have〈

w
(t)
ŷi,r′

, ξ̃i

〉
=
〈
w

(0)
ŷi,r′

, ξ̃i

〉
+ ρ

(t)
r′,i +

∑
j∈[nst]\{i}

ρ
(t)
ŷi,r,j

· ⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2
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≥ ρ
(t)
r,i − αst − 4βst log T

∗

≥ 3 log T ∗ − αst − 4βst log T
∗.

Therefore, we have

τ∑
t=t̂+1

exp
(
−Fŷi

(
W

(t)
ŷi

, X̃i

))
≤

τ∑
t=t̂+1

exp

− 1

m

∑
r′∈Xi

〈
w

(t)
ŷi,r′

, ξ̃i

〉
≤

τ∑
t=t̂+1

exp

(
−(3 log T ∗ − αst − 4βst log T

∗) |Xi|
m

)

≤ T ∗ exp

(
−(3 log T ∗ − αst − 4βst log T

∗) |Xi|
m

)
≤ T ∗ exp(− log T ∗) = 1,

where the last inequality follows from (5) and (8). Finally, we conclude

ρ
(τ+1)
r,i ≤ 7

2
log T ∗ +

3ησ2
pd

2mnst
exp(κst/16) ≤ 4 log T ∗,

where the last inequality follows from (9).
(S2): We fix an arbitrary s ∈ {±1} and i ∈ [nst].
For any r ∈ [m], we have

mnst

η∥µ∥2
(
M

(τ+1)
s,r −M

(τ)
s,r

)

=
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣ /λst −
∣∣∣F (l)

µs

∣∣∣λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ 2
( (

1− C−1
st

)
nµ/λst − C−1

st nµλst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥
nµg̃

(τ)
i

λst
· 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

(11)

≥ 0,

where the first inequality follows from (S6) with iteration τ and the third inequality follows from
large choice of Cst.

For any r ∈ As, from (S2) at iteration 0, . . . , τ , we have
〈
w

(τ)
s,r ,νs

〉
> 0. Hence, we have

mnst

η∥ν∥2
(
N

(τ+1)
s,r −N

(τ)
s,r

)
=
∑
l∈[2]

∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j
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≥
∑
l∈[2]

(∣∣∣C(l)
νs

∣∣∣ /λst −
∣∣∣F (l)

νs

∣∣∣λst

)
g̃
(τ)
i

≥ 2
( (

1− C−1
st

)
nν/λst − C−1

st nνλst

)
g̃
(τ)
i

≥
nν g̃

(τ)
i

λst
(12)

≥ 0,

where the first inequality follows from (S6) with iteration τ and the third inequality follows from the
large choice of Cst.

Similarly, for any r ∈ Bs, from (S2) with iteration 0, . . . , τ , we have
〈
w

(τ)
s,r ,νs

〉
< 0. Hence,

we have

mnst

η∥ν∥2
(
N

(τ)
s,r −N

(τ+1)
s,r

)
=
∑
l∈[2]

 ∑
j∈C(l)

−νs

g̃
(τ)
j −

∑
j∈F(l)

−νs

g̃
(τ)
j


≥
∑
l∈[2]

(∣∣∣C(l)
−νs

∣∣∣ /λst −
∣∣∣F (l)

−νs

∣∣∣λst

)
g̃
(τ)
i

≥ 2
( (

1− C−1
st

)
n−νs/λst − C−1

st n−νsλst

)
g̃
(τ)
i

≥
n−νs g̃

(τ)
i

λst

≥ 0,

where the first inequality follows from (S6) with iteration τ and the third inequality follows from
large choice of Cst > 0.

Let us prove the last part. For any r ∈ [m], if M (τ)
s,r ≤ −αst, then we have

〈
w

(τ)
s,r ,µs

〉
< 0.

Hence,
∣∣∣M (τ+1)

s,r

∣∣∣ = ∣∣∣M (τ)
s,r

∣∣∣ ≤ αst + βst by Lemma 13. Otherwise, M (τ)
s,r > −αst implies

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤ −
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣ /λst −
∣∣∣F (l)

µs

∣∣∣λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ −2
( (

1− C−1
st

)
· nµ/λst − C−1

st nµλst

)
g̃
(τ)
i 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ 0,

where the first inequality follows from (S6) with iteration τ and the last inequality follows from the
large choice of Cst. Thus, M (τ+1)

s,r ≤ M
(τ)
s,r ≤ αst + βst. In addition,

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)
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= −
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ −
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣λst −
∣∣∣F (l)

µs

∣∣∣ /λst)
)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ −2
( (

1− C−1
st

)
nµλst − C−1

st nµ/λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ −2λstnµ

≥ −2λstnst,

where the first inequality follows from (S6) with iteration τ . Therefore, we have

M (τ+1)
s,r ≥ M (τ)

s,r − 2λstη∥µ∥2

m
≥ −αst −

2λstη∥µ∥2

m
≥ −αst − βst,

where the last inequality follows from (9).
From Lemma 13, for any r ∈ [m],∣∣∣N (τ+1)

s,r −N (τ)
s,r

∣∣∣ ≤ 2η ∥ν∥2

m
≤ αst.

Therefore, it suffices to show that N (τ+1)
s,r ≤ N

(τ)
s,r when N

(τ)
s,r > αst and N

(τ+1)
s,r ≥ N

(τ)
s,r when

N
(τ)
s,r < −αst. If N (τ)

s,r > αst, then we have〈
w(τ)

s,r ,νs

〉
=
〈
w(0)

s,r ,νs

〉
+N (τ)

s,r > 0.

Hence, we have
mnst

η∥ν∥2
(
N (τ+1)

s,r −N (τ)
s,r

)

= −
∑
l∈[2]

∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j


≤ −

∑
l∈[2]

(∣∣∣C(l)
νs

∣∣∣ /λst −
∣∣∣F (l)

νs

∣∣∣λst

)
g̃
(τ)
i

≤ −2
( (

1− C−1
st

)
nν/λst − C−1

st · nνλst

)
g̃
(τ)
i

≤ 0,

where the first inequality follows from (S6) with iteration τ and the last inequality follows from
the large choice of Cst. Using the similar argument, we can also show that N (τ+1)

s,r ≥ N
(τ)
s,r when

N
(τ)
s,r < −αst and we have desired conclusion.

(S3): We fix arbitrary s ∈ {±1} and i ∈ [nst].
From (11) and (S2) at iteration 0, . . . , τ , we have∑

r∈[m]

M
(τ+1)
s,r −

∑
r∈[m]

M
(τ)
s,r ≥ η ∥µ∥2

mnst
·
nµg̃

(τ)
i

λst
· |Ms|
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≥
nµSNR

2
µ

12λstnst
ηg̃

(τ)
i ∥ξ̃i∥2

≥
nµSNR

2
µ

12λst

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second inequality follows from (7) and (8). Combining with (S3) at iteration τ , we have

nµSNR
2
µ

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤

∑
r∈[m]

M
(τ+1)
s,r .

For any r ∈ [m], we have

mnst

η∥µ∥2
(
M

(τ+1)
s,r −M

(τ)
s,r

)

=
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤
∑
l∈[2]

(∣∣∣C(l)
µs

∣∣∣λst −
∣∣∣F (l)

µs

∣∣∣ /λst

)
g̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ λst

∑
l∈[2]

∣∣∣C(l)
µs

∣∣∣ g̃(τ)i · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤ 2λst

(
1 + C−1

st

)
nµg̃

(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≤ 3λstnµg̃
(τ)
i · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

where the first inequality follows from (S6) with iteration τ . Hence, we have∑
r∈[m]

M
(τ+1)
s,r −

∑
r∈[m]

M
(τ)
s,r ≤ λstη ∥µ∥2

mnst
nµg̃

(τ)
i |Ms|

≤ 6λstη

nst
nµSNR

2
µg̃

(τ)
i ∥ξ̃i∥2

≤ 6λstnµSNR
2
µ

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second and third inequalities follow from (7) and (8), and (S7) with iteration τ . Combining
with (S3) at iteration τ , we have∑

r∈[m]

M
(τ+1)
s,r ≤ 6λstnµSNR

2
µ ·

∑
r∈[m]

ρ
(τ+1)
r,i .

From (12) and (S2) at iteration 0, . . . , τ , we have∑
r∈As

N
(τ+1)
s,r −

∑
r∈[m]

N
(τ)
s,r ≥ η ∥ν∥2

mnst
·
nν g̃

(τ)
i

2λst
· |As|
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≥ nνSNR
2
ν

12λstnst
ηg̃

(τ)
i ∥ξ̃i∥2

≥ nνSNR
2
ν

12λst

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second inequality follows from (7) and (8). Combining with (S3) at iteration τ , we have

nνSNR
2
ν

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤

∑
r∈As

N
(τ+1)
s,r .

