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Abstract

Weight quantization (WQ) is a key technique for lightweight
Deep Neural Network (DNN) computations. While existing
algorithms often pursue memory compression and inference
acceleration with accuracy comparable to full-precision mod-
els, the effect of WQ on DNN uncertainty remains largely
unexplored. In this paper, we quantify the impact of WQ on
DNN uncertainty through the novel Exact Moment Propa-
gation (EMP) uncertainty estimator. It is observed that WQ
significantly increases DNN uncertainty. Based on the EMP
estimator, we propose the MOMent Alignment (MOMA) to
reduce WQ-induced uncertainty and preserve the accuracy
of weight-quantized DNNs. Empirical results across various
DNN architectures and datasets validate the effectiveness of
both EMP and MOMA methods.

1 Introduction

In recent years, Weight Quantization (WQ) has attracted in-
creasing interest in lightweight computations of Deep Neu-
ral Networks (DNNs), particularly in resource-constrained
environments (Gope, Dasika, and Mattina 2019; Shen et al.
2024). Seminal studies show that WQ algorithms achieve at
least 16x model compression (Li et al. 2016) and 3x training
acceleration (Courbariaux, Bengio, and David 2015) while
maintaining comparable accuracy to full-precision counter-
parts (Zhu et al. 2017; Li et al. 2022); however, the extent to
which WQ techniques affect the uncertainty associated with
specific outcomes remains largely unexplored.

This work focuses on quantifying the impact of WQ on
DNN uncertainty. In the past decades, significant efforts
have been made to quantify uncertainty in DNNs without
WQ, such as Deep Ensembles (Lakshminarayanan, Pritzel,
and Blundell 2017) and Moment Propagation (MP) (Wu
et al. 2019). In addition, research has also examined uncer-
tainty quantification in weight-quantized networks, such as
BLRNet (Peters and Welling 2018) and BayesBiNN (Meng,
Bachmann, and Khan 2020). However, a unified measure to
quantify model uncertainty before and after WQ is lacking.
Without this measure, one cannot fairly quantify the impact
of WQ on DNN uncertainty.
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In this paper, we propose the Exact Moment Propaga-
tion (EMP), a theoretical uncertainty quantification method
that is independent of weight precision. Based on the
EMP, we observe that quantized models exhibit greater
uncertainty than their full-precision counterparts. Inspired
by research on uncertainty-aware training for neural net-
works (Tabarisaadi et al. 2022; Einbinder et al. 2022), we
propose the MOMent Alignment (MOMA), an optimization
method compatible with various weight quantization train-
ing algorithms, to maintain accuracy and reduce uncertainty
in quantized DNNs. This work fills the gap in quantifying
and optimizing the impact of WQ on DNN uncertainty.

Our main contributions are illustrated in Figure 1(a) and
further summarized as follows.

* We propose the EMP for DNN uncertainty quantification
that is independent of weight precision in Algorithm 1.
Empirical evidence in Subsection 5.1 shows that EMP
achieves near-ideal uncertainty estimation performance,
surpassing the MP, and that quantized DNNs exhibit
greater uncertainty than their full-precision versions.

* We propose the MOMA for uncertainty optimization
in Algorithm 2. Experiments in Subsection 5.2 show
that MOMA greatly reduces the uncertainty of quantized
models across different datasets.

The rest of this paper is organized as follows. Section 2 re-
views related work. Section 3 and Section 4 formally intro-
duce the EMP and MOMA methods, respectively. Section 5
presents experiments on real-world datasets to validate the
effectiveness of the EMP and MOMA methods. Section 6
concludes this work.

2 Related Work

Weight Quantization. WQ aims to encode model weights
into a format of k bits, where k¥ = 1 and k = 1.58 of-
ten lead to extreme compression. For & = 1, the weights
of DNNGs are compressed into binary values, such as {0, 1}
or {—1,1}. Seminal works include BinaryConnect (Cour-
bariaux, Bengio, and David 2015), Binarized Neural Net-
works (Hubara et al. 2016), and XNOR-Net (Rastegari
et al. 2016). For £ = 1.58, the weights are compressed
into ternary values {—1,0,1}. Early milestone works in-
clude Ternary Weight Networks (Li et al. 2016), Trained
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Figure 1: (a) Overview of our work, where TT is short for Ternary Training, and (b) the workflow of the EMP.

