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ABSTRACT

The development of theoretical sciences traditionally adheres to an observation-
assumption-model paradigm, which is effective in simple systems but challenged
by the ‘curse of complexity’ in modern engineering sciences. Advancements in
artificial intelligence (AI) and machine learning (ML) offer a data-driven alter-
native, capable of interpolating and extrapolating scientific inference where di-
rect solutions are intractable. Moreover, feature engineering in ML resembles
dimensional analysis in classical physics, suggesting that data-driven ML meth-
ods could potentially extract new physics behind complex data. Here we propose
a physics-transfer (PT) learning framework to learn physics across digital models
of varying fidelities and complexities, which addresses the accuracy-performance
dilemma in understanding representative multiscale problems. The capability of
our approach is showcased through screening metallic alloys by their strengths
and predicting the morphological development of brains. The physics of crys-
tal plasticity is learned from low-fidelity molecular dynamics simulation and the
model is then fed by material parameters from high-fidelity, electronic structures
level, density functional theory calculations, offering chemically accurate strength
predictions with several orders lower computational costs. The physics of bifur-
cation in the evolution of brain morphologies is learned from simple sphere and
ellipsoid models and then applied to predict the morphological development of
human brains, showing excellent agreement with longitudinal magnetic resonance
imaging (MRI) data. The learned latent variables are shown to be highly relevant
to uncovered physical descriptors, explaining the effectiveness of the PT frame-
work, which holds great potential in closing the gaps in understanding complexity
problems in engineering sciences.

1 INTRODUCTION

The development of theoretical frameworks in engineering sciences has traditionally adhered to an
observation-assumption-model paradigm, exemplified by Galileo’s studies on beam bending to the
formulation of dislocation theory in the mechanical behaviors of materials. This method is particu-
larly effective in problems with a low-dimensional parameter space, where the complexity can often
be captured by analytical models. However, as we expand into the multiscale understanding of mat-
ter, the ‘curse of complexity’ emerges, making it increasingly challenging to capture the intricate
physics with purely analytical methods (Fish et al., 2021). For instance, material strength is gov-
erned by phenomena across multiple length and time scales. Even for single crystals, dislocations
can be nucleated under mechanical loads, evolving cooperatively into complex networks (Oh et al.,
2009). Brain development involves gene expression, cellular behaviors, and mechanical instabilities
across various spatiotemporal scales, as reflected in the evolving morphologies (Llinares-Benadero
& Borrell, 2019a). First-principles theories offer high accuracy but are challenging to scale. Em-
pirical models, while highly efficient, are constrained by the limitations of their assumptions and
uncertainties in parameterization. This is the accuracy-performance dilemma in modeling complex-
ities of multiscale physics in engineering sciences.
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Recent advancements in machine learning (ML) and artificial intelligence (AI) present a promising,
data-driven alternative (Fig. 1a). This emerging approach, while still constrained by the density
and coverage of data, offers an increasingly powerful tool as data quality and quantity improve. The
ability of ML models to interpolate and extrapolate improves accordingly, suggesting that these tools
can complement traditional theories where direct solutions become impractical or intractable (Zhang
et al., 2018; Li et al., 2022). Moreover, the process of feature engineering in ML bears a resemblance
to dimensional analysis in classical physics, offering a systematic way to uncover and utilize internal
correlations within complex data (Xu et al., 2022b). This parallel suggests that ML, through its
data-driven methods, could potentially extract and transfer physical insights across digital models
of varying fidelity and complexity.

Inspired by these thoughts, we propose a physics-transfer (PT) framework to learn physics across
digital models of varying fidelities and complexities (Fig. 1b). The learned physics is used for
scientific inference with high accuracy and performance to address the dilemma in modeling the
complexity. Two representative cases are chosen to demonstrate the capabilities of PT framework
including materials strength screening and predicting the development of brain morphologies, which
encompass inorganic matter and organs and involve multiscale physics (Fig. 1c). The physics of
crystal plasticity is initially learned through low-fidelity molecular dynamics simulations, and these
insights are subsequently utilized in high-fidelity density functional theory computations of material
parameters, enabling chemically accurate strength predictions. The physics of bifurcation in brain
morphologies is initially learned using spherical models with simple geometries and then applied to
predict the evolutional behaviors of human brains. The proposed framework holds great potential
for enhancing our comprehension of complexity problems in engineering sciences and bridging gaps
between understandings from modeling and experimental data.