For any r ∈ As, we have

mnst

η∥ν∥2
(
N

(τ+1)
s,r −N

(τ)
s,r

)
=
∑
l∈[2]

∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j


≤ λst

∑
l∈[2]

∣∣∣C(l)
νs

∣∣∣ g̃(τ)i

≤ 2λst

(
1 + C−1

st

)
nν g̃

(τ)
i

≤ 3λstnν g̃
(τ)
i ,

where the first inequality follows from (S6) and the third inequality follows from the large choice of
Cst. Hence, we have∑

r∈As

N
(τ+1)
s,r −

∑
r∈As

N
(τ)
s,r ≤ η ∥ν∥2

mnst
· 3λstnν g̃

(τ)
i |As|

≤ 6λstnνSNR
2
ν

nst
ηg̃

(τ)
i ∥ξ̃i∥2

≤ 6λstnνSNR
2
ν

∑
r∈[m]

ρ
(τ+1)
r,i −

∑
r∈[m]

ρ
(τ)
r,i

 ,

where the second and third inequalities follow from (7) and (8). Combining with (S3) at iteration τ ,
we have ∑

r∈As

N
(τ+1)
s,r ≤ 6λstnνSNR

2
ν ·
∑
r∈[m]

ρ
(τ+1)
r,i .

Using a similar argument, we can also show that

nνSNR
2
ν

12λst
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ −

∑
r∈Bs

N
(τ+1)
s,r ≤ 6λstnνSNR

2
ν ·
∑
r∈[m]

ρ
(τ+1)
r,i .

(S4): We fix arbitrary i ∈ [nst]. From (S3) at iteration τ + 1 which we have already shown, we
have

1

m

∑
r∈Ms

M
(τ+1)
s,r ≤ 1

m

∑
r∈[m]

M
(τ+1)
s,r
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≤
6λstnµSNR

2
µ

m
·
∑
r∈[m]

ρ
(τ+1)
r,i

≤ 24λstnµSNR
2
µ log T ∗

≤ κst
64

,

where the first equality follows from (S2) at iteration 0, . . . , τ , the second inequality follows from
(S1) and the last inequality follows from Condition 6. Similarly, we have

1

m

∑
r∈As

N
(τ+1)
s,r ≤ 6λstnνSNR

2
ν

m
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ 24λstnνSNR

2
ν log T

∗ ≤ κst
64

and

− 1

m

∑
r∈Bs

N
(τ+1)
s,r ≤ 6λstnνSNR

2
ν

m
·
∑
r∈[m]

ρ
(τ+1)
r,i ≤ 24λstnνSNR

2
ν log T

∗ ≤ κst
64

.

Therefore, for any s ∈ {±1}, due to (5) and three inequalities above, we have

1

m

∑
r∈[m]

σ
(〈

w(τ+1)
s,r ,µs

〉)
,
1

m

∑
r∈[m]

σ
(〈

w(τ+1)
s,r ,νs

〉)
,
1

m

∑
r∈[m]

σ
(〈

w(τ+1)
s,r ,−νs

〉)
≤ κst

32
.

(13)
Together with applying Lemma 20 and , we have∣∣∣∣∣∣ŷifst

(
W (τ+1), X̃i

)
− 1

m

∑
r∈[m]

ρ
(τ+1)
r,i

∣∣∣∣∣∣
=

∣∣∣∣∣∣Fŷi

(
W

(τ)
ŷi

, X̃i

)
− 1

m

∑
r∈[m]

ρ
(t)
r,i

∣∣∣∣∣∣+ F−ŷi

(
W

(τ)
−ŷi

, X̃i

)
≤ 1

m

∑
r∈[m]

∣∣∣σ (〈w(τ+1)
ŷi,r

, ξ̃i

〉
− ρ

(τ+1)
r,i

)∣∣∣+ 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

wŷi,r, ṽ
(l)
i

〉
− ρ

(τ+1)
r,i

)
+

κst
16

≤ κst
4
.

(S5): We fix i, j ∈ [n] and we assume 1
m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
> 0, without loss of generality.

From triangular inequality, (7), and (9), we have∣∣∣∣∣∣ 1m
∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]
− 1

m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]∣∣∣∣∣∣
≤ 1

m

∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ)
r,i

]
+

1

m

∑
r∈[m]

[
ρ
(τ+1)
r,j − ρ

(τ)
r,j

]
≤ η

mnst
g̃
(τ)
i ∥ξ̃i∥2 +

η

mnst
g̃
(τ)
j ∥ξ̃j∥2

≤
3ησ2

pd

mnst
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≤ κst
2
.

Hence, we have 1
m

∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]
> −κst

2

Also, if 1
m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
< κst

2 , then we have

1

m

∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]
≤ 1

m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
+

κst
2

≤ κst.

Otherwise, we have κst
2 ≤ 1

m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
≤ κst. Together with applying Lemma 20 and

(13), we have

ŷifst

(
W (τ), X̃i

)
− ŷjfst

(
W (τ), X̃j

)
= Fŷi

(
W

(τ)
ŷi

, X̃i

)
− F−ŷi

(
W

(τ)
−ŷi

, X̃i

)
− Fŷj

(
W

(τ)
ŷj

, X̃j

)
+ F−ŷj

(
W

(τ)
−ŷj

, X̃j

)
≥ Fŷi

(
W

(τ)
ŷi

, X̃i

)
− Fŷj

(
W

(τ)
ŷj

, X̃j

)
− κst

16

≥ 1

m

∑
r∈[m]

[
σ
(〈

w
(τ)
ŷi,r

, ξ̃i

〉)
− σ

(〈
w

(τ)
ŷj ,r

, ξ̃j

〉)]
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

wŷj ,r, ṽ
(l)
j

〉)
− κst

16

≥ 1

m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
− κst

4

≥ κst
4
.

Therefore, we have

g̃
(τ)
i

g̃
(τ)
j

=
1 + exp

(
ŷjfst

(
W (τ), X̃j

))
1 + exp

(
ŷifst

(
W (τ), X̃i

))
=

exp
(
−ŷjfst

(
W (τ), X̃j

))
+ 1

exp
(
−ŷjfst

(
W (τ), X̃j

))
+ exp

(
ŷifst

(
W (τ), X̃i

)
− ŷjfst

(
W (τ), X̃j

))
≤

exp
(
−ŷjfst

(
W (τ), X̃j

))
+ 1

exp
(
−ŷjfst

(
W (τ), X̃j

))
+ exp (κst/4)

≤ exp(κst/16) + 1

exp(κst/16) + exp(κst/4))

≤ exp (−κst/8) ,

where the second inequality follows from

−ŷjfst

(
W (τ), X̃j

)
≤ F−ŷj

(
W

(τ)
−ŷj

, X̃j

)
≤ κst

16

and the last inequality follows from applying z(z3+1)
z+1 = z(z2 − z + 1) ≥ z2 with z = exp(κst/16).
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Therefore, we have∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]
−
∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
≤ η

mnst

(
g̃
(τ)
i m∥ξ̃i∥2 − g̃

(τ)
j |Xj | ∥ξ̃j∥2

)
=

η

mnst
g̃
(τ)
j |Xj | ∥ξ̃j∥2

(
g̃
(τ)
i m∥ξ̃i∥2

g̃
(τ)
j |Xj | ∥ξ̃j∥2

− 1

)
≤ η

mnst
g̃
(τ)
j |Xj | ∥ξ̃j∥2 (exp(−κst/8) · 4 · (1 + βst/n)− 1)

≤ η

mnst
g̃
(τ)
j |Xj | ∥ξ̃j∥2 (12 exp(−κst/8)− 1)

≤ 0,

where the third inequality is due to (5) and 1 + z ≤ ez for any z ∈ R. Hence, we have

1

m

∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]
≤ 1

m

∑
r∈[m]

[
ρ
(τ)
r,i − ρ

(τ)
r,j

]
≤ κst.

(S6): We fix arbitrary i, j ∈ [nst] and we assume ŷifst

(
W (τ+1), X̃i

)
≥ ŷjfst

(
W (τ+1), X̃j

)
,

without loss of generality. By combining (S4) and (S5) at iteration τ + 1 which we already have
shown, we have

ŷifst

(
W (τ+1), X̃i

)
− ŷjfst

(
W (τ+1), X̃j

)
≤

∣∣∣∣∣∣ 1m
∑
r∈[m]

[
ρ
(τ+1)
r,i − ρ

(τ+1)
r,j

]∣∣∣∣∣∣
+

∣∣∣∣∣∣ŷifst
(
W (τ+1), X̃i

)
− 1

m

∑
r∈[m]

ρ
(τ+1)
r,i

∣∣∣∣∣∣+
∣∣∣∣∣∣ŷjfst

(
W (τ+1), X̃j

)
− 1

m

∑
r∈[m]

ρ
(τ+1)
r,j

∣∣∣∣∣∣
≤ 2κst.