Ternary Quantization (Zhu et al. 2017), and Ternary Con-
nect (Lin et al. 2016). In recent years, ternary WQ has been
successfully applied to transformer architectures (Vaswani
et al. 2017), such as TernaryBERT (Zhang et al. 2020) and
Q-ViT (Li et al. 2022). TernaryCLIP (Zhang et al. 2025)
achieves extremely low-cost and high-efficiency computa-
tions in image-text contrastive modeling.

Uncertainty Quantification. To quantify the uncertainty in
DNNs without WQ, Deep Ensembles (Lakshminarayanan,
Pritzel, and Blundell 2017) trains independent networks in
parallel, estimating predictive uncertainty via negative log
likelihood. PL-DNN (Bibi, Alfadly, and Ghanem 2018) and
MP (Wu et al. 2019) propagate input mean and covariance
through the network to derive predictive uncertainty from
output covariance. For uncertainty quantification in weight-
quantized DNNs, BLRNet (Peters and Welling 2018) and
BayesBiNN (Meng, Bachmann, and Khan 2020) adopt the
Bayesian Neural Networks paradigm (Jospin et al. 2022),
sampling the posterior distribution of weights to estimate
predictive uncertainty through output covariance. Despite
these advances, a unified uncertainty quantification method
independent of weight precision is still lacking, precluding
fair comparisons of DNN uncertainty before and after WQ.

3 Uncertainty Quantification

In this section, we propose the Exact Moment Propagation
(EMP) method for quantifying the uncertainty of DNNs.
In contrast to previous studies, which were designed solely
for full-precision models and provided either exact out-
put covariance under strong assumptions (Bibi, Alfadly,
and Ghanem 2018) or approximated output covariance (Wu
et al. 2019), the proposed EMP requires only mild assump-
tions, improves the precision of uncertainty estimation, and
extends its applicability to quantized models. The EMP
method consists of the linear and nonlinear computations,
whose workflow is shown in Figure 1(b).

3.1 Problem Formulation

This subsection introduces the problem formulation of WQ
and uncertainty quantification of DNNs.

Ternary Weight Quantization. Throughout this work, we
focus on the ternary quantization and begin with an L-layer
DNN f(a; W), of which the forward propagation follows

RO — 2. a® = WORLD L pO KO — 1 (am) ,

for | € [L], where W and b)) are the weight matrix and
bias vector of the [-th layer, respectively, 7 is the nonlin-
ear activation function, [L] represents the set {1,2,--- , L},
and W denotes the set of weight matrices, i.e., W =
{WULL . For notational simplicity, W is referred to as
either a weight matrix or a set, depending on the context.
We define the output of the DNN as ¢ = a%). In this paper,
we specify 7 as the ReLLU activation. For notational clarity,
we will omit the explicit layer index [ in the following dis-
cussion and use primed symbols to represent variables from
the (I — 1)-th layer, e.g., b’ = K™Y,

The objective of ternary quantization is to establish a
ternary-weight DNN, provided a pretrained one. In the re-
mainder of this paper, we denote f(x; W) and f(x;T) as
Full-Precision DNNs (FP-DNNs) and Ternary DNNs (T-
DNNG), respectively. Here, T = {T()}£_, each element
of which belongs to {—1, 0, 1}. Notice that T is referred to
as either a weight matrix or a set, depending on the context.
Uncertainty Quantification. Similar to Bayesian-based un-
certainty quantification methods, we also treat weights as
random variables and make the following assumptions.

