
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

ReLU Characteristic Activation Analysis

Wenlin Chen WC337@CAM.AC.UK
University of Cambridge, Cambridge, UK
Max Planck Institute for Intelligent Systems, Tübingen, Germany

Hong Ge HG344@CAM.AC.UK

University of Cambridge, Cambridge, UK

Abstract
We introduce a novel approach for analyzing the training dynamics of ReLU networks by exam-
ining the characteristic activation boundaries of individual ReLU neurons. Our proposed analysis
reveals a critical instability in common neural network parameterizations and normalizations dur-
ing stochastic optimization, which impedes fast convergence and hurts generalization performance.
Addressing this, we propose Geometric Parameterization (GmP), a novel neural network parame-
terization technique that effectively separates the radial and angular components of weights in the
hyperspherical coordinate system. We show theoretically that GmP resolves the aforementioned
instability issue. We report empirical results on various models and benchmarks to verify GmP’s
theoretical advantages of optimization stability, convergence speed and generalization performance.

1. Introduction

In a standard neural network, each neuron performs an affine transformation on its input x ∈ Rn

followed by an element-wise nonlinear activation function g:

z = g(wT x+b), (1)

where the affine transformation is parameterized by a weight vector w ∈ Rn and a bias scalar b ∈ R.
Rectified Linear Unit (ReLU) [11] is arguably the most popular activation function in modern deep
learning architectures due to its simplicity and effectiveness:

g(s) = ReLU(s) = max(0, s). (2)

We introduce a novel concept for ReLU networks, called characteristic activation boundary, which
is defined as the set of input locations with zero pre-activations. By definition, such boundaries
separate the active and inactive regions of ReLU neurons in the input space, which play a critical role
in ReLU networks since they serve as the fundamental building blocks for the decision boundaries.

In this work, we analyze the evolution dynamics of the characteristic activation boundaries in
ReLU networks. Our novel analysis identifies a critical instability in many common parameter-
izations and normalizations that operate in the Cartisian coordinate, including Standard Parame-
terization, Weight Normalization and Batch Normalization. We show theoretically that this issue
destabilizes the evolution of the characteristic boundaries in the presence of stochastic gradient
noise, and empirically that it impedes fast convergence and hurts generalization performance. To
address this, we introduce a novel neural network parameterization, named Geometric Parameteri-
zation (GmP). As opposed to traditional parameterizations and normalizations which operate in the

© W. Chen & H. Ge.



GEOMETRIC PARAMETERIZATION

Cartesian coordinate, GmP operates in the hyperspherical coordinate which automatically decouples
the radial and angular components of the weights. Our theoretical results show that GmP stabilizes
the evolution of characteristic activation boundaries during stochastic optimization. Our empirical
studies confirm the efficacy of GmP on various models and benchmarks, including a ResNet trained
on ImageNet. We report notable improvements in optimization stability, convergence speed, and
generalization performance, which validate our theoretical hypotheses and results.

2. ReLU Characteristic Activation Analysis

This section defines characteristic activation boundary and its geometric connection to ReLU fea-
tures, which serve as the basics of the proposed characteristic activation analysis for understanding
neural network training dynamics.

2.1. Preliminary and Terminology

Standard Parameterization (SP) refers to the common weight-bias parameterization as defined in
Equation (1). Weight Normalization (WN) [40] is a reparameterization technique that decouples
the length l and the direction v/∥v∥2 of w in a standard ReLU unit (1):

z = ReLU

(
l

(
v

∥v∥2

)T

x+b

)
. (3)

WN makes the length l and the direction v/∥v∥2 of the weight vector independent of each other in
the Cartesian coordinate system, which is effective in improving the conditioning of the gradients
and thus speeding up optimization. Batch Normalization (BN) [18] is a widely-used normalization
layer in modern deep learning architectures such as ResNet [16], which is effective in accelerating
and stabilizing stochastic optimization of neural networks [21]. BN standardizes the pre-activation
using the empirical mean and variance estimated using mini-batch statistics:

BN(wT x+b) = γ
wT x−Êx[w

T x]√
V̂arx[wT x+b]

+ β, (4)

where γ ∈ R and β ∈ R are two free parameters to be learned from data, which adjusts the output
of the BN layer as needed to increase its expressiveness.

2.2. ReLU Characteristic Activation Boundary

Noticing that the ReLU activation function (2) is active for positive arguments s > 0 and inactive for
negative arguments s < 0, we introduce a novel concept called characteristic activation boundary
(CAB) at the cut-off point s = 0 (i.e., with zero pre-activations), which will play a central role in
our proposed characteristic activation analysis.

Definition 1 The characteristic activation boundary (CAB) for a ReLU unit is defined by the set of
input locations with zero pre-activations:

B = {x ∈ Rn : wT x+b = 0}. (5)

A CAB is an (n − 1)-dimensional hyperplane that separates the active and inactive regions of a
ReLU unit in the input space Rn. Figure 1(a) visualizes a CAB in R2.

2



GEOMETRIC PARAMETERIZATION

x1

x2

|λ|
ϕ

θ

B

0

(a) B,ϕ ∈ R2.

x1

x 2

Original feature
SP after perturbation
WN after perturbation
GmP after perturbation

(b) δ = 0.0001.
x1

x 2

(c) δ = 0.001.
x1

x 2

(d) δ = 0.01.
x1

x 2

(e) δ = 0.1.

Figure 1: (a) Characteristic activation boundary (CAB) B (brown solid line) and spatial location
ϕ = −λu(θ) of a ReLU unit z = ReLU(u(θ)T x+λ) = ReLU(cos(θ)x1 + sin(θ)x2 + λ) for
inputs x ∈ R2. The CAB forms a line in R2, which acts as a boundary separating inputs into two
regions. Green arrows denote the active region, and red arrows denote the inactive region. (b)-
(e) Stability of the CAB of a ReLU unit in R2 under small perturbations ε = δ1 to the parameters.
Solid lines denote characteristic activation boundaries B, and colored dotted lines connect the origin
and spatial locations ϕ of B. Smaller changes between the perturbed and original boundaries imply
higher stability. GmP is most stable against perturbations.

Definition 2 The spatial location of a CAB is defined as

ϕ = − bw

wT w
= − b

∥w∥2
w

∥w∥2
, (6)

which is a point on the corresponding CAB as wT ϕ+b = 0. The vector that goes from the origin
to ϕ specifies the shortest path between the origin and the CAB. Therefore, each spatial location
uniquely determines a CAB. Figure 1(a) visualizes the spatial location of a CAB in R2.

