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Abstract

Object-centric scene decompositions are important representations for downstream tasks in
fields such as computer vision and robotics. The recently proposed Slot Attention module,
already leveraged by several derivative works for image segmentation and object tracking
in videos, is a deep learning component which performs unsupervised object-centric scene
decomposition on input images. It is based on an attention architecture, in which latent
slot vectors, which hold compressed information on objects, attend to localized perceptual
features from the input image. In this paper, we demonstrate that design decisions on
normalizing the aggregated values in the attention architecture have considerable impact on
the capabilities of Slot Attention to generalize to a higher number of slots and objects as seen
during training. We propose and investigate alternatives to the original normalization scheme
which increase the generalization capabilities of Slot Attention to varying slot and object
counts, resulting in performance gains on the task of unsupervised image segmentation. The
newly proposed normalizations represent minimal and easy to implement modifications of
the usual Slot Attention module, changing the value aggregation mechanism from a weighted
mean operation to a scaled weighted sum operation.

1 Introduction

Object-wise scene decompositions are ubiquitous in computer vision, robotics, and related disciplines such as
reinforcement learning, since the state and actions in the environment are naturally represented in relation to
objects. Over recent years, unsupervised learning of object-centric representations from unlabelled images
and video has attracted significant interest in the machine learning community (Greff et al., 2017; Engelcke
et al., 2020; Locatello et al., 2020). The Slot Attention architecture (Locatello et al., 2020) decomposes a
two-dimensional RGB input image object-wise using an attention mechanism which updates slots, holding
information about objects, in a recurrent manner. In (Locatello et al., 2020), it was used for set prediction
and image segmentation tasks on relatively simple renderings of 2D or 3D scenes, such as CLEVR (Johnson
et al., 2017). Later in (Seitzer et al., 2023), Slot Attention has also been successfully applied to the task of
unsupervised segmentation of more realistic images (MOVi, (Greff et al., 2022)). Detecting and tracking
objects in videos using Slot Attention is described in (Kipf et al., 2022; Elsayed et al., 2022). Despite its
empirical success, a theoretical explanation of its inner workings and the inductive biases which lead to
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the emergence of object-wise decompositions in Slot Attention is still under active research (Chang et al.,
2022b;a).

In this paper we investigate design choices on the normalization of aggregated attention values in Slot
Attention. We find that the normalization proposed in (Locatello et al., 2020) leads to suboptimal foreground
segmentation performance during inference with higher number of objects or slots than used for training
the model. We also investigate two alternative normalization approaches, give theoretical insights on their
behavior, and assess their performance in relation to the original Slot Attention baseline. We demonstrate
that these different approaches for normalizing the aggregated values can have a significant impact on the
generalization of Slot Attention to a varying number of slots and objects during inference.

2 Background

2.1 Slot Attention

The Slot Attention module (Locatello et al., 2020) is given a set of N input tokens x̃n ∈ RDinput , n ∈ {1, ..., N}
and iteratively refines a set of K slots θ̃k ∈ RDslot , k ∈ {1, ..., K}. In an object-wise scene decomposition
scenario, slots correspond to latent variables holding information on objects, while the input tokens are
localized image features, e.g., computed by a convolutional neural network. Slots bind to input tokens via a
dot-product attention mechanism (Luong et al., 2015). Learned linear maps k and q extract D-dimensional
keys and queries from the layer-normalized (Ba et al., 2016) input tokens xn := LayerNorm(x̃n) and layer-
normalized slots θk := LayerNorm(θ̃k), respectively. In our case, we always have Dinput = D and the layer
normalization modules that produce xn and θk do not share parameters.

For the attention mechanism, an unnormalized N × K matrix M of dot prod-
ucts is formed from the keys kn := k(xn) and queries qk := q(θk). On each
row of M , a Softmax operator is then applied, yielding Γ = (γn,k) ∈ [0, 1]N×K :

Mn,k := 1
τ

k(xn)⊤q(θk) = 1
τ

k⊤
n qk (1) γn,k := exp Mn,k∑K

k′=1 exp Mn,k′
. (2)

With this, each row γn,: may be interpreted as the probability of an input token n to be assigned to a
particular slot k. The constant τ corresponds to a temperature parameter which is chosen to be

√
D.

A linear map v : RDinput → RD extracts values from the input tokens and the matrix Γ is used to accumulate
values into unnormalized slot-wise update codes:

ũk :=
N∑

n=1
γn,kv(xn) (3)

With the motivation to improve the stability of the attention mechanism, Slot Attention performs a normal-
ization on the update codes. Namely, the sum in (3) is scaled in such a way that it becomes a weighted mean
of the values v(xn), i.e.:

uk := ũk∑N
n=1 γn,k

(4)

This normalization scheme is termed weighted mean. Locatello et al. (2020) discuss two ablations of this
normalization. The weighted sum scheme normalizes the update code by multiplication with a constant, i.e.
uk := 1

C ũk. In the ablation study in (Locatello et al., 2020), the value chosen for C is not discussed, and it
must be assumed that C = 1 was chosen. The second ablation of (Locatello et al., 2020) is termed layer
normalization and uses a layer normalization module that is shared across slots for normalization. Concretely,
the normalized update code is computed as uk := LayerNorm(ũk). We refer to Appendix B for an exact
definition of layer normalization.

For each slot k, the aggregated value uk is used to update the latent representation θ̃k via a gated recurrent
unit (GRU) (Cho et al., 2014) and a residual multilayer perceptron with θ̃new

k := update(θ̃k, uk).
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2.2 Von Mises-Fisher Distributions

Von Mises-Fisher (vMF) distributions (Fisher, 1953) are probability distributions on the unit (d − 1)-sphere
in Rd. Typically, they are parametrized by a mean direction θ ∈ Rd with ∥θ∥2 = 1 and a concentration
parameter τ > 0. They are defined by the following density w.r.t. the usual surface measure on the (d − 1)-
sphere f(x | θ, τ) = 1

Z(d,τ) exp
(

θ⊤x
τ

)
, where Z(d, τ) is a normalization constant that is independent of θ. If

(θ1, ..., θK) and (τ1, ..., τK) are parameters of vMF distributions and (π1, ..., πK) is contained in the probability
simplex, a vMF mixture model can be defined as usual via the density g(x) :=

∑K
k=1 πkf(x | θk, τk).

3 Slot Attention and von Mises-Fisher Mixture Model Parameter Estimation

Many works (Locatello et al., 2020; Chang et al., 2022b;a; Kirilenko et al., 2023) compare Slot Attention to
expectation maximization (Dempster et al., 1977; Bishop, 2006) (EM) in Gaussian mixture models, i.e. to
soft k-means clustering. We, however, connect it with expectation maximization in a mixture model of von
Mises-Fisher (vMF) distributions (Banerjee et al., 2003), since Slot Attention uses a bilinear form on slots
and inputs as a scoring function instead of the negative Euclidean distance. In this section, we make the
parallel between Slot Attention and EM explicit by performing EM parameter estimation in a vMF mixture
model and relating each step to the corresponding step in Slot Attention. We will then view the weighted
mean, layer norm, and weighted sum normalization variants in the context of this analogy and compare them.

3.1 Relating Slot Attention to EM

We consider a case in which N points xn are given on the unit (d − 1)-sphere in Rd. We estimate the mean
directions θ1, ..., θK of K vMF components, along with the mixture coefficients π1, ..., πK . We assume that
the vMF distributions have fixed concentration, i.e., τ = 1. We interpret the parameters θk to relate to
slots in Slot Attention and the points xn to relate to the perceptual input features of the module. The
concentration parameter τ can be understood as an analogue to the temperature

√
D in Slot Attention.

E-Step In the expectation step, soft assignments of datapoints to clusters (slots) are computed via the
likelihood functions of the vMF components:

γn,k := πk exp(x⊤
n θk)∑K

k′=1 πk′ exp(x⊤
n θk′)

(5)

The resulting matrix Γ ∈ [0, 1]N×K corresponds to the attention matrix in Slot Attention. Equation (5)
closely resembles the computation of the attention matrix in Slot Attention with some differences: While the
inputs xn in Slot Attention do not necessarily lie on the unit sphere, we do remind the reader that they are
layer-normalized and therefore lie on ellipsoids. Similarly, the slots are layer-normalized before the attention
step. In contrast to equation 5, Slot Attention uses key and query maps instead of directly forming a dot
product between xn and θk. I.e., the dot products are formed between kn and qk.