Then, we have

g̃
(τ+1)
j

g̃
(τ+1)
i

=
1 + exp

(
ŷifst

(
W (τ+1), X̃i

))
1 + exp

(
ŷjfst

(
W (τ+1), X̃j

))
≤ exp

[
ŷifst

(
W (τ+1), X̃i

)
− ŷjfst

(
W (τ+1), X̃j

)]
≤ exp(2κst)

= λst.

(S7): We fix arbitrary i ∈ [nst]. From (S7) at iteration τ , we have
〈
w

(τ)
ŷi,r

, ξ̃i

〉
> 0 for any

r ∈ Xi. Therefore, we have
ρ
(τ+1)
r,i = ρ

(τ)
r,i +

η

mnst
g̃
(τ)
i ∥ξ̃i∥2

49



PROVABLE WEAK-TO-STRONG GENERALIZATION THROUGH FEATURE LEARNING

and 〈
w

(τ+1)
ŷi,r

, ξ̃i

〉
−
〈
w

(τ)
ŷi,r

, ξ̃i

〉
=
(
ρ
(τ+1)
r,i − ρ

(τ)
r,i

)
+

∑
j∈[nst]\{i}

(
ρ
(τ+1)
ŷi,r,j

− ρ
(τ)
ŷi,r,j

) ⟨ξ̃i, ξ̃j⟩
∥ξ̃j∥2

≥ η

mnst
g̃
(τ)
i ∥ξ̃i∥2 −

η

mnst

∑
j∈[nst]\{i}

g̃
(τ)
j

∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
=

η

mnst
g̃
(τ)
i ∥ξ̃i∥2

1−
∑

j∈[nst]\{i}

g̃
(τ)
j

g̃
(τ)
i

·

∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃i∥2


≥ η

mnst
g̃
(τ)
i ∥ξ̃i∥2(1− λstβst)

≥ 0,

where we use (S6) at iteration τ , (7) for the second inequality, and (5) for the last inequality. Hence,
we have

〈
w

(τ+1)
ŷi,r

, ξ̃i

〉
> 0. Now we prove the second part. For any r ∈ Xi and r′ ∈ [m], we have

ρ
(τ+1)
r′,i ≤ ρ

(τ)
r′,i +

η

mn
g̃
(τ)
i ∥ξ̃i∥2 ≤ ρ

(τ)
r,i +

η

mn
g̃
(τ)
i ∥ξ̃i∥2 = ρ

(τ+1)
r,i ,

where the second inequality is due to (S7) with iteration τ .
(S8): From (S7) at iteration τ , we have

1

m

∑
r∈[m]

ρ
(τ+1)
r,i ≥ 1

m

∑
r∈[m]

ρ
(τ)
r,i +

η

mnst
g̃
(τ)
i · |Xi|

m
· ∥ξ̃i∥2

=
1

m

∑
r∈[m]

ρ
(τ)
r,i +

η

mnst
· 1

1 + exp
(
ŷifst

(
W (τ), X̃i

)) · |Xi|
m

· ∥ξ̃i∥2.

From (S4) at iteration τ , (7), and (8), we have

1

m

∑
r∈[m]

ρ
(τ+1)
r,i ≥ 1

m

∑
r∈[m]

ρ
(τ)
r,i +

ησ2
pd

8mnst
· 1

1 + exp(κst/4) exp
(

1
m

∑
r∈[m] ρ

(τ)
r,i

) .
By applying Lemma 15, the fact that z + z

1+bez is an increasing function for any c ∈ [0, 1], b > 0,
and the comparison theorem, we have our conclusion.

I.2. Convergence of Training Loss

In this subsection, we prove that the training loss converges below ε within O(η−1ε−1nstmd−1σ−2
p ).

For any t ∈ [0, T ∗], from the definition of xt, we have

xt ≤ log

(
ησ2

pd

8mnst exp(κst/4)
t+ 1

)
.
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Combining the inequality above with the definition of xt, we have

exp(xt) ≥
ησ2

pd

8mnst exp(κst/4)
t+ 1− exp(−κst/4) log

(
ησ2

pd

8mnst exp(κst/4)
t+ 1

)

≥
ησ2

pd

8mnst exp(κst/4)
t+ 1− log

(
ησ2

pd

8mnst exp(κst/4)
t+ 1

)

≥
ησ2

pd

16mnst exp(κst/4)
t+

1

2

≥
ησ2

pd

16mnst exp(κst/4)
t, (14)

where we use the inequality log z < z
2 for any z > 0.

For any t ∈ [0, T ∗] and i ∈ [nst], by applying (S4) and (S8), we have

ŷif
(
W (t), X̃i

)
≥ −κst

4
+

1

m

∑
r∈[m]

ρ
(t)
r,i

≥ −κst
4

+ xt

≥ −κst
4

+ log

(
ησ2

pd

16mnst exp(κst/4)
t

)
,

= log

(
ησ2

pd

16mnst exp(κst/2)
t

)

≥ log

(
ησ2

pd

16λstmnst
t

)
where the third inequality follows from (14) and the fourth inequality follows from (5). Therefore,
we have

Lst

(
W (t)

)
≤ log

(
1 +

16λstmnst

ησ2
pd

· t−1

)
≤ 16λstmnst

ησ2
pd

· t−1,

where the inequality follows from log(1 + z) ≤ z for z > 0. If t ≥ 16λstη
−1ε−1mnstd

−1σ−2
p , then

we have Lst

(
W (t)

)
≤ ε. Hence, by defining Tst := 16λstη

−1ε−1mnstd
−1σ−2

p , we have the first
conclusion.

I.3. Test Error

In this subsection, we prove the second part of our conclusion. All arguments in this subsection are
under Condition 5 and the event Est.

Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test data (X, y),
respectively. We fix an arbitrary iteration t ∈ [Tst, T

∗]. From the choice of iteration t and (14), for
any i ∈ [nst], we have

log
(
ε−1
)
≤ log

(
ησ2

pd

16λstmnst
t

)
≤ log

(
ησ2

pd

16mnst exp(κst/2)
t

)
≤ xt ≤

1

m

∑
r∈[m]

ρ
(t)
r,i . (15)
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I.3.1. TEST ERROR UPPER BOUND

We define a function h : S → R as h(z) := 1
m

∑
r∈[m] σ

(〈
w

(t)
−y,r, z

〉)
for any z ∈ S. It plays a

crucial role when we prove the upper bounds on test error. We have

E[h(ξ)] =
1

m
Ez1,...,zm

∑
r∈[m]

σ(zr)

 =
1

2m
Ez1,...,zm

∑
r∈[m]

|zr|

 =
σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥ ,
where zr ∼ N

(
0, σ2

p

∥∥∥ΠSw
(t)
−y,r

∥∥∥2) for each r ∈ [m]. Also, for any z1, z2 ∈ S, we have

|h(z1)− h(z2)| ≤
1

m

∑
r∈[m]

∣∣∣σ (〈w(t)
−y,r, z1

〉)
− σ

(〈
w

(t)
−y,r, z2

〉)∣∣∣
≤ 1

m

∑
r∈[m]

∣∣∣〈w(t)
−y,r, z1

〉
−
〈
w

(t)
−y,r, z2

〉∣∣∣
=

1

m

∑
r∈[m]

∣∣∣〈ΠSw
(t)
−y,r, z1

〉
−
〈
ΠSw

(t)
−y,r, z2

〉∣∣∣
≤ 1

m

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥ ∥z1 − z2∥ .

Hence, h is 1
m

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥-Lipschitz.

The following lemma characterizes
∥∥∥ΠSw

(t)
−y,r

∥∥∥’s which is related to key properties of h.

Lemma 22 For any s ∈ {±1}, it holds that

∑
r∈[m]

∥∥∥ΠSw
(t)
s,r

∥∥∥ ≤ 20σ−1
p d−

1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

Proof From triangular inequality and the event Est, we have

∥∥∥ΠSw
(t)
s,r

∥∥∥ ≤
∥∥∥ΠSw

(0)
s,r

∥∥∥+
∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤
√
2σ0d

1
2 +

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ .
In addition, we have∥∥∥∥∥∥

∑
i∈[nst]

ρ
(t)
s,r,i, ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥
2

=
∑

i∈[nst]

(
ρ
(t)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

ρ
(t)
s,r,iρ

(t)
s,r,j⟨ξ̃i, ξ̃j⟩∥ξ̃i∥

−2∥ξ̃j∥−2
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≤ 2σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
+ 2βstn

−1
st σ−2

p d−1
∑

i,j∈[nst]
i ̸=j

∣∣∣ρ(t)s,r,i

∣∣∣ ∣∣∣ρ(t)s,r,j

∣∣∣

≤ 2σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
+ βstn

−1
st σ−2

p d−1
∑

i,j∈[nst]
i ̸=j

(
ρ
(t)
s,r,i

)2
+
(
ρ
(t)
s,r,j

)2
2

,

≤ 4σ−2
p d−1

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2
where the first inequality follows from (7) and the second inequality follows from AM-GM inequality,
and the last inequality follows from (5). From the Cauchy-Schwarz inequality, we have

∑
r∈[m]

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(t)
s,r,iξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤ 2σ−1
p d−

1
2

∑
r∈[m]

 ∑
i∈[nst]

(
ρ
(t)
s,r,i

)2 1
2

≤ 2m
1
2σ−1

p d−
1
2

∑
r∈[m]

∑
i∈[nst]

(
ρ
(t)
s,r,i

)2 1
2

.

