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ABSTRACT

Speech tokenizers are foundational to speech language models, yet existing ap-
proaches face two major challenges: (1) balancing trade-offs between encoding
semantics for understanding and acoustics for reconstruction, and (2) achiev-
ing low bit rates and low token rates. We propose Speech Diffusion Tokenizer
(SiTok), a diffusion autoencoder that jointly learns semantic-rich representa-
tions through supervised learning and enables high-fidelity audio reconstruction
with diffusion. We scale SiTok to 1.6B parameters and train it on 2 million
hours of speech. Experiments show that SiTok outperforms strong baselines
on both reconstruction and understanding tasks, at an extremely low token rate
of 12.5 Hz and a bit-rate of 200 bits-per-second. Audio samples are shown in
https://sitok-demo.github.io/.

1 INTRODUCTION

Speech tokenizers (Parker et al., 2024; Guo et al., 2025; Mousavi et al., 2025) are foundational
components for speech language models (Borsos et al., 2023; Nguyen et al., 2025; Défossez et al.,
2024; Grattafiori et al., 2024; Zeng et al., 2024b;a; Fang et al., 2024; Wang et al., 2024a; Huang
et al., 2025; Ding et al., 2025; Xu et al., 2025). They compress audio into discrete representations,
acting as the “ears” for understanding spoken content and as the interface for generating speech in
interactive scenarios.

An ideal speech tokenizer is generally expected to satisfy three criteria: (1) achieve a sufficient
compression rate for efficient language modeling, (2) preserve high-quality audio reconstruc-
tion, and (3) learn effective, semantic-rich representations for understanding speech. However,
most existing speech tokenizers remain suboptimal for speech language modeling. Despite recent
progress, they still struggle to effectively balance these three crucial aspects. Specifically, they suf-
fer from: (1) difficulty in optimizing the trade-off between reconstruction quality and compression
rate, often resorting to strategies like residual vector quantization (RVQ) (Zeghidour et al., 2021;
Défossez et al., 2022; Kumar et al., 2024) or operating at high frame rates (Xin et al., 2024; Ji
et al., 2024; Ju et al., 2024; Ye et al., 2025b; Wang et al., 2025a); (2) an overemphasis on acoustic
fidelity while overlooking semantic representations beneficial for speech language modeling; and
(3) reliance on multi-stage training pipelines (Guo et al., 2024; Anastassiou et al., 2024; Du et al.,
2024a; Zeng et al., 2024a; Zhang et al., 2025c; Wang et al., 2024b), where representation learning is
decoupled from waveform reconstruction, requiring a separate second-stage token-to-waveform and
thus preventing end-to-end joint optimization.

In this work, we aim to explore a speech tokenizer paradigm that simultaneously achieves extreme
compression, high-quality reconstruction, and effective representations for speech language mod-
eling. However, we observe that simply scaling up training data and model size provides limited
benefits under traditional acoustic reconstruction frameworks, particularly at low token rates. We
posit that this limitation stems from an information bottleneck imposed by vector quantization, cou-
pled with the fact that tokenizers trained exclusively with an acoustic reconstruction objective often
yield suboptimal semantic representations for downstream downstream speech understanding tasks
such as automatic speech recognition (ASR) (Zhang et al., 2023; Défossez et al., 2024). To address
these challenges, we propose (1) Building the speech tokenizers with diffusion autoencoders.
Diffusion models (Ho et al., 2020; Song et al., 2020; Lipman et al., 2022) have demonstrated strong
generative capability and scalability across many domains (Rombach et al., 2022; Liu et al., 2023;
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Shen et al., 2023; Le et al., 2024; Polyak et al., 2024). Some prior works (Anastassiou et al., 2024;
Guo et al., 2024; Du et al., 2024a;b; Zhang et al., 2025c;b) on speech tokenization explored us-
ing diffusion models, but typically in a two-stage fashion: first quantizing speech self-supervised
representations (Baevski et al., 2020; Chung et al., 2021; Hsu et al., 2021; Chen et al., 2022; Chiu
et al., 2022), and then learning a separate model to perform waveform or mel-spectrogram synthe-
sis from tokens. However, this two-stage design breaks end-to-end training, as the quantizer is not
optimized for reconstruction fidelity and the diffusion decoder must adapt to suboptimal discrete
codes. In this work, we instead jointly optimize quantization and reconstruction within a diffusion
autoencoder (Rey et al., 2019; Preechakul et al., 2022), which ensures that the discrete codes are
both highly compressive and directly aligned with the generative distribution of speech. (2) Intro-
ducing semantic regularization. Speech tokenizers trained solely with reconstruction losses tend
to learn representations that emphasize acoustic fidelity, but lack alignment with textual informa-
tion, which is detrimental for speech language modeling in both understanding and generation tasks.
Prior works (Zhang et al., 2023; Défossez et al., 2024; Li et al., 2025a; Della Libera et al., 2025)
attempt to mitigate this issue through semantic distillation, i.e., aligning the latent representation
space with self-supervised speech representations using mean squared error (MSE) or cosine sim-
ilarity losses. However, such indirect alignment does not explicitly enforce linguistic consistency.
In this work, we directly impose a supervision signal on the latent space after vector quantization:
we add an auxiliary Connectionist Temporal Classification (CTC) decoder and optimize it with a
CTC loss (Graves et al., 2006) to predict text, encouraging the discrete codes to learn semantic-rich
representations. We provide a more comprehensive review of related work on low-bitrate speech
tokenizers and diffusion-based speech tokenization in the Appendix B.

Since diffusion models require iterative sampling steps during inference, decoding efficiency be-
comes a key challenge. We further investigate shortcut fine-tuning (Frans et al., 2024) and other
acceleration techniques, which substantially reduce the number of diffusion steps (e.g., 2 or 4) while
maintaining high reconstruction quality.

In summary, we propose the Speech Diffusion Tokenizer (SiTok), scaling it up to 1.6B parameters
and training it on 2 million hours of speech data, which achieves strong performance under an
extreme compression setting of 12.5 Hz token rate and 0.2 kbps. We comprehensively evaluate
SiTok on both speech reconstruction and diverse understanding tasks (emotion recognition, key-
word spotting, speaker verification, and automatic speech recognition), and show that it consistently
delivers strong performance. In addition, we conduct extensive ablations on factors such as code-
book size, codebook dimension, and residual vector quantization (RVQ), providing insights into the
design choices for scaling diffusion autoencoders.

2 METHOD

In this section, we introduce SiTok. We first present the speech
tokenization architecture based on a diffusion autoencoder. We
then describe our key design, semantic regularization. Finally, we
explain how decoding can be accelerated through shortcut fine-
tuning, along with additional techniques that further improve re-
construction quality. Figure 1 provides an overview of our model.

Encoder DiT Decoder

CTC Decoder

VQ

Forward Diffusion𝑥 𝑥!

ℒ"#ℒ$%$

Figure 1: Overview of SiTok.