While the Slot Attention architecture does not explicitly model the mixture parameters πk, it may encode
some weighting in the layer-normalized slots. Indeed, we show in Appendix B that the keys kn are contained
in some (D − 1)-dimensional affine subspace A ⊊ RD which may be written uniquely as A = a + V where V
is a (D − 1)-dimensional linear space and a ∈ V ⊥ is perpendicular to V . If pV : RD → V is the orthogonal
projection onto V and pa : RD → ⟨a⟩ is the orthogonal projection onto the span of a, we may decompose
any x ∈ RD orthogonally as x = pV (x) + pa(x). For any key vector kn = k(xn) ∈ A we therefore have
kn = a + pV (kn). The attention value γn,k in Slot Attention may now be writen as:

γn,k = exp(k⊤
n qk)∑

k′ exp(k⊤
n qk′) = exp(a⊤pa(qk)) exp(pV (kn)⊤pV (qk))∑

k′ exp(a⊤pa(qk′)) exp(pV (kn)⊤pV (qk′)) (6)

Hence, the term exp(a⊤pa(qk)) may be interpreted as an analogue of πk, which assigns a weight to the kth

slot but is independent of the input at index n.
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M-Step In the maximization step, cluster (slot) parameters are updated using the soft as-
signments Γ. In EM, the new mean directions and mixing coefficients are computed via:

θnew
k :=

∑N
n=1 γn,kxn∥∥∥∑N

n=1 γn,kxn

∥∥∥
2

(7) πnew
k :=

∑N
n=1 γn,k

N
(8)

In our analogy to Slot Attention, this M-step would relate to the slot-update involving the aggregated val-
ues uk. Hence, it may be of interest in this comparison to investigate whether the values uk hold information
about the right-hand sides of equations (7) and (8).

3.2 Comparing Normalizations in EM Analogy

In the following paragraphs, we discuss how the update normalizations discussed previously compare in
the context of our EM analogy and, in particular, whether the normalized update codes uk hold sufficient
information to recover the quantities from equations (7) and (8).

Weighted Mean In the weighted mean case, the aggregated values uk can hold sufficient information to
extract the quantities in (7) and (8) if D = Dinput holds. Assuming that the value map is the identity, the
right-hand side of (7) may be computed as uk/∥uk∥2. However, it is not clear how πk could be computed
from uk. Indeed, we show in Proposition 1 that there can be no general formula as for the weighted sum case
that generalizes without exception across slot-counts. We provide a proof in Appendix C by constructing
some explicit slot settings which demonstrate that a hypothetical function f can not map every update code
to a corresponding unique scalar.
Proposition 1. Consider Slot Attention with weighted mean normalization and any fixed model parameters
and fixed input data x̃1, ..., x̃N with N ≥ 1. Then, there exists no function f : RD → R such that it holds

f(uk) =
∑N

n=1 γn,k

N
∀1 ≤ k ≤ K (9)

for arbitrary K ≥ 1, arbitrary slots θ̃1, ..., θ̃K and resulting normalized update codes u1, ..., uk.

Layer Normalization While, at least in some cases, it is possible to recover the quantity in (7) from
update codes in the layer-normalization variant, these update codes still do not contain sufficient information
to infer the quantity in (8). Indeed, the reader may verify that the same argument we presented in the proof
of Proposition 1 also holds for the layer norm variant.

Weighted Sum In the weighted sum case, we may, as for the weighted mean normalization, obtain the
right-hand side of equation (7) via uk/∥uk∥2 if the value map is the identity. In contrast to the previously
discussed normalizations, we may also recover information on the column sums

∑N
n=1 γn,k, which appear in

equation (8). We make this rigorous in Proposition 2 and provide a proof in Appendix D, where we exploit
the fact that the values vn lie in a lower-dimensional subspace.
Proposition 2. Consider Slot Attention with weighted sum normalization and fixed model parameters. Let
the number of input tokens N be fixed. Assume that Dinput = D holds. For almost all (w.r.t. Lebesgue
measure) parameters of the input’s layernorm module and the value map v, there exists a map f : RD → R
(which may depend on these parameters) such that

f(uk) =
∑N

n=1 γn,k

N
∀1 ≤ k ≤ K (10)

holds for any K ≥ 1, any slots θ̃1, ..., θ̃K , any input data x̃1, ..., x̃N , and the resulting attention matrix Γ and
update codes u1, ..., uK .

Since the assumptions of Proposition 2 only exclude a parameter subset of zero volume, its conclusion likely
holds in practice during training.
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Hence, the weighted sum variant may also be seen as a generalization of the weighted mean normalization:
the update codes from weighted sum normalization hold sufficient information such that weighted-mean-
normalized update codes can be recovered from them (e.g. by the update network if it has sufficient capacity).
The reverse is not true, as demonstrated in Proposition 1.

4 Methods of Normalization

4.1 Weighted Sum Normalization with Fixed Scaling

As detailed in the above discussion, in contrast to the weighted mean normalization, the weighted sum
normalization may preserve information on the fraction πk of input tokens assigned to the slot in the slot
update code uk. While (Locatello et al., 2020) report worse performance of the weighted sum normalization
compared to the weighted mean normalization, the value chosen for C is not further discussed. As detailed
in our experiments, we observe that the weighted sum normalization can outperform the weighted mean
normalization for C = N , where N is the number of input tokens. For image inputs, the number of tokens
is relatively large, e.g. N = 1282 = 16, 384 for feature maps of CLEVR renderings. We aim to avoid
unreasonably large values in the update code uk, which may lead to numerical instabilities, such as vanishing
gradients. With C = N , it holds that uk is bounded with |uk,d| ≤ maxn |vn,d| ∀d ∈ {1, ..., D}, which is
independent of N . Indeed, we have the following chain of inequalities:

|uk,d| =
∣∣∣∣∣ 1
N

N∑
n=1

γn,kvn,d

∣∣∣∣∣ ≤ 1
N

N∑
n=1

γn,k |vn,d| ≤ 1
N

N∑
n=1

γn,k max
n

|vn,d| ≤ max
n

|vn,d| (11)

Here, we first use the triangle inequality, followed by the crude estimate |vn,d| ≤ maxn |vn,d| for all n. Finally,
we used the fact that

∑N
n=1 γn,k ≤ N holds, since Γ is row-stochastic with N rows. While this provides an

argument for our choice of C which is a suitable heuristics across tasks, we hypothesize that task-specific
tuning of this hyperparameter may be beneficial.

4.2 Weighted Sum Normalization with Batch Scaling

Instead of heuristically choosing a scaling parameter C in the weighted sum normalization as above, we also
investigate an approach in which the scaling factor is learned via a form of batch normalization (Ioffe &
Szegedy, 2015) during training. Concretely, we measure the magnitude of unnormalized update vectors in the
first Slot Attention iteration of each forward pass by computing their batch statistics. These batch statistics
are used during the subsequent iterations of the forward pass to scale the update codes. While other works
using batch normalization in recurrent networks do not share statistics across time (Cooijmans et al., 2017;
Laurent et al., 2016), we find that our approach greatly simplifies varying the number of iterations during
inference. In contrast to typical implementations of batch normalization, we propose to reduce all axes during
the computation of the statistics (i.e., the batch axis, the slot axis, and the layer axis). Reducing the slot
axis is necessary to preserve slot-permutation equivariance, which is a desirable property in object-centric
learning (Locatello et al., 2020). Reducing the layer axis leads to scalar batch statistics, yielding a method
that more closely aligns with the normalization approaches we have discussed so far.

