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Abstract

Weak-to-strong generalization refers to the phenomenon where a stronger model trained under
supervision from a weaker one can outperform its teacher. While prior studies aim to explain this
effect, most theoretical insights are limited to abstract frameworks or linear/random feature models.
In this paper, we provide a formal analysis of weak-to-strong generalization from a linear CNN
(weak) to a two-layer ReLU CNN (strong). We consider structured data composed of label-dependent
signals of varying difficulty and label-independent noise, and analyze gradient descent dynamics
when the strong model is trained on data labeled by the pretrained weak model. Our analysis
identifies two regimes—data-scarce and data-abundant—based on the signal-to-noise characteristics
of the dataset, and reveals distinct mechanisms of weak-to-strong generalization. In the data-scarce
regime, generalization occurs via benign overfitting or fails via harmful overfitting, depending on
the amount of data, and we characterize the transition boundary. In the data-abundant regime,
generalization emerges in the early phase through label correction, but we observe that overtraining
can subsequently degrade performance.

1. Introduction

Burns et al. [3] performed extensive experiments training strong student models, like GPT-4 [22],
with supervision from a weaker teacher model, such as a fine-tuned GPT-2 [23]. They observe that the
strong model consistently surpasses their supervisor’s performance, and refer to this phenomenon as
weak-to-strong generalization. This surprising phenomenon has attracted considerable attention, and
several recent studies have investigated it from theoretical perspectives. However, they are limited to
abstract frameworks or linear/random feature models (A detailed discussion of these related works is
provided in Appendix B). These limitations motivate the following question:

When and how does weak-to-strong generalization emerge through nonlinear feature learning?

1.1. Summary of Contributions

In this paper, we investigate a classification problem on structured data composed of patches, which
consist of signals and noise. We employ linear CNNs as the weak model and two-layer ReLU CNN5s
as the strong model. We focus on the following training scenario: training the weak model under true
supervision and then training the strong model under supervision from the pretrained weak model.
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We investigate how these scenarios perform, particularly focusing on when and how weak-to-strong
generalization emerges. We summarize our contributions as follows:

* We compare the capability of weak models and strong models in our data distribution, showing
that any weak model makes non-negligible errors while there exists a strong model that exhibits
zero errors (Proposition 4).

* We prove that training a weak model using a finite number of training samples and gradient descent
can result in a test error that is close to the best possible error achievable by the weak model
architecture (Theorem 7).

* We also demonstrate that when a strong model is trained on a finite set of samples using supervision
from a weak model that makes non-negligible errors, it either achieves near-optimal generalization
via benign overfitting or suffers from degraded performance due to harmful overfitting. We further
characterize the conditions under which this transition occurs (Theorem 8).

* We further explore weak-to-strong training in the regime where more data is available than the
previously considered scenario, and perhaps surprisingly, we find that it exhibits a notably different
behavior. The strong model can achieve near-zero test error even while the training error on
pseudo-labels remains non-negligible (Theorem 10).

2. Problem Setting

In this section, we introduce the data distribution and weak/strong model architectures that we focus
on, and formally describe the training scenario considered in our work.

In our analysis, we adopt a patch-wise structured data distribution and patch-wise convolutional
neural network architectures. This approach follows a recent line of work on feature learning
theory starting from Allen-Zhu and Li [1]. This type of setting provides a simple but useful
framework for studying training dynamics in deep learning. Similar problem settings have been
widely used to understand several aspects of deep learning, such as benign overfitting [4, 15, 19],
optimizer [6, 13, 30], data augmentation [7, 17, 21, 24, 29], and architecture [11, 14]. The broad
utility of such settings confirms their value in understanding fundamental aspects of deep learning.

2.1. Data Distribution

We investigate a binary classification problem on data consisting of multiple patches. These patches
contain label-dependent vectors (called signal) and label-independent vectors (called noise).

Definition 1 We define a data distribution D on R™3 x {1} such that a sample (X ,y) ~ D with
X = (zW,2?,20)) and y € {1} is constructed as follows.
1. Choose the label y € {1} uniformly at random.

2. Let {p1, b—1,v1,v_1} be a set of mutually orthogonal signal vectors. We choose two signal
vectors v v(2) e R4 for data point X associated with the label y as follows:

(Boy; py) with probability pe
(0, 0) ~ Q Unif{(y. 1), (v 22, (<2, (<2, =0} with probability py
Unif{(py, vy), (y, =), (W, pry), (=1, 1y } with probability py,
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For simplicity, we assume ||p1|| = [[pp—1|| and |[v1]| = |[v—1
and ||v ||, respectively, omitting the subscripts.

, and refer to their norms as || p||

3. A noise vector £ is drawn from a Gaussian distribution N (O, O'%A), where the covariance matrix

T T T T
L. _1pl viv v
lsglvenbyA:Id—m“%—” oy v o
flall [laell vl vl

4. The components V), &) x®) of the data point X are formed by assigning the generated vectors
v v@), & in a randomly shuffled order.

Our data distribution is based on characteristics of image data, where inputs consist of multiple
patches. Some patches contain information relevant to the label (such as a face or a tail for “dog”),
while others contain irrelevant information, like grass in the background. Intuitively, a model can fit
data by learning signals and/or memorizing noise. However, relying primarily on noise memorization
instead of learning signals leads to poor generalization since noise is label-irrelevant. Therefore,
effectively learning signals is crucial for achieving better generalization.

We refer to w1, po—1 as easy signals and v, v_1 as hard signals. These signal types have different
levels of learning difficulty within the architectures we focus on. We categorize a data point having
only easy signals as easy-only data, only hard signals as hard-only data, and both types of signals as
both-signal data. We denote by S,, Sy, and S}, the supports of these data categories, respectively.

2.2. Neural Network Architecture.

We now define the weak and strong model architectures for our analysis. The weak model is a linear,
patch-wise convolutional neural network (CNN). The strong model is a 2-layer, patch-wise ReLU
CNN with a trainable first layer and fixed second-layer weights.

Definition 2 (Weak Model) Our weak model is linear CNN fy (w,-) : R™*3 — R parameterized
by w € R? defined as follows. For each input X = (:c(l), z?), a:(3)) € R¥*3, we define

Jox(w, X) = <w,az(1)> + <w,as(2)> + <'w,a:(3)>

Definition 3 (Strong Model) Our strong model is 2-layer CNN fo (W ,-) : R¥3 — R parame-
terized by W = {W1, W_1} where Wy = {Ws s }c|m) for s € {&1} represents the set of posi-
tive/negative filters, each containing m filters ws, € Re. For each input X = (w(l), x?, :c(3)) €
RY3, we define fo (W, X) = Fi (W, X) — F_{(W_y, X), where for each s € {+1},

Fs(Ws,X) = ;rez;n [U (<ws,r7m(1)>> +o0o <<’ws,r,m(2)>) +o (<wsyr,m(3)>)}

and o (-) denotes the ReLU activation function.

Our choice of weak and strong models has contrasting capabilities for learning our data distribu-
tion D. These are formalized below, with their proofs provided in Appendix C.

Proposition 4 Ler (X,y) ~ D be a test example. For any weak model fyy(w,-), it satisfies
Ply fwx(w, X) < 0| (X,y) € Su] = 3. In contrast, if m > 2, then there exists a strong model with
parameter W* that achieves zero test error: P [y fse(W*, X) < 0] = 0.
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2.3. Training Scenario.

Our goal is to train the weak and strong models, using a finite training set sampled from the
distribution D, to correctly classify unseen examples from D. We first outline the training procedure
of the weak model and then describe the training of the strong model supervised by the weak model.
Weak Model Training. In weak model training, we use ny labeled datapoints {(X;, y;) } S
D and training loss is defined as

Lk (w) = ni Z ¢ (yifwk (wv XZ)) )

VK i€ ]

where ¢(z) = log(1+exp(—=z)) is the logistic loss. We consider using gradient descent with learning
rate 1) to minimize training loss Ly (w) and model parameters are initialized as w® = 0.

net Li-d

Weak-to-Strong Training. Let {(X;, 7;)}/, "~ D denote a dataset drawn from the data distribu-
tion D. Then the strong model is trained on the dataset { (X, i) }i=t, where the supervision gj; is
provided by a pretrained weak model fyi (w*, -), i.e., J; = sign(fuwk(w*, X;)) instead of using true
label g;. The training objective is defined as

Lst(W) = nlt Z 4 (Z;'Lfst(W7X’L))
S 1€ [nst]

and we use gradient descent with learning rate 7 to minimize Lg (W), where the model parameters
are initialized as 'wg?) ~ N(0,021,) forall s € {+1} and r € [m].

3. Provable Weak-to-Strong Generalization

In this section, we provide theoretical results on when and how weak-to-strong generalization occurs
in our setting. For our analysis, we denote by 7™ the maximum admissible training iterates and
we assume T* = n~!poly(e !, d, ngt, nwik, m), where ¢ is a target training loss and poly(-) is a
sufficiently large polynomial. Our main results depend on the regularity conditions detailed below.

Condition 5 There exists a sufficiently large constant C' > 0 such that the following hold:

(C1) d > Cmax {n?vk log (OTSWI‘> ,n2 log (Cg“)} (log T*)2.

(C2) nyi, ngt = Cmax {p;2,py % py > Hlog (§), m > Clog (“5).

(C3) 09 < C~'min {L . }min {nStpb”V”Q 7y } (log (Cmn“))_%
= el Ml opv/d opd 7 (2petpu)nkllpl® o ’

(C4) 1< Cloy%d 5,

(C5) (2pe + pv)||pe)|* = Cpy||v

2 n n _w(iagd )
» ke st 2petpy)?ul*)

_ 1
(C6) py > Cmax{py, op ||ull v~ (log T*)2}.
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(C1) and (C2) ensure that our training data samples and initial model parameters satisfy certain
desirable properties with high probability. These established properties, along with (C3) and (C4),
enable us to characterize the learning dynamics. (C5) guarantees that easy signals are easier to learn
than hard signals for both weak and strong models, and it ensures that both models are guaranteed to
learn these easy signals. Furthermore, a large enough portion of both-signal data stated in (C6) is
essential to weak-to-strong generalization, in line with the insights discussed in Shin et al. [25].

In our analysis, we consider two regimes based on the amount of available data: the data-scarce
regime and the data-abundant regime.

3.1. Data-Scarce Regime.
In this regime, the amount of available data is small. We formalize this regime as follows.

Condition 6 (Data-Scarce Regime) Condition 5 holds, using the same constant C' > 0 as intro-
duced therein, and the following condition holds: Ny, ns < C_lagd/((Qpe + pp) || e|? log T*).

The following theorem provides convergence and test error guarantees for weak model training.

Theorem 7 (Weak Model Training) Ler w) be the iterates of weak model training. For any
e>0andé € (0,1) satisfying Condition 6, with probability at least 1 — 0, there exists Ty =
(’)(nflzs*lnwkdflap”) such that for all t € [Ty, T*], the following statements hold:

1. The training loss converges below €: Ly (w(t)) < e

2. Let (X,y) ~ D be an unseen test example, independent of the training set {(X;, y;) };>¥. Then,
we have

Nwk (2Pe + 2 4
P [yfwk (w(t),X) < O‘(X,y) e SeUSb} < exp (— K pcla{j;) el ) — o(1).
p

Here, C'y > 0 is a constant.

Theorem 7 guarantees the convergence of training loss and shows that the trained weak model
achieves low test error on easy-only data and both-signal data, while performing random guessing on
unseen hard-only data. This corresponds to the near optimal error attainable by the weak model, but
not perfect because the overall test error will be of order £ 4 o(1).

The following theorem provides convergence and test error for weak-to-strong training.

Theorem 8 (Weak-to-Strong Training, Data-Scarce Regime) Ler W) be the iterates of weak-
to-strong training, with the weak model f(w*,-) satisfying the conclusion of Theorem 7. For
any ¢ > 0 and § € (0,1) satisfying Condition 6, with probability at least 1 — 0, there exists
Twos = O(n_le_lmnstd_la]; 2) such that for any t € [Tyas, T*] the following statements hold:

1. The training loss converges below €: Lg (W(t)) <e.

Nst

2. Let (X,y) ~ D be an unseen test example, independent of the training set {(X;, ;) e

* (Benign Overfitting) When nsp || /(a;fd) > (9, we have

2 4 2 4
‘ 1) < st (2pe + pu) |1l nspp vl
P [yfst (W ,X) <0} < (pe+pv) exp ( Crotd +pn exp 70303 7 )
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* (Harmful Overfitting) When ngp v /(af;d) < Cu Plyfe (W(t), X) < 0] > 0.12py.
Here, Cy, C3, Cy > 0 are constants.

Theorem 8 guarantees training loss convergence and characterizes the test error. Specifically, it
shows that the error is near-zero when the number of data ng exceeds a certain threshold, but is
lower-bounded by a constant multiple of p;, when this term falls below a similar threshold.

3.2. Data-Abundant Regime
In this regime, a sufficient amount of data is available. We formalize this regime as follows.

Condition 9 (Data-Abundant Regime) Condition 5 holds, using the same constant C' > 0 as
introduced therein, and the following condition holds: ny, > Coadlog T*/(py, v]?).

The following theorem demonstrates the emergence of weak-to-strong generalization in the early
phase, where training loss remains large.

Theorem 10 (Weak-to-Strong Training, Data-Abundant Regime) Ler W) be the iterates of
the weak-to-strong training, with the weak model fy(w*, -) satisfying the conclusion of Theorem 7.
For any ¢ € (0, 1) satisfying Condition 9, with probability at least 1 — 0, there exists early stopping
time Tos = O~ m(2pe + pp) 2 ||pl| ~2) such that the following statements hold:

1. The early stopped strong model [ (W(TCS), ) perfectly fits training data having correct label
(i.e. Yi = yi) but fails to training data with flipped label (i.e. y; # 4;). In other words, the model
predicts the true label y; for any training data point X;.

2. Let (X,y) ~ D be an unseen example, independent of the training set {(X;, ij;) . We have

)

Ngt(2pe + p 2 4 Ny p2 vt
P [yfst (W(Tes),X) <0} < (petpp) exp (— t( 05042 7Y 4 gy exp _EM :
p p

Here, Cs > 0 is a constant.

Theorem 10 shows that weak-to-strong generalization can arise via early stopping in this regime.
It provides guarantees for an early-stopped model and thus does not provide guarantees on the
model’s performance at convergence. One might therefore be curious how training until convergence
influences performance. We conducted experiments in our setting and observed that after this early
phase, performance often degrades and then plateaus, exhibiting accuracy similar to or even lower
than that of the supervising weak model. While we leave a rigorous proof for this late-phase behavior
open, we provide an intuitive explanation in Section D.