2.1 SPEECH TOKENIZATION WITH DIFFUSION AUTOENCODERS

Speech tokenizers are generally based on autoencoders: the raw speech representation is first
mapped into latent features by an encoder, then a quantizer encodes the latent features into a se-
quence of discrete tokens, and finally a decoder reconstructs the raw speech representation from
these discrete tokens. Some speech tokenizers directly use raw waveform signals as modeling tar-
gets and rely on adversarial training to improve perceptual quality. However, we argue that this
paradigm is unfavorable for scaling because: (1) directly processing the waveform sequence is inef-
ficient due to its excessive length, which necessitates substantial up- and down-sampling and often
forces prior work to cut waveforms into only a few seconds; and (2) adversarial training requires
complicated loss designs and additional discriminator optimization, which tends to be unstable.
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In this work, we propose a novel framework: (1) we utilize mel-spectrograms as both the input and
the reconstruction target, leveraging a vocoder to directly synthesize the corresponding waveform;
and (2) we replace adversarial training with a diffusion autoencoder, which facilitates more
stable and scalable training. We posit that this diffusion-based framework can achieve superior
compression and reconstruction. By learning to reverse the diffusion process, the model is trained to
effectively capture the underlying data distribution, enabling a more robust recovery of the original
signal from its quantized representation. Formally, given an input mel-spectrogram x, the training
process is as follows:

1. Downsampling: The temporal resolution of x is reduced for computational efficiency. In this
work, we set the default frame rate to 12.5 Hz.

2. Encoding: The encoder Eθ maps the downsampled spectrogram x to a sequence of latent fea-
tures:

z = Eθ(x).
3. Quantization: Each feature vector in the latent sequence z is mapped to its closest entry in

a discrete codebook E = {e1, e2, . . . , eK}, producing a sequence of discrete indices q. This
vector quantization step can be denoted as:

q = VQ(z;E).

4. Diffusion Modeling: The decoder Dϕ is trained to reconstruct x conditioned on the quantized
representation. The discrete indices q are first mapped back to their corresponding codebook
embeddings zq . Using a flow-matching objective, the decoder Dϕ learns to predict a velocity
field that transforms a noisy sample back to the original data. The process is defined as:

xt = tx+ (1− t) ϵ, where ϵ ∼ N (0, I) and t ∼ U(0, 1).

The decoder’s predicted velocity vϕ is optimized to match the true velocity (x− ϵ):

vϕ(xt, t,zq) = Dϕ(xt, t,zq) → x− ϵ.

2.2 SEMANTIC REGULARIZATION

In our preliminary study, we found that relying solely on reconstruction, whether based on a dif-
fusion loss or a regression loss, results in poor intelligibility (much higher WER) and degraded
performance on downstream understanding tasks. Motivated by prior works, we introduce an aux-
iliary loss to directly supervise the latent space after vector quantization. Unlike approaches
that employ representation alignment (Yu et al., 2024) or semantic distillation (Zhang et al., 2023;
Défossez et al., 2024) to match the latent representations with features from self-supervised mod-
els, we directly predict the textual content through an additional lightweight decoder Dϕctc trained
with a CTC loss. Some previous works like Beichuan-Audio tokenizer (Li et al., 2025b) and XY-
Tokenizer (Gong et al., 2025) also incorporate ASR-based supervision to enrich semantic repre-
sentations, but they still rely on an additional ASR model as a semantic encoder to extract latent
features. In contrast, SiTok learns representations directly from raw speech.

The total loss Ltotal combines three components: the diffusion reconstruction loss (Lrec), the seman-
tic CTC loss (Lctc), and the vector quantization loss (Lvq). Given the ground-truth text transcript y,
the objective is:

Ltotal = Et,x,ϵ [∥Dϕ(xt, t,zq)− (x− ϵ)∥]︸ ︷︷ ︸
Reconstruction Loss

+λctc CTC(Dϕctc(zq),y)︸ ︷︷ ︸
CTC Loss

+ Lvq︸︷︷︸
VQ Loss

where zq is the sequence of quantized embeddings, Dϕctc is the auxiliary CTC decoder, and λctc is a
balancing hyperparameter. We find that λctc is crucial for performance.

2.3 EFFICIENT DECODING

Traditional diffusion models often require multiple inference steps, which can make decoding com-
putationally inefficient. To address this, we explore two strategies to significantly accelerate diffu-
sion decoding: Shortcut Fine-tuning and Light-weight Diffusion Head.

Shortcut Fine-tuning We explore efficient few-step decoding with fine-tuning the decoder using
the shortcut model objective proposed by Frans et al. (2024). During the fine-tuning stage, we freeze
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the encoder and VQ modules. The fine-tuning process then updates only the decoder weights. The
key idea behind shortcut models is to train a network that is conditioned not only on the time step
t but also on a desired step size d. This allows the model to learn a direct mapping from a noisy
input to a significantly denoised output in a single forward pass, effectively “jumping” over many
intermediate steps of a standard iterative diffusion process.

The fine-tuning employs a combined loss function that jointly optimizes a flow-matching objective
and a self-consistency objective. The total loss is formulated as:

LS = Ex0,x1,t,d

[
∥sϕ(xt, t, 0)− (x1 − x0)∥22︸ ︷︷ ︸

Flow-Matching Loss

+ ∥sϕ(xt, t, 2d)− starget∥22︸ ︷︷ ︸
Self-Consistency Loss

]
where sϕ is the shortcut model (our decoder) being trained. The target for the self-consistency loss,
starget, is generated by the model itself using two consecutive smaller steps, with gradients detached:

starget = stopgrad
(
1

2
sϕ(xt, t, d) +

1

2
sϕ(xt+d, t+ d, d)

)
and xt+d = xt + sϕ(xt, t, d)d.

The first term grounds the model’s behavior for infinitesimal step sizes (d = 0), ensuring it matches
the true data velocity. The second term enforces that a single large step of size 2d yields the same
result as two sequential steps of size d. This self-consistency training enables the decoder to accu-
rately perform large, discrete jumps along the denoising trajectory, significantly reducing inference
steps while maintaining high reconstruction quality.

Light-weight Diffusion Head We also explore a light-weight diffusion head that reduces the cost
of iterative denoising by splitting the decoder into a main body (run once) and a small head reused
across diffusion steps. This design lowers per-step computation; see Appendix C.1 for details.

2.4 RECONSTRUCTION REFINEMENT

To further enhance the quality of the reconstruction speech, we employ two distinct refinement
strategies. The first is a decoder finetuning, where the encoder and VQ modules are frozen, and
only the decoder is trained further. This step specializes the decoder for high-fidelity synthesis from
the fixed discrete representations. The second is the introduction of token classifier-free guidance
(Token CFG). To enable this, we train the decoder to be conditionally dependent on the discrete
tokens by randomly dropping all input tokens with a 10% probability, which forces the decoder
to also learn an unconditional generation objective. During inference, this allows us to steer the
decoding process by combining predictions from both conditional (with tokens) and unconditional
(with dropped tokens) passes, leading to a more robust and accurate reconstruction. The efficacy of
both optional refinement techniques is empirically validated in our results (Table 1).

3 EXPERIMENTS AND RESULTS

3.1 IMPLEMENTATION DETAILS

Data and Preprocessing We use 2M hours of in-house data to train our models. The dataset cov-
ers multiple languages, with English accounting for the vast majority. We do not apply additional
preprocessing to the speech data, such as splitting into shorter segments; instead, we train directly on
the original utterance lengths paired with their transcripts. We use 50 Hz, 128-bin mel-spectrograms
as both the input and reconstruction targets of our tokenizer, while first stacking every four consec-
utive frames to reduce the frame rate to 12.5 Hz for more efficient training. For waveform synthesis,
we employ a Vocos-based (Siuzdak, 2023) vocoder to convert the mel spectrograms back to audio
waveforms at 24K Hz.