In addition, from (S1) with iteration t, we have∑
i∈[nst]

∑
r∈[m]

(
ρ
(t)
s,r,i

)2
=
∑

i∈[nst]
ŷi=s

∑
r∈[m]

(
ρ
(t)
r,i

)2
+
∑

i∈[nst]
ŷi=−s

∑
r∈[m]

(
ρ
(t)
r,i

)2

≤
∑

i∈[nst]
ŷi=s

∑
r∈[m]

(
ρ
(t)
r,i

)2
+ (αst + 5βst log T

∗)2mnst.

For any i ∈ [nst] such that ŷi = 1, we have

∑
r∈[m]

(
ρ
(t)
r,i

)2
≤ m

(
max
r∈[m]

ρ
(t)
r,i

)2

≤ 16m−1

∑
r∈[m]

ρ
(t)
r,i

2

,

where the last inequality follows from (S7) and (8). Therefore, we have

∑
i∈[nst]

∑
r∈[m]

(
ρ
(t)
s,r,i

)2
≤ 16m−1

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2

+ (αst + 5β log T ∗)2mnst

≤ 25m−1
∑

i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2

,

where the last inequality follows from (15) and (5). We conclude∑
r∈[m]

∥∥∥ΠSw
(t)
s,r

∥∥∥
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≤
√
2mσ0d

1
2 + 10σ−1

p d−
1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

≤ 20σ−1
p d−

1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

,

where the second inequality follows from (15), (5), and (C3).

By Theorem 5.2.2 in Vershynin [26], for any z > 0, it holds that

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
− cz2

σ2
p ∥h∥

2
Lip

)

where c is a universal constant and ∥·∥Lip denotes the best Lipschitz constant. Combining with
Lemma 22, we have

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

− cm2d

400
∑

i∈[nst]

(∑
r∈[m] ρ

(t)
r,i

)2 z2
 . (16)

Now, we characterize the test error. First, we consider the case (X, y) ∈ Se ∪ Sb. We have

yfst

(
W (t),X

)
= Fy

(
W (t)

y ,X
)
− F−y

(
W

(t)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

+
1

m

∑
r∈[m]

σ
(〈

w(t)
y,r, ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
≥ − 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
+
∑
r∈[m]

σ
(〈

w(t)
y,r,µy

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

≥ − 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
+

1

m

∑
r∈[m]

M
(t)
y,r − 2(2αst + βst)

= −h(ξ) +
1

m

∑
r∈[m]

M
(t)
y,r − 2(2αst + βst)

where the second inequality follows from (6) and (S2). From (S3), (S8), and (15), we have

1

m

∑
r∈[m]

M
(t)
y,r ≥

1

12λst
nµSNR

2
µ · xt

≥ 1

12λst
nµSNR

2
µ log

(
ε−1
)
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≥ 4(2αst + βst),

where the last inequality follows from (5). Therefore, we have

yfst

(
W (t),X

)
≥ −h(ξ) +

1

2m

∑
r∈[m]

M
(t)
y,r

and thus

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ P

h(ξ) > 1

2m

∑
r∈[m]

M
(t)
s,r

 .

From Lemma 22, we have

1

2m

∑
r∈[m]

M
(t)
y,r − E[h(ξ)]

=
1

2m

∑
r∈[m]

M
(t)
y,r −

σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥
≥

nµSNR
2
µ

24λstmn
1
2
st

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

− 20
√
2πmd

1
2

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

≥
nµSNR

2
µ

48λstmn
1
2
st

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2

.

where the last inequality follows from the condition nstp
2
b ∥ν∥

4 ≥ C2σ
4
pd and (C5).

From (16), we have

P

h(ξ) > 1

2m

∑
r∈[m]

M
(t)
s,r

 = P

h(ξ)− E[h(ξ)] >
1

2m

∑
r∈[m]

M
(t)
y,r − E[h(ξ)]



≤ P

h(ξ)− E[h(ξ)] >
nµSNR

2
µ

48λstmn
1
2
st

 ∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

2
1
2


≤ exp

(
−

cn2
µ ∥µ∥4

400 · 482λ2
st · nstσ4

pd

)

≤ exp

(
−nst(2pe + pb)

2 ∥µ∥4

C1σ4
pd

)
,

with some constant C1 > 0.
Using a similar argument, we can prove the upper bound on test error for the case (X, y) ∈ Sh.

In this case, we have

yfst

(
W (t),X

)
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= Fy

(
W (t)

y ,X
)
− F−y

(
W

(t)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

+
1

m

∑
r∈[m]

σ
(〈

w(t)
y,r, ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
≥ − 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
+

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

≥ − 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
+

2

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r

− 2(2αst + βst)

= −h(ξ) +
2

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r

− 2(2αst + βst)

where the first inequality follows from (6) and (S2). From (S3), (S8), and (15), we have

1

m

∑
r∈Ay

N
(t)
y,r,−

1

m

∑
r∈By

N
(t)
y,r ≥

1

12λst
nνSNR

2
ν · xt

≥ 1

12λst
nνSNR

2
ν · log

(
ησ2

pd

16mnst exp(κst/4)
t

)
≥ 1

12λst
nνSNR

2
ν log

(
ε−1
)

≥ 4(2αst + βst), (17)

where the last inequality follows from (5). Therefore, we have

yfst

(
W (t),X

)
≥ −h(ξ) +

1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r


and thus

P
[
yfst

(
W (t),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ P

h(ξ) > 1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r


 .

From Lemma 22 and Condition 5, we have

1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r

− E[h(ξ)]
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=
1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r

− σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(t)
−y,r

∥∥∥
≥ 1

12λstmnst
nνSNR

2
ν ·

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i −

3
√
2πmn

1
2
std

1
2

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i

≥ 1

24λstmnst
nνSNR

2
ν

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i ,

where the last inequality follows from the condition given in the statement. From (16), we have

P

h(ξ) > 1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r




= P

h(ξ)− E[h(ξ)] >
1

m
min

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r

− E[h(ξ)]


≤ P

h(ξ)− E[h(ξ)] >
1

24λstmnst
nνSNR

2
ν

∑
i∈[nst]

∑
r∈[m]

ρ
(t)
r,i


≤ exp

(
− cn2

ν ∥ν∥
4

9 · 242λ2
st · nstσ4

pd

)

≤ exp

(
−
nstp

2
b ∥µ∥

4

C ′
3σ

4
pd

)
,

with some constant C ′
3 > 0.

I.3.2. TEST ERROR LOWER BOUND

We consider the case (X, y) ∈ Sh. Define g : S → R as g(z) := 1
m

∑
r∈[m] σ

(〈
w

(t)
1,r, z

〉)
−

1
m

∑
r∈[m] σ

(〈
w

(t)
−1,r, z

〉)
for any z ∈ S. Then, we have

yfst

(
W (t),X

)
= Fy

(
W (t)

y ,X
)
− F−y

(
W

(t)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(t)
y,r,v

(l)
〉)

+
1

m

∑
r∈[m]

σ
(〈

w(t)
y,r, ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(t)
−y,r,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(t)
−y,r, ξ

〉)
≤ 1

m

∑
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σ
(〈
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y,r, ξ

〉)
− 1

m
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σ
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w
(t)
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+

1
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σ
(〈
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(l)
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2
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N
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(t)
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+ 2αst
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≤ yg(ξ) +
3

m
max

∑
r∈Ay

N
(t)
y,r,−

∑
r∈By

N
(t)
y,r


≤ yg(ξ) +

3

m
max

s∈{±1}

{∑
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N
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r∈Bs

N
(t)
s,r

}
,

where the second inequality follows from (17). Therefore, we have

P
[
yfst

(
W (t),X

) ∣∣∣ (X, y) ∈ Sh

]
≥ 1

2
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.

We define the set

Ω :=

{
z ∈ S : |g(z)| ≥ 3

m
max

s∈{±1}
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s,r,−
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}}
.