The role of early stopping for weak-to-strong generalization is also discussed in the literature.
Burns et al. [3] observe that in ChatGPT Reward Modeling tasks and a subset of NLP tasks, early
stopping can improve weak-to-strong generalization, while overtraining can lead to degradation.
Medvedev et al. [18] also discussed early stopping in their theoretical setting, where it becomes
essential due to their consideration of training on the population distribution. In contrast, in our
finite-sample setting, early stopping is not strictly required to achieve weak-to-strong generalization.
In fact, a strong model that perfectly fits the pseudo-labeled training data may lead to either low
or high test error, as observed in the data-scarce regime. Thus, the fact that training dynamics can
converge to a solution with poor generalization, even under abundant data and the existence of good
solutions, is somewhat surprising.
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Appendix A. Conclusion

We theoretically investigated weak-to-strong generalization by analyzing the training of a two-layer
ReL.U CNN using supervision from a pre-trained linear CNN on patch-wise data containing both
signals and noise. Interestingly, our results reveal that weak-to-strong training exhibits distinct
behaviors across different data regimes. In the data-scarce regime, we prove that weak-to-strong
training converges and that generalization can emerge via benign overfitting when data availability
is not extremely limited. Furthermore, we characterize the conditions leading to a sharp transition
from this benign overfitting to harmful overfitting. In the data-abundant regime, we show that
weak-to-strong generalization arises in an early phase of training, and we observe that overtraining
leads to performance degradation. We hope our theoretical approaches provide valuable insights into
weak-to-strong training, and analyzing methods for improving weak-to-strong generalization (e.g.,
auxiliary confidence loss [3]) could be an important future direction.

Appendix B. Related Works

Lang et al. [16] introduce a theoretical framework that establishes weak-to-strong generalization
when the strong model is unable to fit the weak model’s mistakes. Building on this framework, Shin
et al. [25] propose a mechanism for weak-to-strong generalization in data exhibiting both easy and
hard patterns. Concurrently, another line of work has focused on quantifying the weak-to-strong
gain. Charikar et al. [5] investigate the relationship between weak-to-strong gains and the misfit
between weak and strong models in regression with squared loss. Specifically, they show that the
gain in weak-to-strong generalization correlates with the degree of misfit between the weak and
strong models. Mulgund and Pabbaraju [20] and Yao et al. [28] extend this analysis to a broader
class of loss functions, including the reversed Kullback—Leibler divergence. However, both lines
of work often rely on abstract theoretical frameworks and typically do not guarantee that weak-to-
strong generalization can be achieved through practical training procedures such as gradient-based
optimization.

Wu and Sahai [27] explore weak-to-strong generalization in an overparameterized spiked covari-
ance model and prove transitions between generalization and random guessing by considering both
weak and strong models as minimum /5 norm interpolating solutions on feature spaces of differing
expressivity. Ildiz et al. [12] investigate a more general form of knowledge distillation [10] in a
high-dimensional regression setting and show that distillation from a weak model can outperform
distillation from a strong model, while it fails to improve the overall scaling law. Dong et al. [9] also
study a linear regression setting from a variance reduction perspective via the intrinsic dimension of
feature spaces. However, these works are limited to linear models and rely on specific assumptions
on structural differences between the feature spaces of weak and strong models. A more recent work
by Medvedev et al. [18] alleviates some of these limitations by using random feature networks of
differing widths for the strong and weak models. However, in their approach, the trainable component
is still linear.

Appendix C. Proof of Proposition 4

First, we consider the weak model part. Consider a hard-only data (X, y) € Sy, with the noise vector
&. If the two underlying signals in a hard-only data point have opposite signs, the weak model’s
output fyx(w, X) simplifies to (w, &). This results in a 1/2 conditional error rate due to symmetry

11



PROVABLE WEAK-TO-STRONG GENERALIZATION THROUGH FEATURE LEARNING

of noise. For a hard-only data having two signal vectors of identical signs, we may assume two signal
vectors of (X, y) € Sy are both v, without loss of generality. Define (X ,Y) € Sy to be a data point
where both signal vectors are —v, and the noise vector is —&. Then, y fyk(w, X) = —y fux(w, X).
From symmetry of &, it implies the model has 1/2 error rate conditioned on the case where two
signal vectors are identical. By combining two cases, we have the desired conclusion. U
Next, we prove the strong model part. We construct W* by defining, for each s € {+1}, the
filters ’w:,1 = s + Vs, 'w;2 = ps — Vs, and setting 'w;",, = 0 for r > 2. Direct calculation shows
that y fs, (W*, X') > 0 for all (X, y) ~ D, leading to zero test error. O

Appendix D. Key Theoretical Insights

In this section, we provide key insights behind our theoretical analysis. We formally prove this
intuition using several theoretical tools, such as the signal-noise decomposition [4].

For weak model training, its update rule implies that the model weight vector w is updated in
directions determined by the signal and noise vectors within the training samples. The evolution
of w along each such vector’s direction is influenced by that vector’s strength and its frequency of
appearance in the dataset. Due to the limited capability of the weak model, it cannot learn hard
signals with opposite signs (e.g., v1, —v1). Furthermore, the cancellation of updates along hard
signal directions and our condition (C5) ensure that the learning of easy signals predominates over
that of hard signals. This dominance means that while easy signals are effectively learned, the
learning of hard signals is largely suppressed. Consequently, in both-signal data, the contribution
from the poorly learned hard signal component is insufficient to disrupt the classification guided by
the well-learned easy signals. Therefore, the weak model can correctly predict not only easy-only
data but also both-signal data.

We now explain how the supervision from the pretrained weak model affects the learning
dynamics of weak-to-strong training. Let us first introduce some notation. For each i € [ng], we

Z(l), 652), and fl the signal vectors and noise vector of the i-th input X;, respectively. For

eachwv € {p1, p_1,+v1,+v_1} andl € [2], we define " and F{" as the sets of indices i € [Nst]
such that f)gl) = v and the supervision corresponds to the clean label (i.e., §; = ¥;) or the flipped
QR (i fs(W®) | X;)) denotes the negative of the

i

denote by v

label (i.e., §; = —¥;), respectively. Lastly, g
loss derivative for i-th sample.
Update rule for weak-to-strong training implies that for any s € {+1} and r € [m],

(. pa) = (o) + =50 (32 67— 32 a”) a1 [(wlth ) > 0].
S )

2l jec! ieFy)

S

Since the supervising weak model achieves low test error on easy-only and both-signal data, the
pseudo-labels for training samples involving s have a low flipping probability, and this implies

(t)

| F, (ls) |/nst &~ 0. This ensures that, in both data-scarce and data-abundant regimes, <w5fr, Ws)
increases if it is positive.

12
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Similarly, an update for learning hard signals can be written as follows:

() = (o) = S (520 50 4 e () =

le[2] zGC(Z) z‘e]—‘l(fs)
" i) vl 1 [{(w®, v, .
T ming lez[; <Z€% ZE;) b ) [v]” 1 [< wl), > < O}

—vg

However, weak-to-strong generalization exhibits different behaviors across the two regimes, in-
fluenced by the presence of a non-negligible fraction of data containing hard signals with flipped
pseudo-labels. In the data-scarce regime, noise memorization is a dominant component of the
learning process. This can lead to the learning effort being more balanced across different data points.
A sufficient fraction of both-signal data guarantees ]C,(,ls) l, |Cg,),s| > |FY), \]:(,l,)js| and this indicates
<wg2, vs) increases if it is positive and decreases if it is negative. Therefore, the strong model can
learn hard signals with opposite effective signs (such as vs and —v,), simultaneously, by utilizing
different sets of filters that start with differing alignments with these respective signal directions.

In the early phase of the data-abundant regime, the strong model can learn hard signals quickly,
even faster than noise is memorized, due to the significant abundance of signal vectors from the
clean-labeled training data. This leads to almost perfect generalization on unseen data. Let us
describe our intuition for why overtraining can lead to performance degradation. Rapid learning of

(®)»

signals also creates a growing discrepancy in the negative loss derivatives g; *’s between clean-label
data and flipped-label data. The non-negligible portion of flipped-label hard-only data combined with
the imbalance in loss derivatives can lead to the contributions from these flipped-label data points
(e.g., Zie FO gz@ ) predominating over those from clean-labeled data points (e.g., Zie ) QZ@).
Consequently, the strong model may start “forgetting” learned signals as it continues to minimize the

training loss defined by these pseudo-labels.

Appendix E. Experiments

We conduct experiments in our setting to support our findings, using NVIDIA RTX A6000 GPUs.

In our data distribution, we set the dimension d = 2000. The signal vectors pt1, po—1, 1, V_1 are
constructed from randomly generated orthonormal vectors, which are subsequently scaled so that
their respective norms are ||| = 0.4 and ||v|| = 0.35. The noise strength is o, = 0.1 and the data
type probabilities are p. = 0.4 and p,, = pp, = 0.3.

We first train the weak model using nyx = 5000 true-labeled data points. The training is
conducted for 1000 epochs using stochastic gradient descent with batch size 256 and learning
rate n = 0.1, which results in a test accuracy of 0.851. For weak-to-strong training, we use the
strong model with m = 50 filters and an initialization scale og = 0.01. We train the strong model
using stochastic gradient descent with batch size 256 and learning rate 7 = 0.1 on the dataset
labeled by the pretrained weak model. We use three different values for the number of data points,
nst = 79, 2000, 20000.

Figure 1 provides the training and test accuracy for weak-to-strong training with three different
training dataset sizes. We train the strong model for 2000 training epochs when ng; = 75 or
nst = 2000, and for 10000 epochs when ngy = 20000, as this requires more iterations for convergence
compared to the other cases. We observe three different types of results revealed in our analysis.

13
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The cases ngy = 75 and ng, = 2000 support our analysis in the data-scarce regime. In both
cases, the training accuracy initially increases faster than the test accuracy. However, their final test
accuracies differ. In the case of ng, = 75, the strong model achieves perfect training accuracy, while
its test accuracy remains close to that of the supervising weak model. This aligns with our findings on
the failure of weak-to-strong generalization due to harmful overfitting. In contrast, for ngy = 2000,
the increased amount of data allows the test accuracy to sufficiently increase, eventually exceeding
the weak model’s test accuracy. This aligns with our findings on the emergence of weak-to-strong
generalization via benign overfitting.

The case of ng, = 20000 corresponds to the data-abundant regime in our analysis. Unlike the
prior two cases, test accuracy grows faster than training accuracy and achieves near-perfect accuracy,
while training accuracy remains comparable to that of the weak model; this aligns with Theorem 10.
We also observe that continued training deteriorates test accuracy, while training accuracy increases.

)
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3
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—— Train —— Train — Train
Test Test Test
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(a) nsy = 75 (b) nst = 2000 (c) nsy = 20000

Figure 1: Weak-to-strong training with varying training dataset sizes (ng). These align with our
theoretical findings: (a) harmful overfitting for ng, = 75; (b) benign overfitting for ngy = 2000; and
(c) for ng; = 20000, an early emergence of generalization and degradation with overtraining.
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Appendix F. Proof Preliminaries
We use the following notation for the proof.

Notation. We define SNR,, = ||u|| /(c,V/d), SNR,, = ||v|| /(0,V/d). Let S be the orthogonal
complement of the span of the signal vectors {1, p—1,v1,v_1}. We denote an orthonormal basis
for S by {by,...,bg_4}. For any vector v € R%, IIgwv represents the projection of v onto S.

F.1. Proof Preliminaries for Weak Model Training

In this subsection, we sequentially introduce signal-noise decomposition [4, 15] in our setting, high-
probability properties of data sampling, and quantitative properties frequently used throughout the
proof for weak model training.

We use the following notation for the analysis of weak model training.

Notation. For each i € [nyx], we denote by v( ), -(2) and &; the signal vectors and noise vector

1, tv1, £v_1}, we define 81(,1) and 81(,2) as
= v, respectively.

of the i-th input X, respectively. For each v € {p1, p—
the sets of indices ¢ € [nyk] such that 'vg )~ vand 'vz(z)

F.1.1. SIGNAL-NOISE DECOMPOSITION

Lemma 11 For any iteration t > 0, we can write w as

w® :Ml(t) M1 7M(t) H—1 Jer(t) v n Z yzp,(t)

[T ]2 | ||2 ||£z||2’

where M, S@, N, S(t), pz(»t) are recursively defined as

Ms(t+1) :Ms(t)+i Z gZ@+ Z gl(t) ||H||2

Nwk
v iesty iest)
n t t t t
N = N4 S g0 S gl S g = 3 g
v iesy iesl? ies®) ies®)
t+1 ty M
A = ol + g,

starting from M, §0) =N, 5(0) = pgo) = 0. It follows that M, é@ and pgt) are increasing in iteration t.

Proof It is trivial for the case t = 0. Suppose it holds at iteration 7. From the update rule, we have

w(T-H) = Z ylgz( ™ Z x;

ze[nwk] pE[3]
(1) _M1 () M~ (mn_ " (1) V-1 ()
:M _M_ +N — + ylpz
e ! HMH2 ez T e)? 2 H&H2

i€[nwi]
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Z yzgl Z 5)

ze [nwk] pE[3]

Here :c(p )

obtain

sareone of puy, pu_1,v1,v_1,and &1,. .., &,,, . By grouping the terms accordingly, we

WD) = gD B k) Bl () N(T+1) va o Z 7 &

R TE el )2 w2 €127
with
n
ARl D ORI DR 1
" \iesW €S
NI = N TEEED DR DI DI | 7y
zeS,S? iest iest) ies®)
(t4+1) 2
0 = o0 g el
Hence, we have desired conclusion. [ |

F.1.2. PROPERTIES OF DATA SAMPLING

We establish concentration results for the data sampling

Lemma 12 Let Ey denote the event in which all the following hold for some large enough universal
constant Cy>0:

1. Foreach s,l € {£1}, we have

De pb)
<2 ) e

E

<\/”wk1 <ka>
= 5

P, )
<4+8 Tk

-

2. Forany i € [nyy],

C1W W
‘II&-II2 —o2(d— 4)‘ < Cyr02d  [log ( K7 k).