Assuming that the tensor Ũ (0) ∈ RL×K×D holds the unnormalized update codes of the first SA iteration
computed for a mini-batch of size L, we define the batch statistics as:

m := 1
LKD

L∑
l=1

K∑
k=1

Dslot∑
i=1

Ũ
(0)
l,k,i v := 1

LKD − 1

L∑
l=1

K∑
k=1

Dslot∑
i=1

(Ũ (0)
l,k,i − m)2 (12)

Note that both statistics are scalar-valued. As proposed by Ioffe & Szegedy (2015), we also learn two
parameters α, β ∈ R and normalize the tensor of update codes in iteration j via:

U (j) := α
Ũ (j) − m√

v + ϵ
+ β (13)
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where ϵ > 0 is a small constant. We stress that the values m and v are computed for each mini-batch in
the first Slot Attention iteration and are therefore independent of j. Moreover, gradients flow through m
and v. We cache an exponential moving average of the batch statistics during training and use it during
inference. Hence, during inference, the normalization in equation (13) is simply an affine transformation
with fixed weights, thereby closely resembling the weighted sum normalization presented in the previous
subsection. While the weighted sum normalization is linear and not affine, we note that this distinction
does not impact the capacity of the model. Indeed, the vectors uk are also affinely transformed within the
update network, therefore making any previous affine or linear transformation redundant from a capacity
perspective. Notwithstanding, the normalizations presented here will significantly alter the trainig trajectory
of the models. Batch normalization, in particular, has previously been shown to remedy the problem of
saturating activations and vanishing gradients (Ioffe & Szegedy, 2015; Pascanu et al., 2013), which may
arise from improper normalization (Glorot & Bengio, 2010). We provide pseudocode for the two proposed
normalization variants in Appendix G.

5 Experiments

We investigate the proposed normalizations on unsupervised object discovery tasks. To this end, we train
autoencoders on the CLEVR (Johnson et al., 2017) and MOVi-C (Greff et al., 2022) datasets, utilizing
autoencoder architectures that have been described in (Locatello et al., 2020) and (Seitzer et al., 2023),
respectively. Additional results for a property prediction task can be found in Appendix I. We provide
visualizations of scene segmentations in Appendix H. We will give a brief overview on our experimental setup
in the following and refer to the supplementary material for more details1.

Model Variants We refer to the standard normalization (weighted mean) as the baseline and to the
LayerNorm-based ablation from (Locatello et al., 2020) as the layer normalization. We term the method
detailed in Sec. 4.1 the weighted sum normalization, and the method from Sec. 4.2 the batch normalization.
In some experiments, we will train models on filtered training sets (CLEVR6 and MOVi-C6) containing
only a limited number of objects. For clarity, we annotate each model variant with a tuple (O, K), where O
denotes the maximum number of objects seen in the training set and K denotes the number of slot latents
used during training.

CLEVR Dataset We use an extended version of the CLEVR dataset that is provided in the Multi-object
Datasets repository (Kabra et al., 2019). It consists of 100,000 2D renderings of 3D scenes depicting up to 10
objects whose shapes are geometric primitives. Each scene is annotated with a ground truth segmentation,
which we use for evaluation. Following Locatello et al. (2020), we use 70,000 images for training and further
adopt the approach of (Locatello et al., 2020; Greff et al., 2019; Burgess et al., 2019) by cropping the images
to highlight objects in the center. In contrast to (Locatello et al., 2020), we also augment the data during
training via random horizontal flips. As in (Locatello et al., 2020), we also consider a subset of the CLEVR
dataset, only consisting of images containing at most 6 objects. We refer to this dataset as CLEVR6 and will
denote the original dataset by CLEVR10.

MOVi-C Dataset Compared to CLEVR, MOVi-C represents a significant step-up in perceptual complexity.
It contains 10,986 video sequences, each consisting of 24 frames. We use 250 of these video sequences for
validation and hold out 999 sequences for testing. Each clip shows 3 to 10 highly textured 3D-scanned objects
from the Google Scanned Objects repository (Downs et al., 2022) flying into view and colliding. In our
experiments, we only consider single RGB frames from the dataset and discard any temporal relation between
them. Once again, we introduce a filtered dataset, which we denote by MOVi-C6 and which consists of frames
of clips that contain at most 6 objects. For sake of clarity, we refer to the original dataset as MOVi-C10.

MOVi-D Dataset The MOVi-D dataset consists of scenes that are visually similar to those from the MOVi-
C dataset. However, the scenes contain up to 23 (10 to 20 static, 1 to 3 moving) objects, thereby presenting a
greater challenge to object-centric method. Structurally, the dataset resembles MOVi-C, consisting of 11,000

1Code is available at https://github.com/EmbodiedVision/slot_attention_normalization.
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video sequences, each made up of 24 frames. As before, we discard any temporal relationship between frames.
In our experiments we will not train on MOVi-D, but instead investigate zero-shot transfer performance of
models that were trained on MOVi-C.

CNN Autoencoder We adopt the convolutional neural network (CNN) based architecture proposed
in (Locatello et al., 2020) to train object-centric autoencoders on the CLEVR dataset. A convolutional
network transforms input images into feature maps, which are enriched by positional embeddings and spatially
flattened. The resulting sets of tokens are processed by the Slot Attention module to obtain object-centric
latent representations. A spatial broadcast decoder (Watters et al., 2019) decodes each slot latent separately
into an image and an unnormalized alpha mask. The alpha masks are normalized across the slot axis via a
softmax operation and subsequently used to linearly combine the reconstructed images, thereby producing
a reconstruction of the input. As in (Locatello et al., 2020), we perform 3 Slot Attention iterations during
training, and 5 iterations during evaluation. We further follow (Locatello et al., 2020) in that we obtain
segmentations from trained autoencoders by assigning each pixel to the slot for which the corresponding
entry in the alpha mask attains a maximum value.

Dinosaur Autoencoder To obtain object-centric behavior on the substantially more complex MOVi-C
dataset, we adopt the approach of Dinosaur (Seitzer et al., 2023). Instead of directly operating on RGB
frames, the autoencoders are trained on image features that are extracted via a pre-trained and fixed
vision transformer (ViT) (Caron et al., 2021). In spirit, the autoencoder resembles the previously discussed
architecture: A small encoder, in the form of a two-layer perceptron, processes the ViT features, which are
then transferred into a latent representation by the Slot Attention module. Each latent is decoded individually
into a reconstruction of the image features and an unnormalized alpha mask. An overall reconstruction of
the ViT features is formed by linearly combining the individual reconstructions via the normalized alpha
masks. We use the MLP-based decoder that is described in (Seitzer et al., 2023). Crucially, the autoencoder
exclusively operates on ViT features, neither receiving RGB frames as input, nor producing them as output.
Hence, the autoencoder’s reconstruction loss is also measured on ViT features, providing a training signal that
is more akin to perceptual similarity than similarity in RGB space. As in the experiments on the CLEVR
dataset, we extract segmentations from the alpha masks. Since the alpha masks (and, correspondingly, the
ViT feature maps) are of a lower resolution than the RGB frames of the MOVi-C dataset, we adopt the
approach of (Seitzer et al., 2023) and bi-linearly upscale the alpha masks before computing segmentations.

Evaluation Following related work (Locatello et al., 2020; Seitzer et al., 2023; Kipf et al., 2022; Greff et al.,
2019), we primarily judge model performance by the quality of foreground segmentations, as measured by the
foreground adjusted Rand index (Rand, 1971; Hubert & Arabie, 1985) (F-ARI). Additionally, we provide
figures regarding the overall segmentation performance when including the background (ARI). All models
are evaluated on 1,280 scenes from the respective test sets. As reconstruction losses are rarely discussed in
related work, we defer the investigation of this metric to Appendix A.

5.1 Object Discovery on CLEVR

In this subsection, we investigate our proposed normalization approaches on an object discovery task on the
CLEVR dataset. In a first set of experiments, we follow the exact training procedure detailed in (Locatello
et al., 2020) and illustrate how the different normalization methods behave as the number of slot latents K is
changed during inference. The effect of choosing large numbers of slot latents during training is studied in a
second set of experiments. Throughout these experiments, we additionally scrutinize the impact of the object
count on model performance.

Training With 7 Slots In this first set of experiments, we follow (Locatello et al., 2020) as closely as
possible and train the previously described CNN-based architecture on the CLEVR6 dataset with 7 slots. We
compare the baseline and layer normalizations proposed in (Locatello et al., 2020) to the methods discussed
in Section 4. For each variant, we perform 5 training runs with different seeds. The trained models are
evaluated on the CLEVR6 and CLEVR10 test sets.
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Figure 1: Dependence of performance on slot and object count. Models are trained on CLEVR6 with 7 slots.
Note the non-zero y-intercept.