Figure 1: Accuracy-performance dilemma in modeling multiscale physics and proposed physics-
transfer (PT) learning framework. (a) Machine learning, constrained by data density and coverage,
serves as a potent complement to traditional theories for interpolating and extrapolating solutions,
especially as data quality and quantity increase. (b) The PT learning framework learns physics across
digital models of varying fidelity and complexity, enabling extrapolation to effectively address the
accuracy-performance dilemma. (c) The ‘curse of complexity’ in multiscale physics of inorganic
matter and organs.

2 PHYSICS-TRANSFER LEARNING FRAMEWORK

Models with different fidelity (F) in multi-scale modeling exhibit distinct parameters distributions
p(θ|F), where θ are model parameters, and p(·|·) is conditional probability. ML and AI models
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can provide general model with parameters distributions p(θ|D) based on data (D). Typically, data
with different fidelity (e.g., low fidelity (DLF) in molecular dynamics (MD), high fidelity (DHF) in
density functional theory (DFT)) will result in ML models having different parameter distributions,
that is:

p(θ|DLF) ̸= p(θ|DHF), (1)

which limits the transferability and extrapolation of models trained on data with different fidelity.

The physics (P) behind the D can assist the extrapolation with a ‘physics-transfer’ paradigm. Specif-
ically, if there is a physical relationship between features (x) and target (O) in D, that is:

x
P−→ O, (2)

x ∩ O = D
′
⊂ D, (3)

the designed ML models (h ∈ H) can learned the physics behind the data, and models trained on
data with different fidelity would have similar parameter distributions, that is:

p(θ|D
′

LF) ≈ p(θ|D
′

HF), (4)

which makes the transferability and extrapolation of models with different fidelity possible and
bridge gaps between different modeling methods in multi-scale modeling. To validate the effec-
tiveness of the PT learning framework, in the next sections, we train models on low-fidelity or
simple-geometry data and then perform zero-shot extrapolation directly to high-fidelity and high-
complexity data. We assess the accuracy of the prediction results and demonstrate its role in ad-
dressing the accuracy-performance dilemma.

3 EXPERIMENTS

To demonstrate the effectiveness of the PT learning framework, we perform experiments on the
problems of materials strength screening and predicting the development of brain morphologies.
These two issues encompass the multiscale complexity of inorganic matter and organs suffering
from the accuracy-performance.

3.1 PHYSICS-TRANSFER LEARNING FOR MATERIALS STRENGTH SCREENING

The strength of materials, like many problems in the natural sciences, spans multiple length and time
scales, and the solution has to balance accuracy and performance. In the crystal plasticity (CP) the-
ory, plastic flow and hardening behaviors during material deformation are modeled in a multiscale
framework bridging the atomic-scale lattice dynamics and continuum-level stress/strain fields (Rot-
ers et al., 2011). One of the key material parameters in CP models is the critical resolved shear stress
(CRSS), τc, which determines the activation of specific slip systems. In CP models, CRSS is a phe-
nomenological parameter often obtained by fitting experimental results (Salem et al., 2005; Gong
et al., 2015). Alternatively, the Peierls stress (τP) defined as the minimum shear stress required to
move a single dislocation of unit length in a perfect crystal in the absence of thermal activation is
also used in the literature for CRSS (Shimanek et al., 2022). The Peierls stress can be obtained from
full-atom MD simulations. However, the strain inhomogeneity induced by a dislocation usually
spans 10 − 20 nm, which cannot be directly calculated from first-principles calculations. Previous
studies are thus limited by the use of empirical force fields (Soleymani et al., 2014). In practice,
the Peierls-Nabarro (PN) model offers a simplified and approximating approach to derive the Peierls
stress with the assumptions of sinusoidal interfacial restoring stress and a rigidly shifting dislocation,
where the structure of a dislocation core is determined by minimizing the elastic energies and lattice
misfit (Nabarro, 1947). The success of the PN model suggests that the Peierls stress is controlled by
the elastic responses of the crystals and the energy landscape of interfacial slips (Bulatov & Kaxiras,
1997; Nabarro, 1997; Lu et al., 2000; Rodney et al., 2017).