0

3. Foranyi,j € [nyi] withi # j,

Coxn?
(&, &5)| < kaagd% log <1;wk>

Then, the event Ey occurs with probability at least 1 — 0.
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Proof For each s,/ € {£1} and i € [nyy],

]P)[,Ui(l) = I—‘Ls] = % + %, ]P)[’U(l) = I/S] = P[’U(l) = _VS] — & + @
Hence, by Hoeffding’s inequality, we have

[ Cok 2
P ‘(l) _(Pe  Pb wkl > anl w <
S <2+4)"k— 2 B\75 )| = o
and
0 | (Pn , Pb S Tk Cui\ | o 20
P[Si"s <4+8)”Wk\/2log<5> = O

Note that for each i € [nyy], we can write &; as

Li=o0p > zinby,

he[d—4]

where z; j, N (0,1). The sub-gaussian norm of standard normal distribution A/(0, 1) is \/g

and then (zi’h) — 1’s are mean zero sub-exponential with sub-exponential norm % (Lemma 2.7.6
in Vershynin [26]). In addition, z; ,z;;’s with ¢ # j are mean zero sub-exponential with sub-
exponential norm less than or equal to % (Lemma 2.7.7 in Vershynin [26]). We use Bernstein’s
inequality (Theorem 2.8.1 in Vershynin [26]), with ¢ being the absolute constant stated therein. We
then have the following:

1 CykNy
P [‘Hgiyﬁ —o2(d - 4)‘ > kaagd% log < k k)]

]

=F || >0 (an)® ~1)| 2 Cuad?  1og (kanwk)

)
he[d—4]

9602 d kNwk
< wk wk’w
<o (~gya-p s (5))
20

kanwk
<2 —1 < .
=P ( o ( 0 )) ~ Cwknwk

In addition, for 7, j € [nyi] with i # j, we have

Caxn?
P |1(6:.€)] = Curcopd? 1og< ‘;wk)

C 2
=P Z Zi,hzj,h Z kad% log (Wkan)

)
held—4]
2 2
< 9exp 9cC3yd log Cwxniy, < 2(52
64(d 4) 1) Cwkni
From union bound and a large choice of universal constant Cly. > 0, we conclude that the event F.
occurs with probability at least 1 — 4. |
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F.1.3. PROPERTIES USED THROUGHOUT THE PROOF

We introduce some notation and properties that are frequently used throughout the proof.
Let us define

1 kanwk 1 ka
Bwk C’wknwk\/ y 0g< 5 ), Yk \/ T og< 5 ),

Fwk = 1152041 (2pe + pb)SNR, log T™.

and

Under Condition 6 and the event Eyy, the following hold:

* By combining (C1) and (C5), applying (C2), and from Condition 6, By, Ywk, and Kk satisfy the
following:

Kwk min{pe, pn, Pb} 1
< ——m+ < ———MW—-—— < - 1
ﬁwk = 956 IOgT*’ TYwk > 8 y  Rwk > 2 (D
* From (C1), the following holds for any 7, j € [nyk] with i # j:
o2d 302d & 112
% < H£1H2 < 210 ’ |<£1 £j2>| < Bwk’ 1— ||£]||2 < @ 2)
1€l Tk 1&:ll™ | 7w
* Forany s,l € {£1}, we have
l p p l p p
‘ ‘S(S) - (56 + Zb) Nwk |, ‘S:(I:I)/g - (Zh + §b> Nwk S NwkYwk- (3)
* From (C4) and (C5), the learning rate n is small enough to satisfy
KwkNwk 2 4)

77 = Yy 9 7°
120%d O'%d

F.2. Proof Preliminaries for Weak-to-Strong Training

In this subsection, we sequentially introduce signal-noise decomposition [4, 15] in our setting, high-
probability properties of data sampling, quantitative properties frequently used throughout the proof,
and a technical lemma [19] for the analysis of weak-to-strong training.

We use the following notation for the analysis of weak-to-strong training.
ORFC)

; »U; ", and ; the signal vectors and noise vector of

the i-th input X, respectively. For each v € {p1, p—1,+v1,tv_1} and [ € {1, 2}, we define Cz(,l)

Notation. For each i € [ng], we denote by ©

and ]-"1(,1) as the sets of indices ¢ € [ng] such that ﬁgl) = v and the supervision corresponds to the
clean label (i.e., §; = ;) or the flipped label (i.e., §; = —g;), respectively.
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F.2.1. SIGNAL-NOISE DECOMPOSITION

Lemma 13 For any iteration t > 0, we can write each weights w

) _ .0, 77t Hs ) M=s | 75(t) Vs t) V—s () &
wy, =ws, + M M + N Pl ——
S 7 7 el T el TG
where Mg zq, Mg ,)n, Ngtl, Ng 2«, pg 7)02 are recursively defined as
Tt _ 570 n ~(t ~(t
MY =G+ S S A = 3 A |l [{wl e > 0]
el \ jec®) ieF)
n ~ t
M =) - S S 0 S 0| g () 0]
" 1el) \ jec® ier ()
aan) *(t) ~ 2
NSJ' Nsv Z Z gl( Z gz " ”VH -1 {<w§?,us> > O] ’
lef2 zEC.(,lS> ze]—',,9
- S-S a” i [(wfv) <ol
" ier) \iec®), ier ),
n ~(t ~(t
N = N - > = X Al |l [{wld ) > o]
") \ieel ieFs)
o Z = > a7 |l [(wl) v <o,
" lel2 zeC“) ier")
t+1 t Syin 77
,Og :—z) - <(s,1)ﬂz - HSZ |2 ]l w£t27£l> > 0] )
- 37 ) _ 7® ) _ (@ T ; ; *
starting from MS =Msr = S » = Nsir = p,,,; =0. For simplicity, for any iteration t € [0, T™],
r € [m] and i € [ng), we define p£ 2 = p;i)r ; and Bq(fz) = p(f; ;- It follows that ﬁffl) is increasing

(t)

and p, ; is decreasing in iteration t.

Proof It is trivial for the case ¢ = 0. Suppose it holds at iteration 7. From the update rule, we have

wli ) = w + S S g [(wl).a) > o] 2
p€3]z€[nst]
= i)+ T ) B W) e NG 4l
irdl irdl 1] ]

(t)

s, With s
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s Z Z yzgz K grr)’ ()> >0] jz(p)'

S

pE[3] i€[nst]
Here, x(p) s are one of 1, pi_1,v1,v_1, and &1, . .. ,énst. By grouping the terms accordingly, we
obtain
(r4+1) _ . (0) | 777+l Hs (r41) H—s | 75(t+1) Vs (r+1) V—s (T+1) éz
Wy, = Wey + M g + My 7 TNV, 5 + Vs 2 i WE 2
v B 1 iral vl 2 e 11
with
7D _ () n ~(T ~ 2
Ms,r = Ms,’r + W Z Z 91( ) - Z gz(T) ||/’l’|| 1 [<w§TQ>NS> > O] )
" 1el2] \ jec®) ieF)
T T n ~ ps 2 T
MG = MG =SS 50— 3 7 1 [(wl) ) > 0]
" lep2 iect) ieFd) |
(D _ 77(7) ~ (7 2
NV =N+ > a7 = 3 7 Il [(wlv) > 0],
iec) icFY

( B Z ggr) HV”Q .1 [<wg:rr),l/5> < O] )
zEC(l)

ier)

—vg

N =N - — ( 30— >0 a7 vl [(wlR v > 0]
st 7,€C(l>

ze]:,(,l) s

- > a7 Il [(wlee) <o),

zeC(l) . iert)

1 SYi 77 g
pgT:_z )= - pg?,l ml Hﬁl |2 IL wsT 7£Z> ]

)

Hence, we have desired conclusion. [ |

F.2.2. PROPERTIES OF DATA SAMPLING AND MODEL INITIALIZATION

We establish concentration results for data sampling and model initialization.
Throughout the proof, we frequently use the following quantities. For each s € {£1} and
i € [nst], we define:

2 S
. nl" = ( pe'tfb)nbt’nu = pngt'
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* M= {T € [m]: <w£?2,us> > O}.
e A, = {r € [m]: <'w§?2,us> > 0}, B, = {7’ € [m]: <'w£?,2,us> < O}.

o« X; = {7‘ € [m]: <w$)r,ét> > 0}.

Lemma 14 Let Eg denote the event in which all the following hold for some large enough universal
constant Cg, > 0:

1. Foreach s € {£1}, 1 € [2], we have

(1-C5') - < ‘CI(Q <Cq' g

<(1+C3Y) np ’}"(2

and

o0

(L -cgh) < |cl] el <t ogt) o B D <0t

) 9

2. Foreach s € {£1},r € [m], and i € [ng],

)

m m
Ml = 2] [l - 5

m m Cyt
— < -
1Bs| 2‘— 2log<5>

m m Cstnist
R R .
|| 5| < \/2 log < 5 )

3. Foreach s,s' € {£1} andr € [m],

o) (o ] = oy (557)
7 Tl i 5

4. Forany i € [ng),

and

- 1 Cstng
‘H&H? —ag(d—zl)‘ < Cyold> log< ta t>.

5. Foranyi,j € [ng] withi # j,
: oz 9 1 Cysen?
\@@Ms&wm1%<5“)

6. Forany s € {£1},r € [m], and i € [ng),

‘<w£072,£z> < Cstooapd% \/log (CStt;mSt)
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7. Forany s € {£1} and r € [m],

2

Hnswgog < 202d.

)

Then, the event Eg occurs with probability at least 1 — 6.

Proof We begin by showing that each statement holds with high probability, and conclude the
proof by applying a union bound. We prove the statements one by one, marking each with ll once
established.

We fix an arbitrary s € {£1},1 € {£1} and i € [ng]. We have

(e}
/7~
(o4
o
=
[~3]
o
7
=
~—
Il
—
=
vy
=
V)
N—
—_
"E
[0}

From the conclusion of Theorem 7, we have

P[5t (10, %0) > 0] (80.5077) = (ool = 1= 5
P [gifwk (W*,Xz‘) > 0‘ (151@,171(3_”) = (/J'sﬂ/s)} >1- 2é,st7
d
" P [gifunc (w, Xi) > 0] (807,57 = (v 21— 22&
Therefore,
(k) e <8 k] <
s
and
B[l 78] = - [Jel]] < 5
By Hoeftding’s inequality, we have
o1l mllse] [ e ()] < 2
and .
IP’U jf(lz —EH]—“,&Q} > %1 g<C:;t>_ < Qi.
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Hence, combining with (C2),

—1
< Cst "N,

(=) <] 02 [

with probability at least 1 — —t
Now we address the case v;. We have

P[ie&ﬂ?}
=P [k (w0 %) > 0] (57077") = (s B [(8,57) = ()
l

+P _yifwk [
l)7f’z(3_l)) = (vs, _VS)] P [( z(l)7 ~z(3 l)) = (vs, _VS)]

+ P \gi fok (W*7Xi) >0 (f),(l),f)i(?’*l)) = (vs, —1/5)] %
From the conclusion of Theorem 7, we have
~(3=0\ _
|:y’fWk<w X)>0‘(17 Y; )_(Vsa,uls):|21_77
2C¢

From (C5), we have

and

In addition, we have

E[|72]]| = ’W B |

By Hoeffding’s inequality, we have

C 26
PSP~ [|sO] | > [ Ztiog (=) | <
‘88 [SS:|_ 2 1) ~ Cgt
and )
( O > [Pt e (St 20
el 2 e (2] 2

From (C2), we have

<(eogh g |

(1-Cx') - my < < Cgt oy
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with probability at least 1 — é—i, where the last inequality follows from Condition 5.
Using a similar argument, we also have the desired conclusion for the case —v;. |
Let us prove that the third statement holds with high probability. we fix arbitrary s € {+1} and
i € [n]. Foreach r € [m], P[r € M,] =P[r € A] =P[r € By] = P[r € X;] = 1. By Hoeffding’s
26

inequality, we have
m m Cqt
P ‘ — | >/ =1 = < —,
['MS’ 21 = 2°g<5> ~ Oy

[ L\ | 26
a2 2 (G < 2

m m Cst

P -“Bs| - 5‘ > 510g (5) < o

and

S S 2
p ‘Mﬂ*m‘z mlog CastNst < ) .
2 2 ) stTlst

|
We fix arbitrary s, s’ € {1} and r € [m]. We have
(0) HMs' > < (0) Vs > iid. N (0 2)
W 1) y \ Ws s ~ y00)-
< 2 ] 2 Il ’
Hence, by Hoeffding’s inequality, we have
/ Cam 20
P w(o,us>‘>a 21o<st > .
U< Sl /] NS | T Cam
Similarly, we also have
/ Cym 20
P 0 LN S gy /21 & :
U<“’ ||u||>' VTR T aam
|

Before moving on to the remaining part, note that for each i € [ng], s € {1}, and r € [m], we

(0)

can write &; and Ilgwg ; as

éi:o'p Z Zi,hblw stg?,r)zo'o Z Zs,r,hbh
he[d—4] held—4]

where z; 1, Zs . n N (0,1). The sub-gaussian norm of standard normal distribution A/ (0, 1) is
\/§ and then (zi7h)2 — 1, (zsmh)2 — 1’s are mean zero sub-exponential with sub-exponential norm

% (Lemma 2.7.6 in Vershynin [26]). In addition, z , ,Z; ;s and z; ,z; ;,’s with 7 # j are mean zero
sub-exponential with sub-exponential norm less than or equal to % (Lemma 2.7.7 in Vershynin [26]).
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We use Bernstein’s inequality (Theorem 2.8.1 in Vershynin [26]), with ¢ being the absolute
constant stated therein. We then have the following for any i € [ng]:

- 1 Cstng
P[M&\P—aﬁ(d—@] > Cyopd? log< s t)]

=P X ((Zi,h)Q - 1) > Cld? 4 [log <Cst;5nst>

he[d—4]

9¢C2d Cqn
< - st st/lst
—2eXp( 64<d—4>1°g< 5 >>

Cetnist 20
< — < .
< 2exp < log < 5 >> S G

For i, j € [ns] with i # j, we have

~ ~ 1 CS g
P[\@i,@\zcﬁo,%da log( t”)]

J

1 Ctnf
=P || Y zipzin| > Cad 10g< ¥ t)
held—4]

9¢C2d Cyn?
< o st st'ot
< 20 (0250 (55

<

5 -
stTls

For any s € {£1},r € [m] and i € [ng], by applying Bernstein’s inequality, we have

3 1 Csemng
P [‘<w§02&> > Cst000pd? \/10g <tét>]
E 1 Cstmng
=P Zi hZsrh > C'stdé \/log <t§t>

he[d—4)

9c¢C2d Csmnegt
< T -7ste = >
<200 (g2 oe (57

20
~ 16mngt

By applying Bernstein’s inequality, for any s € {+1} and r € [m], we have

P [Hnswg?g

2
< 203,(1]
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<P Hﬂs’wg?r)

2 S
=] 2 o (5]

=P Z ((Zs,r,h)2 - 1) > Cstd% log (ngm>

L |hE[d—4]

9002td C’Stm
< o S
<2 (g ("))

Cstnst 20
<2 —1 <
= SOXPp ( 8 ( 5 >> = Cym’

where the first inequality follows from (C1). |
From union bound and a large choice of universal constant C; > 0, we conclude that the event
E, occurs with probability at least 1 — 4. |

F.2.3. PROPERTIES USED THROUGHOUT THE PROOF

We introduce some notation and properties that are frequently used throughout the proof.
Let us define

CS S
ot = 2000 maX{HuH Al >O'Pd%} \/2 log <t;nnt>,

1 Cstng
Bst = 4Cngy \/d log < t(s t>,

kst := 8log(12), Ay := exp(2Kgt).

and

Under Condition 5 and the event Fg, the following hold:

* ag and Py, are small enough to satisfy

< L porall” 7 BulogT™ < 5)
gt &S ——, s s t 10 S .
TT1000 o2d T (2pe + po)nst 2T 100
 Forany s,s' € {£1},r € [m], and i € [n],
‘ <wg?r ) Hs’> ) <wg?r ) Vs’> ) <wg?127 éz> < Ot (6)

* From (C3), for any 7, j € [ng] with i # j, we have

2
o2d -
- < 1&]1% <

3012)(1 ’<£Za£]>‘ - Bst

27 &lr T st

€12
HE

< Bst

9
Tst

€1 = op(d — 4)| < Bawoyd.
(7)

)
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» Forany s € {£1},r € [m], and i € [ng], we have

M 1) (1A L] (I8 1) il 11 ©
m 2 2 m 2 2 1
* The learning rate 7 is small enough to satisfy
n < BStTr;nSt and under Condition 6, n < fsm 5 Fsm 5 - ©))
20,d 2t (|7 225 [l

F.2.4. TECHNICAL LEMMA

We also introduce a technical lemma that enables a tight characterization of the learning dynamics.