CABs play a critical role in ReLU networks, since they effectively specify the locations of ReLU
features (i.e., non-linearities) which serve as the building blocks for the decision boundaries.

2.3. Instability of CABs During Stochastic Optimization

In the presence of stochastic gradient noise, we identify an instability in the evolution of CABs
under common neural network parameterizations and normalizations.

Proposition 3 A perturbation ε to the weight w under SP (1) can result in an arbitrarily large
change in the angular direction of the CAB if w has a similar magnitude to ε1.

The proof of Proposition 3 can be found in Appendix B.1. This indicates that CABs are vulnerable
to small perturbations when w has a small norm. This has the implication that even a small gradi-
ent noise could destabilize the evolution of ReLU features during stochastic optimization and thus
destroy the learning signal for the decision boundaries of the network. Such instability prevents
practitioners from using larger learning rates [12].

It might be tempting to think that WN does not suffer from this instability since it decouples the
length l and the direction v/∥v∥2 of w as shown in Equation (3). However, we show that WN is also
vulnerable to small perturbations.

1. ∥w∥2 is supposed to be small during training as large weights would lead to overfitting, numerical instability and
even divergence [12] (e.g., the popular weight decay method explicitly regularizes ∥w∥2 to be close to zero).

3



GEOMETRIC PARAMETERIZATION

Proposition 4 A perturbation (ε, ε′) to (v,l) under WN (3) can result in an arbitrarily large change
in the angular direction of the CAB if v has a similar magnitude to ε.

The proof of Proposition 4 can be found in Appendix B.2. Furthermore, BN also suffers from this
instability issue since it can be viewed as a kind of weight normalization.

Proposition 5 Without loss of generality, assume that the input x has zero mean. A perturbation ε
to the weight w under BN (4) can result in an arbitrarily large change in the angular direction of
the CAB if w has a similar magnitude to ε.

The proof of Proposition 5 can be found in Appendix B.3. Figures 1(b)-1(e) simulate the evolution
behaviors of the CABs under SP and WN in R2, showing that even a small perturbation δ of magni-
tude 10−3 can drastically change the spatial locations of the CABs. More generally, this instability
issue exists in every neural network parameterization and normalization technique that operates in
the Cartesian coordinate, since the fundamental issue is that the change in angular direction of the
CAB always has the same unstable form as in Equation (12). In the next section, we will address
this issue with a new parameterization technique that operates in a different coordinate system.

3. Geometric Parameterization

This section introduces Geometric Parameterization (GmP) and demonstrates its nice theoretical
property which addresses the instability issue in common parameterizations and normalizations as
shown in the previous section.

3.1. CABs in the Hyperspherical Coordinate System

In a high dimensional input space, most data points live in a thin shell since the volume of a high
dimensional space concentrates near its surface [4]. Intuitively, we want the spatial locations of
CABs to be close to the thin shell where most data points live, since this spatial affinity between
CABs and data points will introduce ReLU features (non-linearities) at suitable locations in the
input space to separate different inputs x by assigning them different activation values. The use of
hyperspherical coordinate enables us to explicitly control the locations of such non-linearities.

Definition 6 The spatial location of a CAB in the hyperspherical coordinate system is given by

ϕ(λ,θ) = −λu(θ), (7)

where the radius λ corresponds to b/∥w∥2 in SP, and the unit directional vector u(θ) corresponds to
w/∥w∥2 in SP and is determined by the angle θ = [θ1, · · · , θn−1]

T:

u(θ) =



cos(θ1)
sin(θ1) cos(θ2)

sin(θ1) sin(θ2) cos(θ3)
...

sin(θ1) sin(θ2) · · · sin(θn−2) cos(θn−1)
sin(θ1) sin(θ2) · · · sin(θn−2) sin(θn−1)


. (8)

u(θ) ∈ Sn−1 is a unit directional vector on the unit hypersphere Sn−1 := {x ∈ Rn : ∥x∥2 = 1}.

4



GEOMETRIC PARAMETERIZATION

Definition 7 The CAB in the hyperspherical coordinate system is given by

B(λ,θ) = {x ∈ Rn : u(θ)T x+λ = 0}. (9)

Geometrically speaking, the angle θ controls the direction of a CAB, while the radius λ controls
the distance between the origin and the CAB. Calculating the pre-activation of a ReLU unit for
an input x is equivalent to projecting x onto the unit vector u(θ) and then adding the radius λ to
the signed norm of the projected vector. From this perspective, it is clear a CAB is a set of inputs
whose projections over u(θ) have signed norm −λ. For this reason, we refer to this radial-angular
decomposition in the hyperspherical coordinate system as Geometric Parameterization (GmP).

3.2. Geometric Parameterization of ReLU Networks

Definition 8 A ReLU unit under GmP is given by

z = r ReLU(u(θ)T x+λ). (10)

GmP has three learnable parameters r, λ,θ. The radial and angular parameters λ and θ =
[θ1, · · · , θn−1] specify the spatial location of the CAB, while the scaling parameter r controls the
scale of the activation. These parameters have n+ 1 degrees of freedom in total (same as SP).

3.3. Theoretical Analysis

Section 2.3 identified an instability in the evolution of CABs under common parameterizations and
normalizations due to a fundamental issue in the Cartesian coordinate system. In contrast, CABs
under GmP should be much more stable under perturbation, since the radius λ and angle θ of the
spatial location ϕ are automatically disentangled in the hyperspherical coordinate system. This
means that small perturbations to the parameters in GmP will only cause small changes in the
spatial location of the CAB. Below, we show that under a small perturbation, the change in the
angular direction of a CAB under GmP is bounded by the magnitude of the perturbation.

Theorem 9 With an infinitesimal perturbation ε := [ε1, · · · , εn−1]
T to the angular parameter θ,

the change in the angular direction u(θ) ∈ Sn−1 (n ≥ 2) of a CAB under GmP is given by

⟨u(θ),u(θ+ ε)⟩ =

√√√√√ε21 +
n−1∑
i=2

i−1∏
j=1

sin2(θj)

 ε2i . (11)

The proof of Theorem 9 can be found in Appendix B.4, which is based on an elegant idea from dif-
ferential geometry that ⟨u(θ),u(θ+ ε)⟩ is simply the norm ∥ε∥M of the perturbation with respect
to the metric tensor M for the hyperspherical coordinate.