Assumption 1. We assume that the weights within the same
layer of FP-DNNs follow a Gaussian distribution, that is,
w® TR N (D, (cW)?) for | € [L], where w") denotes
an arbitrary element of matrix W),

Assumption 2. We assume that the weights within the same
layer of T-DNNs follow a ternary-valued distribution, that
is, t) L T(pW, 1 —p® — qW, ¢ forl € [L], where
t®) denotes an arbitrary element of matrix T and X ~
T (p, 1—p—q, q) denotes that the random variable X follows
a discrete distribution with P(X = —1) =p, P(X =0) =
1—p—gq and P(X =1) = qforp,q €[0,1].

Seminal studies (He and Fan 2019; Alawad and Ishak 2024,
Zhang, Wang, and Fan 2024; Tian et al. 2025) made mild as-
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Figure 2: Empirical weight distributions of MLP-2 and LeNet-5 layer by layer.

sumptions similar to Assumption 1 for describing the weight
distributions of FP-DNNs. We also conduct empirical inves-
tigations on the mildness of Assumptions 1 and 2. We first
train a two-layer MLP (Rumelhart, Hinton, and Williams
1986) and a LeNet-5 (LeCun et al. 1998) with the SGD
optimizer (Sutskever et al. 2013) on MNIST (LeCun et al.
1998), denoted as FP-MLP-2 and FP-LeNet-5, respectively.
We then train their ternary-weight counterparts, i.e., T-MLP-
2 and T-LeNet-5. Figure 2 shows the empirical weight dis-
tributions within the same layer for the concerned mod-
els, where the blue and red regions represent those of full-
precision and ternary-value, respectively. It is observed that
each blue region approximately follows a Gaussian distribu-
tion, hence supporting Assumption 1. In addition, it is ob-
vious that each red region follows a ternary-valued distribu-
tion, hence supporting Assumption 2. Following this logic,
we can estimate the parameters of weight distributions in
Assumptions 1 and 2 from the empirical distributions.

3.2 Exact Moment Propagation

In this subsection, we introduce the EMP method. Fig-
ure 1(b) illustrates the EMP through a single layer. Dur-
ing feed-forward propagation, the concerned moments un-
dergo two types of conversions. The linear transformation
from h’ to a induces the conversion from (py,,Xp’) to
(Mg, Xa), which is formally expressed by the linear com-
putation of EMP. Similarly, the nonlinear activation from a
to h induces the conversion from (p,,3a) to (g, Xn),
which is formally expressed by the nonlinear computation
of EMP. The nonlinear computation of EMP calculates the
covariance matrix 3 element by element, where each ele-
ment is obtained by solving an integral. The challenge lies
in solving the integrals for the non-diagonal elements, as the
function being integrated becomes more complex than that
in the diagonal case (Frey and Hinton 1999). Previous stud-
ies have approximated these integrals by either constraining
the integration intervals (Bibi, Alfadly, and Ghanem 2018)
or using asymptotic methods (Wu et al. 2019). In contrast,
we solve these integrals directly by applying a recursive ap-
proach based on integration by parts, leading to an exact so-
Iution for 3. The following subsections elaborate on the
completion of linear computation and nonlinear computa-

tion of the EMP.

Linear Computation of EMP. The goal of the linear com-
putation of EMP is to provide exact expressions to calculate
(g, Xa) using (g, Xp) and (pyw, Xw). We achieve
this goal with the following theorem.

Theorem 3. Let h' be a random vector characterized by
moments [y, and X, b; denote a constant, and W ; be a
random vector characterized by moments py, and Yy,
for i € {1,2}. Define the scalar random variable a; =
W;'—h/ + b;, where i € {1,2}. Then, the following holds.
E[a;] = H;rv By + by,

V(a:) = py Sw, gy + 11 (Ew, ) + By, S,
Cov (a1,a2) = tr (Cov (W1, Ws3)X) + u;,rv12h/uw2

+ H’—E/COV (Wl, W2) Ky -

Theorem 3 provides analytic expressions of the expectation
and covariance of pre-activation variables. Notice that The-
orem 3 is compatible with FP-DNNs and T-DNNss, leading
to the following corollaries.