We immediately obtain P
[
yfst

(
W (t),X

) ∣∣ (X, y) ∈ Sh

]
≥ 1

2P[ξ ∈ Ω] and thus we will charac-
terize P[ξ ∈ Ω]. Denote ζ = C6pbSNR

2
ν ·

∑
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ŷi=1

ξ̃i, where C6 > 0 is some constant. Then, we
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2
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4

σ2
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where the first inequality follows from (7) and the last follows from the statement condition
nstp

2
b ∥ν∥

4 ≤ C4σ
4
pd and the small choice of C6. Also, for any r ∈ [m], we have
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≥ C6pbSNR
2
ν

 ∑
i∈[nst]
ŷi=1

ρ
(t)
r,i − 4βst log T

∗ − nstαst


where the first inequality follows from the convexity of ReLU, and the second inequality follows
from (S1), (6), and (7). In addition, for any r ∈ [m], we have
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−1,r, ξ + ζ
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− σ
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ŷi=1

∑
j∈[nst]\{i}

∣∣∣ρ(t)−1,r,j

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

+
∑

i∈[nst]
ŷi=1
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−1,r, ξ̃i
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≤ 2C6pbSNR
2
ν

(
nst(αst + 5βst log T

∗) + 4βst log T
∗ + nstαst

)
= 2C6pbSNR

2
νnst(2αst + 9βst log T

∗),

where the first inequality holds since ReLU is 1-Lipschitz and the second inequality follows from
(S1), (6), and (7). Therefore, we have

g(ξ + ζ)− g(ξ) + g(−ξ + ζ)− g(−ξ)

≥ C6pbSNR
2
ν

m

 ∑
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ŷi=1

ρ
(t)
r,i − nst(7αst + 12βst log T
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≥ C6pbSNR

2
ν

2m
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ρ
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≥ C6pbSNR
2
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·

∣∣∣C(1)
µ1

∣∣∣+ ∣∣∣C(1)
ν1

∣∣∣+ ∣∣∣C(1)
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3λstnνSNR

2
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{∑
r∈As

N
(t)
s,r,−
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N
(t)
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m
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s∈{±1}
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N
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N
(t)
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}
,

where the second inequality follows from (15) and (5), the third inequality follows from (S3) and the
last inequality follows from the choice of C6 > 0 and∣∣∣C(1)

µ1

∣∣∣+ ∣∣∣C(1)
ν1

∣∣∣+ ∣∣∣C(1)
−ν1

∣∣∣ ≥ (1− C−1
st

)
· nµ + 2(1− C−1

st )nν =

(
1− C−1

st

)
(pe + pb)nst

2
≥ nst

8
.

By the pigeonhole principle, it implies that at least one of ξ,−ξ, ξ + ζ,−ξ + ζ belongs to Ω.
Hence,

P[ξ ∈ Ω] + P[−ξ ∈ Ω] + P[ξ + ζ ∈ Ω] + P[−ξ + ζ ∈ Ω] ≥ 1.

Also, from symmetry, we have P[ξ ∈ Ω] = P[−ξ ∈ Ω] and P[−ξ + ζ ∈ Ω] = P[ξ − ζ ∈ Ω]. The
following lemma allows us to relate the probability P[ξ ∈ Ω] to the probabilities P[ξ ± ζ ∈ Ω].
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Lemma 23 (Direct from Proposition 2.1 in Devroye et al. [8]) For any v ∈ S the total variation
distance TV(·, ·) between N (0, σ2

pΛ) and N (v, σ2
pΛ) is smaller than ∥v∥

2σp
.

By Lemma 23 and (18), we have

|P[ξ ∈ Ω]− P[ξ ∈ Ω± ζ]| ≤ TV
(
N (0, σ2

pΛ),N (±ζ, σ2
pΛ)

)
≤ ∥ζ∥

2σp
≤ 0.01.

Therefore, we have

1 ≤ P[ξ ∈ Ω] + P[−ξ ∈ Ω] + P[ξ + ζ ∈ Ω] + P[−ξ + ζ ∈ Ω] ≤ 4P[ξ ∈ Ω] + 0.02

and thus P[ξ ∈ Ω] ≥ 0.24. We conclude that

P
[
yfst

(
W (t),X

) ∣∣∣ (X, y) ∈ Sh

]
≥ 0.12.
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Appendix J. Proof of Theorem 10

By Condition (C5), it suffices to prove the following restatements of Theorem 10.

Theorem 24 (Weak-to-Strong Training, Data-Abundant Regime) Let W (t) be the iterates of the
weak-to-strong training, with the weak model fwk(w

∗, ·) satisfying the conclusion of Theorem 7. For
any δ ∈ (0, 1) satisfying Condition 9, with probability at least 1− δ, there exists early stopping time
Tes = O(η−1m(2pe + pb)

−2 ∥µ∥−2) such that the following statements hold:

1. The early stopped strong model fst
(
W (Tes), ·

)
perfectly fits training data having correct label

(i.e. ŷi = ỹi) but fails to training data with flipped label (i.e. ŷi ̸= ỹi). In other words, the model
predicts the true label ỹi for any training data point X̃i.

2. Let (X, y) ∼ D be an unseen test example, independent of the training set {(X̃i, ŷi)}nst
i=1. We

have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ exp

(
−
nstp

2
b∥µ∥4

C ′
5σ

4
pd

)
,

and

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ exp

(
−nst(2ph + pb)

2∥ν∥4

C ′
5σ

4
pd

)
,

Here, C ′
5 > 0 is a constant.

For the proof, we first analyze the early training dynamics and characterize the early stopping
iteration (Appendix J.1). We then show that the early-stopped model perfectly fits the training data
with true labels (Appendix J.2), and finally, we establish a bound on the test error (Appendix J.3).

J.1. Analyzing Early Phase

First, we establish upper bounds on the noise coefficients.

Lemma 25 Under Condition 9 and the event Est, for any t ∈ [0, T ∗] , s ∈ {±1}, r ∈ [m] and
i ∈ [nst], it holds that ∣∣∣ρ(t)s,r,i

∣∣∣ ≤ 3ησ2
pd

2mnst
t,

∣∣∣〈w(t)
s,r, ξ̃i

〉∣∣∣ ≤ αst +
3ησ2

pd

mnst
t.

Proof We fix arbitrary s ∈ {±1}, r ∈ [m] and i ∈ [nst]. For any iteration 0 < t ≤ T ∗, we have∣∣∣ρ(t)s,r,i

∣∣∣ ≤ ∣∣∣ρ(t−1)
s,r,i

∣∣∣+ η

mnst
g̃
(t−1)
i ∥ξ̃i∥2 ≤

∣∣∣ρ(t−1)
s,r,i

∣∣∣+ 3ησ2
pd

2mnst
≤ · · · ≤

∣∣∣ρ(0)s,r,i

∣∣∣+ 3ησ2
pd

2mnst
t =

3ησ2
pd

2mnst
t,

where the first inequality is due to the triangular inequality and the others are due to (7). Therefore,
we have

∣∣∣〈w(t)
s,r, ξ̃i

〉∣∣∣ ≤ ∣∣∣〈w(0)
s,r , ξ̃i

〉∣∣∣+ ∣∣∣ρ(t)s,r,i

∣∣∣+ ∑
j∈[nst]\{j}

∣∣∣ρ(t)s,r,j

∣∣∣
∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣
∥ξ̃j∥2

≤ αst +
3ησ2

pd

2mnst
t(1 + βst)
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≤ αst +
3ησ2

pd

mnst
t,

where the second inequality follows from (6) and (7).

The following lemma can be inductively applied when we characterize the early phase of learning
dynamics.

Lemma 26 Suppose the iteration τ ∈
[
0, mnst

ησ2
pd log T

∗

]
satisfy the following:

• 1
m

∑
r∈[m]M

(τ)
1,r ,

1
m

∑
r∈[m]M

(τ)
−1,r <

1
2 .

• For each s ∈ {±1}, M (τ)
s,r ,
〈
w

(τ)
s,r ,µs

〉
> 0 if r ∈ Ms and M

(τ)
s,r = 0 if r /∈ Ms.
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s,r ,
〈
w

(τ)
s,r ,νs

〉
> 0 if r ∈ As and N

(τ)
s,r ,
〈
w

(τ)
s,r ,νs

〉
< 0 if r ∈ Bs.

• 1
60

∑
r∈[m]M

(τ)
−1,r ≤

∑
r∈[m]M

(τ)
1,r ≤ 60

∑
r∈[m]M

(τ)
−1,r.

• For each s, s′ ∈ {±1},

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
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M
(τ)
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∑
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N
(τ)
s,r , −

∑
r∈Bs

N
(τ)
s,r ≤

∑
r∈[m]

M
(τ)
s′,r

• For any s ∈ {±1} and r ∈ [m],
∣∣∣M (τ)

s,r

∣∣∣ , ∣∣∣N (τ)
s,r

∣∣∣ ≤ αst + βst.