Corollary 10 The change in θ in Theorem 9 is upper bounded: ⟨u(θ),u(θ+ ε)⟩ ≤ ∥ε∥2.

Corollary 10 implies that optimizing the geometric parameters in GmP directly translates into a
smooth evolution of the spatial locations of CABs even in the presence of stochastic gradient noise.
Back to Figures 1(b)-1(e), CABs under GmP gradually moves away from its original spatial location
as we increase δ, which is in sharp contrast to the unstable evalution of CABs under SP and WN.

Appendix C contains additional remarks on GmP. Appendix D contains a thorough empirical
evaluation to verify our theoretical analysis, showcasing GmP’s significant improvements in opti-
mization stability, convergence speed and generalization performance.

5



GEOMETRIC PARAMETERIZATION

Acknowledgements

We thank Isaac Reid for helpful feedback and discussions. WC acknowledges funding via a Cam-
bridge Trust Scholarship (supported by the Cambridge Trust) and a Cambridge University Engi-
neering Department Studentship (under grant G105682 NMZR/089 supported by Huawei R&D
UK). HG acknowledges generous support from Huawei R&D UK.

Part of this work was performed using resources provided by the Cambridge Service for Data
Driven Discovery (CSD3) operated by the University of Cambridge Research Computing Service
(www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the Engi-
neering and Physical Sciences Research Council (capital grant EP/T022159/1), and DiRAC funding
from the Science and Technology Facilities Council (www.dirac.ac.uk).

References

[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):
251–276, 1998.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[3] Xuchan Bao, James Lucas, Sushant Sachdeva, and Roger B Grosse. Regularized linear au-
toencoders recover the principal components, eventually. Advances in Neural Information
Processing Systems, 33:6971–6981, 2020.

[4] Avrim Blum, John Hopcroft, and Ravindran Kannan. Foundations of Data Science. Cambridge
University Press, 2020. doi: 10.1017/9781108755528.

[5] Vitaliy Chiley, Ilya Sharapov, Atli Kosson, Urs Koster, Ryan Reece, Sofia Samaniego de la
Fuente, Vishal Subbiah, and Michael James. Online normalization for training neural net-
works. Advances in Neural Information Processing Systems, 32, 2019.

[6] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as
an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee, 2009.

[8] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http:
//archive.ics.uci.edu/ml.

[9] Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
mization via hessian eigenvalue density. In International Conference on Machine Learning,
pages 2232–2241. PMLR, 2019.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial intel-
ligence and statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

6

www.csd3.cam.ac.uk
www.dirac.ac.uk
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


GEOMETRIC PARAMETERIZATION

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics,
pages 315–323. JMLR Workshop and Conference Proceedings, 2011.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.

[13] Boris Hanin and David Rolnick. Complexity of linear regions in deep networks. In Interna-
tional Conference on Machine Learning, pages 2596–2604. PMLR, 2019.

[14] Boris Hanin and David Rolnick. Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 770–778, 2016.

[17] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. Advances in neural information
processing systems, 30, 2017.

[18] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pages
448–456. pmlr, 2015.

[19] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[21] Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus
Neymeyr. Exponential convergence rates for batch normalization: The power of length-
direction decoupling in non-convex optimization. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 806–815. PMLR, 2019.

[22] Atli Kosson, Bettina Messmer, and Martin Jaggi. Rotational equilibrium: How weight decay
balances learning across neural networks. In NeurIPS 2023 Workshop on Mathematics of
Modern Machine Learning, 2023.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

[24] Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limitations of the empirical fisher ap-
proximation for natural gradient descent. Advances in neural information processing systems,
32, 2019.

7



GEOMETRIC PARAMETERIZATION

[25] Antoine Labatie, Dominic Masters, Zach Eaton-Rosen, and Carlo Luschi. Proxy-normalizing
activations to match batch normalization while removing batch dependence. Advances in
Neural Information Processing Systems, 34:16990–17006, 2021.

[26] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington,
and Jascha Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint
arXiv:1711.00165, 2017.

[27] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019.

[28] Zhiyuan Li and Sanjeev Arora. An exponential learning rate schedule for deep learning. arXiv
preprint arXiv:1910.07454, 2019.

[29] Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with tra-
ditional optimization analyses: The intrinsic learning rate. Advances in Neural Information
Processing Systems, 33:14544–14555, 2020.

[30] Senwei Liang, Zhongzhan Huang, Mingfu Liang, and Haizhao Yang. Instance enhancement
batch normalization: An adaptive regulator of batch noise. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, pages 4819–4827, 2020.

[31] Ping Luo, Jiamin Ren, Zhanglin Peng, Ruimao Zhang, and Jingyu Li. Differentiable learning-
to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779, 2018.

[32] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325–3334. PMLR, 2018.

[33] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normaliza-
tion for generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

[34] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. Advances in neural information processing systems,
27, 2014.

[35] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science &
Business Media, 2012.

[36] Vardan Papyan. Traces of class/cross-class structure pervade deep learning spectra. The Jour-
nal of Machine Learning Research, 21(1):10197–10260, 2020.

[37] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein. On the
expressive power of deep neural networks. In international conference on machine learning,
pages 2847–2854. PMLR, 2017.

[38] Simon Roburin, Yann Dubois de Mont-Marin, Andrei Bursuc, Renaud Marlet, Patrick Perez,
and Mathieu Aubry. A spherical analysis of adam with batch normalization, 2021. URL
https://openreview.net/forum?id=jHykXSIk3ch.

8

https://openreview.net/forum?id=jHykXSIk3ch


GEOMETRIC PARAMETERIZATION

[39] David Rolnick and Konrad Kording. Reverse-engineering deep relu networks. In International
conference on machine learning, pages 8178–8187. PMLR, 2020.

[40] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to ac-
celerate training of deep neural networks. Advances in neural information processing systems,
29, 2016.

[41] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? Advances in neural information processing systems, 31,
2018.

[42] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[43] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[44] Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

[45] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[46] Ruosi Wan, Zhanxing Zhu, Xiangyu Zhang, and Jian Sun. Spherical motion dynamics: Learn-
ing dynamics of normalized neural network using sgd and weight decay. Advances in Neural
Information Processing Systems, 34:6380–6391, 2021.

[47] Geoffrey S Watson. Distributions on the circle and sphere. Journal of Applied Probability, 19
(A):265–280, 1982.

[48] Andrew TA Wood. Simulation of the von mises fisher distribution. Communications in
statistics-simulation and computation, 23(1):157–164, 1994.

[49] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference
on computer vision (ECCV), pages 3–19, 2018.