Corollary 4. Under the conditions given in Theorem 3 and
Assumption 1, the following holds.

Ea;] = p1 " prp + bs

_ 2 2 21T
V(@) = 02 (Il I} + tr (Zw)) + 121 Epe 1,
Cov (a1, as) = p*1 T/,

where 1 denotes the vector with all components equal to 1
and || - ||2 denotes the Lo norm.

Corollary 5. Under the conditions in Theorem 3 and As-
sumption 2, the following holds.

Ela;] = (g —p) 1" pp + bi s

V(@) = [(a+p) = (=] (w3 +tr (Zn))
+(q-p)1 SR,

Cov (a1,a) = (g —p)° 1" Sp/l.

Corollary 4 and Corollary 5 provide analytic expressions of
the expectation and covariance of the pre-activation vari-
able, avoiding the computation of the term Cov(Wy, Wy)



in Theorem 3, thereby enabling a more efficient linear com-
putation of EMP than that of Theorem 3. The full proof of
Theorem 3 can be found in Appendix C.

Nonlinear Computation of EMP. The goal of the nonlinear
computation of EMP is to provide exact expressions to cal-
culate (pp,, ) using (p,, X4 ). The core is to characterize
the pre-activation variable a according to the Law of the Un-
conscious Statistician (Feller 1991). In general, we make the
following assumptions.

Assumption 6. Under Assumption 1, we assume that the
pre-activation variables of FP-DNNs follow a Gaussian dis-
tribution, that is, aV) ~ N (pqw), Sqw ) forl € [L].

Assumption 7. Under Assumption 2, we assume that the
pre-activation variables of T-DNNs follow a Gaussian dis-
tribution, that is, a') ~ N (pgw, Eq0) forl € [L).

We validate the mildness of Assumptions 6 and 7, and dis-
cuss the role and interdependencies of all assumptions made
throughout this paper in Appendix A. Next, it suffices to an-
alytically express (p;,, Xp,) under the Gaussian assumption
on a. We separately denote the Probability Density Func-
tion (PDF) and the Cumulative Distribution Function (CDF)
of the standard univariate Gaussian distribution as

o) = e (-2 o@= [ é@wd
V2m (2) /_oo

In addition, we separately denote the PDF and the CDF of
the standard bivariate Gaussian distribution with correlation
coefficient p € (—1,1) as

bs ( ) 1 x? — 2pw1T9 + 3
T1,T2;p) = ex
®s (z1, 225 p) / / b2 (u1,uz; p) dug dus .

With the notations above, we present the following theorem.
Theorem 8. Given (a1, a2)’ ~ Na(u, X) with

(T% pPO102
pPO102 0'% ’
and h; = 7(a;) for i € {1,2} where 7(-) denotes the ReLU
activation, then the following holds.

E k] = 0i (ri® (ri) + & (i) ,
V(hi) =02 [(1+72) ® (r;) +1i¢ (r:)] — E[h]”
Cov(hy, ho) = 102 [r2¢ (r1) @ (c2) + 719 (r2)

)

)+ V1= p26(r2

po=(u,pe) , B=

® (c1)
+ (rire + p) @2 (r1,725p ¢ (c1)]
—E[Z1]E[Z] ,

in which r; = p;/oi, ¢; = (r; — prs—;)//1— p? for
i € {1,2}, ¢(-) and ®(-) denote the PDF and the CDF
of the standard univariate normal distribution, respectively,
and ®y(-,-; p) denotes the CDF of standard bivariate nor-
mal distribution with correlation coefficient p.