Lemma 15 (Lemma D.1 in Meng et al. [19]) Suppose that a sequence a;,t > 0 follows the itera-

tive formula
c
ag1 =ap + ————
T et

for some c € [0,1] and b > 0. Then it holds that

Cc

L —
- 1+be“0+mt

T < aq

forallt > 0. Here, ¢ is the unique solution of

x; + be™ = ct + ag + be®.

27



PROVABLE WEAK-TO-STRONG GENERALIZATION THROUGH FEATURE LEARNING

Appendix G. Proof of Theorem 7

For the proof, we first introduce properties preserved during training (Appendix G.1), then prove
the convergence of the training loss (Appendix G.2), and finally establish a bound on the test error
(Appendix G.3).

G.1. Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Lemma 16 Under Condition 6 and the event Ly, we have the following for any iteration t €
[0,T%]:

(Wi1) 0< p\) < dlogT* for any i € [ny.
(W2) WSNRi : pgt) <M < 3wk (2pe —i—pb)SNRi . pl(-t) foranyi € [nyl,s € {£1}.

(W3)

o) — pﬂ < Sk forany i, j € [nyl.

(W) |yi farc (0D, X5) — y; farc (w®, X;)| < B forany i, j € [nyal.
g .
(W5) 1 — gy < ﬁ < 1+ kyk forany i, j € [nykl-

(w6) |ND| < 22+ p)maSNRE - p” for any s € {£1},i € [n].

Proof It is trivial for the case t = 0. Assume the conclusions hold at iteration ¢ = 7 and we will
prove for the case ¢ = 7 + 1. Note that (W2) and (W6) at iteration ¢ = 7, along with (1) and (C5)
imply that

T ]- T ]- T
’Nsm ™) < —nga(2pe + pu)SNR, - pl7) < §M§, 0

< 2(2pn + pu)nwikSNRE - o7 < 51

forany s,s’ € {£1} and i € [n].
(W1): We fix an arbitrary i € [nyx] and we want to show pz(.TH) < A4logT*. If pET) < 2logT™,
then we have

2

(T+1) (7) . 3oy d <4logT*
2 — )

77 T * 77
P =+ gl < 2005 T +
Nwk

Nwk
()

where the first inequality follows from g; * < 1 and (2), and the last inequality follows from (4).

Otherwise, there exists £ < 7 such that pgt) < 2logT™ < pl(-tﬂ) Z(-t)
iteration ¢t.

From 91@ <1, (2), and (4), we have

A0 =04 () ) 4 3 (A 00)

t=i+1

since p,;’ is increasing in
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-
_ @ D yeq2 . N t) j1¢.12
pz + nwkgl Hng + Nk t_zf_:‘—lgz H£1H

LM 3 o.M 35 @
SQIOgT +an'20'pd+an'20'pdttzlg'
=t+

3oyl (t)
<3logT" + S ZIGXP <_yifwk (w 7Xi>)-
=it

For any iteration ¢t € [f +1, T] , we have

Yifwk (’w(t), Xi) = <’w(t), yivi(l)> + <w(t),’yi’0£2)> + <’w(t),yi§i>

,‘Nf?‘}erEt)vL S vl <ﬁ§i§>
J€nwi]\{i} J

v

—2max{’]\71(t)

Y DS RONGR

0
> —2max {| N} { e
jelmad\(} )

S'v 5
> —4RykNywk (2pn +pb)SNR,2, . Pgt) + PZ(-t) - Z pﬁt) 4|< ; . ]2>’
J€Mwi]\{i} Hg] I
> — 4k (2pn + pp)SNRS, - 4log T + 2log T* — 4log T* - By
= (1 — 8kwknwk(2pn + pb)SNRE — 2Byxk) - 2log T*
>logT™,

where the first inequality follows from the fact that M. 1(t), M Eti > 0, the third from applying (W2) at
iteration ¢, the fourth from (W1) at iteration £ and (2), and the last from (1) and (C5).
Now, we have our conclusion

p(TH) < 3logT* + 3na§d gT exp (—y‘f Kk <w(t) X>>
i > Mk _ iJw 3 4N g
t=i+1
3no2d <
* p *
<3logT* + pr g exp (—log T™)

t=t+1
3no2d
< 3logT* + 2222 % oxp (— 1og TY)
2nwk

< 4logT*,

where we applied (4) for the last inequality.
(W2): We fix arbitrary s € {£1} and i € [nyx]. We have

T T 77 T T
o DR LD DN N T
jesi jesyy
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n Pe | Pb T
< T 9. (—e + 2 Jr')/wk) Tyl (gl( "1+ Hwk)) el
TNwk 2 4
n 3 (pe pb) 2
< 1 9. Z (£ 2
<25 (G ) e a7 ull

3
- 577(2pe+pb)gf [

where the first inequality follows from (W3) at iteration 7 and (3), the second follows from (1).
From (2), we have

2
P ) = g2 > g™,
Nwk 2

W

and thus,
M§T+1) (T) < 3nywk (2pe + 1) SNR2 ( (r+1) _ plm) )

Combining with (W2) at iteration 7, we have
M) = g0 4 <M8(T+1) _ MS@)
< 3ni(2pe + pu)SNRE - pl7) + B (2po + py) SNR ({7 = (7))
= 3nwk(2pe + pp)SNR}, - P,

7

Similarly, we have

M M) = S ST g 3 gl P

j681> GS(2>
> M 2 e ’
_Tk. . ?+Z—fywk Nwk - | 9; (1 = Kwk) ) [l
n L /pe Db
Zgz.z§(§4u1) e 5o ul?
W.

1
= 31 (2 + ) g |2,

where the first inequality follows from (W5) at iteratiou 7 and (3), and the second follows from (1).
From (2), we have

2
() _ ) ez < S1%9 @)
p7, pz angz ||€Z|| — 2an gz Y

and thus, we have
1 T T
7\4(7’4—1) _ Zu( ) < Enwk (2pe +Pb) SNR2 ( ( +1) p( )) .

S S (3

Combining with (W2) at iteration 7, we have

M) = g0 4 (Ms(TJrl) _ MS(T)>

30



PROVABLE WEAK-TO-STRONG GENERALIZATION THROUGH FEATURE LEARNING

v

1 T 1 T T
k(2P +pp)SNR2 - o) 4+ T3k (2pe + pu) SNR}, ( Tl )>

1
= ﬁnwk(zpe + pb)SNR,QJ, * P

(W3): We fix arbitrary i, j € [nyi] withi # j. Without loss of generality, we assume that p( ™) > pg.T).
From (2) and (4), we have

2
() ) 0 (O ez O pe ) s 1 3% Rk

Thus, we want to show that pETH) - p§T+1) < gk

)

If p(T) — pgT) < %k, from triangular inequality, (2), and (4), we have

(r+1) () _ 1) (0 (0 2 g2 < Bk 1 30 Kk
R e e i 2 il 13 ) e e

Otherwise, we have
Yi fwk (w(T)7Xi> — Y5 fwk (w(T)an>

:< )y, ( M L v§2)+£¢>>—<w(7),yj <v(1)+v(2)+£j)>

> (o7 = p7) =MD+ Y gl PGSl sl }(53,5] |

i €nwi] \{i} 1€ H J'€nwi]\{j} Hé]
(r) _ (1) . () 1€, &ir)| o [(&5,&57)
2( pJ) ?’M?Sj)_ Z /’i'w_ Z pj’H§.JZ
i'€nwi] \{i} ! J'€nwi]\{j} 3’
> "% 3 3 (2pe + po)SNRE - dlog T" — 2 d1og T - B
Rwk
>
Z 76 > 0,

where the first inequality follows from (10), and the fourth inequality follows from (1). Then, we
have

a” &1 1+ e (gife (w, X))l

ST E T exp (v fuc (00, X)) g

< o [yjfwk (,w(f)’Xj) —vifu (wm,xi)] <1 + 5wk)

Nwk

B 16 Nwk
<1
Therefore, we have
T+1 T+1 T T 77 T k
P — T = T pl) - (gi( Mgl — g5 1€ ) -0 < %-

W
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(W4): For any i, j € [nyk], we have

Yi fwk (’w(TH),Xi) — Yj fwk (’LU(TJFI),X]')
_ <w(7+1),yi ( a )+U +£Z>> <,w(7'+1)’yj (U](;) JrUJ('z) +£j)>

< (pg-T“) (7 )) +3M{THY
T (3] (A T E 7£
+ Yy <ﬁ€£\!>_ >y §+1)<] 7)
enu\{i} v jema\} &I
< (pgT-‘rl) _p§¢+1)) _|_3M?5;+1) " Z pZ/TH ’fg E”zﬂ n Z pj'/r—i—l ‘<5g753>
i €nwi]\ {7} v J'€nwi\{7} ng
< % + 3 - 3nwk(2pe —i—pb)SNRi ~4logT* +2-4logT" - Pyk
< vk
- 2

where the first inequality follows from (10), the third inequality follows from (W1) and (W2) at
iteration 7 + 1, which we have shown earlier, and the last inequality is due to (1).

(W5): Let us fix arbitrary 4, j € [nyx] and assume y; fu (w0, X;) > y; fane (0™, X),
without loss of generality. Then, we have

g™ 1+ exp (gafw (0, X5))

g7 T exp (yj fur (w01, X))

exp [yz‘fwk (’w(TH), Xi) — yjfwk (w(TJrl), Xj)]
1+2 [yifwk ('w(7+1)7Xi> — i fwk (’w(TH),Xjﬂ
<14 Kyk,

1<

IN

IN

where we use the inequality e* < 1 + 2z for any z € (0, 1), which is applicable due to (1). In
addition, we have

g™ 1+ exp (yjfun (0T, X))
g7 T exp (yifwc (w0, X))

exp [yj o (w(7+1), Xj) — i fo (w(m), X)}

1+ [yjfwk (w(7+1)7 XJ‘) — Yifwk (w(TH)’Xiﬂ

Z 1_Hwk7

1>

Vv

A\

where we use the inequality e* > 1 4 z for any z € R.
(W6): We fix arbitrary s € {1} and i € [ny]. We have

NS(T-i-l) _ NS(’T)
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=L Z gJ '+ Z gy Z gj(.T)_ Z QJT) lv|?

Nwk

jES 1) JES, 2 ES(,l,zS 363(,2,,3
< L (|8 [S2]) 1 s = ([ +[8EL]) (@ = )] o P
< [ ( T § + ) (14 Fui) — 2 (% + % - ’ka) (1- ﬂwk)} a7l

2pn +

Z(T) <ph2pb * RKwk + 4’ka> ”VH2

< n(2py +po)g” |v)?

_ (2pn + o) v |12 ( (T+1) _ p(T)>
1&:11? ‘ v

where the inequalities follow from (W5) at iteration 7, (1), and (2) , respectively. Hence, we obtain

2pn + o) VN? (1) ()
NI < N 4 ( =
- 1€ ( ' ' )

< NI+ 2(2pn + po)nSNRE - (o7 = p7)
< 20291 + po)maSNRE - o7 + 22y + pu)nuaSNRE - ({7 = p{7)
= 2(2pp, + o)k SNRE - oY,

where the second and last inequalities follow from (3) and (W6) at iteration 7, respectively. Similarly,
we have

N(T+1
_ " (7 2
_ka Z gJ + Z gJ Z gj Z 9; itdl
jES,Slg) JESY, 2> ]ESEBS jESg/S

82|) (1w — (|87 ) (4 k)| o7 )

(s
> [2 (ph + B +7Wk) (=) =2 (5 + B = ) (4w 07 2

+|s%,

mwk+4vwk) Pk

> —n(2pn +pb)gz HVH2
2pn + Db ) Nwic| |V - -
~ (2pn b?Qk\| & (5“)—/%( ))7
l|&:l|

where the inequalities follow from (W5) at iteration 7, (3), and (1), respectively. Hence, we obtain

2ph + o)k V? [ 1) ()
N > N ( IR
€12 ( )
> N — 2(2py + py)nwSNRE - ( ey Pp)
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1

> —2(2pn + po)nwSNRE - o7 — 2(2py, + pu) i SNR - (PETH) - P(‘T))

= —2(2pp + pp) Ny SNRZ - P(TH),

(2

where the second and last inequalities follow from (2) and (W6) at iteration 7, respectively.
Therefore, the conclusions hold at any iteration ¢ € [0, 7. [ |

G.2. Convergence of Training Loss

In this subsection, we prove that the training loss converges below & within O (n et ngd o, ?).
Let us define

w = 2log(4/¢) Z yiki 1€l 72,
’iE[an]

which plays a crucial role in proving convergence.
Lemma 17 Under Condition 6 and the event Eyy, we have the following:

1
o |[b] < 3log(4/e)n2 d 20,

o Yi (Vwfur (w9, X;) %) > log(4/e) for any t € [T, T*].

w Lk (w(t)) H2 < 2U§d - Ly (w(t))for any t € [0,T%].