Input Baseline Layer Norm Weighted Sum Batch Norm

Figure 2: Qualitative results on a CLEVR10 images, showing reconstructions and (soft) segmentations. The
models are trained on CLEVR6 with 7 slots and evaluated with 21 slots.

The baseline and layer norm variants lead to object-centric behavior for all 5 seeds. For the weighted sum
normalization and the batch norm variant, however, we encounter two runs each in which the autoencoders
decompose the input spatially instead of object-wise. Following (Locatello et al., 2020), we omit these runs in
our analysis.

In Subfigures 1a and 1b, we illustrate how the foreground segmentation performance changes as we vary
the number of slots during evaluation. We note that in the baseline and layer norm variants, segmentation
performance deteriorates when they are presented with more than nine slots, while our proposed normalizations
appear to generalize well to these changes. In particular, we observe that both of our proposed normalizations
outperform the baseline when the autoencoders are evaluated with 11 slots, as is done in (Locatello et al.,
2020). We show qualitative results of the different model variants at a high slot count in Figure 2 and refer
to Appendix H for more visualizations.
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Figure 3: Dependence of segmentation performance on slot and object count. Models are trained on CLEVR6
with 11 slots.

We study how performance depends on the number of objects in Subfigure 1c. Here, we evaluate each model
variant with 11 slot latents on the CLEVR10 test set and plot average foreground segmentation performance
dependent on the object count. Overall, we observe that our proposed normalizations outperform the baseline,
independently of the object count. Also note that, across all model variants, segmentation performance trends
downwards as the number of objects in the scene increases.

Subfigures 1d-1f illustrate the behavior of the overall segmentation performance when background pixels are
taken into consideration. It appears that our proposed methods outperform the other two variants w.r.t. this
metric, although the variablity across runs is large.

Excess Slots During Training While we have so far only discussed experiments in which we increase the
number of slot latents during inference, we will now outline an experiment in which the Slot Attention module
is also provided with excess slots during training: Concretely, we train the autoencoders on the CLEVR6
dataset with 11 slot latents. We annotate the resulting variants with the tuple (6, 11) to underline that they
were trained with 11 slots on scenes consisting of at most 6 objects. To limit computational expenses, we
perform only three runs per model variant. We observe object-centric behavior in all runs for the baseline,
the layer norm variant, and the weighted sum variant. For the batch normalization, we encounter one run
in which the scenes are deconstructed spatially in vertical stripes. As before, we exclude this run from our
analysis and are therefore left with only two runs for this variant. Considering the breadth of our other
experiments and the small variability observed in this experiment, we deem this loss of information acceptable.

In this setting, the studied variants seem to perform more comparably than before w.r.t. foreground
segmentation performance (Subfigures 3a-3c). Notwithstanding, we again note that the performance of the
baseline and layer norm variants starts to suffer as we add additional slot latents during inference. In contrast,
the performance of the two proposed variants remains more stable. In general, the foreground segmentation
performance is lower than during training with few slots (Subfigures 1a-1c). All models trained with our
proposed methods learn to segment the background into a single slot, leading to high overall segmentation
performance (Subfigures 3d-3f). One model using the baseline normalization exhibits this behavior, while
none of the models using layer normalization do so.
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Figure 4: Dependence of segmentation performance on slot and object count. Models are trained on MOVi-C10
with 11 slots.

5.2 Object Discovery on MOVi-C

To further support the validity of our proposed normalizations, we run additional experiments, using the
Dinosaur (Seitzer et al., 2023) framework. As previously discussed, we train the MLP-based architecture
described in (Seitzer et al., 2023) on the MOVi-C dataset. While it still is a synthetic dataset, this represents
a significant step-up in complexity compared to CLEVR, approaching the complexity of real-world scenes.

Training on MOVi-C10 In our first set of experiments, we closely follow the setup detailed in (Seitzer
et al., 2023) and train the autoencoders on the full MOVi-C10 dataset, using 11 slots. As in the previous
subsection, we investigate how the foreground segmentation performance develops as we vary the number of
slot latents during inference. For each model variant, we perform 5 training runs with different seeds. For
sake of consistency with the other experiments, we evaluate the trained models both on the MOVi-C10 test
set and on the filtered MOVi-C6 dataset.

In Subfigures 4a and 4b, we observe that our proposed normalizations generally lead to improved foreground
segmentation performance compared to the baseline and layer normalization across all slot counts. In
particular, both proposed normalizations outperform the baseline and layer normalization variant with 11
slots on the MOVi-C10 dataset, as can be observed in Subfigures 4a and 4b. As in our previous experiments,
we note that foreground segmentation performance starts to suffer as the baseline variant is provided with
excess slots during inference. While our proposed methods exhibit a similar behavior in these experiments,
we note that the deterioration progresses at a slower rate. Additionally, we observe in Subfigure 4c that
performance is improved across smaller object counts.

The behavior of overall segmentation performance is shown in Subfigures 4d-4f. In line with our previous
observations, we note that performance suffers for all variants when excess slots are present during inference.
While baseline, layer normalization and batch normalization yield comparable results w.r.t. this metric, the
weighted sum variant performs noticably better.

Training on MOVi-C6 While the authors of (Seitzer et al., 2023) trained autoencoders exclusively on
the MOVi-C10 dataset, we will also investigate an approach that resembles the one described in (Locatello
et al., 2020), and which we adopted in Subsection 5.1. Namely, we train models on the filtered MOVi-C6
dataset with 7 slots and subsequently evaluate them on both MOVi-C6 and MOVi-C10. This approach may
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Figure 5: Dependence of segmentation performance on slot and object count. Models are trained on MOVi-C6
with 7 slots.

be particularly interesting to practitioners, as reducing the number of slot latents during training can serve
to greatly reduce computational effort. To limit computational expenses, we again only perform three runs
per model variant.

We illustrate in Subfigures 5a-5c the behavior of the foreground segmentation performance. As in our previous
experiments, we observe that both of our proposed normalizations outperform the baseline when evaluated
on the MOVi-C10 test set with 11 slots. Interestingly, it can be noted that performance also improves over
the models trained on the MOVi-C10 dataset with 11 slots (Figure 4). Again, we point out that excess slot
latents during inference lead to a substantial deterioration of foreground segmentation performance in the
baseline and layer norm models.

In Subfigures 5d-5f, we plot the behavior of overall segmentation quality. Compared to the previous experiment,
varying slot count has a lesser impact on overall segmentation performance for all methods. While the
differences seem unsubstantial, the baseline appears to perform best w.r.t. this metric.

Excess Slots During Training In line with the experiments on the CLEVR dataset, we turn to a set of
experiments that investigates the impact of excess slots during training. Similar to the corresponding setup in
Subsection 5.1, we train the models on the filtered MOVi-C6 dataset, but provide them with 11 slots during
training. We generally observe that both the weighted sum normalization and the batch normalization lead
to improved foreground segmentations compared to the baseline and layer normalization, especially at higher
slot count, as can be concluded from Subfigures 6a and 6b. Subfigure 6c additionally demonstrates once
again that our proposed normalizations appear to perform at least as well as the baseline across all object
counts. In Subfigures 6d-6f we find that increased slot count during inference harms overall segmentation
quality. The weighted sum variant performs best, although the variablity in ARI appears large.

Evaluation on MOVi-D We now investigate how the previously described models (which were trained on
MOVi-C) transfer to the MOVi-D dataset. We recall that scenes of the MOVi-D dataset may contain up to
23 objects. Hence, the MOVi-D dataset allows us to study how the trained models behave when slot- and
object-count are increased significantly during inference. We evaluate the models with 24 slots. In Table 1,
we show the MOVi-D zero-shot performance of all 12 model variants we trained on MOVi-C. The batch norm
variant performs best w.r.t. our main metric, the F-ARI. This holds true both when comparing all 12 variants
to each other, and when considering the subsets of models obtained by only considering variants with any fixed
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Figure 6: Dependence of segmentation performance on slot and object count. Models are trained on MOVi-C6
with 11 slots.

annotation (O, K). Compared to their batch normalization counterparts, the weighted sum models perform
similarly w.r.t. foreground ARI, performing only slightly worse. Both the weighted sum normalization and
the batch normalization produce markedly better foreground segmentations than the baseline and layer norm
variants. With respect to overall segmentation quality (ARI), none of the normalization variants consistently
outperform the others, which is in line with our observations on MOVi-C.