Model Our model is constructed using standard Llama-style Transformer blocks (Touvron et al.,
2023; Grattafiori et al., 2024). The encoder and the auxiliary CTC decoder are composed of causal
Llama decoder layers, with 16 and 4 layers, respectively. Unless otherwise specified, we set the
hidden size to 1536, the intermediate size to 4096, and the number of attention heads to 16. For
the VQ module, we adopt a default configuration of 32 dimensions with a codebook of 65,536

4
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entries, updated using an exponential moving average (EMA) (Van Den Oord et al., 2017). The
diffusion decoder is implemented by modifying the causal Llama decoder layers into a non-causal
form with 16 layers. We incorporate the diffusion step embedding by replacing RMSNorm (Zhang &
Sennrich, 2019) with an Adaptive RMSNorm variant. Additional architectural details are provided
in Appendix A, while ablation studies on the codebook dimension, codebook size, and overall model
size are presented in Section 3.4.

Training We train all models for a single epoch, corresponding to approximately 450K steps.
For optimization, we adopt the AdamW (Loshchilov & Hutter, 2017) optimizer with β1 = 0.9,
β2 = 0.999, a weight decay of 0.01, and a learning rate of 8× 10−5 with a warmup of 32K steps.

3.2 EVALUATION

We evaluate our tokenizers from the perspectives of compression, reconstruction, and speech under-
standing. We also evaluate SiTok with zero-shot TTS, we show the results in Appendix C.2

Compression We assess the efficiency of the tokenizer in terms of token rate (TPS: tokens per
second), frame rate (FPS: frames per second), and bitrate (BR). These metrics directly reflect the
trade-off between compression and representational capacity.

Reconstruction To evaluate speech reconstruction quality, we measure intelligibility, speaker sim-
ilarity, and speech quality. Intelligibility is assessed using word error rate (WER), computed with
whisper-large-v3 (Radford et al., 2023). Speaker similarity (SIM) is computed as the cosine
similarity between WavLM-TDNN embeddings of the prompt and the generated speech (Chen et al.,
2022). Speech quality is evaluated using the official UTMOS checkpoint (Saeki et al., 2022). We
report these results on the SeedTTS test-en (Anastassiou et al., 2024) evaluation set.

Understanding We evaluate the learned representations on three speech understanding tasks:
emotion recognition (ER), speaker verification (SV), and keyword spotting (KS), following the setup
of the DASB benchmark (Mousavi et al., 2024). Additionally, following Yang et al. (2025), we train
an LLM-based ASR (LLM ASR) model with a 1B-parameter LLM backbone, which takes the dis-
crete speech tokens generated by the speech tokenizer as input and autoregressively predicts the
corresponding text. We also report ASR results (CTC ASR) using the direct CTC decoder of our
tokenizers. The ASR evaluation is conducted on the LibriSpeech test-clean (Panayotov et al., 2015).

Evaluation Baselines We also compare our approach with a range of open-source speech tokeniz-
ers, see more details about the baselines in the following sections.

3.3 RESULTS AND COMPARISON

In this section, we present a comprehensive evaluation of our proposed speech tokenizer. We first
report the main results for speech reconstruction in Section 3.3.1, where we compare against a wide
range of existing tokenizers under different compression settings. We then evaluate downstream
performance in Section 3.3.2, covering diverse understanding tasks. Beyond these comparisons, we
further analyze the effectiveness of semantic regularization in Section 3.3.3, the impact of scaling
model size in Section 3.3.4, and efficient decoding strategies in Section 3.3.5 that improve inference
speed without sacrificing quality. Finally, we conduct an extensive ablation study 3.4 to isolate the
contributions of different components, including loss design, codebook configurations, and frame
rate choices, providing insights into the design principles of scalable speech tokenizers.

3.3.1 MAIN RESULTS FOR RECONSTRUCTION

Table 1 presents a detailed comparison of our speech tokenizers against other baseline models on
the reconstruction task. Our model demonstrates exceptional performance under a highly challeng-
ing setting. At its base configuration (single codebook), our tokenizer operates at an extremely low
bitrate of 0.2 kbps and a token rate of only 12.5 Hz, which is significantly lower than all compet-
ing methods. Despite this extreme compression, it achieves highly competitive results. We also
demonstrate that the model’s performance can be significantly enhanced with simple yet effective
strategies. Decoder finetuning boosts speaker similarity to a remarkable 0.682. Applying token
classifier free guidance reduces WER to 3.34. In addition, increasing the number of codebooks via
RVQ yields consistent improvements in both WER and similarity.
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Table 1: Main reconstruction results. “Decoder Finetuning” indicates that the encoder and VQ
are frozen while the decoder is further trained for several steps. “Token CFG” denotes the use of
classifier-free guidance, more details are shown in Section 3.4. “CN” means codebook number.

Model FPS/TPS CN BR (kbps) WER (↓) SIM (↑) UTMOS (↑)
Ground Truth - - - 2.14 0.730 3.53
SpeechTokenizer (Zhang et al., 2023) 50/100 2 1.00 7.98 0.468 2.47
BigCodec (Xin et al., 2024) 80/80 1 1.04 3.25 0.615 3.59
DualCodec (Li et al., 2025a) 12.5/75 6 0.925 2.63 0.624 3.78
WavTokenizer (Ji et al., 2024) 75/75 1 0.90 6.65 0.483 3.36
Mimi (Défossez et al., 2024) 12.5/75 6 0.825 4.51 0.527 3.09
X-codec 2 (Ye et al., 2025b) 50/50 1 0.80 2.63 0.620 3.68
SemantiCodec (Liu et al., 2024) 25/50 2 0.675 5.11 0.488 2.83
BiCodec (Wang et al., 2025a) 50/50 1 0.65 3.05 0.612 3.68
Vevo Tokenizer (Zhang et al., 2025c) 50/50 1 0.65 3.04 0.534 3.50
StableCodec (Parker et al., 2024) 25/25 1 0.40 11.1 0.410 3.87
FireRedTTS Tokenizer (Guo et al., 2024) 25/25 1 0.35 3.35 0.597 3.40
CosyVoice Tokenizer (Du et al., 2024a) 25/25 1 0.30 5.63 0.465 3.65

SiTok (CN = 1) 12.5/12.5 1 0.20 4.06 0.641 3.44
+ Decoder Finetuning 12.5/12.5 1 0.20 3.79 0.682 3.48
+ Token CFG 12.5/12.5 1 0.20 3.34 0.635 3.60

SiTok (CN = 2) 12.5/25 2 0.35 3.17 0.658 3.44
SiTok (CN = 4) 12.5/50 4 0.70 2.80 0.660 3.46

3.3.2 DOWNSTREAM UNDERSTANDING

Understanding Tasks Table 2 shows that our tokenizer significantly outperforms all baselines
on several speech understanding tasks. In particular, we achieve substantial improvements on LLM-
based ASR (WER 4.95), and consistently surpass all baselines on ER, SV, and KS. LLM-based ASR
results for baseline models are adopted from Yang et al. (2025). “CN” means codebook number and
“CS” means codebook size.