Proof The first statement follows from

2
l]* = (2log(d/e))® | Y wikill&il ™
ie[nwk}
—dtog?(1/e) | 30 el S py— oSl
1€[Nwi] i#j ||€2|| ||€]||
<atoga/e) | Y0 el 7+ Y0 &8
1€ [Nwk] i#] 1€l ”‘EJH
2 2 2 ﬁwk 2
= 410g2(4/€)w
p
< 9log? (4/5) d

where the second inequality follows from (2) and the last inequality follows from (1).
Next, let us prove the second statement. For any ¢ € [0, 7], we have

Yi <wawk (w(t),Xi) ,127>
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Zyi<v§1)+v§2)+£¢,210g(4/5) Z 3 ||£j||_2>

JENwi]
—2log(4/) > vy <£ia}£]é>
€] 1€
> 2log(4/¢) — Z 210g(4/5)w
j€lnar\{i} 1€l
> 2(1 — Byk) log(4/¢)

> log(4/¢)

where the second inequality follows from (2) and the last inequality follows from (1).
Let us prove the last statement. For any ¢ € [0, 7], we have

HVwka (w(t)) H2 — |- > oy (vgl) +o? + Ei)

Nwk .
s le[nwk]

< > o |ol + ol 4
wk 1€[Nwk]
_ 92
1 (t) 2
<
<l Z ; 2<7pd
’Le[nwk]
< 20-2d . i Z g(t)
o b Nwk . !
1€[Nwk)
1
2
< 20'pd TWk E[Z ]é(yszk (wvxl))
L 1&|Nwk

= 202d - Ly, (w(t)> ,

where the first inequality follows from the triangle inequality, the second follows from (2) and the
2

bound |||?, |v|* < %ﬁ implied by Condition 6, the third follows from ﬁ D icinud gi(t) <1,

and the last follows from —¢'(z) < ¢(z) for all z € R.

Lemma 18 Under Condition 5 and the event Eyy, for any iteration T € [0,T*], we have

T
1 [w[” e
~S" L, ( <t>><7 =
T; (W) =T Ty

Proof For any ¢ € [0,7%], we have

i |
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= ]~ [ &~ 92k () [
_ <Vka (w(t)) w® — 'LZ:> —n? HVLWk ('w(t)) H2

= 712::1{ Z g§t) <<yinwk (W(t)’Xi> 7w> — i fur <,w(t)’Xi>> 2 HVka <w(t)) H

i€ [nwk}

2

> n277k Z gz(t) (log(4/5) — i fwk <'w(t),Xi)) —n? HVka <w(t)) H2
WX i€ ngwl
2 2 5 [ (w0 ) ] - (o)

where the first inequality follows from Lemma 17, the second follows from the convexity of ¢ and
the bound /(log(4/€)) > /4, and the last follows from Lemma 17 and (4).

By applying a telescoping sum and using the fact that w(® = 0, we obtain the desired conclusion.
|

Using lemmas above, we can prove that the training loss converges to below €. By applying
Lemma 18 with iteration 7' = [18p~ !¢~} log(4/s)nwkd_101721 = O(n_ls_lnwkd_lap_Z) and
using Lemma 17, we obtain

T .12 2 1.2
91 4 wkd
1 E Lk (“’(t)) < HwU TP ( /8)71 % f
T nT 2 nT 2

Therefore, there exists Ty € [0, 7] such that Ly (w("+<)) < e. In addition, for any wy, wy € R?,
we have

=Y [ it X)) — € (fataon, X)) (o) 4 0 )
w 1€ [nwk]

< nlk > [‘f’(yifwk(’thi)) — 0 (yi farc(w1, X)) - ‘ o 4 o® Lg, }
W e
20,d?

< VG S (ol X0~ ontn, Xo)

i€ [nwk}

< Yoy > |

vfl) + Ui(Z) +&;
2nvvk

[lwy — ws]
iE[nwk]
< opd|jwy — wyl,
where the first and third inequalities follow from the Cauchy-Schwarz inequality, the second and last

0'2 . . .o,
inequalities follow from (2) and the bound || u||?, ||[v|* < %d implied by Condition 6, and for the
second inequality, we also use the fact that 0 < ¢/ < i.
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Since Ly (w) is agd—smooth and the learning rate satisfies (9), we can apply the descent lemma
(Lemma 3.4 in Bubeck [2]). This proves the first part of our conclusion.
O

G.3. Test Error

In this subsection, we prove the second part of our conclusion. All arguments in this subsection are
under Condition 6 and the event E.

Define v(l), 0(2), and & as the signal vectors and the noise vector in the test data (X, y),
respectively.

For any iteration ¢ € [Ty, 7] and for the case given (X, y) € Se U Sp, we can express the test
accuracy as

P [yfwk (w(t),X) <0 ‘ (X,y) €S usb}

=2 (0, €) < = (o) — (yu® v®) | (X.y) € 5.0

I (t)
M
<P <y'w(t),€> < —le
i y®
y
=Plz< - 5 ,

where z ~ N <0, o2 [[Mgw® ||2> and the inequality follows from (10). By Hoeffding’s inequality,
we have

(i)
P [yfu (0. X) < O‘(X,y) € 8. USh| < exp 502 |[Tgw |
p

Let us characterize Hﬂg'w(t) H2 We have

2
[suto* = > uslel”

1€ [Nwk

<3 (Ve XY oLl
i€ ] i€[nwk] F€[Mwi]\{i} ! 1€ ||£J||

)2 )%

2 (1) (m ) + (f’a’ ) Bk 2
4 )\ 2

< — p;
agdze[nw}( )

IN

2
4 12 2

— ny MWD

opd " (nwk(Qpe +Pb) - SNRi) ( v )
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2
tooyd ()’
Nk (2pe + pb)? || 1|

where the second and third inequality follows from (2) and AM—GM inequality and the last inequality
follows from (W2). Hence, we have

Plyfu (w®,X) <0|(X,9) €S. US| < exp (— K 4‘%080;1[ I
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Appendix H. Proof of Theorem 8

By Condition (C5), it suffices to prove the following restatement of Theorem 8.

Theorem 19 (Weak-to-Strong Training, Data-Scarce Regime) Ler W) be the iterates of weak-
to-strong training, with the weak model fyx(w*,-) satisfying the conclusion of Theorem 7. For
any ¢ > 0 and § € (0,1) satisfying Condition 6, with probability at least 1 — 0, there exists
Twos = (’)(nfleflmnstdflapf 2) such that for any t € [Tyas, T*] the following statements hold:

1. The training loss converges below €: Lg; (W(t)) < e
2. Let (X,y) ~ D be an unseen test example, independent of the training set {(X;, Ui) bt

* (Benign Overfitting) When ngp v|* /(opd) > Ca, we have

Ng 2 e"‘ 2 174 4
Plyfu (WO, X) <0[(X.y) € SoUS,| <exp (_ i paﬂ'ﬁ | )
3%p

and
P [yfst (W(t),X) <0 ‘ (X,y) € Sh} < exp (—W) .

* (Harmful Overfitting) When ngp P2l /(Uf;d) < Oy,
P [yfst <W(t),X> < o} > 0.12py,.
Here, Cy, C4,Cy > 0 are constants.
For the proof, we first introduce properties preserved during training (Appendix H.1), then prove

the convergence of the training loss (Appendix H.2), and finally establish a bound on the test error
(Appendix H.3).

H.1. Preserved Properties during Training

In this subsection, we present several properties that remain preserved throughout training.

Mg?‘ < ag + 5st, 0<
ﬁ(t) < 4logT*, and —agy — 5B log T* < B(t) < Oforanys € {£1},r € [m], and i € [ng). Then,

rg — ri =

forany i € [ng] it holds that
P (W0, X)) <2 o ((wl), &) -5

Proof For any i € [ng], we have

Lemma 20 Suppose for some iteration t € [0,T*], it satisfies ‘ M S*Z

i

<
— 16

Foy, (Wﬁtgﬁ Xz)
= S [ (w8 D)) o (w0, 8)) 4o ((wlh) &)
re[m]
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< 32 1) ) (00,0
5 ) ()] ¢ (60

IN

(s +260) + - 3 [(w' . &)

re[m]

Y

»| and (6). In addition,

9

where the last two inequalities follow from the given bounds on ’M 57

for any € [m], we have

(&) = (&) -+ 3 1, S8

J€Mnst]\{i}
o ) (&, &)
2 < _y r7£>+p Z A p_gim,j Hé”Z
J€[nst]\ {1} J

> 205 — 9Bt log T*7

where the last inequality follows from the given bound on ﬁ(t) Bffl) , (6), and (7). Similarly, for any

Ty
r € [m], we have

< ,ty r7€Z> = <w7yi,r7sl> +BS£ - Z pfilw’,j HéJHJQ

j€nss]\{i}
< 0 4 o | 1€ &)
_< o T,£z>+p > N e
j€ns]\{i} J

< gy + 4ﬁst lOg T*v

where the last inequality follows from the given bound on ﬁ(t) 87(2 , (6), and (7). Hence, we have

T,

F—Z}i (WEIZZ X; ) < 6agt + 2Pst + 9Pst log T™ < E

where the last inequality follows from (5).
Next, we prove the second part. For any i € [ng] and r € [m], we have

7 (Cuiln ) =] = | (o) = (912)]

_ ‘J
< ’<w;(;t)méz> - ﬁg

: W | 1€ &)l
<€) 3 il e
selmmngi} 2
< agy + 40 IOgT*
_
— 16
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where the last inequality follows from the given bound on ﬁ(t? 31(2 , (6), and (7). |

T,

Lemma 21 Under Condition 6 and the event Eg, we have the following for any iteration t € [0,T*]:
(S1) —ast — 5Bt logT* < p( ) < 0and0 < p( ) < 4log T* for any i € [ng] and r € [m).

(S2) Ift > 1, then for any s € {1}, we have M( ) > M for all v € [m], N(t) > N(t_l)for

allr € Ag, and NSZ < Ngf;l)for allr € BS. In addmon, ‘Ms,r ) N( ) < at + Byt for all
r € [m).
(S3) Forany s € {£1} and i € [ng], we have
nNSNR 7(t)
NS < 3 W < oS Y 5
re[m] re(m) re[m]
n,,SNR 9
12/\St Z p” < Z N < 6Asens, SNRy, - Z pm
re(m) reAs
n,SNR2 —(t)
T12h DILEED SRR Z Pri-
re[m] reBs re[m]

(54)

it (WO, X) = 557, 11

< 5t forany i € [ns

(55) & |0t P = Srem 2| < i for any i, j € gl

~(i)
(S6) (z) < st forany i, j € [ng).

(S7) For any i € [ng] and r € [m], < g()t)r7£i> >0 i]‘<w;??r,£i> > 0. Furthermore, for any
i € [ngt] andr € X, p£,2 = Max,/[m) pi )z

(S8) Let x¢ be the unique solution of

nogd

8mmnit

xy + exp(zy + ket /16) = t + exp(kst/4).
It holds that for any i € [ng],
(t)

1
xy < E Z 71“’@'-

re[m)]

Proof It is trivial for the case ¢ = 0. Assume the conclusions hold at iteration ¢ < 7 and we will
prove for the case t = 7 + 1.
(S1): We fix arbitrary i € [ng] and r € [m].
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(1)

Let us prove the first statement. If p,. ;

> —ast — 48t log T, then we have
3na§d

> —Qgt — 565t IOg T*v
MNst

P(T-+1) (T) mn HEZH2 —ay — 45t log T™ —

-7,

where the first inequality follows from (7) and the second inequality follows from (9). Otherwise, we
have

< a r’é’i> - <w(_033rél> tol e X o, ﬁgjﬁé)

j€mst]\{7}
(&€
< agt (—ag — 4Balog T+ > [ [
je[nsc]\{l} ||£J H
< —4Bs logT* + ngt - 4log T™ - Pst
Tist
=0.
It implies p( b _ ,07(“? > —agt — 5Pt log T* and we have desired conclusion.
Next, we prove the second statement. If ,0( <3 log T, then we have
- 3no2d
P <o)+ g E N < Blog T + TP < dlog T,
’ ’ MNgt, 2mngt

where the second inequality follows from (7) and the third inequality follows from (9). Otherwise,
there exists £ < 7 such that p( ) <3logT* < p(H' ) . Then, we have

A = (ﬁsﬁ” )+ X (A -al)

t=t+1
« ullt3
<3logT" + — 5 & + H il Z 3"
mn. Nt
t= t+1
log T*  3no2d
< 3log T* + °g2 +2n p o T
i 2, T (5 (W0 %) o (W)
7 . Bnopd ® ¥
< St S e (o () £ (W, )
t=t+1
7 3770'2d T D = Kst
< D1oe T P (—F«( (®) X-) —5)
=3 0og + Mg Zlexp Ui Wyi X | T+ 16/’
t=t+

where the second inequality follows from (9) and (7) and the last inequality follows from Lemma 20.
Foranyt =174 1,---,7and v’ € X;, by applying (S7) with iteration ¢, we have

(&) = (w0 10 3 o, B8
Je[n ]\ {2} Il
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> p") — o — 4B log T*

ri

> 3log T — ay — 454 log T™.

Therefore, we have

T T
- 1 -
> e (8 (W K)) < 3 e (L 3 (w6
t=t+1 t=i+1 reX;
_ ZT: exp <_(310gT* — agt — 4B log T™) \Xi>
t=t+1 m
< T exp (_ (3log T* — agt — 4Bt log T*) |Xi|>
- m

< T*"exp(—logT*) =1,

where the last inequality follows from (5) and (8). Finally, we conclude

2

7 3770pd
< §logT* + 5 exp(rgt/16) < 4logT™,

p(TJrl)
MmNt

0

where the last inequality follows from (9).
(S2): We fix an arbitrary s € {1} and i € [n].
For any r € [m], we have

Mnst  (——=(7+1)  5#(7)
sl (T = 317)

P IR W BACH AR
tef2] \ jec jeFd

= 3 (e /e = [F aa) 371 [(w) i) > 0]
le[2]

>2( (1= C5") mufAa — O3t mda )3 1 [(wD), ) > 0]

i 1 fut)

>0,

v

where the first inequality follows from (S6) with iteration 7 and the third inequality follows from

large choice of C;.

For any r € A, from (S2) at iteration 0, . .. , 7, we have <w§7r) , VS> > 0. Hence, we have

e (VN =Y | S X e

l€l2) \ jecl) jeFy)
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SN (e

)\st) gz(T)
le2]

>2( (1= 03" m/ha — Ot )3

anZ(T)

)\st

i~ |

> (12)

>0,

where the first inequality follows from (S6) with iteration 7 and the third inequality follows from the
large choice of C;.

Similarly, for any r € B, from (S2) with iteration O, ..., 7, we have <'w§ T), Vs> < 0. Hence,

we have
() - % o
nllv| 16[2] ]Gc(l) jeF®
>3 (‘ ’/)\ FO[2) 5"
(2]
<(1 Co') new, /Ast — Cs_tln—Vs)\St>§2(T)
>n_LQZ()
B >\st
>0,

where the first inequality follows from (S6) with iteration 7 and the third inequality follows from

large choice of Cy > 0.

Let us prove the last part. For any r € [m], if M gi) < —agt, then we have <w§T,«) , p,s> < 0.