For any fixed normalization method, the (6, 7) variant performs better w.r.t. F-ARI than the (10, 11) and
(6, 11) variants. This illustrates that, firstly, training on filtered training sets with few objects can improve
performance during inference on scenes with many objects; secondly, avoiding excess slots during training
appears to be important, which is an observation that has been made in (Locatello et al., 2020) and which
we also note when comparing Figures 1 and 3. This effect underlines the importance of strong slot-count
generalization capabilities. We posit that training at low object- and slot-counts reduces the number of
"unoccupied" slots during training, thereby tightening the representational slot-bottleneck, which has been
postulated to encourage object-centricness (Locatello et al., 2020; Stange et al., 2023).

6 Related Work

In this work, we follow a longer tradition of using autoencoders to obtain semantic scene decompositions (Greff
et al., 2016; 2017; 2019; Crawford & Pineau, 2019; Burgess et al., 2019; Lin et al., 2020; Engelcke et al., 2020;
Locatello et al., 2020). An early work in this area is Neural-EM (Greff et al., 2017), which performs expectation
maximization at the image level. It is proceeded by IODINE (Greff et al., 2019) and MONet (Burgess et al.,
2019), which learn variational autoencoders. Slot Attention (Locatello et al., 2020) has already been used in
many derivative works to scale object-centric learning to increasingly complex datasets. In particular, motion
cues (Kipf et al., 2022; Elsayed et al., 2022; Wu et al., 2023), high-level image features (Seitzer et al., 2023)
and powerful decoder models (Singh et al., 2022a;b) were found to be useful for obtaining desired behavior
on real-world datasets.

Several previous works have discussed generalization capabilities of object-centric representations (Dittadi
et al., 2022; Seitzer et al., 2023). That the number of slot latents has influence on model performance has been
noted by Seitzer et al. (2023) where the authors illustrate that varying the number of slots has a significant
impact on segmentation quality, determining whether objects are split into constituent parts or discovered in
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Variant F-ARI (↑) ℓ2 loss (↓) ARI (↑)
Baseline (10, 11) 0.647 ±0.015 2.143 ±0.004 0.172 ±0.011

Layer Norm (10, 11) 0.660 ±0.012 2.146 ±0.002 0.171 ±0.004

Weighted Sum (10, 11) 0.722 ±0.005 2.223 ±0.009 0.204 ±0.004

Batch Norm (10, 11) 0.725 ±0.006 2.149 ±0.004 0.182 ±0.011

Baseline (6, 11) 0.640 ±0.009 2.220 ±0.001 0.176 ±0.003

Layer Norm (6, 11) 0.639 ±0.011 2.220 ±0.004 0.176 ±0.005

Weighted Sum (6, 11) 0.709 ±0.044 2.309 ±0.014 0.205 ±0.147

Batch Norm (6, 11) 0.711 ±0.005 2.219 ±0.006 0.175 ±0.007

Baseline (6, 7) 0.741 ±0.005 2.370 ±0.009 0.253 ±0.018

Layer Norm (6, 7) 0.742 ±0.019 2.365 ±0.007 0.253 ±0.007

Weighted Sum (6, 7) 0.797 ±0.023 2.475 ±0.038 0.242 ±0.156

Batch Norm (6, 7) 0.809 ±0.005 2.374 ±0.002 0.297 ±0.030

Table 1: Zero-shot performance on MOVi-D of models trained on MOVi-C. Evaluated with 24 slots. We show
the median ± maximum deviation across multiple runs. For each metric, we underline the most advantagous
variant in each section and mark the most advantagous variant across all sections in bold.

their entirety. To date, only few works investigate the role of attention normalization in the performance of
Slot Attention. The first ablation evaluated for Slot Attention in the original paper (Locatello et al., 2020) is
almost identical to the approach we discuss in Subsection 4.1, differing from our method crucially in that the
weighted sums are not scaled by a constant, which appears to result in poor training behavior. In a second
ablation, the authors modify the first ablation by normalizing the update codes via layer normalization (Ba
et al., 2016). Comparable performance is reported to the original method.

Normalization in Slot Attention has been investigated in (Zhang et al., 2023), where the authors propose
to use the Sinkhorn-Knopp iteration to normalize attention matrices. In contrast to our work, they do not
investigate the impact on generalization capabilities and substantially increase the complexity of the SA
module. More broadly, the use of the Sinkhorn-Knopp algorithm for normalization in multi-head attention
modules has been scrutinized before by Sander et al. (2022).

7 Conclusion

Allowing models to dynamically find suitable levels of segmentation coarseness is an important problem
in unsupervised object-centric representation learning. In Slot Attention it has been found that excess
slots oftentimes split objects into parts or distribute responsibility for individual pixels among several slots.
Hence, finding a reasonable number of slots has been crucial during training and inference. In this work,
we discussed approaches for making the Slot Attention module more robust with respect to this choice. We
studied normalizations of the slot-update vectors and analysed how they impact Slot Attention’s ability to
scale to different numbers of slots and objects during inference. On the theoretical side, we motivated this
phenomenon via an analogy between Slot Attention and parameter estimation in vMF mixture models. In
experiments, we demonstrated that our proposed normalization schemes increase the generalization capability
of Slot Attention to varying number of slots and objects during inference. With these insights, we hope to
contribute to increase performance of numerous existing and future applications of Slot Attention.
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A Reconstruction Loss

In this subsection, we investigate how the ℓ2 reconstruction loss is impacted by the choice of normalization.
As in previous figures, we explore how this objective varies as object and slot-count is varied during inference.
For each experiment provided in the main paper we provide a corresponding figure on the ℓ2 loss.

CLEVR (6, 7) We first consider the experiment in which we trained a model with 7 slots on CLEVR6.
We note in Subfigures 7a and 7b that all normalization approaches suffer under excess slots during inference.
The layer norm variant generally performs best in this context, while the baseline and weighted sum variants
perform comparably to each other. In Figure 7c, we note that reconstruction quality decreases with increasing
object count for all variants. It can be observed that this deterioration progresses fastest for the baseline,
slowest with batch normalization, and at a seemingly similar rate for the layer norm and weighted sum
variants.
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Figure 7: Dependence of reconstruction quality on slot and object count. Models are trained on CLEVR6
with 7 slots. Note the non-zero y-intercept.

CLEVR (6, 11) Figure 8 illustrates the behavior of reconstruction losses for models trained on CLEVR6
with excess slots. We find that, analogous to our observations in Subsection 5.1, varying slot count during
inference has a lesser effect than in the previous experiment (compare Subfigures 8a and 8b to Subfigures 7a
and 7b). Generally, the weighted sum variant has the highest reconstruction loss, while the layer norm variant
has the lowest. The baseline and the batch norm variant perform comparably. As before, we observe in
Subfigure 8c that reconstruction loss increases with increasing object count.
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Figure 8: Dependence of reconstruction quality on slot and object count. Models are trained on CLEVR6
with 11 slots.