By assuming the existence of such correspondence, we use the PT learning framework to predict the
Peierls stress for a wide spectrum of metallic alloys and inorganic crystals at the first-principles level
(Fig. 2a). The maps between the Peierls stress (O) and characteristic materials parameters (x) are
trained from empirical or machine-learning force-field (MLFFs) MD simulations with a designed
neural network (h ∈ H) and obtain the posterior probability of the model parameters (p(θ|D′

LF)).
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Then the well-trained models are extrapolated to DFT-calculated parameters to make predictions
at the chemically accurate level. This mapping transfers the physics from low-fidelity but efficient
force field models to the first-principles methods, successfully resolving the accuracy-performance
dilemma.

Figure 2: PT predictions for materials strength and uncertainty quantification. (a) PT framework
transfers the physics from low-fidelity force field models to chemically accurate first-principles
methods, effectively addressing the trade-off between accuracy and computational expense. (b)
Well-trained neural networks learn the physical mapping between the Peierls stress and characteris-
tic materials parameters obtained from atomistic simulation datasets using empirical force fields. (c,
d) PT framework predicts the Peierls stress with high accuracy and efficiency. The PT predictions
are closely aligned with the outcomes of density functional theory (DFT) and machine-learning
force-field (MLFF) calculations, with a difference below 48.91%, while the results obtained us-
ing embedded atom methods (EAM) models deviate substantially from the DFT predictions, with
a discrepancy of 221.27% (c). The PT approach also reduces the computational time notably by
statistical inference, in comparison with atomistic simulations using DFT, MLFFs, or EAM (d).
(e-h) PT predictions for different slip systems (e). The PT predictions show good consistency com-
pared to MLFF simulation results (with errors e = 12.55%, 48.09%, 4.30% for Cu {111}⟨110⟩, Fe
{110}⟨111⟩, Ti {1010}⟨1120⟩ in prediction, respectively), and superior accuracy compared to EAM
(e = 33.07%, 72.02%, 13.89% ((f),(g),(h)), respectively). (i) Uncertainty quantification shows that
the PT predictions eliminate physical and system uncertainties. ‘L’ denotes the large-supercell sys-
tem with ∼ 0.8× 106 atoms (160 nm× 2 nm× 40 nm). (j) Uncertainty decomposition shows that
the inference errors are smaller compared to the physical and system uncertainties. The standard
deviation is reported in the error bars.
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3.1.1 DATASETS

To construct the digital libraries, a wide spectrum of metals with crystalline structures of fcc (Cu, Ni,
Al, Au, Pd, Pt), bcc (Fe, Mo, Ta, W), and hcp (Ti, Mg, Zr, Co) is explored. The elastic constants, γ
surfaces, and the Peierls stress are calculated using empirical force fields such as EAM and modified
EAM (MEAM) with parameters reported from different sources (Becker et al., 2013; Hale et al.,
2018), as well as the lattice mismatch energy and slip resistance. The primary slip systems of
fcc ({111}⟨110⟩) and bcc ({110}⟨111⟩), and the prismatic slip systems of hcp ({1010}⟨1120⟩) are
considered. Finally, the digital libraries composed of characteristic materials parameters and the
Peierls stress are established to learn the physics of crystal plasticity.

3.1.2 ARCHITECTURE AND MODEL SETUP

To effectively learn the physical mapping between elastic constants, γ surfaces, and the Peierls
stress, we employ a convolutional neural network (CNN) to extract features from the γ surfaces (He
et al., 2016), an feedforward neural network (FNN) to extract the features related to elastic properties
and merge them in the latent features space. Then, we use another FNN to predict the Peierls stress.
The FNN for extracting elastic properties contains two layers with neuron numbers of 6 (number of
elastic features), and 32 (dimension of extracted features), respectively. Following that, the FNN for
predicting the Peierls stress has 3 layers with neuron numbers of 64, 32, and 1, respectively. We use
the stochastic gradient descent (SGD) optimizer with learning rates of 10−4 (Hardt et al., 2016).