Theorem 8 provides analytic expressions of expectation and
covariance of 7(a), completing the nonlinear computation

Algorithm 1: EMP for T-DNNs
Input: Sample distribution p,, 3., weight distribution pa-
rameters {p(*), q(l)}lL:1
Output: Output covariance X
Procedure:

1: Set u(o) = U, E(O) b

2: for1 <[ < Ldo

3: (uff),zﬂf)) =
Corollary 5

() 2) <=

end for .
3, =5

(s, =) and (p©, ¢©) by

(H»Ezl), Zg)) by Theorem 8

AN A

of EMP. Notice that Theorem 8 is straightforwardly com-
patible with both FP-DNNs and T-DNNss. To the best of our
knowledge, Theorem 8 provides the first exact solution to
the covariance X, of a Gaussian vector passed through the
ReLU activation under mild assumptions; in contrast, the
previous methods provided either exact X under strong
assumptions (Bibi, Alfadly, and Ghanem 2018) or approx-
imated 3, with h = 7(a) (Wu et al. 2019). The full proof
of Theorem 8 can be found in Appendix D.

To summarize the computations above, we can complete
the EMP method for uncertainty quantification. Algorithm 1
lists the procedure of the EMP method for quantifying the
uncertainty of T-DNNs, where Step 3 and Step 4 represent
the linear computation and the nonlinear computation of the
EMP, respectively. Algorithm 1 also adapts to FP-DNNs
with two modifications: replacing the input {p(), ¢1£
with {u®, ¢(D}L  and substituting Corollary 5 in Step 3
with Corollary 4.

4 Uncertainty Optimization

In this section, we propose an optimization method termed
MOMent Alignment (MOMA) for improving the accuracy
and reducing the uncertainty of T-DNNs. The MOMA is
compatible with various quantization training algorithms for
DNNs. Here, we also adopt ternary quantization as an exam-
ple and draw the key ideas from Li et al. (2016) and Alem-
dar et al. (2017) to achieve ternary training. We detail the
optimization procedure in Subsection 4.1, and then formally
propose the corresponding MOMA in Subsection 4.2.

4.1 Ternary Training of T-DNNs

Following the supervised learning paradigm, the optimiza-
tion problem of training a T-DNN f can be formulated as

min £ (y, f (2:T)) | 1)

where (x,y) denotes the pair of input and target variables,
and L(-, -) denotes the loss function. Let s € N indicate the
training iteration. The weight-updating procedure is listed as

Tsp1 =sgn, (Wypr) ,

L (y, f (= Ts)) @

WS"rl = WS + n 8W I



where 1) denotes the learning rate and sgn.,_ (+) is the parti-
tion function. Here, we employ the partition function used
in Li et al. (2016), that is,

1, w>n9s,
t:Sgn'ys (’UJ): 07 _WSSwS’YSa (3)
_17 w<_787

where ¢ and w denote an arbitrary element of the weight ma-
trices T and W, respectively, and v, € R is a partition
factor defined as

1
% =5 Wl - @)

The gradient-related term 0L(y, f(x; Ts))/OW  in Eq. (2)
is computed via surrogate gradients (Bengio, Léonard, and
Courville 2013) as

OL(y, f(x;Ts))  OL(y, f(x;T,)) T,
oWy’

OW 0T,
oT, 8sgn7 (W)
oW,  OW,

In summary, one can obtain a T-DNN by initializing W
with the pretrained full-precision weights, and following the
optimization procedure listed in Eq. (2), Eq. (4), and Eq. (5).

&)

=1.

4.2 Moment Alignment

This subsection proposes the MOMA optimization for im-
proving the accuracy and reducing the uncertainty of T-
DNN:g, ternarized from a pretrained FP-DNN. The key idea
of MOMA is to formulate an optimization problem by align-
ing the first and second central moments of T-DNN weights
to zero. The following theorem supports our line of thought.

Theorem 9. Under Assumption 2 and Assumption 7, if ¢ —
p=0andp+ q— (q—p)? = 0 hold for the ternary-valued
distribution parameters (p, q) of each layer, then the output
covariance satisfies g = 0.