Training on MOVi-C We now shift our focus to the Dinosaur models. Figure 9 shows the reconstruction
loss for the models trained on MOVi-C10 with 11 slots. Contrary to previous observations, we note in
Subfigures 9a and 9c that reconstruction losses improve as the slot count increases. Generally, it appears that
the weighted sum variant performs worst w.r.t. the ℓ2 loss, while the other variants perform comparably to
each other. We observe analogous behavior in Figures 10 and 11.
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Figure 9: Dependence of reconstruction quality on slot and object count. Models are trained on MOVi-C10
with 11 slots.
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Figure 10: Dependence of reconstruction quality on slot and object count. Models are trained on MOVi-C6
with 7 slots.
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Figure 11: Dependence of reconstruction quality on slot and object count. Models are trained on MOVi-C6
with 11 slots.
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B Lemmata on Layer Normalization

In this subsection, we will present some basic lemmata on the LayerNorm module which we use in Subsection D.
For x̃n ∈ RDinput , LayerNorm(x̃n) refers to the following operation:

LayerNorm(x̃n) := diag(α) x̃n − E[x̃n]1√
Var[x̃n] + ϵ

+ β (14)

where α, β ∈ RD are learnable parameters, ϵ > 0 is a constant, 1 is the all-ones vec-
tor, and E[x̃k] and Var[x̃k] are the expectation and variance of the entries of x̃k, respectively:

E[x̃n] := 1
D

x̃⊤
n1 (15) Var[x̃n] := 1

D
∥x̃n − E[x̃n]1∥2

2 (16)

Given these definitions, we present the following lemma, giving an expression for the affine hull of the image
of the layer normalization module.
Lemma 1. The vector x̃k − E[x̃k]1 is the orthogonal projection of x̃k onto the orthogonal complement of the
span of the all-ones vector ⟨1⟩⊥ ⊊ RDinput . Hence, the image of LayerNorm is contained in a (Dinput − 1)-
dimensional affine subspace of RDinput . More concretely, the affine hull of the image of a LayerNorm module
with parameters α, β ∈ RDinput is given via:

aff
(
LayerNorm

[
RDinput

])
= diag(α)1⊥ + β (17)

Here and in the following, the left-multiplication of the diagonal matrix diag(α) with any set (e.g. the vector
space 1⊥) refers to the image of that set under the left-multiplication.

Proof. Define e1 := 1/
√

D1 and extend to an orthonormal basis e1, ..., eDinput via Gram-Schmidt. Then we
have ⟨1⟩⊥ = ⟨e2, ..., eDinput⟩ and for an arbitrary x̃n we have the orthogonal decomposition:

x̃n =
Dinput∑

d=1
⟨x̃n, ed⟩ed (18)

The orthogonal projection onto ⟨1⟩⊥ is then given by
Dinput∑

d=2
⟨x̃n, ed⟩ed = x̃n − ⟨x̃n, e1⟩e1 (19)

We note that we may rewrite

⟨x̃n, e1⟩e1 =
(

1√
D

x̃⊤
n1

)
1√
D
1 =

(
1
D

x̃⊤
n1

)
1 = E[x̃k]1 (20)

Hence, x̃n −E[x̃n]1 indeed realizes the orthogonal projection of x̃n onto ⟨1⟩⊥. Clearly, ⟨1⟩⊥ is a (Dinput − 1)-
dimensional linear subspace of RDinput (being the span of Dinput − 1 many vectors). We note that the affine
hull commutes with affine functions. Hence, we have:

aff
(
LayerNorm

[
RDinput

])
= diag(α) aff

(
g
[
RDinput

])
+ β (21)

where the function g is given as:
g(x̃n) := x̃n − E[x̃n]1√

Var[x̃n] + ϵ
(22)

We have already shown that x̃k − E[x̃k]1 is exactly the orthogonal projection onto 1
⊥. Since g differs

from this projection via a multiplicative factor, the affine span of its image is exactly the affine span of the
projection, which is 1⊥. Thus, we have shown:

aff
(
LayerNorm

[
RDinput

])
= diag(α)1⊥ + β (23)
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We can write these affine subspaces in a particular fashion, as we show in the following lemma. This result
will be useful for explicitly writing down a function satisfying Proposition 2.
Lemma 2. For any affine subspace A ⊂ RDinput , there exists a unique vector a ∈ A and a unique vectorspace
V ⊂ RDinput such that a ∈ V ⊥ is orthogonal to V and we have A = a + V .

Proof. Given any affine subspace A ⊂ RDinput , let a ∈ A be the orthogonal projection of the origin onto A.
By definition of the orthogonal projection, for any other a′ ∈ A, we have (a − 0)⊤(a′ − a) = 0. Moreover,
V := A − a is a linear subspace of RDinput with a + V = A. For any arbitrary v ∈ V , we may write v = a′ − a
for some a′ ∈ A and we have

a⊤v = (a − 0)⊤(a′ − a) = 0 (24)

Hence, a ∈ V ⊥ holds. We have so far shown the existence of some vector space V and a ∈ V ⊥ with
A = a + V .

We now show that this decomposition A = a + V is unique. Assume that there exists another vector space
V ′ ⊂ RDinput and a′ ∈ V ′⊥ with a + V = a′ + V ′. We will show that V = V ′ and a = a′ must hold.
Rearranging, we find V ′ = (a − a′) + V and V = V ′ − (a − a′). From the first equation, we may conclude
a − a′ ∈ V ′. Since a − a′ is a vector in V ′, which is closed under subtraction, we find V ′ − (a − a′) = V ′.
Hence, substituting into the previous equation, we conclude V = V ′. We now show that we must also have
a = a′. We compute:

(a − a′)⊤(a − a′) = a⊤(a − a′) − a′⊤(a − a′) (25)

and recall that a − a′ ∈ V holds. By assumption, we have a, a′ ∈ V ⊥ and therefore a⊤(a − a′) = 0 and
a′⊤(a − a′) = 0. Hence, (a − a′)⊤(a − a′) = 0 and we conclude from the positive-definiteles of the scalar
product that a = a′ does indeed hold.

Finally, we show that for almost all parameters of the value map v and the layer normalization module, the
translation vector a from the previous lemma does not vanish. Again, this will be crucial to show that a
function satisfying Proposition 2 exists almost always.
Lemma 3. Denote D := Dinput and let v : RD → RD be a linear map that is parametrized via a matrix
B ∈ RD×D which acts, say, via left-multiplication. Consider parameters α, β ∈ RD of the layer normalization.
Consider the affine hull of the image of the composition of v and the layer normalization:

A := aff
(
(v ◦ LayerNorm)

[
RD
])

(26)

As detailed in Lemma 2, we may write A uniquely as a + V , where a and V depend on the parameters of v
and the layer normalization. In the following, we abuse notation by not making this dependence explicit. For
almost all parameters (B, α, β) (w.r.t. the Lebesgue measure on RD×D × RD × RD), we have a ̸= 0.

Proof. Let the set
U := {(B, α, β) ∈ RD×D × RD × RD | a = 0} (27)

represent the parameters for which a vanishes. We will show that this is a nullset w.r.t. Lebesgue measure.
It is a standard fact that the set of non-invertible matrices GLD(R)C ⊂ RD×D is a Lebesgue-nullset. Hence,
it is already sufficient to prove that the set

U ′ := U ∩ (GLD(R) × RD × RD) (28)

is a nullset. As we saw from the proof of Lemma 2, the vector a is exactly the orthogonal projection of the
origin onto A. Hence, a = 0 holds iff 0 ∈ A holds. Recalling Lemma 1, we know

A := aff
(
(v ◦ LayerNorm)

[
RD
])

= v(aff LayerNorm[RD])
= B(diag(α)1⊥ + β)

(29)
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As we may assume that B is invertible, it has a trivial kernel. Hence, we have 0 ∈ A iff 0 ∈ diag(α)1⊥ + β.
From this requirement, we obtain an explicit expression for the set U ′:

U ′ = GLD(R) × {(α, β) | α ∈ RD, β ∈ − diag(α)1⊥}
= GLD(R) × {(α, − diag(α)u) | α ∈ RD, u ∈ 1

⊥}
(30)

We conclude by noting that {(α, − diag(α)u) | α ∈ RD, u ∈ 1
⊥} is a nullset in RD × RD, as it is the image

of a nullset under a continuously differentiable function.

C Proof of Proposition 1

Proof. Assume by contradiction that such a function f : RD → R exists. Consider now the setting in which
we have K := 1 and θ̃1 := 0. Denote the resulting attention matrix by Γ(1) and the resulting update code
u1 by w

(1)
1 . Consider also the setting in which we have K := 2 and θ̃1 = θ̃2 := 0. Denote the resulting

attention matrix by Γ(2) and the resulting update codes u1, u2 by w
(2)
1 , w

(2)
2 . One may now easily verify

that all entries of Γ(1) are 1 and that all entries of Γ(2) are 1/2. Hence, we have

w
(1)
1 =

∑N
n=1 γ

(1)
n,1vn∑N

n=1 γ
(1)
n,1

=
∑N

n=1 vn

N
(31)

and

w
(2)
1 = w

(2)
2 =

∑N
n=1

1
2 vn∑N

n=1
1
2

=
∑N

n=1 vn

N
(32)

By equation (32) and our assumption (namely, that equation (9) holds), we have:

f

(
N∑

n=1
vn/N

)
= f

(
w

(2)
1

)
=
∑N

n=1 γ
(2)
n,k

N
= 1

2 (33)

At the same time, we also deduce from equation (31):

f

(
N∑

n=1
vn/N

)
= f

(
w

(1)
1

)
=
∑N

n=1 γ
(1)
n,k

N
= 1 (34)

This contradicts equation (33).