[50] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[51] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, Jason Ramapuram, Dan Busbridge,
Yizhe Zhang, Jiatao Gu, and Joshua M. Susskind. $\sigma$reparam: Stable transformer
training with spectral reparametrization, 2023.

[52] Guodong Zhang, Chaoqi Wang, Bowen Xu, and Roger Grosse. Three mechanisms of weight
decay regularization. arXiv preprint arXiv:1810.12281, 2018.

[53] Guodong Zhang, James Martens, and Roger B Grosse. Fast convergence of natural gradient
descent for over-parameterized neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

9



GEOMETRIC PARAMETERIZATION

[54] Hongyi Zhang, Yann N Dauphin, and Tengyu Ma. Fixup initialization: Residual learning
without normalization. arXiv preprint arXiv:1901.09321, 2019.

10



GEOMETRIC PARAMETERIZATION

x
0

z

ϕ

|λ|

(a) λ < 0, θ = 0.

x
0

z

ϕ

|λ|

(b) λ > 0, θ = π.

x
0

z

ϕ

|λ|

(c) λ > 0, θ = 0.

x
0

z

ϕ

|λ|

(d) λ < 0, θ = π.

Figure 2: Visualization of characteristic activation boundaries (brown solid lines) and spatial loca-
tions ϕ = −λu(θ) of a ReLU unit z = ReLU(u(θ)x+λ) (blue solid lines) for inputs x ∈ R. Green
arrows denote active regions and red arrows denote inactive regions.

x1

x2

|λ|
ϕ

θ
0

(a) λ < 0, θ ∈ [0, π).

x1

x2

|λ|
ϕ

θ

0

(b) λ > 0, θ ∈ [π, 2π).

x1

x2

|λ|

ϕ

θ
0

(c) λ > 0, θ ∈ [0, π).

x1

x2

|λ|

ϕ

θ

0

(d) λ < 0, θ ∈ [π, 2π).

Figure 3: Visualization of characteristic activation boundaries (brown solid lines) and spatial loca-
tions ϕ = −λu(θ) of a ReLU unit z = ReLU(u(θ)T x+λ) = ReLU(cos(θ)x1 + sin(θ)x2 + λ)
for inputs x ∈ R2. Green arrows denote active regions and red arrows denote inactive regions.

Appendix A. More Visualizations of the Characteristic Activation Boundaries

Figures 2 and 3 respectively visualize the characteristic activation boundaries in the input spaces R
and R2 under different conditions of the radius and angle parameters.

Appendix B. Technical Proofs

B.1. Proof of Proposition 3

Proof The change in the angular direction of the CAB under SP is given by

⟨w,w+ ε⟩ = arccos

(
wT(w+ ε)

∥w∥2∥w+ ε∥2

)
. (12)

As ∥w∥2 is small, we can construct a small perturbation ε = −(1 + δ)w with an infinitesimal δ.
Then, ⟨w,w+ ε⟩ = ⟨w,−δw⟩ = π, which rotates the CAB by 180°. This completes the proof. In
general, ⟨w,w+ ε⟩ can take arbitrary values in [0, π] even for a small perturbation ε in this case.

B.2. Proof of Proposition 4

Proof The change in the angular direction of the CAB under WN is given by〈
l

v

∥v∥2
, (l + ε′)

v+ ε

∥v+ ε∥2

〉
= arccos

(
vT(v+ ε)

∥v∥2∥v+ ε∥2

)
, (13)

11



GEOMETRIC PARAMETERIZATION

which has an identical form to Equation (12). Therefore, we can similarly construct a small pertur-
bation ε = −(1 + δ)v with an infinitesimal δ, which rotates the CAB by 180°. This completes the
proof.

B.3. Proof of Proposition 5

Proof Since Êx[w
T x] = wT Êx[x] = 0 by assumption, Equation (4) can be re-written as

BN(wT x+b) = γ
wT x√
wTΣ̂w

+ β = γ

(
w

∥w∥Σ̃

)T

x+β, (14)

where the norm ∥w∥Σ̃ is with respect to the data covariance matrix Σ̂ = V̂ar[x] estimated using
mini-batch statistics. It can be seen that BN has the same form as WN (3) except that WN fixes
Σ̂ = I. Therefore, the instability argument for WN in the proof of Proposition 4 also holds for BN.
This completes the proof.

B.4. Proof of Theorem 9

Proof The main idea of this proof is that the change in the angular direction under infinitesimal
perturbation ε is the norm of ε with respect to the metric tensor M for the hyperspherical coordinate
system (since u has unit length):

⟨u(θ),u(θ+ ε)⟩ = ∥ε∥M =
√
εT M ε. (15)

Therefore, we need to work out a formula for calculating M.
Let us start with an input x = [x1, · · · , xn]T ∈ Rn (n ≥ 2) in the Cartesian coordinate system,

where the metric tensor is the Kronecker delta m′
ij = δij . For the geometric parameterization of the

unit hypersphere Sn−1, we have

u1(θ) = cos(θ1),

u2(θ) = sin(θ1) cos(θ2),

u3(θ) = sin(θ1) sin(θ2) cos(θ3),

...

un−2(θ) = sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) cos(θn−1),

un−1(θ) = sin(θ1) sin(θ2) sin(θ3) · · · sin(θn−2) sin(θn−1).

(16)

The metric tensor M for the geometric parameterization of Sn−1 is the pullback of the Euclidean
metric in Rn:

mab =
n−1∑
i=1

n−1∑
j=1

m′
ij

∂ui
∂θa

∂uj
∂θb

=

n−1∑
i=1

∂ui
∂θa

∂ui
∂θb

. (17)

• a ̸= b: we have mab = 0, since it is a sum of terms that are either zero or with alternating
signs which cancel out. Hence, M is a diagonal matrix.

12



GEOMETRIC PARAMETERIZATION

• a = b: Using the fact that sin2(θj) + cos2(θj) = 1, ∀j, we have m11 = 1 and

maa =

a−1∏
i=1

sin2(θi), 2 ≤ a ≤ n− 1. (18)

Therefore, the metric tensor for the hyperspherical coordinate is a diagonal matrix

M =



1 0 0 · · · 0 0
0 sin2(θ1) 0 · · · 0 0
0 0 sin2(θ1) sin

2(θ2) · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · ·

∏n−2
i=1 sin2(θi) 0

0 0 0 · · · 0
∏n−1

i=1 sin2(θi)


. (19)

Finally, the change in the angular direction of a unit vector u(θ) under a perturbation ε to θ is given
by the norm of ε with respect to the tensor matrix M:

⟨u(θ),u(θ+ ε)⟩ =
√
εT M ε =

√√√√√ε21 +
n−1∑
i=2

i−1∏
j=1

sin2(θj)

 ε2i . (20)

This completes the proof.