3.1.3 EVALUATION METRICS

Recent progress in computational hardware and software promotes the development of MLFFs,
which harness neural networks to model the potential energy surfaces (PES) with the precision of
the training set, mostly from first-principles calculations (Ko & Ong, 2023; Hedman et al., 2023;
Gong et al., 2023). MLFFs learn the dependence of the potential energy of a system on the atomic
positions. The size effects in direct DFT calculations can be mitigated if this mapping accommodates
all atomic environments encountered in the MLFF simulations, and the locality holds well (Zhang
et al., 2018). The Peierls stress predicted by the MLFFs thus serves as a benchmark to validate the
PT predictions. However, the accuracy of the state-of-the-art MLFF predictions for non-equilibrium
structures such as those containing dislocations is usually limited in comparison with the equilib-
rium features (Takamoto et al., 2022), and the MD simulations to predict the Peierls stress using
MLFFs still need careful design of the models and simulation parameters to mitigate the effects
of sample sizes, loading geometries, and kinetics (Morrow et al., 2023). In addition, MLFFs have
higher computational costs than common empirical force fields such as EAM and MEAM. A direct
mapping between the DFT-derived γ surface and the Peierls stress can thus have an advantage in
facilitating fast material screening, especially for vast material space.

3.1.4 RESULTS

To assess the accuracy of the PT predictions, we first calculate the Peierls stress directly by utilizing
different methods of calculations, including EAM, MLFFs, DFT, PT models trained on EAM data
(PT-EAM), and PT models trained on MLFFs data (PT-MLFFs) for small systems (annotated as ‘S’,
containing 244 atoms in a 3.48 nm×0.41 nm×1.90 nm supercell) of the fcc system that suffer from
strong size effects in predicting the plasticity of bulk materials. The results in Fig. 2b indicate that
the well-trained neural networks effectively learn the physical mapping between the Peierls stress
and the characteristic elastic and surface parameters. The PT-EAM predictions are quantitatively
close (< 48.91%) to those from DFT and MLFF calculations. In comparison, those obtained from
EAM models show a significant deviation by 221.27% from the DFT predictions (Fig. 2c for Cu
{111}⟨110⟩). The time cost of statistical inference in the PT approach is within several milliseconds
on an Intel(R) Core(TM) i5-8250U computer with 4 cores), which is significantly lower than that of
simulations based on DFT, MLFFs, and EAM (Fig. 2d). These results obtained for small systems
successfully demonstrate advantages in the accuracy and efficiency of the PT approach to predict
the Peierls stress.

We then consider large models (‘L’, ∼ 0.8 million atoms in a 160 nm × 2 nm × 40 nm supercell)
for 3 crystalline structures (fcc, bcc, hcp) with their associated specific slip systems (Fig. 2e), where
direct DFT calculations are intractable. MD simulations using MLFFs are performed to validate
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the accuracy of PT predictions from EAM and MEAM models. The results show good consistency
(with errors e = 12.55%, 48.09%, 4.30% for Cu {111}⟨110⟩, Fe {110}⟨111⟩, Ti {1010}⟨1120⟩ in
prediction, respectively) and superior performance compared to the EAM results with e = 33.07%,
72.02%, 13.89% (Figs. 2f-h). By comparing the results obtained for the small and large systems, we
also noted that the size effects are more significant for the empirical force fields. The PT framework
thus demonstrates high efficiency compared to DFT and MLFF calculations that can mitigate the
size effects, and chemically accurate predictions compared to empirical force fields such as EAM.