Then the following hold:

• For any s ∈ {±1}, M (τ+1)
s,r ≥ M

(τ)
s,r if r ∈ [m], N (τ+1)

s,r ≥ N
(τ)
s,r if r ∈ As, and N

(τ+1)
s,r ≤ N

(τ)
s,r if

r ∈ Bs.

• For each s ∈ {±1}, M (τ+1)
s,r ,

〈
w

(τ+1)
s,r ,µs

〉
> 0 if r ∈ Ms and M

(τ+1)
s,r = 0 if r /∈ Ms.

• For each s ∈ {±1}, N (τ+1)
s,r ,

〈
w

(τ+1)
s,r ,νs

〉
> 0 if r ∈ As and N

(τ+1)
s,r ,

〈
w

(τ+1)
s,r ,νs

〉
< 0 if

r ∈ Bs.

• For each s ∈ {±1},

1

m

∑
r∈[m]

M
(τ+1)
s,r ≥ 1

m

∑
r∈[m]

M
(τ)
s,r +

η(2pe + pb) ∥µ∥2

80m
.

• For each s ∈ {±1},

1

m

∑
r∈[As]

N
(τ+1)
s,r − 1

m

∑
r∈As

N
(τ)
s,r ≥ ηpb ∥ν∥2

160m
, − 1

m

∑
r∈Bs

N
(τ+1)
s,r +

1

m

∑
r∈Bs

N
(τ)
s,r ≥ ηpb ∥ν∥2

160m
.
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• 1
60

∑
r∈[m]M

(τ+1)
−1,r ≤

∑
r∈[m]M

(τ+1)
1,r ≤ 60

∑
r∈[m]M

(τ+1)
−1,r .

• For each s, s′ ∈ {±1},

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ+1)
s,r ≤

∑
r∈As

N
(τ+1)
s′,r , −

∑
r∈Bs

N
(τ+1)
s′,r ≤

∑
r∈[m]

M
(τ+1)
s,r

• For any s ∈ {±1} and r ∈ [m],
∣∣∣M (τ+1)

s,r

∣∣∣ , ∣∣∣N (τ+1)
s,r

∣∣∣ ≤ αst + βst.

Proof
For any i ∈ [nst], we have

ŷifst

(
W (τ), X̃i

)
= Fŷi

(
W

(τ)
ŷi

, X̃i

)
− F−ŷi

(
W

(τ)
ŷi

, X̃i

)
≤ Fŷi

(
W

(τ)
ŷi

, X̃i

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ṽ
(l)
i

〉)
+

1

m

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ξ̃i

〉)
.

For each l ∈ [2], we have

1

m

∑
r∈[m]

σ
(〈

w
(τ)
ŷi,r

, ṽ
(l)
i

〉)
≤ 1

m

∑
r∈[m]

σ

(〈
w

(0)
ŷi,r

, ṽ
(l)
i

〉
+ max

s∈{±1}

{
M

(τ)
s,r ,±N

(τ)
s,r

})

≤ 1

m

∑
r∈[m]

[
σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ σ

(
max

s∈{±1}

{
M

(τ)
s,r ,±N

(τ)
s,r

})]

≤ 1

m

∑
r∈[m]

[
σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ max

s∈{±1}

{
σ
(
M

(τ)
s,r

)
, σ
(
N

(τ)
s,r

)
σ
(
−N

(τ)
s,r

)}]

≤ 1

m

∑
r∈[m]

σ
(〈

w
(0)
ŷi,r

, ṽ
(l)
i

〉)
+ max

s∈{±1}

 1

m

∑
r∈[m]

M
(τ)
s,r ,

1

m

∑
r∈As

N
(τ)
s,r ,−

1

m

∑
r∈Bs

N
(τ)
s,r


≤ αst +

1

2
.

Combining with Lemma 25, we have

ŷifst

(
W (τ), X̃i

)
≤ 2 ·

(
αst +

1

2

)
+ αst +

3

log T ∗ ≤ 2,

where the last inequality follows from (5) and thus we have

1 ≥ g̃
(τ)
i =

1

1 + exp
(
ŷifst

(
W (τ), X̃i

)) ≥ 1

1 + exp(2)
≥ 1

9
, (19)
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for any i ∈ [nst].
From Lemma 13 and the event Est, for any s ∈ [m] and r ∈ [m] we obtain

M
(τ+1)
s,r −M

(τ)
s,r =

η

mnst

∑
l∈[2]

∑
i∈C(l)

µs

g̃
(τ)
i −

∑
i∈F(l)

µs

g̃
(τ)
i

 ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ η

mnst

∑
l∈[2]

(
1

9

∣∣∣C(l)
µs

∣∣∣− ∣∣∣F (l)
µs

∣∣∣) ∥µ∥2 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ 2η

mnst

(
1− C−1

st

9
· nµ − C−1

st · nµ

)
∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ η

5mnst
nµ ∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

=
η(2pe + pb)

20m
∥µ∥2 · 1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ 0.

Hence, if r ∈ Ms, we have〈
w(τ+1)

s,r ,µs

〉
=
〈
w(0)

s,r ,µs

〉
+M

(τ+1)
s,r ≥

〈
w(0)

s,r ,µs

〉
+M

(τ)
s,r =

〈
w(τ)

s,r ,µs

〉
> 0

and if r /∈ Ms, we have M
(τ+1)
s,r = M

(τ)
s,r = 0.

In addition, we have

1

m

∑
r∈[m]

M
(τ+1)
s,r ≥ 1

m

∑
r∈[m]

M
(τ)
s,r +

η(2pe + pb)

20m
∥µ∥2 · 1

m

∑
r∈[m]

1

[〈
w(τ)

s,r ,µs

〉
> 0
]

≥ 1

m

∑
r∈[m]

M
(τ)
s,r +

η(2pe + pb)

20m
∥µ∥2 · |Ms|

m

≥ 1

m

∑
r∈[m]

M
(τ)
s,r +

η(2pe + pb)

80m
∥µ∥2 ,

where the last inequality follows from (8).
Similarly, for any s ∈ [m] and r ∈ As we obtain

N
(τ+1)
s,r −N

(τ)
s,r =

η

mnst

∑
l∈[2]

∑
i∈C(l)

νs

g̃
(τ)
i −

∑
i∈F(l)

νs

g̃
(τ)
i

 ∥ν∥2

≥ η

mnst

∑
l∈[2]

(
1

9

∣∣∣C(l)
νs

∣∣∣− ∣∣∣F (l)
νs

∣∣∣) ∥ν∥2

≥ 2η

mnst

(
1− C−1

st

9
· nν − C−1

st · nν

)
∥ν∥2

≥ η

5mnst
nν ∥ν∥2
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=
ηpb
40m

∥ν∥2

≥ 0.

Hence, if r ∈ As, we have〈
w(τ+1)

s,r ,νs

〉
=
〈
w(0)

s,r ,νs

〉
+N

(τ+1)
s,r ≥

〈
w(0)

s,r ,νs

〉
+N

(τ)
s,r =

〈
w(τ)

s,r ,νs

〉
> 0.

In addition, we have

1

m

∑
r∈As

N
(τ+1)
s,r ≥ 1

m

∑
r∈As

N
(τ)
s,r +

ηpb
40

∥ν∥2 · |As|
m

≥ 1

m

∑
r∈As

N
(τ)
s,r +

ηpb
160m

∥ν∥2 .

We can obtain similar conclusions for Bs. Thus, we obtain the initial five statements.
For any s ∈ {±1}, we have

1

m

∑
r∈[m]

M
(τ+1)
s,r ≤ 1

m

∑
r∈[m]

M
(τ)
s,r +

η

mnst

(∣∣∣C(1)
µs

∣∣∣+ ∣∣∣C(2)
µs

∣∣∣) ∥µ∥2
≤ 1

m

∑
r∈[m]

M
(τ)
s,r +

2
(
1 + C−1

st

)
ηnµ

mnst
∥µ∥2

≤ 1

m

∑
r∈[m]

M
(τ)
s,r +

3η(2pe + pb)

4m
∥µ∥2 .

In addition, we have

1

m

∑
r∈As

N
(τ+1)
s,r ≤ 1

m

∑
r∈As

N
(τ)
s,r +

η

mnst

(∣∣∣C(1)
νs

∣∣∣+ ∣∣∣C(2)
µs

∣∣∣) ∥ν∥2
≤ 1

m

∑
r∈As

N
(τ)
s,r +

2
(
1 + C−1

st

)
ηnν

mnst
∥ν∥2

≤ 1

m

∑
r∈As

N
(τ)
s,r +

3ηpb
8m

∥ν∥2 .