B.5. Proof of Corollary 10

Proof Since −1 ≤ sin(θj) ≤ 1, it follows that 0 ≤ mi,i =
∏i−1

j=1 sin
2(θj) ≤ 1 for all i. Therefore,√√√√√ε21 +

n−1∑
i=2

i−1∏
j=1

sin2(θj)

 ε2i ≤

√√√√ε21 +
n−1∑
i=2

ε2i = ∥ε∥2.

This completes the proof.

Appendix C. Remarks on Geometric Parameterization

C.1. Computational Cost

Let n=fan-in and m=fan-out for a layer. GmP needs to compute 2n− 2 more scalars

sin(θ1), · · · , sin(θn−1), cos(θ1), · · · , cos(θn−1) (21)

than SP for each of the m neurons, which incur an extra cost of O(mn) for all neurons in a layer.
However, since the cost of computing the affine transformation for each layer is also O(mn), the
total computational cost of GmP remains O(mn) for each layer, which is the same as SP.

13



GEOMETRIC PARAMETERIZATION

C.2. Layer-Size Independent Parameter Initialization

Unlike existing neural network parameterizations which are sensitive to initialization, GmP can
work with less carefully chosen initialization schemes independent of the width of the layer, thanks
to an invariant property of the hyperspherical coordinate system. To see this, we first consider the
distribution of the angular direction of the CAB under SP. Under popular initialization methods such
as the Glorot initialization [10] and He initialization [15], each element in the initial weight vector
w under SP is independently and identically sampled from a zero mean Gaussian distribution with
a layer-size dependent variance. Interestingly, this always induces a uniform distribution over the
unit n-sphere for the direction of the CAB, no matter what variance value is used in that Gaussian
distribution. This allows us to initialize the angular parameter θ uniformly at random by sampling
from the von Mises–Fisher distribution [47, 48]. The parameter λ is initialized to zero due to its
connection λ = b/∥w∥2 to SP and the common practice to set b = 0 at initialization. The scaling
parameter r is initialized to one, based on the intuition that the scale roughly corresponds to the
total variance of the weights w in SP. We highlight that none of the parameters λ, θ, and r in GmP
requires layer-size dependent initialization.

C.3. Internal Covariate Shift

One implicit assumption of our characteristic activation analysis is that the input distribution to a
neuron always centers around the origin during training. This assumption automatically holds for
one-hidden-layer networks since the training data can be centered during data pre-processing. How-
ever, this assumption is not necessarily satisfied for multi-hidden-layer networks, since the inputs
to an intermediate layer are transformed by the weights and squashed by the activation function in
the previous layer. We propose a simple technique called Input Mean Normalization (IMN), which
is a parameter-free layer that centers the input to each intermediate layer using the empirical mean
estimated by mini-batch statistics:

z = r ReLU(u(θ)T(x−Ê[x]) + λ). (22)

It might be tempting to think that IMH is similar to Mean-only Batch Normalization (MBN) [40].
However, we emphasize that MBN is unable to address the internal covariate shift problem as it is
applied to pre-activations rather than post-activations.

Appendix D. Empirical Evaluation

This section contains empirical evaluation of GmP on both illustrative demonstrations and chal-
lenging classification and regression benchmarks with neural network architectures of different
sizes optimized by SGD and Adam. A detailed setup for each experiment can be found in Ap-
pendix E. Code for reproducing the experimental results is available at https://github.com/
Wenlin-Chen/geometric-parameterization.

D.1. Illustrative Experiments

This section verifies the validity of the hypotheses of our proposed characteristic activation anal-
ysis on two illustrative experiments aided with visualization, and demonstrates that the improved
stability under GmP is beneficial for neural network optimization and generalization.

14

https://github.com/Wenlin-Chen/ geometric-parameterization
https://github.com/Wenlin-Chen/ geometric-parameterization


GEOMETRIC PARAMETERIZATION

x
0

z

ϕ

|λ|

(a) λ < 0, θ = 0.

x
0

z

ϕ

|λ|

(b) λ > 0, θ = π.

0 2000 4000 6000 8000 10000
Train step t

2 16
2 12
2 8
2 4
20
24
28

212
216

m
ax i

|
i,t

+
1

i,t
|

SP WN BN GmP

(c) Change in B and ϕ at each train step
(lr=0.1).

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Test RMSE: 1.224
Training data
Ground-truth
Prediction before training
Prediction after training

Tr
ai

ni
ng

 (b
eg

in
ni

ng
 --

> 
en

d)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

(d) SP (lr=0.01).

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
y

Test RMSE: 1.200

Tr
ai

ni
ng

 (b
eg

in
ni

ng
 --

> 
en

d)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

(e) WN (lr=0.01).

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Test RMSE: 1.219

Tr
ai

ni
ng

 (b
eg

in
ni

ng
 --

> 
en

d)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

(f ) BN (lr=0.01).

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

y

Test RMSE: 0.496

Tr
ai

ni
ng

 (b
eg

in
ni

ng
 --

> 
en

d)

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

(g) GmP (lr=0.1).

Figure 4: (a)-(b) Characteristic activation point B (intersection of brown solid lines and the x-axis)
and spatial location ϕ = −λu(θ) of a ReLU unit z = ReLU(u(θ)x+λ) (blue solid lines) for inputs
x ∈ R. Green arrows denote active regions, and red arrows denote inactive regions. (c) Evolution
dynamics of the characteristic points B in a one-hidden-layer network with 100 ReLU units for a 1D
Levy regression problem under SP, WN, BN and GmP during training. Smaller values are better as
they indicate higher stability of the evolution of the characteristic points during training. The y-axis
is in log2 scale. (d)-(g): The top row illustrates the experimental setup, including the network’s
predictions at initialization and after training, and the training data and the ground-truth function
(Levy). Bottom row: the evolution of the characteristic activation point for the 100 ReLU units
during training. Each horizontal bar shows the spatial location spectrum for a chosen optimization
step, moving from the bottom (at initialization) to the top (after training with Adam). More spread
of the spatial locations covers the data better and adds more useful non-linearities to the model,
making prediction more accurate. Regression accuracy is measured by root mean squared error
(RMSE) on a separate test set. Smaller RMSE values are better. We use cross-validation to select
the learning rate for each method. The optimal learning rate for SP, WN, and BN is lower than that
for GmP, since their training becomes unstable with higher learning rates, as shown in (c).