For the Peierls stress predictions, uncertainties exist among different theoretical approaches. Un-
certainty quantification (UQ) of these methods is of crucial importance in evaluating and selecting
the models. Fig. 2i shows the error maps for various calculation methods. The predictions of
small systems with EAM (EAM-S) contain physical uncertainties on the potentials and system un-
certainties in size effect. The calculations of small systems with DFT (DFT-S) eliminate physical
uncertainties but still suffer from system uncertainties. The predictions of large systems using EAM
(EAM-L) with weaker size effects reduce system uncertainties but retain the physical uncertainties.
Both PT-EAM predictions and MLFFs calculations eliminate physical and system uncertainties, but
PT predictions are superior in computational efficiency, in both the training and inference processes.
The uncertainties of different approaches are quantitatively decomposed in Fig. 2j. The uncertainty
of prediction using EAM-S contains physical, system errors (99.05% in total) and the inference er-
ror (0.95%) by considering the MLFF results as the ground truth. For EAM-L, their contributions
are 62.85% and 37.15%, respectively. The PT-EAM prediction only involves uncertainty of infer-
ence (e = 12.55%). The low uncertainty of inference compared to the physical and system errors
demonstrates the power of the PT framework and can be estimated from the theory of machine
learning (Abu-Mostafa et al., 2012; Feng et al., 2023).

Figure 3: Material strength screening using PT approach. (a) The material strength database con-
structed by PT learning, which covers 88 elements across the periodic table. (b) The distribution of
τP in the material strength database. (c) Distribution of τP in the space of chemical compositions, vi-
sualized by t-distributed stochastic neighbor embedding (t-SNE). The crystals are represented by the
sum of the one-hot encodings of their constituent elements. The t-SNE reduces the high-dimensional
representations of crystals to two principal features (crystal embedding features 1 and 2, CEF1 and
CEF2)) (Van der Maaten & Hinton, 2008) (d) High-strength material screening from the extensive
space of metastable materials in GNoME. (e) High-strength materials screened using PT learning
and the corresponding yield strengths (σY) reported in experiments (extracted from MatWeb (Ross,
2013)).

The high accuracy and efficiency of the PT framework allow for single-crystal strength screening
and the implementation of mesoscale physics such as the grain texture into the paradigm of high-
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throughput materials screening and discovery. For a given material genome including the elements
and lattice types, the characteristic materials parameters can be estimated by the equilibrium proper-
ties reported in the Materials Project. For example, the γ surface can be fitted from a few single-point
energy calculations (e.g., intrinsic stacking fault energy (SFE) γisf , unstable SFE γusf , aligned SFE
γasf , and the energies of their intermediate configurations) and interpolated using the Fourier se-
ries (Su et al., 2019). The elastic constants can be determined by the slope of the linear region in
stress-strain curves. The generated characteristic parameters can be used to screen materials by their
strengths, a Holly Grail in materials science, through the predicted Peierls stress, and extension by
implementing mesoscale physics models such as CP (Roters et al., 2011). Recent advances in the-
oretical materials science accelerated by artificial intelligence significantly expanded the space of
scientific exploration. The graph networks for materials exploration (GNoME) model enlarges the
library of inorganic crystals from 48k to 2.2M, many of which are metastable materials that have
not been synthesized by existing methods and thus cannot be assessed by experiments (Merchant
et al., 2023). The PT model can efficiently screen materials in such a huge library at the chemically
accurate level, especially for non-equilibrium material properties and processes inaccessible by con-
ventional approaches due to the accuracy-performance dilemma. Specifically, 3, 471 fcc (Fm3m),
bcc (Im3m) or hcp (P63/mmc) crystals of the 2.2M inorganic crystalline compounds in GNoME are
supplemented with calculated elastic properties and chosen for material strength screening (Figs.
3a-c). A product material strength database is finally constructed (Figs. 3a-c). High-strength metal
materials (Os, Ru, Tc, Re) screened out from the database are verified by their experimentally mea-
sured yield strengths (σY) (Ross, 2013), and are much stronger than the metals in the training set
(e.g., fcc Cu, bcc Fe, hcp Ti) (Figs. 3d and 3e).