Table 2: Main results for understanding tasks.

Model FPS/TPS CN/CS BR (kbps) CTC ASR (↓) ASR (↓) ER (↑) SV (↓) KS (↑)
DAC Rombach et al. (2022) 50/150 3/1024 1.5 - 58.4 48.9 17.8 68.8
EnCodec Défossez et al. (2022) 50/150 3/1024 1.5 - 77.2 47.4 15.5 79.3
Mimi Défossez et al. (2024) 12.5/100 8/2048 1.1 - 23.1 54.3 19.7 92.2
WavTokenizer Ji et al. (2024) 40/40 1/4096 0.48 - 45.6 51.1 19.4 65.3
StableCodec Parker et al. (2024) 25/25 1/46656 0.40 - 28.0 - - -
GLM4-Voice Zeng et al. (2024a) 12.5/12.5 1/16384 0.20 - 16.3 - - -

SiTok (CN = 1) 12.5/12.5 1/65536 0.20 9.50 4.95 63.5 13.8 96.9
SiTok (CN = 4) 12.5/50 4/16384 0.70 8.30 4.49 64.4 8.59 97.7

3.3.3 EFFECTIVENESS OF SEMANTIC REGULARIZATION

Table 3 demonstrates the impact of semantic regularization on both reconstruction and understand-
ing tasks, which is key to enhancing reconstruction quality and learning meaningful representations
for downstream understanding. Without regularization, the model shows severely degraded intelli-
gibility (WER rising from 4.06 to 33.0) and poor downstream performance. In contrast, applying
CTC-based regularization substantially reduces WER, improves similarity and speech quality, and
boosts all understanding tasks. This highlights that CTC supervision anchors the quantized latent
space to linguistic meaning, ensuring tokens are both acoustically faithful and semantically infor-
mative, especially for low-rate tokenizers.

Observation: Applying semantic regularization to the quantized latent space is crucial for
both reconstruction and representation learning, particularly when operating at low token rates.
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Table 3: Effectiveness of semantic regularization on reconstruction and understanding.

CTC Reg. FPS/TPS Reconstruction Understanding
WER (↓) SIM (↑) UTMOS (↑) CTC ASR (↓) ASR (↓) ER (↑) SV (↓) KS (↑)

Yes
12.5/12.5 4.06 0.641 3.44 9.50 4.95 63.5 13.8 96.9
12.5/25 3.17 0.658 3.44 8.64 4.72 61.7 11.1 97.8
12.5/50 2.80 0.660 3.46 8.30 4.49 64.4 8.59 97.7

No
12.5/12.5 33.0 0.495 2.68 - 29.4 57.9 18.9 86.1
12.5/25 10.1 0.598 2.99 - 9.53 55.3 15.5 92.7
12.5/50 5.17 0.611 2.84 - 7.27 60.4 13.5 92.8

3.3.4 EFFECTIVENESS OF MODEL SCALING

Our model scaling experiments from the 0.63B “S” model to the 1.61B “XL” model reveal a clear
trade-off between reconstruction fidelity and downstream task performance, as shown in Table 4.
While larger models consistently yield better reconstruction quality, with the XL model achieving
the best WER, SIM and UTMOS, performance on understanding tasks peaks with the 1.12B “L”
model, which delivers superior results in ASR. The fact that the largest model does not uniformly
outperform its smaller counterparts, and even shows degradation in tasks like SV, suggests that ex-
cessive model capacity may prioritize fine-grained acoustic details over the abstract, discriminative
features crucial for understanding. Therefore, we identify the “L” model as the optimal configura-
tion, providing the most effective balance between high-quality synthesis and robust generalization.
Further exploration of architectural designs is left for future work.

Table 4: Results for model size scaling. We vary the number of encoder and decoder layers while
keeping the CTC layers fixed to evaluate the impact on both reconstruction and understanding tasks.

Size Enc. Dec. Params (B) Reconstruction Understanding
WER (↓) SIM (↑) UTMOS (↑) CTC ASR (↓) ASR (↓) ER (↑) SV (↓) KS (↑)

S 8 8 0.63 4.18 0.608 3.43 11.2 5.24 60.8 13.7 96.9
B 12 12 0.88 4.01 0.634 3.46 9.78 5.19 62.5 13.8 96.9
L 16 16 1.12 4.06 0.641 3.44 9.50 4.95 63.5 13.8 96.9
XL 24 24 1.61 3.84 0.649 3.51 9.62 5.07 63.5 14.7 97.3

3.3.5 EFFICIENT DECODING

Shortcut Fine-Tuning Table 2 shows that directly reducing the number of inference steps leads to
a clear degradation in intelligibility and audio quality. In contrast, shortcut fine-tuning substantially
alleviates this issue, achieving much lower WER and higher speaker similarity even with very small
numbers of diffusion steps. Moreover, this improvement also translates into a significant reduction
in real-time factor (RTF): the model runs at 0.041, 0.024, and 0.013 RTF for 16, 8, and 4 diffusion
steps, respectively. These results demonstrate that shortcut fine-tuning effectively adapts the model
to faster sampling schedules while preserving reconstruction fidelity and enabling highly efficient
inference.
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Figure 2: Impact of shortcut fine-tuning on different inference steps. We report WER, SIM, and
UTMOS. Shortcut fine-tuning achieves consistently better intelligibility and similarity, especially at
small step numbers.
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Observation: Shortcut fine-tuning enables efficient low-step inference, retaining high
intelligibility and similarity while substantially accelerating decoding.

Light-Weight Diffusion Head We also explore using light-weight diffusion heads to accelerate
diffusion inference. We provide the results in Appendix C.1.

3.4 ABLATION STUDY

To better understand the contributions of different design choices in our tokenizer, we conduct a se-
ries of ablation studies, the results are shown in Table 5. We systematically examine training objec-
tives, regularization strategies, refinement mechanisms, codebook configurations, and frame rates.
These analyses not only validate the effectiveness of our proposed components but also provide
insights into the trade-offs between efficiency, reconstruction quality, and downstream performance.

Diffusion vs. Regression We investigate the choice of the reconstruction objective by comparing
our proposed diffusion-based objective (D) against a conventional regression-based objective (R),
such as an L1 loss on the mel-spectrogram. As shown in Table 5, our baseline model trained with
the diffusion loss significantly outperforms the regression-based counterpart across all key metrics.
Specifically, the diffusion model achieves a substantially lower WER (4.06 vs. 4.66), higher speaker
similarity (0.641 vs. 0.587), and better downstream ASR performance (4.95 vs. 6.06). To further
explore if a diffusion decoder could salvage a regression-trained model, we conducted an experiment
where only the decoder was fine-tuned with the diffusion objective on top of a regression-pretrained
model (R + D). Therefore, by design, the understanding metrics for (R) and (R + D) are identical,
while reconstruction metrics (WER/SIM/UTMOS) change. While this modestly improved speaker
similarity, it failed to match the performance of the end-to-end diffusion model and even wors-
ened the WER to 5.73. This indicates that the representations learned under the diffusion objective
are inherently superior for both high-fidelity reconstruction and downstream task transferability.