Hence, ’M (r+1) ) M 222 < gt + Bt by Lemma 13. Otherwise, M. gT,? > —ay; implies

2 (AL~ M1))

=3[ d7- 3 " HK §C«),us>>0}
€2 \ jec® ieFW
/\st) le -1 {<w§},ll;s> > 0]

2
/)‘st - ‘}—l(tl)
—2( (1= C3") - muf A = O3 )37 [ (w7, s ) > 0]

<- Z (| )

IN

where the first inequality follows from (S6) with iteration 7 and the last inequality follows from the
large choice of Cy. Thus, M g,?“) <M g? < ag + Bst. In addition,

MNsy T4+1 T
T (AL = 27)
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a2 DI ARSI R (CAVREL)

lef2) \ jec®) jeF®

> (Jei2] A ) a7 1| (wipe) > 0)

lel2]

—2( (1—Cxh) npAst — C;ln“/)\st)gz(f) 1 [<wgfr,u5> > O]

—2)\stnu

Y

st ’F s

AVAR AVARNAV,

—2 st Nt s
where the first inequality follows from (S6) with iteration 7. Therefore, we have

T T 2X § 2A ’
MS,T+1) > Ms,r - St??im” > —Qgp — StZ/LM > —ast — Psts

where the last inequality follows from (9).
From Lemma 13, for any r € [m],

9 2
Sl
m

v - NG

S,

Therefore, it suffices to show that NV FJTH) < N, gQ when NV §2 > agt and Ny (TH) > N g? when

ﬂg,? < —ag. If M§2 > oy, then we have

Hence, we have

nllv|> A" "
P SIDI e I i
1€2] \ jec® erd
<3 (1 e | )
le[2]
< —2( (1= G5 mu/h = O3t -t ) g

where the first inequality follows from (S6) with iteration 7 and the last inequality follows from
the large choice of Cg;. Using the similar argument, we can also show that N, (TH) >N g? when

N £2 < —at and we have desired conclusion.
(S3): We fix arbitrary s € {1} and i € [n].

From (11) and (S2) at iteration 0, . .., 7, we have
~(7)
S - 3w s M Ty
’ mnst Ast
re[m] r€[m]
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N
LML
12t
”uSNRi (7'+1) (1)
> -~
DI 27 2P |

re[m| re[m|
where the second inequality follows from (7) and (8). Combining with (S3) at iteration 7, we have

nuSNRZ

(7'+1) 7’+1
o Z < Z M .

re[m] re[m]

For any r € [m], we have

MmNt (ngl) _ M(T))

NE
-y T 4 (1) _ = gj(_ﬂ 1 ng;,us> > 0}
€2 \ jec® jeFL)

Ast — ‘f;(p

< Z (Jei M) 371 [(w, g > 0]
l€p)
< A Y ‘C

[
=D

<2 (1407 npg™ -1 [< gv,us> > 0}

< 3anugl” 1 [(wl), ) > 0]

where the first inequality follows from (S6) with iteration 7. Hence, we have

(r (T As ? ~(r
Z M +1 Z Mi,2§ o1 || | nﬂgl( )\Ms‘

re[m| re[m)] Mgt

6)\st77

st

—(t+1 =\T
< 6AsmuSNRi Z p7(ﬂ’i+ = Z pgﬁi) ’

re[m)] re[m)]

<

WSNR2,G 1€

where the second and third inequalities follow from (7) and (8), and (S7) with iteration 7. Combining
with (S3) at iteration 7, we have

ST < 6anSNRZ - Y 0.

T,

re[m] re[m)]
From (12) and (S2) at iteration O, . .., 7, we have
DRI o BN L7 S P
2T ming 2t °
reAs re[m]
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nuSNR2 () -
> S g2
12)\stns
n,SNRZ (r+1) _(7)
>_Y v
> e (5 A >
re[m] re[m]

where the second inequality follows from (7) and (8). Combining with (S3) at iteration 7, we have

nVSNR‘IZJ T+1 T+1
_ < N .
ST REDY

re(m] reAs

For any r € A, we have

e (RN - Y 2 a0 %

le[2] jeC“) -76]:'(/?

Y[

le[2]

< 20 (14 G5 nug”
< 3)\stnu§(7)7

)

Ug Z

where the first inequality follows from (S6) and the third inequality follows from the large choice of
C4. Hence, we have

ZNT-H ZNST_HH | - 3M\un ng ’A|

rcAs reAs
- GASm,,SNR,%

st

< 6AstnSNR;, Z ﬁ£:;+1) _ Z ﬁ(T-) ’

re[m] re[m]

g 1€

where the second and third inequalities follow from (7) and (8). Combining with (S3) at iteration T,

we have
SN <6enamSNRZ - Y AU,

7’ Z
reAs re[m]

Using a similar argument, we can also show that
2
S B - SN <o SNRE - S 57
St rem] reB, re[m]

(S4): We fix arbitrary i € [ng]. From (S3) at iteration 7 + 1 which we have already shown, we
have

(T+1) 1 ——(7+1)
- Z M < — m Z Ms,r

TGM.S re[m]
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GAStnMSNR Z (7'+1)
re[m]
< 24An,, SNR?, log T*
Kt
~ 64’

where the first equality follows from (S2) at iteration 0, . . . , 7, the second inequality follows from
(S1) and the last inequality follows from Condition 6. Similarly, we have

)\‘ N 2 o
1 Z N+ o G SNRy | 3 0 < 244, SNR2 log T < 7%
— 64
TE.AS T’G[m}
and 9
T+1 6Ast1, SNR —(m+1) 2 * o fist
1 Z # > by <2424, SNRE log T* < 6—54.
T’EBS Te[m}

Therefore, for any s € {+1}, due to (5) and three inequalities above, we have

2 o () 3 o ((wl ) B o ((wle o)) < 5

re[m relm re[m]
(13)
Together with applying Lemma 20 and , we have
- 1
~ T+1 —(t+1)
YiJst (W( - ),Xi) - > o

— > 7

+ Py (W), X))

Yi’

re[m]
<o 2 Jo (ol &) =T )+ 3 3 o (s ol”) —257) +
mre[m} le[2) r€[m)]
o
— 4

(S5): We fix i, j € [n] and we assume % Zre[m] [ﬁfi) — pffj)} > (), without loss of generality.

From triangular inequality, (7), and (9), we have

P

re[m]

1 (141
<3 [t
re[m]
< — QZ V&1 +

2
< 3770'pd
Mgt

S ARl S

rem)]
(T 1 T (7
pfﬂ +E Z [Pijl) p(m)}
re(m]
€512
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< st
-2
Hence, we have - m 2orelm] {ﬁfff ) _ pgjﬂ)} > — st

Also, if -5 37, [,05« ) - ,07(«?} < 5t then we have

(r+1) ,(T+1) 1 (m) _ —(m] , Kst
- 2 [P J<m X [Pl -]+ 5 < me
re[m] re[m]
=D e im] [,07(4 Z) ﬁf:j)} < Kgt. Together with applying Lemma 20 and

— m

Otherwise, we hav
(13), we have

9ifst (W(T),Xi) — G [t (W(T),X])
= Fy, (WA(_T),X}) — F_y, (W(T)JX'Z-) — Fy, (W@(J'T)’Xj) +Fy, (WET) Xj)
)

yj’

25 (2.6 - (1 60)] - 5 o (i)
ll 1e[2] re[m]

= ;E% 7 7] - =

> et

Therefore, we have

g0 1texp (@jfst (W(T)’ Xj))

7

37 1+ew (5 (WO, X))

oo ot 7. 5)
exp (—:&jfst (W(T)=Xj>> + exp (?Qifst ( ) — Ui fst ( Xj))
exp (—ggjfst (W(T), Xj)) +1
exp (~gpfu (W, X;) ) +exp (st /4)
exp(kst/16) + 1

~ exp(kst/16) + exp(kst/4))
< exp (—£st/8)

where the second inequality follows from

— 05 fst (W(T)an) < Py, (WETU)J7X~J> = %

and the last inequality follows from applying

Z(i:{l) = 2(22 — 2+ 1) > 2% with 2 = exp(ks;/16).
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Therefore, we have

> [ o] - 3 [ -]

re(m] re(m]
N (=@ En2 — =) v 1£.112
< o (a7 mléN — a7 1] 1E11?)
ST £ 112
n  (r e g; 'm E’L
= WQJ( ) | X ||€j||2 <~(T)”~”2 - 1)
s 3,7 141 1651
< o7 1 & I (exp(—re/8) -4+ (14 i /m) ~ 1)
n (r g
< )7 11 IP (12exp( s /8) = 1)
<0,

where the third inequality is due to (5) and 1 4+ z < e” for any z € R. Hence, we have

1 Z [ (T+1) ,(r+1)} S% Z [P(r:) ,051)} < .

re[m] re[m)]

(S6): We fix arbitrary 7, j € [ny] and we assume ¥; fst (W(TH), XZ> > §jfst (W(T‘H), Xj),
without loss of generality. By combining (S4) and (S5) at iteration 7 4+ 1 which we already have
shown, we have

Gifo (WD, X)) = g f (WD, X))

<|t = por-m)
re[m]
4 g fu (W(TH)’Xi) _% 3 ﬁgﬂ) + 9 (W(T+1)7 ~j> _% 3 57(:7%1)
re(m) r&[m]
< 2Kt

Then, we have

g§7+1) - 1+ exp (Qz‘fst (W(TH)’ XZ))
i 1 exp (@jfst (W(TH)’ Xf))

< exp [Qifst (W(T+1)7Xi) —Yjfst <W(T+1)’Xj)}

(S7): We fix arbitrary i € [ng]. From (S7) at iteration 7, we have < wy, wé%> > 0 for any
r € X;. Therefore, we have

) _ om0 e
Pri = Pri =0 Il
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and

(wiia &) = (vl &)

(=) () ) (@ (&)
= (Pm’ *pm)+ (Qm,j o Qimj) HEHQ
jelnal\{i} i
no (r ng n .
> ng( )HEiHQ_W > ) <€ia£j>‘
™ * jelnal\ii}
~(7) £F.
S
L9 s @ IE 2
Mt jebaiy i &l
n_ g
> — ) 1_ stMs
> IR~ dub)
> 0,

where we use (S6) at iteration 7, (7) for the second inequality, and (5) for the last inequality. Hence,

(ijl), éz> > 0. Now we prove the second part. For any r € X; and v’ € [m], we have

we have <wA_
Ui

(741 (7 n (v, _ (r+1
pv("’,i ) < pf«’,)z‘ T 791( )||£z||2 < pffz) (T)H&HQ pm )’
where the second inequality is due to (S7) with iteration 7.
(S8): From (S7) at iteration 7, we have
= 7(7'-1—1 i —(7) () ‘ z‘ CILE 2
Ly m2%+%y7nm
re[m] Te[m]
1 ]z
. Z 7“2 mn R - ’ m ||€’L|| .
™ e 1 exp (jufa (WO, X3))
From (S4) at iteration 7, (7), and (8), we have
2
_(T+1) _ noyd 1
jy Z (T+ Z pf;-) + 8m2 t' 1 O\
M) M) st 1+ exp(kst/4) exp (a Dorem] Pri >
By applying Lemma 15, the fact that z + 173> is an increasing function for any ¢ € [0, 1],b > 0,
and the comparison theorem, we have our conclusion. |

H.2. Convergence of Training Loss

In this subsection, we prove that the training loss converges below e within O(n‘la_lnstmd_lap_ .

For any t € [0, 7], from the definition of z;, we have

2
x: < log 17y t+1].
- 8mmnst exp(Kst/4)
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Combining the inequality above with the definition of z;, we have

nagd

(o) > nagd t+1
exp(z 8mns; exp(kist/4)

~ 8mng exp(kst/4)

t+ 1 — exp(—kgt/4) log (
2 2
no,d no,d
> t+1—1o t+1
8mnst, exp(kst/4) & <8mnst exp(kst/4)
nagd 1

t —
~ 16mng exp(kst/4) + 2

na%d

t 14
~ 16mnsg; exp(kse/4) (14

where we use the inequality log z < 5 for any z > 0.
For any ¢t € [0,7*] and i € [ng], by applying (S4) and (S8), we have

\%
|

2
Rt ngpd
— +1 t
- 4 tlog <16mn5t exp(kst/4) > ’
o2d
= log % t
16mng; exp(kst/2)

2
osd
16Ast mngt
where the third inequality follows from (14) and the fourth inequality follows from (5). Therefore,
we have

)

Lo (W) < log <1+ 16Astmnst,t1) _ 16hamn

nozd nozd
where the inequality follows from log(1 + z) < z for z > 0. If t > 16\~ 'e tmngd~'o, 2, then

we have L (W(t)) < . Hence, by defining Ty := 16Agn~ ‘e 'mngd~'o 2, we have the first
conclusion.

H.3. Test Error

In this subsection, we prove the second part of our conclusion. All arguments in this subsection are
under Condition 5 and the event F;.

Define v(l), 0(2), and & as the signal vectors and the noise vector in the test data (X, y),
respectively. We fix an arbitrary iteration ¢ € [Ty, 7™]. From the choice of iteration ¢ and (14), for
any i € [ns), we have

2 2
B nozd nosd 1 _)
] D<log | —2—t] <1 P t| <z <= . (5
8 (6 ) = 108 (16)\5tmn5t ) = 108 (16mnst exp(kst/2) | — Tt = m ;}pm (15)
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H.3.1. TEST ERROR UPPER BOUND

We define a function b : S — Ras h(z) := L D oreim) O <<’wg;7r, z>> for any z € S. It plays a
crucial role when we prove the upper bounds on test error. We have

,y -
re[m] re[m] re[m]

where z, ~ N < HHSwf?)J .,

h(21) — h(z2)| < % e (<w(fz/,,1,z1>) —0 (<w@y,r,z2>)‘

re[m]

<13 [fwlhm) ()

1
= — <H5w(,t;7,,z1> — <H5’w(jz/rvz2>‘
m b b

2
) for each r € [m]. Also, for any z;, z3 € S, we have

IA
|

',

|z1 — 22|

Hence, his -  2relm] HHS'w(t)

()

~y.r||’s which is related to key properties of h.