D Proof of Proposition 2

Proof. We recall from Lemma 3 that for almost all parameters of the value map v and the layer normalization
module, we may choose a vector a ∈ RD \ {0} and a vector space W ⊂ RD such that a ∈ W ⊥ holds and
for any input x̃n, the corresponding values vn lie in a + W . Given fixed parameters (that do not lie in the
nullset outlined in Lemma 3), fix such a vector a.

Now, we define the function f : RD → R via:

f(u) := C
a⊤u

N∥a∥2
2

(35)

The values vn may be written as
vn = a + wn (36)
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where wn ∈ W and a⊤wn = 0 holds. Hence, recalling that we define uk := 1
C

∑N
n=1 γn,kvn, we may now

compute:

f(uk) = C
a⊤

N∥a∥2
2

1
C

N∑
n=1

γn,k(a + wn) = 1
N∥a∥2

2

N∑
n=1

γn,ka⊤(a + wn)

= 1
N∥a∥2

2

N∑
n=1

γn,ka⊤a

=
∑N

n=1 γn,k

N

(37)

which is what we wanted to show.

E Technical Details Regarding Object Discovery on CLEVR

While we closely follow the descriptions of (Locatello et al., 2020), we use a re-implementation of the method
in our experiments.

Data As in (Locatello et al., 2020), we use the extended CLEVR dataset that is provided in (Kabra et al.,
2019). This version of the dataset consists of 100,000 images in total, each being of dimension 320 × 240. We
follow (Locatello et al., 2020; Greff et al., 2019; Burgess et al., 2019) in the pre-processing of this data: We
use 70,000 images for training and hold out 15,000 for validation and testing. We perform a square center
crop of size 192 to increase the space occupied by objects. The cropped images are then bilinearly scaled to
shape 128 × 128. The corresponding ground-truth segmentation masks are pre-processed analogously, using
nearest-neighbor interpolation in place of bi-linear interpolation. In contrast to (Locatello et al., 2020), we
augment the data by performing random horizontal flips. Before feeding it to the autoencoder, the RGB data
is scaled to the interval [−1, 1].

Architecture We follow the autoencoder architecture described in (Locatello et al., 2020) as closely as
possible. Conceptually, we divide the autoencoder into three distinct entities: The encoder processes the
input image and produces a set of tokens. The Slot Attention module processes these tokens and yields a
latent slot representation. The decoder decodes the latent representation into a reconstruction of the input.

The encoder consists of a convolutional network, which we describe (as in (Locatello et al., 2020)) in Table 2.

Type In Shape Out Shape Activation Comment

Conv 5 × 5 128 × 128 × 3 128 × 128 × 64 ReLU stride:1
Conv 5 × 5 128 × 128 × 64 128 × 128 × 64 ReLU stride:1
Conv 5 × 5 128 × 128 × 64 128 × 128 × 64 ReLU stride:1
Conv 5 × 5 128 × 128 × 64 128 × 128 × 64 ReLU stride:1
Pos. Embed 128 × 128 × 64 128 × 128 × 64 - -
Spatially Flatten 128 × 128 × 64 (128 · 128) × 64 - -
Layer Norm (128 · 128) × 64 (128 · 128) × 64 - per 64-dim token
Affine (128 · 128) × 64 (128 · 128) × 64 ReLU per 64-dim token
Affine (128 · 128) × 64 (128 · 128) × 64 - per 64-dim token

Table 2: Encoder network for experiments on CLEVR

We implement the positional embedding as in (Locatello et al., 2020). Namely, to positionally embed a tensor
X of shape W × H × C, we construct a W × H × 4 tensor P in which each of the four channels is a linear
ramp spanning between 0 and 1, either progressing horizontally or vertically and in either of the two possible
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directions (e.g. left or right). In order to embed the feature Xi,j,:, we learn an affine layer R4 → RC and
compute the embedded feature:

Xi,j,: + affine(Pi,j,:) (38)

The resulting set of input tokens is then processed by the Slot Attention module, which we implement as
described in (Locatello et al., 2020). The key, query, and value maps q, k, v use the common dimension
D = 64. Slots are also 64-dimensional. The residual MLP that is used to update the slot latents has a single
hidden layer of size 128.

We decode each slot separately, using a spatial broadcast decoder. Once again, we closely follow the approach
of (Locatello et al., 2020) and detail the decoder architecture in Table 3.

Type In Shape Out Shape Activation Comment

Spatial Broadcast 64 8 × 8 × 64 - for single slot
Pos. Embed 8 × 8 × 64 8 × 8 × 64 - -
Transposed Conv 5 × 5 8 × 8 × 64 16 × 16 × 64 ReLU stride:2

padding:2
out padding: 1

Transposed Conv 5 × 5 16 × 16 × 64 32 × 32 × 64 ReLU as above
Transposed Conv 5 × 5 32 × 32 × 64 64 × 64 × 64 ReLU as above
Transposed Conv 5 × 5 64 × 64 × 64 128 × 128 × 64 ReLU as above
Transposed Conv 5 × 5 128 × 128 × 64 128 × 128 × 64 ReLU stride:1

padding:2
Transposed Conv 3 × 3 128 × 128 × 64 128 × 128 × 4 - stride:1

padding:1

Table 3: Decoder network for experiments on CLEVR

The 4 channels of the output of the decoder are split into RGB channels and an unnormalized alpha channel.
The alpha channels are normalized via a softmax operation across all slots, and the RGB reconstructions are
blended to produce an entire reconstruction.

Training We closely follow the training procedure of (Locatello et al., 2020). Namely, we train the
autoencoder with an ℓ2 reconstruction loss, utilize 3 Slot Attention iterations during training, and use an
Adam (Kingma & Ba, 2015) optimizer. The models are trained for 500,000 steps. As the authors of (Locatello
et al., 2020), we linearly warm up the learning rate over the course of the first 10,000 steps, after which it
attains a peak value of 4 · (0.5)0.1 · 10−4. Subsequently, we decay it over the course of the remaining steps,
with a half life of 100,000 steps. We use a batch size of 64.

Evaluation During evaluation, we use 5 Slot Attention iterations.

F Technical Details Regarding Object Discovery on MOVi-C

While we closely follow the descriptions of (Seitzer et al., 2023), we use a re-implementation of the method in
our experiments.

Data We use the MOVi-C dataset from (Greff et al., 2022). In total, it contains 10,986 video sequences, each
consisting of 24 frames. We hold out 250 of the sequence for validation and 999 for testing. Following (Seitzer
et al., 2023), we pre-process the frames from the dataset by bicubicly resizing them to shape 224 × 224. We
use a pretrained vision transformer to pre-compute image features from these resized frames. Specifically, we
use the model vit_base_patch8_224_dino from the timm (Wightman, 2019) repository. After dropping the
class token, this model provides a 28 × 28 × 768 feature map for each frame. We save these feature maps at

24



Published in Transactions on Machine Learning Research (09/2024)

half precision (16 bit floating point) and use them during training. Alongside, we save the resized frames and
analogously resized (via nearest-neighbor interpolation) ground truth segmentations.

Architecture We closely follow the MLP-based autoencoder architecture detailed in (Seitzer et al., 2023).
The goal of this autoencoder is to encode and decode the pre-computed ViT features. Importantly, it does
not operate on RGB images. As before, we conceptually divide the autoencoder into the encoder, the Slot
Attention module, and the decoder.

The encoder processes each ViT feature separately via a shared MLP. In contrast to the encoder we used
in the experiments on the CLEVR dataset, no positional embedding is employed, as the ViT features still
contain a sufficient amount of positional information (see the discussions in (Seitzer et al., 2023)). We provide
a detailed description of this architecture in Table 4.