Observation: Adopting a diffusion-based objective is critical for learning high-quality
representations, significantly outperforming a standard regression objective in both

reconstruction fidelity and downstream task performance.

CTC Loss Weight We analyze the impact of the CTC loss weight, which serves as a semantic
regularizer. The results clearly demonstrate that this regularization is indispensable. Setting the
weight to 0 leads to a catastrophic performance collapse, with the WER soaring to 33.0 and the
downstream ASR error rate to 29.4, confirming that the model fails to learn any meaningful rep-
resentations without textual supervision. Conversely, an excessively high weight (e.g., 0.5 or 1.0)
also degrades performance across both reconstruction and understanding tasks, likely by forcing
the model to discard too much acoustic detail in favor of semantic content. Our experiments iden-
tify a weight of 0.1 as providing the optimal balance between enforcing semantic consistency and
preserving high-fidelity audio reconstruction.

Observation: The CTC loss weight is a critical hyperparameter; too low a value fails to
enforce semantic consistency, while too high a value impairs reconstruction fidelity.

Reconstruction Refinement As shown in our main reconstruction results (Table 1), both decoder
finetuning and token classifier-free guidance (CFG) serve as powerful techniques to enhance recon-
struction quality. Decoder finetuning, a training-time strategy, specializes the synthesis module on
the fixed representations, leading to significant improvements in both intelligibility and particularly
speaker similarity. Separately, applying token CFG at inference time provides a complementary
approach to boost fidelity. Our ablation study demonstrates that CFG consistently and substantially
reduces WER, achieving a low of 2.56 in our CD = 4 configuration, while also improving percep-
tual quality (UTMOS). These findings indicate that both training-time adaptation and inference-time
guidance are highly effective strategies for refining the final output.

Codebook Size We investigate the effect of the codebook size (CS), which controls the vocab-
ulary of discrete tokens. We find enlarging the codebook from 213 to 217 consistently improves
reconstruction quality, evidenced by a steady decrease in WER from 5.48 to 3.94. Downstream task
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performance, particularly ASR, also benefits and reaches an optimum at a codebook size of 216,
suggesting this size offers the best balance between representational power and generalization.

Codebook Number We also evaluate increasing the number of codebooks (CN) using RVQ,
which directly increases the bitrate. We find that scaling CN from 1 to 8 yields substantial and
consistent improvements across most metrics. The reconstruction WER drops dramatically from
4.30 to 2.50, while downstream performance on tasks like ASR and SV is also significantly boosted.
This demonstrates an effective trade-off between compression and fidelity within our framework.

Observation: The vector quantizer’s design offers a flexible trade-off between quality and
complexity. Increasing the number of codebooks provides a direct path to higher fidelity and

better downstream performance at the cost of bitrate.

Frame Rate vs. Performance Trade-off

We also investigate two alternative frame-rate settings: 6.25 Hz and 25 Hz. We find that reducing the
frame rate to 6.25 Hz significantly degrades both reconstruction and downstream task performance,
while increasing it to 25 Hz improves performance but doubles the frame rate. Therefore, we adopt
12.5 Hz as the default setting to balance efficiency and performance.

Table 5: Ablation study.

Reconstruction Understanding
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SI
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)

C
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C
A

SR
(↓

)

A
SR

(↓
)

E
R

(↑
)

SV
(↓

)

K
S

(↑
)

D 0.1 216 1 32 ✗ 12.5 4.06 0.641 3.44 9.50 4.95 63.5 13.8 96.9

R 0.1 216 1 32 ✗ 12.5 4.66 0.587 3.28 12.2 6.06 63.3 13.6 95.2Loss R + D 0.1 216 1 32 ✗ 12.5 5.73 0.634 3.35 12.2 6.06 63.3 13.6 95.2

D 0 216 1 32 ✗ 12.5 33.0 0.495 2.68 - 29.4 57.9 18.9 86.1
D 0.02 216 1 32 ✗ 12.5 5.05 0.607 3.44 12.2 7.41 58.3 13.5 97.2
D 0.5 216 1 32 ✗ 12.5 8.81 0.614 3.20 11.0 7.87 64.2 16.6 91.2CTC W.

D 1 216 1 32 ✗ 12.5 10.1 0.585 3.38 10.5 8.90 62.1 13.9 96.8

D 0.1 213 1 32 ✗ 12.5 5.48 0.640 3.39 11.7 5.72 55.7 16.3 95.7
D 0.1 214 1 32 ✗ 12.5 4.30 0.641 3.33 11.5 5.40 58.7 16.0 96.4
D 0.1 215 1 32 ✗ 12.5 4.26 0.648 3.43 10.5 5.33 61.2 15.0 96.4CS

D 0.1 217 1 32 ✗ 12.5 3.94 0.651 3.39 10.6 5.09 60.6 13.7 97.3

D 0.1 214 2 32 ✗ 12.5 3.17 0.658 3.44 8.64 4.72 61.7 11.1 97.8
D 0.1 214 4 32 ✗ 12.5 2.80 0.660 3.46 8.30 4.49 64.4 8.59 97.7CN
D 0.1 214 8 32 ✗ 12.5 2.50 0.645 3.30 8.42 4.68 60.0 7.53 98.2

D 0.1 214 1 64 ✗ 12.5 4.08 0.642 3.46 9.58 5.27 61.7 14.4 97.3
D 0.1 214 1 128 ✗ 12.5 3.85 0.642 3.36 9.14 4.59 59.7 14.3 97.3CD
D 0.1 214 1 256 ✗ 12.5 5.04 0.641 3.30 10.9 5.54 64.1 16.5 95.9

D 0.1 216 1 32 ✓ 12.5 3.34 0.635 3.60 9.54 4.89 62.4 14.0 96.8Tok. CFG D 0.1 214 4 32 ✓ 12.5 2.56 0.645 3.58 8.34 4.67 61.7 9.11 98.2

D 0.1 216 1 32 ✗ 6.25 23.0 0.428 3.10 15.8 12.7 52.6 20.7 88.5FPS D 0.1 216 1 32 ✗ 25 3.05 0.688 3.72 9.19 4.45 63.5 7.28 97.8

4 CONCLUSION

In this work, we propose SiTok, a diffusion autoencoder–based speech tokenizer that enables end-
to-end joint modeling of reconstruction and quantization for improved acoustic fidelity. We further
introduce semantic regularization to learn effective, semantically rich representations for speech
understanding, and explore shortcut fine-tuning techniques to significantly accelerate diffusion de-
coding. Extensive experiments demonstrate that SiTok achieves strong performance on both speech
reconstruction and diverse speech understanding tasks. In addition, we conduct extensive ablation
studies, providing insights into the key design choices.
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ETHICS STATEMENT

This work studies speech tokenizers with diffusion autoencoders. Our models are designed for aca-
demic research and downstream tasks such as speech understanding and speech language modeling.
While tokenizers themselves are neutral, we acknowledge potential misuse in downstream systems
(e.g., generating synthetic speech for impersonation) and encourage responsible and ethical use of
our models.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of model architectures, training settings,
and evaluation protocols in the main paper and Appendix.