The following lemma characterizes HHSw

Lemma 22 Forany s € {£1}, it holds that

1
2\ 2

S XY

1€[nst] \r€[m]

> Hstﬁfl
re[m]

Proof From triangular inequality and the event Fg, we have

et

)

S

,T

Z PsmszﬁzH - < \fa()d2 + Z Psm&HszH -

i€[nst] 1€[nst]

In addition, we have

2

S o EillEN

iE[nst}

— —2 @) (& ENIEN2IE||~2
= 3 () NG Y (6 EDIE I
1€[nst) 1,J€[nst]

i#]
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()

(t)
ps,r,i

9 -1 Z ) \2 1 -2 -1
S 20? d (p.s,r,i) +26Stn5t Gp d Z IOS,T,j
i€[nst] 1,5€[nst]
1]

< 20172d_1 Z (pg*,i)Z + Bstn;tlap_?d—l Z (pgzz)Q i (pgt’?”vj>2

, . 2 ’
1€[nst] WE[@st]
i#]
2
<doy%dt )y (PQJ
ie[nst}

where the first inequality follows from (7) and the second inequality follows from AM-GM inequality,
and the last inequality follows from (5). From the Cauchy-Schwarz inequality, we have

S e <2t [ (60

re[m] ||i€nst] refm] \i€[nst]

<omboy [ 33 (41)

re[m] i€nst]

D=

In addition, from (S1) with iteration ¢, we have

S = @) Y ()
i€[nst] 7€[M) igi[is;] re[m] ny[:njtj* re[m]

< Z Z (ﬁﬁ))z + (st + 5Bt log T*)?mng.

ig[ns;] re|m]
Gi=s

For any i € [ng] such that §; = 1, we have

2
9 2
> (#Y) <m (maxpi’f?) <16m~ | S 81|
re[m| refm] re[m)]
where the last inequality follows from (S7) and (8). Therefore, we have
2
2
D IICHREITURD Sl SFC) IR TRE SRS s
i1€[nst] r€[M] 1€[nst] \r€[m]
2

<owm Y (A

i€[nst] \r€[m]

where the last inequality follows from (15) and (5). We conclude
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=

2\ 2
< Vomoodz + 100,07z | Y | Y Y
i€[nst] \r€[m]
2\ 3
AR DIN DIV
i€[nst] \r€[m]
where the second inequality follows from (15), (5), and (C3). |

By Theorem 5.2.2 in Vershynin [26], for any z > 0, it holds that
cz?

PIh(E) ~ EIh(E)] > 2] < oxp | ——5 o

9y ||h||Lip

where ¢ is a universal constant and ||-||;, denotes the best Lipschitz constant. Combining with
Lemma 22, we have

2d
P[h(€) ~Eh(&)] > 2] < exp | - = el (16)
400 Zie[nst] (Zre[m] ﬁni)

Now, we characterize the test error. First, we consider the case (X, y) € Se U S},. We have

vl (W0, X)
= F, (W, x) - F, (W'), x)

“m 2 2o ((wh o)) <5 3 o((wide))

w2 2o (o) -5 3 o ((056))

25 2 (ol >) TZm 7 ((wdor) - ;;sz 7((w5r0)
z—rez[n% o ((w6)) + TE%M (20 + i)

Z M 2ast + Bst)

T‘G [m]

where the second inequality follows from (6) and (S2). From (S3), (S8), and (15), we have

VAL 1 2
Z M, > 12)\Stn“SNR“ x

1
> oo ——nuSNR;, log (¢77)

re [m]
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> 4(2ast + Bst)7

where the last inequality follows from (5). Therefore, we have

wha (WO X) 2 —hi) + 50 3 W)

re[m]

and thus

P [ufu (WO, X) <0|(X.9) € S.U8] <P |h(e) > i S WY

re[m]
From Lemma 22, we have
1 —(t
5= > My —E[h(¢)
re[m]
_ ORI )
- 2m 2 My V2mm 2 Hﬂsw_w
re[m] r€[m]
, 2\ 3 2\ 3
nuSNRy, _(t) 20 —(t)
> BT e ) - = )
Z Z pr,z \/ﬂmd% Z p'r"z

z T
24 gemng \i€ng] \rem]

> | Ak

z T
A8Asymng \i€na] \re[m]

D=

2
. "SR

where the last inequality follows from the condition nstp% Hu|]4 > Oy a;‘d and (C5).
From (16), we have

P> 5 30 M| =B he) ~ERE)] > 5 > M)~ EhE)

re[m] re[m)]

[\
=

< B |n(e) - Bl > "N Ru

X

T
A8Asemng \i€lna] \re[m]

en, ||l
< _ ©
=P ( 400 - 48202, - ngokd

O e T &
S exp | — 010'4d ’
p

with some constant C; > 0.
Using a similar argument, we can prove the upper bound on test error for the case (X,y) € Sy.
In this case, we have

yha (WO, X)
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= F, (W, x) - F, (W), X)

y -y’
S S SR IS SR
le[2] re[m) re(m]
S T o (w0 0)) - 3 o ((w06))
le[2] re[m) re(m]
S 0)
r€[m]
a2 o ((ulho)) - 230 3 o ((u00)
le[2] r€[m] le (2] r€[m)]
o (o0 6) o] T W |
re[m| reAy rEBy

—h(&) mln{ Z Nyﬂﬂ, Z N } 2(2ast + Bst)

reAy reBy

where the first inequality follows from (6) and (S2). From (S3), (S8), and (15), we have

1 1

= § N, —— ¢ nySNR2 . z
y,?”’ Z yvr - v v t

mreAy reB 12X

1 nold
SNR? -1 P t
12t 120 ¥ 8 (16mnst exp(kst/4) )

n,SNRZ log (571)

| \/

v

1
12t
> 4(2ast + /Bst)a (17)

where the last inequality follows from (5). Therefore, we have

Y fst (W(t)yx) > —h(§) mm{ Z Ny,rv Z Ny, }

reAy reBy
and thus
[yfst (W(t) X) < 0’ (X,y) € Sh] <P |:h(§) > Tlnmln{ Z Nyﬂ" Z N }]
reAy reBy

From Lemma 22 and Condition 5, we have

mln{ZNyr, ZN } h(§)]

reAy reBy
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Z HHS'w

;min{z N;tT, ZN }

reAy, reB, 27rm 6[ ]

1 ,t) —(t)

> o SNRy- Y0 Sl - ——— > D)
12X gmngg i€[nst] r€[m)] \/ﬂmnstdQ i€[ngst] r€[m]

1 2
> -
> S wSNRY SN AY,

ZG[nst]"'e[ ]

where the last inequality follows from the condition given in the statement. From (16), we have

P{h( >m1n{ZNyT, ZN }

reAy reBy

=P |h(&) — E[h(£) >m1n{ZN -3 W } 5)]]

reAy reBy

<P 1) - BIA(€)] > 5r——n,SNR} 30 Y pi?]

i 1€[nst] TE€[M]

4
e[l
- 9.242)2 . N0 pd

2
nsepf. [|pel*
S exp ( CéU4d )
p

with some constant C% > 0.

H.3.2. TEST ERROR LOWER BOUND
We consider the case (X,y) € Sy. Define g : S — Ras g(z) := %Zre[m] o (<w§t2ﬂ,z>) -
% Zre[m] o <<'w(_t)1,r, z>) for any z € S. Then, we have

vl (W0, X)

= F, (W0, X) - F., (W(y) X)

LS o () L E o (i)
LS E o((uthn) - 5 o ()
s;;ﬂo« 1.6)- %w () 5 5 o (o)
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<yg(&) + %maX > N, - > NS

reAy reBy
3
<yg(§) + — max ; N
0 | 3 W B

where the second inequality follows from (17). Therefore, we have
Pyf (WO.X) [(X) €8] = LB [lo@) > > max 3 3N - SN
2 m se{£1} A, B
We define the set
Q= esS: > — N N
{z 9(2)| msggg}{z -2 }}
E.As T'EBS

We immediately obtain P [y fe (WO, x )| (X,y) € Sp] > 3P[¢ € Q] and thus we will charac-
terize P[¢ € QJ. Denote { = Cgpp,SNRZ - 3 &, where Cg > 0 is some constant. Then, we

ie[nst}
gi=1
have
1
2
<<06prNR2( SIErr+ > > <si,£j>\
i€ [nst] i€[nst] j€[nst]\ {3}
3(1 + Bst)nsto2d
<C’6prNR2\/ & t)" tIp
_ 2anstpb HV”
U%d
< 0.020,, (18)

where the first inequality follows from (7) and the last follows from the statement condition
Nt P} v||* < Cyod and the small choice of Cg. Also, for any r € [m], we have

7 (Quin 6 +¢)) = o ((win6)) +o ((wil -6+ ) = o ((wil-¢))
Z’ ((iwlgvfﬁ (i€ + " (i) (i)

_ &, &) :
:CGPbSNR?’ Z p(fl)_ Z Z p§f2«7]<”€~]”]2 + Z < 1T’£i>

i€[nst] i€ [nst] j€[nst]\ {7} i€ [nst]
9i=1 gi=1 i=1
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> CopuSNRZ | Y 5} — 4B log T* — ngra

’i?[nst]
gi=1

where the first inequality follows from the convexity of ReLU, and the second inequality follows
from (S1), (6), and (7). In addition, for any r € [m], we have

(00 ) o ((w05,6)) (64 6) o (w0, -6)
S

€6

| T+ T % ) 5 (e
€[Nt i€[nst] j€[nste]\{i} ”5 I i€ [nst]
§i=1 §i=1 7i=1

< 2C6pbSNR (ngt (st + 505t log T*) + 484 log T* + ngtaist)
= 2C6pLSNR2 ngi (20, + 985t log T™),

where the first inequality holds since ReL.U is 1-Lipschitz and the second inequality follows from
(S1), (6), and (7). Therefore, we have

g(€+¢) —g(&) +9(=&+¢) —g(-§)

2
_ ComSNR

m Z 57(“132) — nst(7ast + 12551-, log T*)

le[nst]
gi=1

> CsppSNRZ Z (1)

9 T8
m ’iE[nst]
gi=1
(1)
2 |Cpu ‘C,,,
> CeppSNRZ . 1 ! U ax Z N Z N
2m 3AsthSNR,V se{£1} reA reBs
12 (t)
> — max s, N
T om se{%1} {TEZAS 7'; }

where the second inequality follows from (15) and (5), the third inequality follows from (S3) and the
last inequality follows from the choice of Cg > 0 and
1-c! + pp)n
e | + > (1= C51) - my 201 - Cytym, = L= );pe Pl 3
By the pigeonhole principle, it implies that at least one of £, —&, € + ¢, —&€ + ¢ belongs to 2.
Hence,

]c

-

PEcQ+P-£cQ+PE+(cQ+P[-E+(c] > 1.

Also, from symmetry, we have P[§ € Q] = P[—£ € Q] and P[-£ + ( € Q] =P[§ — ¢ € Q]. The
following lemma allows us to relate the probability P[€ € €2] to the probabilities P[¢ £ ¢ € .
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Lemma 23 (Direct from Proposition 2.1 in Devroye et al. [8]) For any v € S the total variation
distance TV (-, -) between N'(0, 02 A) and N (v, 07 A) is smaller than %

By Lemma 23 and (18), we have

IPlE € Q) —Pl¢ € Q£ (]| < TV (N(0,0A), N (£, 02A)) < el 0.01.

Op
Therefore, we have
1<PEecQ+P-€cQ+PE+CeQ+P[-€+¢ € Q] <4P§ € 2] +0.02
and thus P[¢ € ©] > 0.24. We conclude that

P [yfst (W@, X) ‘ (X,y) € Sh} > 0.12.
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Appendix I. Proof of Theorem 10

By Condition (C5), it suffices to prove the following restatements of Theorem 10.

Theorem 24 (Weak-to-Strong Training, Data-Abundant Regime) Let W 1) be the iterates of the
weak-to-strong training, with the weak model fyy(w*,-) satisfying the conclusion of Theorem 7. For
any ¢ € (0, 1) satisfying Condition 9, with probability at least 1 — 0, there exists early stopping time
Tos = O 'm(2pe + pu) "2 || ]| ~2) such that the following statements hold:

1. The early stopped strong model fq (W(Tes), ) perfectly fits training data having correct label
(i.e. §i = yi) but fails to training data with flipped label (i.e. §; # ;). In other words, the model
predicts the true label y; for any training data point X;.

2. Let (X,y) ~ D be an unseen test example, independent of the training set {(X;,y;) };=". We

have ) .
nsepy || 1| )

P [yfst (W<Tes>,X> <0 ] (X,y) € Se usb] < exp (- T
p

and

st (2pn +Pb)2||V||4)

P lyfa (W), X) <0|(X.y) € S| <exp (— Clotd
p

Here, CL > 0 is a constant.

For the proof, we first analyze the early training dynamics and characterize the early stopping
iteration (Appendix I.1). We then show that the early-stopped model perfectly fits the training data
with true labels (Appendix 1.2), and finally, we establish a bound on the test error (Appendix 1.3).

I.1. Analyzing Early Phase
First, we establish upper bounds on the noise coefficients.

Lemma 25 Under Condition 9 and the event Eg, for any t € [0,T*],s € {£1},r € [m] and
i € [ngt), it holds that

3noid - 3noid
(t) Y p t n p
sri| = M’fa ‘<w§,m z> < ogt + p—

Proof We fix arbitrary s € {£1},r € [m] and i € [ng]. For any iteration 0 < ¢t < T, we have

(0)

S,1,1

(®)

3no2d
Pri < 7771’ < ...

(t-1) 3770;2)dt _ 377012,d

(t=1)
ps,r,z ;

n _t=1,xz
+——g V&2 < |0l

mnst

Y

2mnst 2mngt 2mngt

where the first inequality is due to the triangular inequality and the others are due to (7). Therefore,
we have

ey o (&4

AL
jelna\ i} 1€l

(wl).&)

< (w2
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where the second inequality follows from (6) and (7). |

The following lemma can be inductively applied when we characterize the early phase of learning
dynamics.

Lemma 26 Suppose the iteration T € {0, 7@%%%] satisfy the following:

Wil 7)
Zre 1r7% rE[}M(1T<2
* Foreachs € {£1}, M§T2,<w§§?,us> > 0ifre M andM( »=0ifr ¢ M,

* Foreach s € {£1}, NST,<w£T7«),VS> > 0ifr e Ag and N7 <wgf,«),us> < 0ifr e Bs.

8,7

¢ 6710 zre[m] M(—Tl),r < Zre[m] Mg? < 60 ZTE[TFL] M(—Tl),r'

* Foreach s,s' € {£1},

e D BELGED DRI DE D DL

120(2pe ‘l’pb) H/J'H r€[m] rcAs rEBs re(m]

(1)

S,T

NG

» Forany s € {£1} andr € [m],

< ot + Bt

)

Then the following hold:

« Forany s € {+1}, MU > M) ifr e m), NV > N ifr € Ay, and NG <N i
r € Bs.

T+1)

For each s € {£1}, M ,<wgr+1),us> > 0ifr € Mg and M(T+1 =0ifr ¢ M.

For each s € {£1}, N T+1),<w§7r+1),1/5> > 0ifr € As and N(T+1),<wg}+1),us> < 0if
r € Bs.