D.1.1. 1D LEVY REGRESSION

In Figure 4, we train a one-hidden-layer network with 100 ReLU units under SP, WN, BN and
GmP on the 1D Levy regression dataset using Adam [20]. As shown in Figures 4(a)-4(b), Both
the CAB B and its spatial location ϕ reduce to the same point in R, which will be referred to as
the characteristic activation point. The angle θ of the characteristic activation point can only take
two values 0 or π, corresponding to the two directions on the real line. Clearly, GmP significantly
improves the stability of the evolution of the characteristic activation point and allows us to use

15



GEOMETRIC PARAMETERIZATION

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(a) SP (lr=0.01).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(b) WN (lr=0.01).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(c) BN (lr=0.01).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(d) GmP (lr=0.01).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(e) SP (lr=0.1).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(f ) WN (lr=0.1).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(g) BN (lr=0.1).

3 2 1 0 1 2 3
x1

3

2

1

0

1

2

3

x 2

(h) GmP (lr=0.1).

0 20 40 60 80 100
Train step t

0

30

60

90

120

150

180

m
ax i

|
i,t

+
1

i,t
| SP

WN
BN
GmP

(i) Change in the angular direction θ (0°-180°) of the weights at each train step
(lr=0.1).

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Test Acc: 0.800
Classification decision boundary
Spatial location of characteristic
activation boudary

(j) SP (lr=0.01).

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Test Acc: 0.810

(k) WN (lr=0.01).

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Test Acc: 0.875

(l) BN (lr=0.01).

4 3 2 1 0 1 2 3 4
x1

4

3

2

1

0

1

2

3

4

x 2

Test Acc: 0.885

(m) GmP (lr=0.1).

Figure 5: Performance of a single-hidden-layer neural network with 10 ReLU units on the 2D
Banana classification dataset under SP, WN, BN and GmP trained using Adam. (a)-(h): Trajectories
of the spatial locations of the 10 ReLU units during training. Each color depicts one ReLU unit.
Smoother evolution means higher training stability. The evolution under GmP is stable, so we
can use a 10× larger learning rate. (i): Evolution dynamics of the angular direction θ of CABs.
Smaller values are better as they indicate higher robustness against stochastic gradient noise. (j)-
(m): Network predictions after training. Black bold lines depict the classification boundary between
two classes. Classification accuracy is measured on a separate test set. Higher accuracy values are
better. The red stars show the spatial locations of 10 ReLU units. Intuitively speaking, more evenly
spread out red stars are better for classification accuracy, as they provide more useful non-linearity.

16



GEOMETRIC PARAMETERIZATION

Table 1: Test RMSE for MLPs trained on six UCI benchmarks.

Benchmark Boston Concrete Energy Power Wine Yacht

SP 3.370± 0.145 5.472± 0.144 0.898± 0.274 4.065± 0.029 0.623± 0.008 0.639± 0.063
WN 3.459± 0.156 5.952± 0.148 2.093± 0.789 4.073± 0.026 0.632± 0.008 0.624± 0.076
BN 3.469± 0.153 5.695± 0.160 1.648± 0.302 4.164± 0.026 0.622± 0.011 0.777± 0.055

GmP 3.057± 0.144 5.153± 0.098 0.474± 0.013 4.022± 0.025 0.613± 0.006 0.584± 0.046

a 10× large learning rate as selected by cross validation. Figure 4(c) shows that under GmP the
maximum change maxi |∆ϕi,t| = maxi |ϕi,t+1 − ϕi,t| at each train step t is always smaller than
one throughout training, while under other parameterizations the changes can be up to 216 at some
steps. The stable evolution of the characteristic point under GmP leads to improved optimization
stability and generalization performance (i.e., the best test RMSE) on this regression task, as shown
in Figures 4(d)-4(g).

D.1.2. 2D BANANA CLASSIFICATION

In Figure 5, we train a one-hidden-layer network with 10 ReLU units under SP, WN, BN and GmP
on the 2D Banana classification dataset using Adam. Figures 5(a)-5(h) show that GmP allows us to
use a 10× larger learning rate (as selected by cross validation) while maintaining a smooth evolu-
tion of the characteristic activation boundary. Figure 5(i) shows that GmP is the only method that
guarantees stable updates for the angular directions of the CAB during training with a large learning
rate: under GmP, the maximum change maxi |∆θi,t| = maxi |θi,t+1 − θi,t| at each train step t re-
mains low throughout training, while under other parameterizations the change can be up to 180° at
some steps. This verifies the hypothesis in our proposed characteristic activation analysis. Figures
5(j)-5(m) show that under GmP, the spatial locations of CABs move towards different directions
during training and spread over all training data points in different regions, which forms a classifi-
cation decision boundary with a reasonable shape that achieves the best generalization performance
(i.e., the highest test accuracy) among all compared methods.

D.2. Machine Learning Benchmarks

D.2.1. UCI REGRESSION WITH MLP

We further evaluate GmP on six UCI regression datasets [8]. We train an MLP with one hidden layer
and 100 hidden units for 10 different random 80/20 train/test splits. We use the Adam optimizer
[20]. We use cross-validation and find that the optimal learning rate is 0.1 for GmP and 0.01 for
all the other methods. Table 1 shows that GmP consistently achieves the best test RMSE on all
benchmarks, significantly outperforming other methods in most cases.

D.2.2. IMAGENET CLASSIFICATION WITH RESNET

Finally, we evaluate GmP with a gold-standard large residual neural network ResNet-34 [16] on the
full ImageNet (ILSVRC 2012) dataset [7], which consists of 1,281,167 training images and 50,000
validation images that contain objects from 1,000 categories. The size of the images ranges from
75× 56 to 4288× 2848. We follow exactly the same experimental setup for optimization and data
augmentation as in He et al. [16]. Specifically, we use the SGD optimizer with momentum 0.9,
which turns out to be better than Adam for image classification tasks [16]. We reduce the learning

17



GEOMETRIC PARAMETERIZATION

Table 2: Validation acc. (%) for ResNet-34 trained on ImageNet.

Metric Top-1 valid. acc. Top-5 valid. acc.