3.2 PHYSICS-TRANSFER LEARNING FOR THE PREDICTION OF BRAIN MORPHOLOGY
DEVELOPMENT

Brain development involves complex multiscale physical processes, encompassing gene expression,
protein folding, and cellular behaviors such as cell division, differentiation, and migration, as well
as macroscopic morphological instabilities (Llinares-Benadero & Borrell, 2019a). The continuum
mechanics theory that incorporates growth tensor parameters is widely used to describe the morpho-
logical evolution of tissue growth (Tallinen et al., 2016; Striedter et al., 2015; Darayi et al., 2022;
Budday & Steinmann, 2018; da Costa Campos et al., 2021; Alenyà et al., 2022). These growth
tensor parameters can be linked to micro-scale cellular behaviors, providing a multiscale model-
ing framework for modeling morphological instabilities. The intricate geometry of the brain and
the nonlinear nature of brain morphological development involving materials and contact result in
low computational efficiency and poor convergence in finite element analysis (FEA) (Tallinen et al.,
2016). Consequently, there is limited work directly simulating the morphological development of
the brain, with most studies discussing that on simplified geometries, such as two-dimensional shell-
substrates geometries, or three-dimensional spheres and ellipsoids (Fig. 4a) (Darayi et al., 2022;
Budday & Steinmann, 2018; da Costa Campos et al., 2021; Wang et al., 2021). Indeed, the growth
of spheres or ellipsoids shares similar spatiotemporal characteristics with brain morphological de-
velopment, such as ridge-valley networks and bifurcation behaviors. By designing neural network
architecture (h ∈ H), one can learn the physics of bifurcation and morphological features from sim-
ple geometries. The well-trained models with parameter distributions of (p(θ|D′

LF)) can be directly
extrapolated to predict the morphological development of the high-complexity brain.

3.2.1 DATASETS

The experimental data of human brain morphologies is rare, especially for individual brain mor-
phologies (Bethlehem et al., 2022; Ciceri et al., 2024). We collect the currently available open-
source brain structural magnetic resonance imaging (MRI) atlases from the source (Ciceri et al.,
2024). The pipeline involving cortical and sub-cortical volume segmentation and cortical surface
extraction is adopted to obtain brain morphologies from MRI data (Makropoulos et al., 2018). The
collected experimental data of human brain morphologies are used to validate the effectiveness of
PT learning. We construct digital libraries of morphological patterns involving spheres, ellipsoids,
and human brains with increasing geometrical complexities. For spheres and ellipsoids with sim-
pler geometries, a representative core-shell model is used (Tallinen et al., 2014; Wang et al., 2021;
Xu et al., 2022a; Yin et al., 2008), as implemented to explore the mechanical instability in corti-
cal folding (Tallinen et al., 2016; Striedter et al., 2015; Darayi et al., 2022; Budday & Steinmann,
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2018; da Costa Campos et al., 2021; Alenyà et al., 2022). The outer spherical shell represents the
cerebral cortex (gray matter), and the inner core for the white matter. The core and shell structures
are modeled as modestly compressible hyperelastic Neo-Hookean material with different growth
rates (Tallinen et al., 2016). Following the experimental evidence (Fischl & Dale, 2000; Chang
et al., 2007; Xu et al., 2010; Dervaux & Amar, 2008; Budday et al., 2015), the cortical thickness
ranges from 0.03−1.63 mm according to the abnormal and normal human cerebral cortex measure-
ments and the scale factor (Fischl & Dale, 2000; Chang et al., 2007), and the relative shear modulus
(µgrey/µwhite) ranges from 0.65− 1 (Xu et al., 2010; Dervaux & Amar, 2008; Budday et al., 2015).
The tangential growth (TG) model is used to simulate the cellular mechanisms that create the growth
stresses and lead to the pattern evolution (Tallinen et al., 2014; 2016; Llinares-Benadero & Borrell,
2019b).