Similarly, we have

− 1

m

∑
r∈Bs

N
(τ+1)
s,r ≤ − 1

m

∑
r∈Bs

N
(τ)
s,r +

η

mnst

(∣∣∣C(1)
−νs

∣∣∣+ ∣∣∣C(2)
−νs

∣∣∣) ∥ν∥2
≤ − 1

m

∑
r∈Bs

N
(τ)
s,r +

2
(
1 + C−1

st

)
ηnν

mnst
∥ν∥2

≤ − 1

m

∑
r∈Bs

N
(τ)
s,r +

3pbη

8m
∥ν∥2 .
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Using these, we have

∑
r∈[m]

M
(τ+1)
1,r =

∑
r∈[m]

M
(τ)
1,r +

∑
r∈[m]

M
(τ+1)
1,r −

∑
r∈[m]

M
(τ)
1,r


≥
∑
r∈[m]

M
(τ)
1,r +

η(2pe + pb)

80
∥µ∥2

≥
∑
r∈[m]

M
(τ)
1,r +

1

60

∑
r∈[m]

M
(τ+1)
−1,r −

∑
r∈[m]

M
(τ)
−1,r


≥ 1

60

∑
r∈[m]

M
(τ)
−1,r +

1

60

∑
r∈[m]

M
(τ+1)
−1,r −

∑
r∈[m]

M
(τ)
−1,r


=

1

60

∑
r∈[m]

M
(τ+1)
−1,r .

By using symmetric arguments, we can obtain r ∈ [m],
∑

r∈[m]M
(τ+1)
1,r ≤ 60

∑
r∈[m]M

(τ+1)
−1,r .

Similarly, for any s, s′ ∈ {±1} we have

∑
r∈As

N
(τ+1)
s,r =

∑
r∈As

N
(τ)
s,r +

[∑
r∈As

N
(τ+1)
s,r −

∑
r∈As

N
(τ)
s,r

]

≤
∑
r∈As

N
(τ)
s,r +

3ηpb
8

∥ν∥2

≤
∑
r∈As

N
(τ)
s,r +

η(2pe + pb)

80
∥µ∥2

≤
∑
r∈[m]

M
(τ)
s′,r +

∑
r∈[m]

M
(τ+1)
s′,r −

∑
r∈[m]

M
(τ)
s′,r


=
∑
r∈[m]

M
(τ+1)
s′,r .

In addition, we have∑
r∈As

N
(τ+1)
s,r

=
∑
r∈As

N
(τ)
s,r +

[∑
r∈As

N
(τ+1)
s,r −

∑
r∈As

N
(τ)
s,r

]
≥
∑
r∈As

N
(τ)
s,r +

pbη

160
∥ν∥2

=
∑
r∈As

N
(τ)
s,r +

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
· 3η(2pe + pb) ∥µ∥2

4m
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≥ pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ)
s′,r +

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
·

∑
r∈[m]

M
(τ+1)
s′,r −

∑
r∈[m]

M
(τ)
s′,r


=

pb ∥ν∥2

120(2pe + pb) ∥µ∥2
∑
r∈[m]

M
(τ+1)
s′,r .

Now, we prove the last statement. For any r ∈ [m], if M (τ)
s,r ≤ −αst, then we have

〈
w

(τ)
s,r ,µs

〉
<

0. Hence,
∣∣∣M (τ+1)

s,r

∣∣∣ = ∣∣∣M (τ)
s,r

∣∣∣ ≤ αst + βst by Lemma 13. Otherwise, M (τ)
s,r > −αst implies

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤ −
∑
l∈[2]

(
1

9

∣∣∣C(l)
µs

∣∣∣− ∣∣∣F (l)
µs

∣∣∣) · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≤ 0,

where the first inequality follows from (19) and the last inequality follows from the event Est. Thus,
M

(τ+1)
s,r ≤ M

(τ)
s,r ≤ αst + βst. In addition, we have

mnst

η∥µ∥2
(
M (τ+1)

s,r −M (τ)
s,r

)

= −
∑
l∈[2]

 ∑
j∈C(l)

µs

g̃
(τ)
j −

∑
j∈F(l)

µs

g̃
(τ)
j

 · 1
[〈

w(τ)
s,r ,µs

〉
> 0
]

≥ −
∑
l∈[2]

∣∣∣C(l)
µs

∣∣∣ · 1 [〈w(τ)
s,r ,µs

〉
> 0
]

≥ −2nst.

Therefore, we have

M (τ+1)
s,r ≥ M (τ)

s,r − 2η∥µ∥2

m
≥ −αst −

2η∥µ∥2

m
≥ −αst − βst,

where the last inequality follows from (9).
From Lemma 13, for any r ∈ [m],∣∣∣N (τ+1)

s,r −N (τ)
s,r

∣∣∣ ≤ 2η ∥ν∥2

m
≤ αst.

Therefore, it suffices to show that N (τ+1)
s,r ≤ N

(τ)
s,r when N

(τ)
s,r > αst and N

(τ+1)
s,r ≥ N

(τ)
s,r when

N
(τ)
s,r < −αst. If N (τ)

s,r > αst, then we have〈
w(τ)

s,r ,νs

〉
=
〈
w(0)

s,r ,νs

〉
+N (τ)

s,r > 0.
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Hence, we have

mnst

η∥ν∥2
(
N (τ+1)

s,r −N (τ)
s,r

)

= −
∑
l∈[2]

∑
j∈C(l)

νs

g̃
(τ)
j −

∑
j∈F(l)

νs

g̃
(τ)
j


≤ −

∑
l∈[2]

(
1

9

∣∣∣C(l)
νs

∣∣∣− ∣∣∣F (l)
νs

∣∣∣)

≤ −2

((
1− C−1

st

)
9

· nν − C−1
st · nν

)
≤ 0,

where the first inequality follows from (19) and the last inequality follows from the event Est. Using
the similar argument, we can also show that N (τ+1)

s,r ≥ N
(τ)
s,r when N

(τ)
s,r < −αst and we have desired

conclusion.

Next, we characterize the early-phase learning dynamics of easy signals.

Lemma 27 There exists the smallest iteration Tes ∈
[
0, 200m

η(2pe+pb)∥µ∥2

]
such that

max

 1

m

∑
r∈[m]

M
(Tes)
1,r ,

1

m

∑
r∈[m]

M
(Tes)
−1,r

 ≥ 1

2
.

Proof Suppose there is no such iteration. We fix an arbitrary s ∈ {±1}. Note that from Condition 9
100m

η(2pe+pb)∥µ∥2 ≤ mnst
ησ2

pd log T
∗ . Thus, we can apply Lemma 26 and for any t ∈

[
0, 100m

η(2pe+pb)∥µ∥2

]
, we

have

1

m

∑
r∈[m]

M
(t)
s,r ≥

1

m

∑
r∈[m]

M
(t−1)
s,r +

η(2pe + pb)

80m
∥µ∥2

...

≥ 1

m

∑
r∈[m]

M
(0)
s,r +

η(2pe + pb)

80m
∥µ∥2 t

=
η(2pe + pb)

80
∥µ∥2 t.

By choosing t = 40m
η(2pe+pb)∥µ∥2 ∈

[
0, 100m

η(2pe+pb)∥µ∥2

]
we obtain contradiction. Therefore, there exists

an iteration t ∈
[
0, 100m

η(2pe+pb)∥µ∥2

]
such that

max

 1

m

∑
r∈[m]

M
(t)
1,r,

1

m

∑
r∈[m]

M
(t)
−1,r

 ≥ 1

2
.
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We then define Tes as the smallest such iteration.

We will show that iteration Tes obtained from Lemma 27 is our desired stopping time. By
sequentially applying Lemma 26, for any s ∈ {±1}, we have M (Tes)

s,r ≥ 0 for all r ∈ [m], N (Tes)
s,r ≥ 0

if r ∈ As, and N
(Tes)
s,r ≤ 0 if r ∈ Bs. Furthermore, we have

1

m

∑
r∈[m]

M
(Tes)
s,r ≥ 1

120
,

1

m

∑
r∈As

N
(Tes)
s,r ,− 1

m

∑
r∈Bs

N
(Tes)
s,r ≥ pb ∥ν∥2

240(2pe + pb) ∥µ∥2
(20)

and for any r ∈ [m], we have ∣∣∣M (Tes)
s,r

∣∣∣ , ∣∣∣N (Tes)
s,r

∣∣∣ ≤ αst + βst. (21)

Combining the upper bound on Tes and Lemma 25 leads to the following bound: for any
s ∈ {±1}, r ∈ [m], and i ∈ [nst],∣∣∣ρ(Tes)

s,r,i

∣∣∣ , ∣∣∣〈w(Tes)
s,r , ξ̃i

〉∣∣∣ ≤ αst +
3ησ2

pd

mnst
· 100m

η(2pe + pb) ∥µ∥2
≤

400σ2
pd

(2pe + pb)nst ∥µ∥2
, (22)

where the last inequality follows from (5).