WN+MBN 73.48± 0.16 91.12± 0.12
BN 74.76± 0.09 91.61± 0.05

GmP+IMN 75.57± 0.12 92.68± 0.11

rate by 0.1 at epochs 30, 60 and 80. All models are trained for 90 epochs. We use a batch size
of 256 for all methods. We use cross-validation and find that the optimal initial learning rate is
0.1 for all compared methods. We employ random horizontal flip, random resizing (256-480) with
preserved aspect ratio, random crop (224), and color augmentation for data augmentation during
training [23]. To address the internal covariate shift problem, we employ Input Mean Normalization
(IMN) for GmP. Following Salimans and Kingma [40], Mean-only Batch Normalization (MBN)
is used for WN. Table 2 reports the single-center-crop top-1 and top-5 validation accuracy for all
compared methods, which shows that GmP+IMN significantly outperforms BN and WN+MBN in
terms of both top-1 and top-5 validation accuracy. This demonstrates that our method is useful for
improving large-scale residual network training.

D.2.3. ABLATION STUDY: IMAGENET32 CLASSIFICATION WITH VGG

We perform ablation study to provide further insights into how the batch size and intermediate
normalization layer affect the convergence speed and generalization performance of different pa-
rameterizations. To maintain a manageable computational cost, we conduct these experiments with
a medium-sized convolutional neural network VGG-6 [42] on ImageNet32 [6], which contains all
1.3M images and 1,000 categories from ImageNet (ILSVRC 2012) [7], but with the images resized
to 32 × 32. We follow exactly the same experimental setup for optimization and data augmenta-
tion as in Chrabaszcz et al. [6]. We use cross-validation and find that the optimal initial learning
rate is 0.1 for GmP and 0.01 for all the other methods. Table 3 shows that GmP+IMN consistently
achieves the best top-1 and top-5 validation accuracy for all batch sizes considered. Furthermore,
the improvement of GmP+IMN over other methods gets larger as the batch size increases, highlight-
ing the robustness and scalability of GmP with large batch sizes. In addition to achieving the best
performance, Figure 6 shows that GmP+IMN (the green curve) also converges significantly faster
than other compared methods: its top-5 validation accuracy converges within 25 epochs, which is
10 epochs earlier than the second best method BN. The ablation study GmP vs GmP+IMN shows
that IMN significantly improves the performance of GmP, which is expected since it addresses the
problem of covariate shifts between hidden layers. Notably, Wide ResNet (WRN 28-2) [50] trained
with BN and a batch size of 500 only achieved 43.08% top-1 validation accuracy as reported in
Chrabaszcz et al. [6], underperforming VGG-6 trained with GmP+IMN (43.62% as shown in Table
3). This reveals the significance of better parameterizations: even a small non-residual network like
VGG-6 with GmP+IMN can outperform large, wide residual networks like WRN 28-2.

18



GEOMETRIC PARAMETERIZATION

Table 3: Top-1 and top-5 validation accuracy (%) for VGG-6 trained on ImageNet32.

Metric Top-1 validation accuracy Top-5 validation accuracy

Batch size 256 512 1024 256 512 1024

SP 38.31± 0.13 36.99± 0.11 35.02± 0.03 62.48± 0.14 60.71± 0.18 58.14± 0.39
WN 39.13± 0.10 37.92± 0.12 36.17± 0.03 63.28± 0.02 61.93± 0.09 60.16± 0.18

WN+MBN 42.22± 0.01 40.96± 0.02 39.33± 0.07 66.04± 0.07 65.08± 0.03 63.32± 0.08
BN 42.79± 0.03 41.90± 0.19 41.39± 0.02 67.17± 0.08 66.50± 0.25 65.89± 0.06

GmP 40.76± 0.09 41.65± 0.09 41.29± 0.08 65.08± 0.08 65.76± 0.05 65.49± 0.06
GmP+IMN 43.14± 0.05 43.62± 0.08 42.70± 0.15 67.36± 0.05 67.76± 0.09 66.98± 0.18

0 10 20 30 40 50 60
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p5

 tr
ai

ni
ng

 a
cc

ur
ac

y

SP
WN
WN+MBN
BN
GmP
GmP+IMN

(a) Top-5 training accuracy.

0 10 20 30 40 50 60
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p5

 v
al

id
at

io
n 

ac
cu

ra
cy

(b) Top-5 validation accuracy.

Figure 6: Comparison of convergence speed for VGG-6 trained on the ImageNet32 dataset with a
batch size of 1024.

Appendix E. Detailed Experimental Setups

E.1. UCI Regression with MLP

We train an MLP with one hidden layer and 100 hidden units for 10 different random 80/20 train/test
splits. We use the Adam optimizer [20] with full-batch training. We use cross-validation to select the
learning rate for each compared method from the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. We find
that the optimal initial learning rate is 0.1 for GmP and 0.01 for all the other compared methods.
We report test root mean squared error (RMSE).

E.2. ImageNet Classification with ResNet

We train a ResNet-34 [16] on the ImageNet (ILSVRC 2012) dataset [7], which consists of 1,281,167
training images and 50,000 validation images that contain objects from 1,000 categories. The size
of the images ranges from 75 × 56 to 4288 × 2848. We follow exactly the same experimental
setup for optimization and data augmentation as in He et al. [16]. We use the SGD optimizer with
momentum 0.9, which turns out to be better than Adam for image classification tasks [16]. We
reduce the learning rate by 0.1 at epochs 30, 60 and 80. All models are trained for 90 epochs.
We use a batch size of 256 for all methods. We use cross-validation to select the learning rate for
each compared method from the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}. We find that the optimal
initial learning rate is 0.1 for all compared methods. We employ random horizontal flip, random
resizing (256-480) with preserved aspect ratio, random crop (224), and color augmentation for data
augmentation during training [23]. To address the internal covariate shift problem, we employ Input

19



GEOMETRIC PARAMETERIZATION

Mean Normalization (IMN) for GmP. Following [40], Mean-only Batch Normalization (MBN) is
used for WN. We report single-center-crop top-1 and top-5 validation accuracy.