Theorem 9 demonstrates that there exists an optimal solu-
tion, that is, the uncertainty of T-DNNs can be reduced to
zero if one aligns the concerned moments to zero, which
provides a theoretical guarantee for MOMA. The full proof
of Theorem 9 can be found in Appendix E. Inspired by The-
orem 9, we formulate the MOMA optimization as

{ e = argvmin {lgs (vs W)l + Alga (v, W)}, ©
st. ye((X—0)vs, (1+0)7s) -

Algorithm 2: Ternary Training with MOMA for T-DNNs

Input: Pretrained full-precision weights W, the maximum
number of training epochs S
Output: Ternary weight T
Procedure:
1: for 0 < s < Spdo
2: W1 =W, +n0L(y, f(x;Ts))/0T, in Eq. (2)
33 9 = y|[Wil1in Eq. (4)
4: s <— solving Eq. (6)
5: Ts1 = sgns, (W41) in Eq. (3).
6: end for

where ¢ € (0,1), A € R, g3 is an estimator for ¢ — p, and
ga is an estimator for p+ ¢ — (¢ — p)?. The search interval is
designed to be a neighborhood of the conventional partition
factor of Eq. (4) to maintain accuracy, while the objective
function is designed to align the concerned moments to zero
for uncertainty reduction. The estimators in Eq. (6) are de-
fined as follows.

g1 (7, Wy) = ZMX(—OO,—W) (Wi)/N

92 (7, W) = Zij X(v,+00) (Wi5) /N,

93 (1, W) = g2 (v, W) — g1 (7. Wy) ,

91 (W) = g1 (7, W) + g2 (v, W) — (g3 (v, Wy))* |

where gy is an estimator for p, g» is an estimator for g, W
denotes the (7, j)-th element of W, and x 4(-) denotes the
indicator function of a concerned interval A that satisfies
xa(x)=1ifz € Aand xa(z) =0ifz ¢ A.

Algorithm 2 details the calculation procedure of the
MOMA optimization for T-DNN training. In contrast to con-
ventional T-DNN training algorithms, MOMA involves an
additional search for the partition factor, as detailed in Step
5. Hence, our proposed MOMA method can be incorpo-
rated into other quantization training algorithms that use a
threshold-based partition function like Eq. (3).

5 Experiments

In this section, we conduct experiments to verify the effec-
tiveness of the proposed EMP and MOMA methods. The ex-
periments are performed to answer the following questions.

Q1. Is the proposed EMP method comparable to the classi-
cal uncertainty estimation methods?

Q2. To what extent, if at all, does weight ternarization in-
crease the uncertainty of DNNs?

Q3. Whether and to what extent does the proposed MOMA
method reduce the uncertainty of T-DNNs?

All experiments were conducted on MNIST (LeCun
et al. 1998), CIFAR-10, and CIFAR-100 (Krizhevsky
2009) datasets. The concerned architectures include MLP
2! (Rumelhart, Hinton, and Williams 1986), LeNet-5 (Le-
Cun et al. 1998), VGG-13 (Simonyan 2014), and ResNet-
18 (He et al. 2016). We denote the full-precision DNNs as
FP-DNNs, such as FP-MLP-2. The ternary-weight DNNs
trained using the procedures outlined in Subsection 4.1 are
referred to as T-DNNs, such as T-MLP-2. The ternary-
weight DNNs trained with Algorithm 2 are denoted as T-
DNNs-MOMA, such as T-MLP-2-MOMA. The proposed
methods and contenders are implemented in PyTorch
and SciPy. All experiments were conducted on a 13th
gen Intel (R) Core(TM) 19-13900KF CPU and
an NVIDIA RTX 4090 GPU. Experiments were repeated
5 times with different initialization seeds, reporting the mean
o and standard deviation 3 as a.

"MLP-2 denotes a two-layer fully-connected architecture.