For each s € {£1},

1 —(741) 1 (1) n(2pe + 1) HILH2
S Mg, > — > M+ o .
're[m] 'I’G[m]
 Foreach s € {£1},
2
1 7(T+1) 1 (T) npy [V (r+1) (T) npy ||V ||

D IREET D IR - S D DR R D DR
TE .AS reAs TEBS TEBS
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'r+1 (T-i—l) (T+1)
* %0 Zre[m] M < Zre < 60 Zre[m] M :

» Foreachs,s' € {+1},

prV” . Z T+1 Z NT+1 ZNT+1 < Z MTH

120(2pe +pb HI'LH reAs reBs re[m]

(7+1)
My )

s Forany s € {£1} andr € [m)],

< gy + Bst-

Proof
For any i € [ng], we have

Gi ft (W(T), X) —F, <Wg(:), X) —Fy, (Wg) , X)

<F, (WFT) X-)
DI (CHRED SEA (R
l€[2] re[m) r€[m]

For each [ € [2], we have

LS o)

IN IA IN
3= 3= 3=
Q
7 N\
T
S
£
“iv
S
-~
+
»
e
5
>
=
=
5’3 =
j\./
H_
an/‘\
332
H,_/
N—————

VAN
3=
Q
—~
RS
g
3
1S
~ /z-\
>
~—
+

»
s
[
3=
<
3
|
anﬁ
3
’
| —
2
2

Combining with Lemma 25, we have

) 1 3
Jifst (W(T)7Xi> <2. (ast + 2) + ot o

where the last inequality follows from (5) and thus we have

~(7) 1 1
1>g;' = > >

1+ exp (y fu (W(T), X)) ~ 1+exp(2)

19)
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for any i € [ng].
From Lemma 13 and the event Eg, for any s € [m] and r € [m] we obtain

MY MG =SS A = X a7 el n () ) > 0)

" 1el2) \ jecd) ier )
> e 3 (sl ) 2 (i) >
> B (LG - 0 o) P 1 [(wl
- e (.
= M2 D) ey [ ) > o]
>0

Hence, if r € Mg, we have

(wimt ) = (w0, ) + ML = (w9, ) + ML) = (wD), ) > 0

(+)

and if r ¢ M, we have M M(T) 0.

In addition, we have

1 —r 1 . n 1 ;
w DML S N M) e LSy [ > 0]

m
re[m)] r€[m]
1 7™ o 1@petpp) 2 M|
> JATie T Fb) .
> Z M) 4 e R0 2
re[m]
1 (1) | N2pe + 1) 2
> JAmre T by
— m EZ[:}MS,T + 80m ||l’l'|| )

where the last inequality follows from (8).
Similarly, for any s € [m] and r € Az we obtain

() T) Y ~(7) 2
Ns,r sr _mnst Z Z gz Z 9; HVH

t€f2] \ jec® )

> 1 < ct)] - |74]) wi?
mnst
2n _Csll -1 2
> 2 (A5 -Gyt ) v
2
>
e
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Hence, if r € A, we have
<w§§n+1),vs> = <w§?r),us> +N§Tr+1) > <w§?r,1/s> —i—Ni,Tr) = <wgr,us> > 0.

In addition, we have

L SEAALIES 3L LoFE AW
reAs m reAs m
1 () | _NPb 2
Z - NsTr H H
m 160
TEAS

We can obtain similar conclusions for B. Thus, we obtain the initial five statements.
For any s € {£1}, we have

+1 1 () U] 1 2
oy mG < S W (e + (o)) i
™ rem) re(m] &
1 1—|—C )nnu 9
< — M
<y o L |
re[m]
—(r) _ 3n(2pe + pr)
<Ly ) e,
re[m)]
In addition, we have
7(7.4_1 1 (™) 2
S SN s = SN ([ [ef2)]) v
M A, reds st
1 _ 2(1+CYnn
<Ly w2 Gome ).
T'G.As st
1 (T | 3nPb 2
s - N, S )"
T‘G.As
Similarly, we have
+1 1 (1) 2
SN < SR T (e |+ (e |) 2
reBs reBs st
1 — 2(1+cCy!
<Ly i 2 G ey
T‘EBS st
1 —(7)  3ppN
< - Ns,r+7”y||2'
mTEBS 8m
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Using these, we have

Z (r+1) Z Ml 7 Z M T+1 Z MS—Q

re[m] re[m] re[m] re[m]
2pe + Db
> W+ O)rm?
re[m)]
T+1 (7
>y M Z AAR S VA
re[m] re[m] re[m]

1 (T+1) 57(7)
Z@ M17‘+7 ZM ZM—L’V‘
re[m] re[m]

1 —(7+1)
=5 2 M4,
re[m|
—(7+1) —(r+1)

By using symmetric arguments, we can obtain 7 € [m], >, cp M1, <6030 o M1y,
Similarly, for any s, s’ € {£1} we have

Z N T+1 Z Nir Z N T+1 Z NS—T)

reAs reAs reAs reAs
377Pb 2
Z Ns ,r q H H
reAs
n(2pe + pp)
> Z Ns r 870 ||l’l’”2
reAs
() (r+1) —7)
S SRR D SETCELN pETE
re[m] r€[m] r€[m]
_ Z M T+1 .
re(m)

In addition, we have

Z N(T+1)

reAs
(r4+1) (1)
=Y N+ [N - N
reAs rcAs rcAg
pbn
> N
reAs
_ YN py v 3n(2pe + o) [l
ST 120020 + p) [l 4m
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o v —(r) [V (7 +1) —(7)
2 M/"‘ * M/ - M/
120(2pe‘+'pb)|“LH272%%] T 120(2pe + o) [l Tz%%] o rz%%] o

po | (1)
_ o,
120(2pe4—pb)’“1H2r2%%] o

Now, we prove the last statement. For any r € [m], if M g? < —ayt, then we have <w§TT) , S> <

0. Hence, ‘Mfffl)‘ = ‘MS—T)

< agt + Bst by Lemma 13. Otherwise, M gTQ > —ag implies

m%t@ﬂHD_Mm)

gl 0T

e Y DI EED S BRI (CPAE
R \jecl)  jerl)

<=3 (gl [#8]) -2 [(wtoms) >

where the first inequality follows from (19) and the last inequality follows from the event Eg. Thus,
M ng 1 <M g? < agt + Bst. In addition, we have

Mt (M(T+1) _ M(ﬂ)

llpf? N0 T

== Z a7 X a7 | (el >
el \jecg i€Fp)

3l (o) >0
le[2]

> —2Ngt.

Therefore, we have

2 2 2 2
MU > M) nllpl > Cay - Nl > ot — fur,
' ' m m
where the last inequality follows from (9).
From Lemma 13, for any r € [m],
1 2n v
NG - M| < TP <y
9 b m

Therctore, it sffices (o show that N5 < N when N6 > i and NG > N6 when
ﬂgTr) < —ag. If N, 272 > g, then we have

) )

<wgfr),1/s> = <'w§02, VS> + N > 0.
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Hence, we have

T =Ls,r
> | X X g
le [2] jeclgls) ]E'Fl(’ls)
S—Z<1 0 )fgg)
le[2]
1- 04!
(U)o et
<0,
where the first inequality follows from (19) and the last inequality follows from the event Eg;. Using
the similar argument, we can also show that [V g?” >N 272 when NV 2772 < —agt and we have desired
conclusion. ]

Next, we characterize the early-phase learning dynamics of easy signals.

Lemma 27 There exists the smallest iteration T, € [0, —200m____V sych that
n(2pe+pb) || pl|
1 Teb) 1 Teb 1
_ M > —
max - E , 5 2 5

re[m)] rE[m]

Proof Suppose there is no such iteration. We fix an arbitrary s € {£1}. Note that from Condition 9

100m < MNst 100m
et IalE = mo2dlog T Thus, we can apply Lemma 26 and for any ¢ € |0, e TEl R we
have
1 — ) (-1 n(2pe +pu) 2
— M. > — M _
re[m] rE[m]
1 —(0) | N(2pe +pb) | 2
> — Z M, T om [l
rem]
— 77(2]96 +pb) ||[J/”2t
80 '
By choosing t = o QPej‘(;T)”HHQ { ' 2pe1f2$||u\\2} we obtain contradiction. Therefore, there exists

an iteration ¢t € [O %] such that
" n(2petp) |1l

max Z er, Z M(_t)l

rE [m]

Y
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We then define T, as the smallest such iteration. |

We will show that iteration 7.¢ obtained from Lemma 27 is our desired stopping time. By
sequentially applying Lemma 26, for any s € {41}, we have M ¢ M es) > 0 forall r € [m], Ngfs) >0

ifr € A, and Ng;s) < 0if r € Bs. Furthermore, we have

1 T (Te) (Ts) —_T py ||v]?
— ) M, = — ,— Ng,~ > (20)
mo " 120 rez,«;g %@2 YT 240(2pe + o) el

and for any r € [m], we have

M (Tes) M(Tes)

—8,Tr

< agy + Bt 2D

Combining the upper bound on 7,5 and Lemma 25 leads to the following bound: for any
se{xl},r € [m],and i € [ng],

- 3no2d 100m 40002d
() €) : :

< agt + . < , (22)
mnse  (2pe + o) [|8)* T (2pe + o)1t | 1))

(Tes)
ps,r,i

)

where the last inequality follows from (5).

I.2. Train Error

First, we prove the first conclusion. For any i € [ns], we have
gifst (W(TeS)a XZ)

= S o (w6 - LY > ¢(<ng;;;, 5"))

le[2] re[m] le[2] re[m
1 (Tes) s 1 (Tes ~
to 2 o((wi ) - X0 (<w—w€i>)
rE[m] TE[m]
40002d
(Tes) &(1) p
27 ¢ r 2 Y; 2'(ast+ast+5st)_
lez[;] rez[w:w] << o >> (2pe + po)nst |||
2 . 7 Tes) (Tes) ——(Tes) 4000§d
> — min 0T Nﬂ‘? Nz = 2205t + Bst) —
m 7“;} " Z ! TEZBQZ. o (2pe +pb)n5t HH’HQ
po ||v|I* e+ ) — 40002d
~ 120(2pe + o) [l (2e + o)t 114
>0,

where the first inequality follows from (21) and (22), the third inequality follows from (20), and the
last inequality follows from (5) and Condition 9. O
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1.3. Test Error

In this section, we characterize the test error of the strong model. All arguments is this subsection
are under the event Eg;. Define v, @ and £ as the signal vectors and the noise vector in the test
data (X, y), respectively.

We define a function & : S — Ras h(z) :== + dore(m] © << (_yeb,?,
a crucial role when we prove the upper bounds on test error. We have

%Ezh...,zm Z U(Zr) = Z ’ZT‘ =

re[m] r€[m]

>> for any z € S. It plays

(Tes)
—y,r

E[n(€)] =

Zh 2z 9

Z HHSw

27Tm

where z, ~ N ( HHs'w TCS)

for each r € [m]. Also, for any z1, z5 € S, we have

(Tes)

3= 5

) = < 2 3 [o () = ()
< ;Z: (i m) = (w62 )|
- ;%;n] (M) ) = (Mswl™) 25)
g;g{;ﬂ] M%) 21— 2]

Hence, s 32, ¢fpy | Msw e ||-Lipschitz

The following lemma characterizes HHSw( Tes)

’s which is related to key properties of h.

Lemma 28 Forany s € {£1}, it holds that

> [t <

r€[m)]

900mapd%
T (2pe+po)n pl*

Proof From Lemma 13 and triangular inequality, we have

Tes Tcs —
s < |msw + ]| 3= pli&NEN2| < Vaoods + || S pHENEN
1€ [nst) 1€[nst]
We have
2
Teb
> Aelan
Ze[nst]
Tes Tes Tes
= 3 (I NEN D AT £ IE NI
1€ [nst] 1,J € [nst]

7]
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< S0 (VNG + 3D (o0 |6 €] 1602140
i€ [nst] J;T]lst]
< 3 () ey X () (o)) ) 16n1gn
1€ [Nt ] ,J gglbt]
<80 Y (/) 16017
1€[nst]
. 8000,d2 2

1
(2pe + po)n2 [|lp])?

where the third inequality follows from (7) and the fourth inequality follows from (22) and (7).
Therefore, we have

" [jsui
re[m]

where the last inequality follows from (C3).

1 1
< Vamogdh 4 800maydz _ 900madz

T = T )
(2pe + po)n2 l0l® (2pe + po)nd [l

By Theorem 5.2.2 in Vershynin [26], for any z > 0, it holds that

2

P[h(€) — E[h(€)] > 2] < exp (—)

2
0% HhHLip

where ¢ is a universal constant and ||-||;, denotes the best Lipschitz constant. Combining with
Lemma 22, we have

c(2pe +pu)? |pll* 5
P[h(&) — E[h(£)] > 2] < exp (— 0eid 0 ) (23)

Now, we characterize the test error. First, we consider the case (X, y) € Se U Sp,. We have

na <W(Tes), X)
= F, (W), X) - Py (W5, X)

=2 X o (w0 )+ 1 T o ((wif))

le[2] re[m] re[m)
a2 T (@) - 5 2 e ((u6)
le[2] re[m)] re[m]
L5 o((olP ) 2 X o((o56)) ¢ X
re(m r€[m]
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S e
T'Gm
> —h(€) + 355

where the first inequality follows from (6) and (21). From (23) and Lemma 28, we have
P |:yfst (W(TCS)7X> <0 ‘ (va) € S U Sb}

<P [1() > 55| =P [h(&) ~ BINEN > 55 - Elh(@)]

200

200

<P{h<s>mh<en> L 9000pd: ]

1
(2pe + po)ng [|e®

<P [4() - Bl1E) > |

2 4
- (_nst@pe +pu)? ] ) |

Cgagd

with some constant Cf, > 0.
Using a similar argument, we can prove the upper bound on test error for the case (X, y) € Sy.
In this case, we have

Y fst <W(Tes) 7 X)

~F, (W(Tes) X) ~F, (WEECS),X>

“w 2 2o () e B e ((w6))

le[2] re[m re(m]
TS o) LT (w6)
l€[2] re[m) r€[m]
2 Z ()~ o ((u2.0)
= mm { Z N;;‘fg ,— Teg } 2(ast + Bst)
reAy reBy

1 5 es es
ok S (o) s 2o 5 - 2 s
reAy

re[m) reB

“h(€) + Db ||V||

> — 2(agt + Pst)
120(2pe + po) ||l o
) + po llv )

200(2pe + p1) || ]|
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where the first inequality follows from (6) and (21), the third inequality follows from (20), and the
last inequality follows from (5) and Condition 9.
From (23) and Lemma 28, we have

P [yfst (W(Tes)’X> <0 ‘ (X,y) € sh}

=Fhe= 200(212: +‘Vp’:> Il
e :h(ﬁ) -] > ol ’:p’b l EW“]
' , :
<P _h(ﬁ) —Eh(€) 200(2211) ll” (2p, joz?;fi 2l
<P :h<€> ~ E[h(&)] > 250(255 ’+Vp’f> el

2 4
nsipy ||l
< _ S b nh
= exp ( C4a§d )

with some constant C4 > 0.
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