USE OF LLMS

Large Language Models (LLMs) were employed for auxiliary purposes in this work, such as gram-
mar checking, polishing the manuscript. However, all technical contributions, model implementa-
tions, and experimental analyses were conducted by the authors. We acknowledge the use of LLMs
where appropriate and ensure that their involvement does not compromise the originality of the
work.
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Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. arXiv preprint arXiv:2406.07548, 2024.

15

https://arxiv.org/abs/2411.17607
https://arxiv.org/abs/2411.17607


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A MODEL ARCHITECTURE

Model The tokenizer’s architecture consists of a causal encoder, a vector quantizer (VQ), a diffu-
sion decoder, and a causal auxiliary CTC decoder. For the causal encoder and the causal auxiliary
CTC decoder, we utilize standard Llama-style Transformer blocks (Touvron et al., 2023; Grattafiori
et al., 2024), incorporating RoPE positional encoding (Su et al., 2024) and the SiLU (Elfwing et al.,
2018) activation function. The encoder is specifically implemented with 16 causal Llama decoder
layers, and the auxiliary CTC decoder with 4 such layers. A consistent configuration, unless other-
wise specified, applies across these components (and the diffusion decoder): a hidden size of 1536,
an intermediate size of 4096, and 16 attention heads. The VQ module employs a default config-
uration of 32 dimensions, featuring a codebook of 65,536 entries, with updates managed via an
exponential moving average (EMA) (Van Den Oord et al., 2017). The diffusion decoder is realized
using 16 layers, adapted from the causal Llama decoder structure into a non-causal form. Diffu-
sion step embedding is incorporated by substituting RMSNorm (Zhang & Sennrich, 2019) with an
Adaptive RMSNorm variant. To study the effect of model capacity, we scale the number of encoder
and diffusion decoder layers while keeping other architectural settings fixed. We experiment with
four configurations: S (8 encoder / 8 decoder layers, 0.63B parameters), B (12/12, 0.88B), L (16/16,
1.12B), and XL (24/24, 1.61B). Unless otherwise specified, we adopt the L configuration as our
default setting.

B RELATED WORK

Discrete Speech Tokenizer Speech tokenizers are foundational components for speech language
models. Early approaches (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al., 2024) primar-
ily focused on audio compression, relying on residual vector quantization (RVQ) (Zeghidour et al.,
2021; Lee et al., 2022) and operating at high frame rates and bitrates, which are suboptimal for lan-
guage modeling. More recent work has shifted toward tokenizers specifically designed for language
modeling, emphasizing low frame rates (Défossez et al., 2024; Li et al., 2025a; Della Libera et al.,
2025), semantically rich representations (Zhang et al., 2023; Défossez et al., 2024; Li et al., 2025a;
Wang et al., 2025a; Ye et al., 2025a;b; Liu et al., 2024; Guo et al., 2024; Du et al., 2024b; Zhang
et al., 2025c; Jiang et al., 2025), and simplified single-layer codebooks (Parker et al., 2024; Xin
et al., 2024; Ji et al., 2024). Nonetheless, many of these tokenizers still struggle to achieve even
greater compression rates, for instance, 12.5 Hz with a single codebook. While TaDiCodec (Wang
et al., 2025b) successfully reduced the frame rate to 6.25 Hz by leveraging a diffusion autoencoder
and incorporating text into its decoder, this text-aware design inherently restricts its applicability,
rendering it unsuitable for speech understanding tasks. In this work, our goal is to design a tokenizer
which can jointly achieve a sufficient compression rate for efficient language modeling, preserve
high-quality audio reconstruction, and learn effective, semantic-rich representations for understand-
ing speech.

Diffusion-Based Speech Tokenizers Diffusion-based approaches (Ho et al., 2020; Song et al.,
2020) have emerged as a promising direction, showing strong scalability and robustness at low
token rates. Yet, most existing methods still adopt a two-stage design: tokens are first extracted
from self-supervised speech models (Baevski et al., 2020; Chung et al., 2021; Hsu et al., 2021; Chen
et al., 2022; Chiu et al., 2022; Radford et al., 2023), and only then are waveforms reconstructed
through diffusion. This separation limits joint optimization, as the quantizer is not trained end-to-
end with the decoder. Recent efforts (Welker et al., 2025; Yang et al., 2024b) apply diffusion to
improve de-tokenization fidelity, but remain constrained to relatively high token rates and still relay
on two-stage modeling. Pushing diffusion-based tokenizers to ultra-low bitrates (e.g., below 0.2
kbps or 20 tokens/s) in a compact, language-model-friendly framework therefore remains an open
and critical challenge. In this work, we address this challenge with SiTok, a diffusion-based speech
tokenizer that unifies vector quantization and reconstruction modeling in an end-to-end framework,
while introducing semantic regularization to ensure the learned codes are both highly compressive
and semantically rich for speech language modeling.
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C MORE EXPERIMENTS AND RESULTS

C.1 LIGHT-WEIGHT DIFFUSION HEAD

A primary cause of inefficiency in diffusion inference is the need to execute a forward pass
through the entire model at each denoising step. Our preliminary experiments revealed that for
our autoencoder-based tokenizer, using a simple regression loss (e.g., L1 or L2) alone can recon-
struct speech with acceptable intelligibility, albeit with poor perceptual quality. This indicates that
the main body of the decoder is capable of generating the fundamental structure of the speech, while
the iterative diffusion process primarily serves to refine its quality and detail.

Based on this insight, we propose partitioning the decoder Dϕ to decouple the main structure gener-
ation from the iterative refinement. We divide the decoder into two components: a substantial main
body, Dϕmain , and a smaller Light-weight Diffusion Head, Dϕhead . The main body consists of the
initial, deeper transformer blocks, while the head is composed of the final few blocks.

During the decoding process, the quantized embedding sequence zq is first passed through the main
body Dϕmain only once to produce a base representation hbase:

hbase = Dϕmain(zq).

This base representation then provides the foundational conditioning, which is subsequently re-
fined by the diffusion head into the final spectrogram. The iterative denoising process is performed
exclusively by the light-weight head Dϕhead , which takes the noisy spectrogram xt and the base
representation hbase as conditioning to predict the velocity:

vϕ(xt, t,hbase) = Dϕhead(xt, t,hbase).

This architectural modification significantly reduces the computational overhead per inference step,
as the majority of the decoder’s parameters in Dϕmain are utilized in just a single forward pass. This
approach allows for rapid inference while retaining the high-quality synthesis capabilities of the
diffusion model.

In this work, we apply the proposed light-weight diffusion head to our base model architecture with
16 transformer decoder layers. Specifically, the first 12 layers (3/4 of the decoder) are used as
the main body Dϕmain , while the last 4 layers serve as the diffusion head Dϕhead . During inference,
the base representation hbase is computed once by the main body, and only the light-weight head
is executed iteratively across diffusion steps. With 16 diffusion steps as the default setting, the
theoretical speedup approaches a 4× reduction in per-step computation compared to applying all 16
layers at every denoising step.

As shown in Table 6, this architectural modification yields nearly identical reconstruction perfor-
mance to the full model. The light-weight head maintains comparable WER and perceptual metrics
(SIM and UTMOS), while significantly reducing the computational cost. This demonstrates that
most of the heavy-lifting for content and structure generation is handled by the main body, and the
lightweight head suffices to refine acoustic detail during diffusion inference.