FP-LeNet-5 T-LeNet-5
Datasets 0
EMP MP PL-DNN EMP MP PL-DNN

0 1.0007£0.0101 1.1809 +£0.0217 1.27724+0.0153 1.0023 +0.0109 — —

1 0.9999 +0.0103 1.1793 £0.0238 1.27594+0.0139 1.0023 +0.0121 — —

2 0.9990 £0.0118 1.1794 +£0.0239 1.2748 £0.0170 1.0021 +£0.0117 — —

3  1.0008 £0.0104 1.1808 £0.0215 1.2770£0.0153 1.0022 +0.0108 — —

MNIST 4 1.00114£0.0096 1.1807£0.0239 1.27754+0.0136 1.0023 £0.0107 — —
5 1.0010 £0.0106 1.181540.0237 1.2773 £0.0149 1.0022 +0.0109 — —

6 1.0011 £0.0096 1.1818 0.0246 1.2774+0.0130 1.0023 +0.0105 — —

7 0.9996 +£0.0099 1.1803 +0.0243 1.2755+£0.0143 1.0021 4+ 0.0101 — —

8 1.0014 +£0.0098 1.1814 £0.0218 1.2422 +0.0140 1.0021 £ 0.0107 — —

9 0.9999 4+ 0.0100 1.1801 £0.0225 1.2759£0.0142 1.0019 +0.0106 — —

0 1.0098 +0.0099 1.5029 +0.0177 1.6167 £0.0334 1.0141 +0.0113 — —

1 1.0092 £ 0.0105 1.5020 +0.0207 1.6156 £0.0299 1.0136 +0.0115 — —

2 1.0090 £0.0127 1.5017 £0.0218 1.6154 £0.0358 1.0141 +£0.0110 — —

3 1.0100 £0.0110 1.5031 +£0.0189 1.6169£+0.0338 1.0141 +0.0115 — —

CIFAR-10 4 1.0106 &£ 0.0098 1.5041 £0.0179 1.61794+0.0307 1.0137 £0.0116 — —
5 1.0099 £+ 0.0109 1.5030 £ 0.0200 1.6167 £0.0311 1.0139+0.0118 — —

6 1.01034+0.0094 1.5036 +0.0185 1.6174+0.0282 1.0139+0.0109 — —

7 1.0090 +£0.0099 1.5017 £0.0184 1.6153 +£0.0307 1.0139 £0.0120 — —

8 1.0103£0.0093 1.5036 +£0.0179 1.6173 £0.0312 1.0140=£0.0118 — —

9 1.0095 4 0.0100 1.5025+0.0179 1.6162+0.0314 1.0141 +0.0109 — —

Table 1: Performance of the EMP and contenders for LeNet-5 on MNIST and CIFAR-10. Results for other architectures and

datasets are detailed in Appendix F.

5.1 Verifications on EMP

This subsection demonstrates the effectiveness of the pro-
posed EMP method. Let € D denote a test sample from
the test set D. In Algorithm 1, we set i, =  and X, = 0.

To compare the performance of various uncertainty es-
timators, we follow the evaluation metric in Bibi, Alfadly,
and Ghanem (2018), where they treat the classical Monte
Carlo (MC) estimator (Jospin et al. 2022) as the ground
truth, with other estimators being evaluated based on their
closeness to it. Formally, we define the variance ratio as
ro(x) = VMC(x) / VE(x), where VMC(x) and VE(x)
denote the o-th element of the output variance vector ob-
tained by the MC method and by an estimator, respectively,
for o € {0,1,---,9}. A ratio ,(x) closer to 1 indicates
higher precision of an estimator on . We then compute the
mean and standard deviation of r,(x) over D as

Elr @) =Y. ra(@)/1D] .
VT @] =[5, rale) = Elra )/ D).

Then we use E[r,(x)]£+/V[r,(x)] as a metric, which is the
same as that in Bibi, Alfadly, and Ghanem (2018), to mea-
sure the uncertainty estimation performance of an estimator.
A mean E[r,(x)] closer to 1 indicates higher precision on
average, while a standard deviation /V[r,(x)] closer to 0
indicates greater robustness on average.

Table 1 shows the uncertainty estimation performance of
EMP and its contenders, including PL-DNN (Bibi, Alfadly,

and Ghanem 2018) and MP (Wu et al. 2019) for LeNet-
5 on MNIST and CIFAR-10. It is observed that the EMP
method achieves near-ideal performance and significantly
outperforms its contenders. Experimental results for other
architectures and datasets, detailed in Appendix F, further
support this observation. These findings demonstrate that the
proposed EMP estimator is comparable to the MC estimator
and more precise than its contenders, thus answering Q1.