Type In Shape Out Shape Activation Comment
Layer Norm 28 × 28 × 768 28 × 28 × 768 - per feature
Affine 28 × 28 × 768 28 × 28 × 768 ReLU per feature
Affine 28 × 28 × 768 28 × 28 × 128 - per feature

Table 4: Encoder network for experiments on MOVi-C

The set of tokens that is produced by the encoder is processed by the Slot Attention module to produce a
latent slot representation. Slots, keys, values, and queries are 128-dimensional. The residual MLP that is
used to update the slot latents has a single hidden layer of dimension 512.

In order to produce a reconstruction of the ViT features, an MLP-based decoder architecture is used.
Conceptually, the decoder resembles the one we used in the experiments on the CLEVR dataset: Each
slot is decoded separately into a partial reconstruction and an unnormalized alpha channel. A complete
reconstruction is formed by normalizing the alpha channels across slots and blending the partial reconstructions.
Each slot is broadcasted spatially before decoding and a positional embedding is added. Once again, the
decoder consists of an MLP that operates on each spatial feature separately. We provide a detailed description
of the architecture in Table 5

Type In Shape Out Shape Activation Comment
Spatial Broadcast 128 28 × 28 × 128 - -
Pos. Embedding 28 × 28 × 128 28 × 28 × 128 - -
Affine 28 × 28 × 128 28 × 28 × 1024 ReLU per feature
Affine 28 × 28 × 1024 28 × 28 × 1024 ReLU per feature
Affine 28 × 28 × 1024 28 × 28 × 1024 ReLU per feature
Affine 28 × 28 × 1024 28 × 28 × (768 + 1) - per feature

Table 5: Decoder network for experiments on MOVi-C

The positional embedding used in Table 5 differs significantly from the one we used in the experiments on
CLEVR. Namely, given an input tensor X of shape W × H × C, we positionally embed the feature Xi,j,: by
learning a tensor P of shape W × H × C and computing:

Xi,j,: + Pi,j,: (39)

Training We follow the training procedure detailed in (Seitzer et al., 2023). Namely, we train the
autoencoder via an ℓ2 reconstruction loss and use 3 Slot Attention iterations during training. The batch size
is 64 and we employ an Adam optimizer. As before, a learning rate schedule consisting of a linear increase
and exponential decay is used. Here, the peak learning rate is 4 · 10−4, which is reached after 10,000 steps.
Afterwards, the learning rate decays with a half life of 100,000 steps. The models are trained for 500,000
steps in total.
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Evaluation During evaluation, we also utilize 3 Slot Attention iterations. Since the alpha masks that are
produced by our model are of shape 28 × 28, we cannot directly compare them to ground truth segmentations,
which are of shape 224 × 224. We follow the approach of (Seitzer et al., 2023) and bi-linearly upscale the
alpha masks to shape 224 × 224 before deriving segmentations, which we then compare to the ground-truth.

G Pseudocode

In Algorithms 1 and 2, we illustrate how the weighted sum and batch norm variants differ from the weighted
mean variant in pseudo PyTorch code. We illustrate this in a diff format.

Algorithm 1 Diff of Weighted Sum Variant

1 ...
2 bs, N, d_in = inputs.shape
3 k, v = self.key_map(inputs), self.value_map(inputs)
4 for idx in range(num_iters):
5 slots_prev = slots
6 slots = self.norm_slots(slots)
7 q = self.query_map(slots)
8 dots = torch.einsum("bid,bjd->bij", q, k) / np.sqrt(q.size(-1))
9 attn = dots.softmax(dim=1)

10 - attn = (attn + eps) / (attn + eps).sum(dim=-1, keepdim=True)
11 updates = torch.einsum("bjd,bij->bid", v, attn)
12 + updates = updates / N
13 ...

Algorithm 2 Diff of Batch Norm Variant

1 ...
2 bs, N, d_in = inputs.shape
3 k, v = self.key_map(inputs), self.value_map(inputs)
4 + var, mean = None, None
5 for idx in range(num_iters):
6 slots_prev = slots
7 slots = self.norm_slots(slots)
8 q = self.query_map(slots)
9 dots = torch.einsum("bid,bjd->bij", q, k) / np.sqrt(q.size(-1))

10 attn = dots.softmax(dim=1)
11 - attn = (attn + eps) / (attn + eps).sum(dim=-1, keepdim=True)
12 updates = torch.einsum("bjd,bij->bid", v, attn)
13 + if idx == 0 and self.training:
14 + var, mean = torch.var_mean(updates, correction=0)
15 + self.update_buffers(var, mean)
16 + elif idx == 0 and not self.training:
17 + var, mean = self.var_buffer, self.mean_buffer
18 + updates = self.alpha * (updates - mean) / torch.sqrt(var + eps) + self.beta
19 ...
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H Visual Results

In Tables 6 and 7, we present visual results from object discovery on the CLEVR10 and MOVi-C10
datasets, respectively. On CLEVR, we show both reconstructions and segmentations, while we only provide
segmentations on MOVi-C, as the reconstructions are high-dimensional ViT features. In both cases, we
perform inference with a high slot count (21).

Input Baseline Layer Norm Weighted Sum Batch Norm

Table 6: Visual results for object discovery on CLEVR10, trained on CLEVR6 with 7 slots. Showing
reconstructions and segmentations. Evaluated with 21 slots.
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Baseline Layer Norm Weighted Sum Batch Norm

Table 7: Visual results for object discovery on MOViC10, trained on MOViC10 with 11 slots. Evaluated with
21 slots.
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I Property Prediction

We further illustrate the proposed normalizations on a property prediction task on the CLEVR10 dataset.
We closely follow the experimental setup detailed by Locatello et al. (2020), using three seeds per variant.
We train the models on the CLEVR10 dataset using 10 slots. In Figure 12, we plot how the foreground ARI
varies as the number of slots is modified during inference. Consistent with our observations on the object
discovery task, we find that the weighted mean and layer norm variants suffer from excess slots, while the
proposed normalizations are robust to them. Overall, we find that the batch norm variant performs best
w.r.t. foreground segmentation quality.
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Figure 12: F-ARI (↑) for property prediction on CLEVR10

In Figure 13, we additionally show the mean average prediction at various distance thresholds, as defined
in (Locatello et al., 2020). We observe a similar behavior as before, namely that the proposed variants
are robust to high slot counts during inference, while the weighted mean and layer norm variants are not.
However, we generally find that the weighted mean variant appears to perform best at low slot counts.
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(a) mAP@1.0 (↑) on CLEVR10
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(b) mAP@0.5 (↑) on CLEVR10
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(c) mAP@0.25 (↑) on CLEVR10
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(d) mAP@0.125 (↑) on CLEVR10

Figure 13: Mean average precision at different distance thresholds for property prediction on CLEVR.
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J Ablation of Normalization Schemes

In this section, we study two alternative normalizations methods. Firstly, we consider the weighted sum
variant with the scaling parameter chosen as C = 1. We refer to this method as "unnormalized". Secondly,
we consider a variant which ablates the normalization across the batch axis from the batch normalized
variant. I.e., we compute mean and variance for each instance separately across only the slot and layer axes.
Hence, we also do not have to keep a moving average of the normalizing statistics for inference. Instead
the normalization behaves identically during training and inference. As in the batch normalized variant,
two scalar values α and β are learned. We refer to this variant as "K-D-Layer Norm", to reflect that we are
performing a layer normalization across the slot (K) and layer (D) axes. We perform experiments on the
property prediction task on CLEVR with three seeds per variant.

The unnormalized variant fails to obtain object-centric behavior, as becomes apparent from the low foreground
ARI across all slot counts, as shown in Figure 14. In Figure 15, we observe that the mean average precision
suffers correspondingly. This underscores the importance of scaling the update codes appropriately to achieve
competitive performance. While the K-D-Layer Norm performs better, we find that as the other baseline
variants, it is not robust to high slot counts. Moreover, on this specific task, it seems to generally underperform
in terms of mAP when compared to the other object-centric variants.
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Figure 14: F-ARI (↑) for property prediction on CLEVR10
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(a) mAP@1.0 (↑) on CLEVR10
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(b) mAP@0.5 (↑) on CLEVR10
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(c) mAP@0.25 (↑) on CLEVR10
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(d) mAP@0.125 (↑) on CLEVR10

Figure 15: Mean average precision at different distance thresholds for property prediction on CLEVR.
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