Table 6: Ablation study of the light-weight diffusion head.

Model Reconstruction
WER SIM UTMOS

Base 4.06 0.641 3.44
w. light head 3.97 0.610 3.46

C.2 ZERO-SHOT TTS WITH SITOK

we also evaluate SiTok in a downstream speech generation task zero-shot text-to-speech (TTS) to
further demonstrate the effectiveness and efficiency of SiTok for speech language modeling. This
experiment verifies that the discrete representations learned by SiTok are not only suitable for re-
construction and understanding, but also serve as a strong generation interface for speech language
models.
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Table 7: Zero-shot TTS results comparing SiTok-AR-TTS with representative AR-based TTS sys-
tems. FPS/TPS follow the definition in Section 3.2. RTF is measured on a single A100 GPU.

Model FPS/TPS WER (↓) SIM (↑) RTF (↓)
CosyVoice 2 (Du et al., 2024b) 25/25 2.89 0.66 0.455
SparkTTS (Wang et al., 2025a) 12.5/12.5 2.50 0.57 0.601
Llasa (Ye et al., 2025b) 50/50 3.94 0.58 0.422

SiTok-AR-TTS 12.5/12.5 2.46 0.64 0.234

We build a 0.5B-parameter LLM-based TTS model (denoted as SiTok-AR-TTS), initialized from
Qwen2.5-0.5B (Yang et al., 2024a), which autoregressively predicts SiTok tokens from text. The
model is trained on 100K hours of the Emilia (He et al., 2024) dataset under a standard AR-TTS
training recipe. During inference, the predicted discrete token sequence is decoded by our diffusion
decoder to obtain mel-spectrograms, we use a default decoding step of 16 in this experiment.

We follow the evaluation protocol in Section 3.2 and report WER and SIM on the SeedTTS test-en
set. To further assess practical efficiency, we also report the real-time factor (RTF) measured on
a single NVIDIA A100 GPU, averaging 10 runs of synthesizing a 10-second utterance. Results are
summarized in Table 7. We use some strong AR-based TTS models as baselines.

The results show that SiTok-AR-TTS achieves competitive or superior intelligibility and speaker
similarity compared to strong baselines, while operating at a substantially lower inference cost.
Interestingly, the WER obtained by SiTok-AR-TTS is even lower than the reconstruction WER of
SiTok itself. This trend is consistent with some recent zero-shot TTS systems Du et al. (2024a); Guo
et al. (2024); Zhang et al. (2025a), where the generated speech tokens directly conditioned on the
text.

Another key observation is the considerable efficiency gain. Because SiTok operates at only 12.5
Hz, the autoregressive text-to-token decoding runs on a sequence 2 to 4× shorter than those used by
conventional neural codecs operating at 25 to 50 Hz. This reduction directly translates into faster
inference for speech generation, and results in a significantly lower RTF of 0.234, making SiTok
particularly attractive for large-scale TTS or speech generation systems. Overall, these findings
demonstrate that SiTok serves as a highly effective interface for speech generation: its discrete
representations not only support high-quality reconstruction and strong downstream understanding,
but also enable efficient, high-fidelity TTS within a unified speech tokenization framework.

Observation: SiTok provides strong zero-shot TTS performance with high intelligibility and
similarity, while its extremely low token rate enables substantially faster inference compared

to existing AR-based TTS systems.

C.3 SUBJECTIVE EVALUATION

We conduct a subjective evaluation of the audio reconstruction quality of SiTok reporting the Com-
parative Mean Opinion Score (CMOS). We randomly select 20 in-the-wild speech samples contain-
ing diverse speaking styles and emotional expressions. Each baseline system, along with SiTok,
reconstructs all 20 samples. A subset of the evaluation samples is also included on our demo page
for qualitative inspection.

In each test, 5 participants are presented with two speech samples, A and B, and are asked: “Which
speech has better audio quality?” Five response options are provided: A +2 (A is much better),
A +1 (A is slightly better), Tie, B +1, and B +2 (B is much better). CMOS scores are computed by
averaging the numerical ratings over all listeners. Table 8 shows the results.

C.4 COMPARISON WITH ALTERNATIVE QUANTIZATION METHODS

SiTok is not tied to a specific quantization design. In principle, any quantization method, such
as Finite Scalar Quantization (FSQ) (Mentzer et al., 2023) and Binary Spherical Quantization
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Table 8: Subjective CMOS scores. We use 20 in-the-wild speech samples and compare several
representative speech tokenizers against SiTok. Positive scores indicate preference over SiTok, while
negative values indicate that SiTok is preferred.

System CMOS
Ground Truth +0.65 ± 0.12
Mimi (Défossez et al., 2024) -1.65 ± 0.22
WavTokenizer Ji et al. (2024) -1.28 ± 0.36
BiCodec Wang et al. (2025a) -0.88 ± 0.15

SiTok (CN=1) 0.00

(BSQ) (Zhao et al., 2024), can be integrated into our diffusion autoencoder. In this section,
we compare our standard VQ module with a representative alternative, Fixed-Scalar Quantiza-
tion (FSQ). We follow a commonly used FSQ configuration with per-dimension cardinalities
[2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2], whose Cartesian product yields a codebook size of 216 =
65536, identical to the codebook size employed by our VQ setup.

Table 9 summarizes the results. Despite having the same codebook size, standard VQ achieves
stronger performance across reconstruction quality and downstream understanding tasks. We at-
tribute this performance gap to two properties of our large-scale training regime. First, the learnable
embedding vectors in VQ provide greater representational flexibility than the fixed scalar partitions
of FSQ, enabling richer modeling of fine-grained acoustic and semantic structure. Second, with
large batch sizes, EMA updates, and diffusion-based optimization, SiTok exhibits stable codebook
utilization exceeding 95% throughout training, meaning that FSQ’s typical advantage, improved
quantization stability, offers limited benefit in our setting. As a result, VQ emerges as the more ex-
pressive and empirically effective choice, though our results confirm that SiTok remains compatible
with a broad family of quantization techniques.

Table 9: Comparison of VQ and FSQ within SiTok.

Model WER (↓) SIM (↑) UTMOS (↑) CTC ASR (↓) ASR (↓) ER (↑) SV (↓) KS (↑)
SiTok (VQ) 4.06 0.641 3.44 9.50 4.95 63.5 13.8 96.9
SiTok (FSQ) 5.23 0.629 3.44 10.02 5.33 62.0 14.1 96.9

D REPRODUCIBILITY STATEMENT

To support reproducibility and facilitate future research, we provide comprehensive implementation
details of SiTok in this appendix. Specifically, we include (1) detailed architectural specifications
(Appendix A) and pseudo-code for the SiTok model (Appendix D.1), (2) pseudo-code outlining
the core end-to-end training loop of the diffusion autoencoder (Appendix D.2), and (3) additional
information regarding training hyperparameters, data preprocessing, and other implementation con-
siderations (Appendix D.3).

We also confirm that we will release the full inference code and pretrained model checkpoints (on
public, research-only datasets) to the research community upon publication, enabling researchers to
reproduce our results and further build upon SiTok.