5.2 Verifications on MOMA

This experiment demonstrates the effectiveness of the
MOMA method. We first analyze the uncertainty difference
between DNNs with and without weight ternarization to take
a closer look at Q2. We begin this analysis by defining two
variance ratios as

7o (x) = VE(2; T-DNN) / VE(z; FP-DNN) ,
# (x) = VE(2; -DNN-MOMA) / V¥ (x; FP-DNN) ,

where VE(x;Model) represents the variance, i.e., VE(z),
computed using the corresponding model. A ratio greater
than 1 indicates that weight ternarization increases DNN un-
certainty by the corresponding ratio.

Figure 3 shows the concerned uncertainty difference on
MLP-2 by providing the histogram of the two ratios. Due
to space limitations, we only plot the results for o €
{0,1,---,5} and the ratio range of [0,3000], containing
99% of the empirical points for the variance ratios. Full re-
sults are given in Appendix G. The blue and red regions
represent the histograms of 7,(x) and 7, (x), respectively.
It is observed that 7,(x) > 1.4 and 7, (x) > 1.4 for all



Models Accuracy Uncertainty Reduction
FP-MLP-2 0.97610.0002  1.46970. 002 x 103
T-MLP-2 0.97520.0005  1.25720.0236 % 10°

T-MLP-2-MOMA

0.9751¢.0006

4.0129¢ 0039 x 10% 68.080.1389 %

FP-LeNet-5
T-LeNet-5

T-LeNet-5-MOMA

0.9911¢.0001
0.9903¢.0003
0.9885¢.0006

1.77280_0232 X ].03
2.8113¢.0490 % 10°

4.09060.1433 x 10? 98.550.0025 %

FP-VGG-13
T-VGG-13

T-VGG-13-MOMA

0.99850.0001
0.99540.0005
0.99579.0005

4.60290.2302 X 10_1
1.45000_0210 X 101

1.14630.0195 X 10! 20.862.5366 /0

FP-ResNet-18
T-ResNet-18

0.99630.0001
0.99380.0002

T-ResNet-18-MOMA  0.9951¢ goo2

6.9757¢.3743 X 1073
4.28080_1772 X 10_1

2.40670.0501 X 107" 44.274.4212%

Table 2: Accuracy and uncertainty of concerned models on MNIST. Results for other datasets are detailed in Appendix G.
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Figure 3: Histograms of the concerned variance ratios.

x € D, indicating that DNN uncertainty increases after
weight ternarization, regardless of whether MOMA is used.
This observation answers Q2. Furthermore, the red bars are
taller at lower x-values and shorter at higher x-values, indi-
cating that the proposed MOMA method effectively reduces
the concerned variance ratio.

To further measure the uncertainty reduction performance
of the proposed MOMA method, we define the uncertainty
of a model on a dataset D as

Uncertainty = ﬁ Z tr (g -
xeD

Table 2 shows the uncertainty reduction performance of
MOMA across various DNN architectures on MNIST by
comparing the uncertainty of the T-DNNs and T-DNN -
MOMA. It is observed that the MOMA greatly reduces the
uncertainty of T-DNNs on MNIST. Experimental results for
CIFAR-10 and CIFAR-100, provided in Appendix G, further
support this observation. This finding demonstrates that the
proposed MOMA can effectively reduce the uncertainty of
T-DNNS, thus answering Q3.

6 Conclusions

In this paper, we proposed the EMP, a theoretical uncertainty
quantification method that works independently of weight
precision. Experimental results showed that T-DNNs ex-
hibit significantly greater uncertainty than FP-DNNs across
varying ratios. Inspired by the EMP estimator, we proposed
MOMA, an optimization method for reducing the uncer-
tainty of T-DNNs. Empirical results validated the effective-
ness of both EMP and MOMA.
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