J.2. Train Error

First, we prove the first conclusion. For any i ∈ [nst], we have

ỹifst

(
W (Tes), X̃i

)
=

1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ṽ
(l)
i

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
−ỹi,r

, ṽ
(l)
i

〉)
+

1

m

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ξ̃i

〉)
− 1

m

∑
r∈[m]

ϕ
(〈

w
(Tes)
−ỹi,r

, ξ̃i

〉)
≥ 1

m

∑
l∈[2]

∑
r∈[m]

ϕ
(〈

w
(Tes)
ỹi,r

, ṽ
(l)
i

〉)
− 2 · (αst + αst + βst)−

400σ2
pd

(2pe + pb)nst ∥µ∥2

≥ 2

m
min

∑
r∈[m]

M
(Tes)
ỹi,r ,

∑
r∈[m]

N
(Tes)
ỹi,r ,−

∑
r∈Bỹi

N
(Tes)
ỹi,r

− 2(2αst + βst)−
400σ2

pd

(2pe + pb)nst ∥µ∥2

≥ pb ∥ν∥2

120(2pe + pb) ∥µ∥2
− 2(αst + βst)−

400σ2
pd

(2pe + pb)nst ∥µ∥2

> 0,

where the first inequality follows from (21) and (22), the third inequality follows from (20), and the
last inequality follows from (5) and Condition 9. □
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J.3. Test Error

In this section, we characterize the test error of the strong model. All arguments is this subsection
are under the event Est. Define v(1), v(2), and ξ as the signal vectors and the noise vector in the test
data (X, y), respectively.

We define a function h : S → R as h(z) := 1
m

∑
r∈[m] σ

(〈
w

(Tes)
−y,r , z

〉)
for any z ∈ S. It plays

a crucial role when we prove the upper bounds on test error. We have

E[h(ξ)] =
1

m
Ez1,...,zm

∑
r∈[m]

σ(zr)

 =
1

2m
Ez1,...,zm

∑
r∈[m]

|zr|

 =
σp√
2πm

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥ ,
where zr ∼ N

(
0, σ2

p

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥2) for each r ∈ [m]. Also, for any z1, z2 ∈ S, we have

|h(z1)− h(z2)| ≤
1

m

∑
r∈[m]

∣∣∣σ (〈w(Tes)
−y,r , z1

〉)
− σ

(〈
w

(Tes)
−y,r , z2

〉)∣∣∣
≤ 1

m

∑
r∈[m]

∣∣∣〈w(Tes)
−y,r , z1

〉
−
〈
w

(Tes)
−y,r , z2

〉∣∣∣
=

1

m

∑
r∈[m]

∣∣∣〈ΠSw
(Tes)
−y,r , z1

〉
−
〈
ΠSw

(Tes)
−y,r , z2

〉∣∣∣
≤ 1

m

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥ ∥z1 − z2∥ .

Hence, h is 1
m

∑
r∈[m]

∥∥∥ΠSw
(Tes)
−y,r

∥∥∥-Lipschitz.

The following lemma characterizes
∥∥∥ΠSw

(Tes)
−y,r

∥∥∥’s which is related to key properties of h.

Lemma 28 For any s ∈ {±1}, it holds that

∑
r∈[m]

∥∥∥ΠSw
(Tes)
s,r

∥∥∥ ≤ 900mσpd
1
2

(2pe + pb)n
1
2 ∥µ∥2

.

Proof From Lemma 13 and triangular inequality, we have

∥∥∥ΠSw
(Tes
s,r

∥∥∥ ≤
∥∥∥ΠSw

(0)
s,r

∥∥∥+
∥∥∥∥∥∥
∑

i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ ≤
√
2σ0d

1
2 +

∥∥∥∥∥∥
∑

i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥ .
We have∥∥∥∥∥∥

∑
i∈[nst]

ρ
(Tes)
s,r,i ξ̃i∥ξ̃i∥

−2

∥∥∥∥∥∥
2

=
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

ρ
(Tes)
s,r,i ρ

(Tes)
s,r,j ⟨ξ̃i, ξ̃j⟩∥ξ̃i∥

−2∥ξ̃j∥−2
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≤
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

∑
i,j∈[nst]

i ̸=j

∣∣∣ρ(Tes)
s,r,i ρ

(Tes)
s,r,j

∣∣∣ ∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ∥ξ̃i∥−2∥ξ̃j∥−2

≤
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2 +

1

2

∑
i,j∈[nst]

i ̸=j

((
ρ
(Tes)
s,r,i

)2
+
(
ρ
(Tes)
s,r,j

)2) ∣∣∣⟨ξ̃i, ξ̃j⟩∣∣∣ ∥ξ̃i∥−2∥ξ̃j∥−2

≤ (1 + βst)
∑

i∈[nst]

(
ρ
(Tes)
s,r,i

)2
∥ξ̃i∥−2

≤

 800σpd
1
2

(2pe + pb)n
1
2
st ∥µ∥

2

2

where the third inequality follows from (7) and the fourth inequality follows from (22) and (7).
Therefore, we have

∑
r∈[m]

∥∥∥ΠSw
(Tes)
s,r

∥∥∥ ≤
√
2mσ0d

1
2 +

800mσpd
1
2

(2pe + pb)n
1
2
st ∥µ∥

2
≤ 900mσpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2
,

where the last inequality follows from (C3).

By Theorem 5.2.2 in Vershynin [26], for any z > 0, it holds that

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
− cz2

σ2
p ∥h∥

2
Lip

)

where c is a universal constant and ∥·∥Lip denotes the best Lipschitz constant. Combining with
Lemma 22, we have

P[h(ξ)− E[h(ξ)] ≥ z] ≤ exp

(
−c(2pe + pb)

2 ∥µ∥4

9002σ4
pd

z2

)
. (23)

Now, we characterize the test error. First, we consider the case (X, y) ∈ Se ∪ Sb. We have

yfst

(
W (Tes),X

)
= Fy

(
W (Tes)

y ,X
)
− F−y

(
W

(Tes)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(Tes)
y,r ,v(l)

〉)
+

1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r ,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
≥ 1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

1

m

∑
r∈[m]

M
(Tes)
y,r − 4αst
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≥ − 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

1

120
− 4αst

≥ −h(ξ) +
1

200
,

where the first inequality follows from (6) and (21). From (23) and Lemma 28, we have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Se ∪ Sb

]
≤ P

[
h(ξ) >

1

200

]
= P

[
h(ξ)− E[h(ξ)] >

1

200
− E[h(ξ)]

]

≤ P

h(ξ)− E[h(ξ)] >
1

200
− 900σpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2


≤ P

[
h(ξ)− E[h(ξ)] >

1

250

]
≤ exp

(
−nst(2pe + pb)

2 ∥µ∥4

C ′
5σ

4
pd

)
,

with some constant C ′
5 > 0.

Using a similar argument, we can prove the upper bound on test error for the case (X, y) ∈ Sh.
In this case, we have

yfst

(
W (Tes),X

)
= Fy

(
W (Tes)

y ,X
)
− F−y

(
W

(Tes)
−y ,X

)
=

1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w(Tes)
y,r ,v(l)

〉)
+

1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
l∈[2]

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r ,v

(l)
〉)

− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
≥ 1

m

∑
r∈[m]

σ
(〈

w(Tes)
y,r , ξ

〉)
− 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)

+
2

m
min

∑
r∈Ay

N
(Tes)
y,r ,−

∑
r∈By

N
(Tes)
y,r

− 2(αst + βst)

≥ − 1

m

∑
r∈[m]

σ
(〈

w
(Tes)
−y,r , ξ

〉)
+

2

m
min

∑
r∈Ay

N
(Tes)
y,r ,−

∑
r∈By

N
(Tes)
y,r

− 2(αst + βst)

≥ −h(ξ) +
pb ∥ν∥2

120(2pe + pb) ∥µ∥2
− 2(αst + βst)

≥ −h(ξ) +
pb ∥ν∥2

200(2pe + pb) ∥µ∥2
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where the first inequality follows from (6) and (21), the third inequality follows from (20), and the
last inequality follows from (5) and Condition 9.

From (23) and Lemma 28, we have

P
[
yfst

(
W (Tes),X

)
< 0

∣∣∣ (X, y) ∈ Sh

]
≤ P

[
h(ξ) >

pb ∥ν∥2

200(2pe + pb) ∥µ∥2

]

= P

[
h(ξ)− E[h(ξ)] >

pb ∥ν∥2

200(2pe + pb) ∥µ∥2
− E[h(ξ)]

]

≤ P

h(ξ)− E[h(ξ)] >
pb ∥ν∥2

200(2pe + pb) ∥µ∥2
− 900σpd

1
2

(2pe + pb)n
1
2
st ∥µ∥

2


≤ P

[
h(ξ)− E[h(ξ)] >

pb ∥ν∥2

250(2pe + pb) ∥µ∥2

]

≤ exp

(
−
nstp

2
b ∥µ∥

4

C4σ4
pd

)
,

with some constant C4 > 0.
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