E.3. Ablation Study: ImageNet32 Classification with VGG

To maintain a manageable computational cost for the ablation study, we train a VGG-6 [42] on Ima-
geNet32 [6], which contains all 1.3M images and 1,000 categories from ImageNet (ILSVRC 2012)
[7], but with the images resized to 32 × 32. We follow exactly the same experimental setup for
optimization and data augmentation as in Chrabaszcz et al. [6]. We use the SGD optimizer with mo-
mentum 0.9, which turns out to be better than Adam for image classification tasks [16]. We reduce
the learning rate by 0.1 at epochs 30, 60 and 80. All models are trained for 90 epochs. We train the
model using three common batch sizes {256, 512, 1024} for all methods. We use cross-validation to
select the learning rate for each compared method from the set {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}.
We find that the optimal initial learning rate is 0.1 for GmP and 0.01 all the other methods. We em-
ploy random horizontal flips for data augmentation during training. We conduct an ablation study
to explore the effects of input mean normalization (IMN) for GmP and mean batch normalization
(MBN) for WN in deep networks. We report top-1 and top-5 validation accuracy.

Appendix F. Related Work

F.1. Neural Network Training Dynamics.

Neural Tangent Kernels [19, 27] show that wide networks evolve like linear models during training,
while Neural Network Gaussian Processes [26, 35] provide insights into how wide neural networks
generalize. [9] studies the evolution of the Hessian spectrum of neural networks during training. [3]
investigates the curvatures of different principle components around the optimum of a regularized
linear autoencoder. [1, 24, 53] analyze the training dynamics with natural gradient descent (NGD);
see Appendix F.3 for a discussion of the connection between GmP and NGD. [32] investigates the
effectiveness of stochastic gradient descents for neural network training. [5, 17, 22, 25, 28, 29,
36, 38, 41, 44, 46, 52, 54] study the effects of Adam, BN and weight decay on training dynamics.
[13, 14, 34, 37, 39] pay special attention to analyzing the ReLU activations in neural networks. In
contrast, our proposed characteristic activation analysis studies the evolution of the characteristic
activation boundaries during stochastic optimization.

F.2. Parameterization and Normalization.

In addition to SP, WN [40] and BN [18], there are many other neural network normalization and
parameterization techniques. Instead of normalizing the batch dimension as in BN, LayerNorm [2]
operates on the feature dimension, which is preferred for small batches or variable-length inputs
such as text [45]. Other variants of BN include SwitchNorm [31] and IEBN [30]. There are also
normalization techniques designed for specific applications. For instance, InstanceNorm [43] and
GroupNorm [49] are special cases of LayerNorm designed for CNNs, while spectral normaliza-
tion [33, 51] is specifically designed for GANs and transformers. All these techniques operate in
the Cartesian coordinate and thus suffers from the instability issue, whereas GmP operates in the
hyperspherical coordinate to overcome this instability issue.

20



GEOMETRIC PARAMETERIZATION

F.3. Connections to Natural Gradient Descent

The parameter space of a neural network can be thought of as a Riemannian manifold M , for which
the neural network parameterization specifies the coordinate for M . In this paper, we reveal that
standard parameterization is vulnerable to small perturbations of the parameters (e.g., SGD noise)
whereas our proposed geometric parameterization is much more robust against perturbations.

One thing to note is that the full version of natural gradient descent is invariant to neural net-
work parameterizations since it is defined in an abstract form without any specific parameteriza-
tion/coordinate. In the abstract form, we let the loss function be l(θ) = − log p(Y |X, θ) where
θ are the abstract parameters and (X,Y ) is an abstract data point. The fisher matrix F (θ) =
Ep(X,Y )[∇l(θ)∇l(θ)T ] is the metric tensor for M , where p(X,Y ) is the abstract data distribution.
A single step of the full version of natural gradient descent is given by

θt+1 ← θt − ηt · Expθt [F (θt)
−1∇h(θt)], (23)

where h : M → R is any differentiable function and ηt is the learning rate. Note that the exponential
map Expθt maps the update F (θt)

−1∇h(θt) from the tangent space TθtM back to the manifold
M , which results in an exact update invariant to the parameterization/coordinate. However, it is
often not practical to calculate the exponential map since it requires solving a linear system of size
dim(M), which is the total number of parameters in the neural network.

The most commonly used version of natural gradient descent in practice is its first-order ap-
proximation given by

θt+1 ← θt − ηt · F (θt)
−1∇h(θt), (24)

which is a second-order optimization method that is invariant up to first-order transformation of the
parameterization/coordinate. Since our proposed geometric parameterization is a nonlinear transfor-
mation of standard parameterization, it will still make a different under the first order approximation
of the full version of natural gradient descent.

Appendix G. Limitations and Future Work

Theoretically, this work analyzed ReLU networks due to their wider adoption. However, the general
characteristic activation analysis technique can be extended to other activation functions. Also, we
only performed the characteristic activation analysis for single-hidden-layer ReLU networks and
proposed a practical workaround to address the problem of covariate shift between hidden layers
by using input mean normalization. For future work, this analysis needs to be generalized to ex-
amine training dynamics in multiple-hidden-layer networks to understand the theoretical behavior
of deep networks. One potential difficulty with multiple-hidden-layer networks is that the charac-
teristic activation boundary becomes a piecewise linear partition of the input space, which is less
straightforward to analyze. A possible solution would be to consider how the assignment of each
data point to the partition evolves during training, similar to how we track the characteristic acti-
vation boundaries. Empirically, we believe that our experiments are sufficient to verify our theory
and support our claims. For future work, it would be interesting to investigate the theoretical prop-
erties and empirical performance of a combination of GmP and existing normalization techniques
(e.g., BN). We also leave the experiments of examining the performance of GmP with larger neural
network architectures (e.g., transformers) on large datasets from different domains (e.g., NLP) for
future work.

21


	Introduction
	ReLU Characteristic Activation Analysis
	Preliminary and Terminology
	ReLU Characteristic Activation Boundary
	Instability of CABs During Stochastic Optimization

	Geometric Parameterization
	CABs in the Hyperspherical Coordinate System
	Geometric Parameterization of ReLU Networks
	Theoretical Analysis

	More Visualizations of the Characteristic Activation Boundaries
	Technical Proofs
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proof of Theorem 9
	Proof of Corollary 10

	Remarks on Geometric Parameterization
	Computational Cost
	Layer-Size Independent Parameter Initialization
	Internal Covariate Shift

	Empirical Evaluation
	Illustrative Experiments
	1D Levy Regression
	2D Banana Classification

	Machine Learning Benchmarks
	UCI Regression with MLP
	ImageNet Classification with ResNet
	Ablation study: ImageNet32 Classification with VGG


	Detailed Experimental Setups
	UCI Regression with MLP
	ImageNet Classification with ResNet
	Ablation Study: ImageNet32 Classification with VGG

	Related Work
	Neural Network Training Dynamics.
	Parameterization and Normalization.
	Connections to Natural Gradient Descent

	Limitations and Future Work