D.1 PSEUDO-CODE FOR SITOK

Listing 1: Pseudo-code for SiTok.

class SiTok:
def __init__(

self,
in_dim=128,
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hidden_size=1536,
intermediate_size=4096,
encoder_layers=16,
decoder_layers=16,
ctc_decoder_layers=4,
num_heads=16,
vq_emb_dim=16,
downsample_factor=4,
vocab_size=32100,

):
# temporal stacking (reduce FPS to 12.5 Hz)
self.stack_in = StackIn(downsample_factor)
self.stack_out = StackOut(downsample_factor)

# transformer encoder (Llama-style causal model)
self.encoder = LlamaModel(

hidden_size, intermediate_size,
encoder_layers, num_heads,
in_dim * downsample_factor)

# vector quantizer (Binary Spherical Quantization)
self.vq_in = Linear(hidden_size, vq_emb_dim)
self.vq = BinarySphericalQuantizer(vq_emb_dim)
self.vq_out = Linear(vq_emb_dim, hidden_size)

# diffusion decoder (DiT-style transformer)
self.decoder = DiT(

hidden_size, intermediate_size,
decoder_layers, num_heads,
use_cond=True, use_diff_step=True)

# CTC semantic decoder (Llama-style causal model)
self.ctc_decoder = LlamaModel(

hidden_size, intermediate_size,
ctc_decoder_layers, num_heads,
vocab_size)

# ------------------------------------------------------------
# forward: training-time outputs for loss computation
# ------------------------------------------------------------
def forward(self, x, x_mask):

"""SiTok forward for training losses."""

# 1) stack + encode to continuous latents
h = self.stack_in(x)
h = self.encoder(h, x_mask)

# 2) vector quantization to discrete speech tokens
z = self.vq_in(h)
z_q, vq_info = self.vq(z)
cond = self.vq_out(z_q)

# 3) forward diffusion (flow matching)
t = sample_uniform() # t ˜ U(0, 1)
eps = randn_like(x) # eps ˜ N(0, I)
x_t = self.forward_diffuse(x, eps, t) # noisy mel
x_t = self.stack_in(x_t)

# 4) diffusion decoder predicts flow / velocity
flow_pred = self.decoder(x_t, t, cond)

# 5) CTC semantic logits (for semantic regularization)
ctc_logits = self.ctc_decoder(cond)
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return {
"x": x, # GT mel
"noise": eps, # diffusion noise target
"flow_pred": flow_pred, # for flow-matching loss
"ctc_logits": ctc_logits, # for CTC loss
"vq_loss": vq_info["commit"], # VQ commitment loss

}

# ------------------------------------------------------------
# forward diffusion (flow matching target)
# ------------------------------------------------------------
def forward_diffuse(self, x, eps, t):

"""Apply forward diffusion to obtain a noisy sample x_t."""
# x_t = (1 - alpha(t)) * eps + alpha(t) * x
# In practice alpha(t) implements the flow-matching schedule.
x_t = (1 - t) * eps + t * x
return x_t

# ------------------------------------------------------------
# inference helpers
# ------------------------------------------------------------
def encode(self, x, mask):

"""Encode mel into quantized VQ embeddings / indices."""
h = self.stack_in(x)
h = self.encoder(h, mask)
z = self.vq_in(h)
z_q, indices = self.vq(z)
return z_q, indices

def decode(self, z_q, prompt=None, steps=N):
"""Reverse diffusion to generate mel from VQ embeddings."""
cond = self.vq_out(z_q)
mel = diffusion_reverse(self.decoder, cond, prompt, steps)
return self.stack_out(mel)
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D.2 PSEUDO-CODE FOR TRAINING LOOP

Listing 2: Pseudo-Code for Training Loop of SiTok.

for batch in dataloader:

# ------------------------------------------------------------
# 1) prepare mel features and masks
# ------------------------------------------------------------
x = mel_extractor(batch.speech) # [B, T, d]
x_mask = batch.speech_mask
text_ids = batch.text_ids # semantic supervision
text_mask = batch.text_mask

# ------------------------------------------------------------
# 2) forward pass through SiTok
# ------------------------------------------------------------
out = sitok.forward(x, x_mask)
x_gt = out["x"]
noise = out["noise"]
flow_pred = out["flow_pred"]
ctc_logits = out["ctc_logits"]
vq_loss = out["vq_loss"]

# ------------------------------------------------------------
# 3) diffusion (flow-matching) loss
# ------------------------------------------------------------
# target velocity v* = x - eps
flow_gt = x_gt - noise
diff_loss = L1(flow_pred, flow_gt)

# ------------------------------------------------------------
# 4) CTC semantic loss
# ------------------------------------------------------------
ctc_loss = CTC_Loss(ctc_logits, text_ids, text_mask)

# ------------------------------------------------------------
# 5) total loss
# ------------------------------------------------------------
total_loss = diff_loss + vq_loss + lambda_ctc * ctc_loss

# ------------------------------------------------------------
# 6) optimization
# ------------------------------------------------------------
optimizer.zero_grad()
total_loss.backward()
clip_gradients(sitok.parameters(), max_norm=0.5)
optimizer.step()

D.3 MORE IMPLEMENTATION DETAILS

Data and Preprocessing We use 2M hours of in-house data to train our models. The dataset
covers multiple languages, with English accounting for the vast majority. We do not apply additional
preprocessing to the speech data, such as splitting into shorter segments; instead, we train directly on
the original utterance lengths paired with their transcripts. We use 50 Hz, 128-bin mel-spectrograms
extracted at a 24K Hz sampling rate, with a hop size of 480 samples (20 ms) and a window size of
1920 samples (80 ms). The STFT is computed with nfft = 1920 using a Hann window, and mel
filters span [fmin, fmax] = [0, 12,000] Hz. Finally, we apply global mean–variance normalization
to the mel features using precomputed statistics (mean −4.92, variance 8.14). as both the input and
reconstruction targets of our tokenizer, while first stacking every four consecutive frames to reduce
the frame rate to 12.5 Hz for more efficient training. For waveform synthesis, we employ a Vocos-
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based (Siuzdak, 2023) vocoder to convert the mel spectrograms back to audio waveforms at 24K
Hz.

Training We train all models for a single epoch, corresponding to approximately 450K steps.
For optimization, we adopt the AdamW (Loshchilov & Hutter, 2017) optimizer with β1 = 0.9,
β2 = 0.999, a weight decay of 0.01, and a learning rate of 8 × 10−5 with a warmup of 32K
steps. To maximize GPU utilization and stabilize training over varying utterance lengths, we employ
a dynamic batch size strategy: on each GPU, we pack utterances until the total duration reaches
roughly 300 seconds of speech, corresponding to around 3750 tokens at our 12.5 Hz token rate.
This ensures that each batch maintains a consistent computational footprint while preserving full-
utterance training without segmentation.

E LIMITATIONS

While SiTok demonstrates strong performance on both speech reconstruction and downstream
speech understanding tasks, it still falls short of continuous feature representations. Future work will
focus on closing this performance gap. Furthermore, our diffusion-based decoder poses challenges
for streaming generation. We are currently investigating fine-tuning strategies, such as chunk-wise
AR diffusion, to enable low-latency or streaming outputs.
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