3.2.2 ARCHITECTURE AND MODEL SETUP

In FEA, morphological data are meshed into discretized tetrahedral element, which can be repre-
sented as graphs, where the nodes of the graph correspond to the vertices of the elements, and the
edges of the graph correspond to the edges of the elements. Consequently, graph neural networks
(GNN) are suitable for extracting features from morphologies represented as graphs. Specifically,
we utilize an encoder-decoder architecture to learn the complexity of morphological development,
constraining the model with the 3D coordinates of the morphologies and global feature su ch as
gyrification index (Fig. 4b). The input to the model is a graph representation of the morphology,
where the node features include positional coordinates and the normal direction. The output is the
local feature curvature of the morphology.

Figure 4: Brain development prediction using PT approach. (a) The accuracy of predicting the
development of brain morphologies improves with the increase in the geometric complexity of the
model. (b) An encoder-decoder architecture constrained by multiscale morphological features is
used to resolve the morphological complexity. (c) The interpolation predictions for spherical data.
(d,e) The extrapolation predictions for ellipsoidal data (d) and the development of brain morpholo-
gies (e).
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3.2.3 RESULTS

We train our models on spherical and ellipsoidal data, which are then applied to the morphological
development of human brains. In our ablation study, the features of normal directions are removed
and only morphological data is retained, referred to as statistical learning, since the curvatures con-
tain essential physics of the bifurcation processes, which is well known in the nonlinear elasticity
community. Our results show that, for the inference of spherical data, both traditional statistical and
PT learning yield satisfactory results (Fig. 4c). However, when extrapolating to ellipsoids and hu-
man brains using the model trained on the sphere data, PT learning excels while statistical learning
fails, highlighting the generalizability of PT learning (Figs. 4d and 4e).

4 RELATED WORK

Our PT framework shares some conceptual features with existing ML methods developed to com-
bine multi-fidelity data (Ramakrishnan et al., 2015; Batra et al., 2019; Smith et al., 2019). ∆-learning
predicts high-fidelity properties by learning the discrepancies in predictions from models at different
levels of fidelity (Ramakrishnan et al., 2015). The objective properties are calculated by correcting
low-fidelity calculations following a statistical treatment. In a similar spirit, the low-fidelity as a
feature (LFAF) method learns the relation between properties obtained from models with differ-
ent fidelities, and predicts the high-fidelity properties using objective properties and other materials
parameters obtained from low-fidelity models as the input (Batra et al., 2019). Transfer learning
pre-trains neural networks on low-fidelity data and fine-tunes the parameters on high-fidelity ones
to achieve high accuracy in predictions (Smith et al., 2019). However, these methods are statistical
in nature and their applications mainly focus on the properties at equilibrium. In supervised learn-
ing, it is necessary and beneficial to label data obtained from high-fidelity models in the training
process, which are not available for most non-equilibrium properties such as the Peierls stress with
chemical accuracy at the DFT level. Our PT framework resolves this constraint from the accuracy-
performance dilemma by going beyond the statistical approach and transferring the physics across
models with different fidelities, which is characterized by materials parameters that can be obtained
from single-point, unit-cell calculations. For example, the Peierls stress is predicted accurately and
efficiently utilizing the learned physics and chemically accurate materials parameters. Longitudinal
MRI data of brains are rare, limiting the use of traditional statistical learning methods to directly
predict the development of human brain morphologies (Bethlehem et al., 2022; Ciceri et al., 2024).
PT learning approach can learn the physics of bifurcation from data of morphological development
obtained for simple geometries, and then be applied to the human brain with elevated morphological
complexities.

5 DISCUSSION AND LIMITATIONS

Our work ‘digitalizes’ the observation-assumption-model practice in engineering sciences using
neural network representations. As the ML model learns physics from data, physical features natu-
rally emerge in the space of latent variables (Fig. 5). In the case of material strength screening, after
the model has learned the physics of crystal plasticity, the principal components of latent features
show a weak correlation with the input variables such as the elastic constants (Fig. 5a), but a strong
correlation with the dislocation width, another important physical quantity in crystal plasticity (Fig.
5b). In the study of brain morphologies, the ML model of PT learning exhibits similar weight distri-
bution (p(θ|D′

LF) ≈ p(θ|D′

HF)) after learning from spherical and ellipsoidal data (Fig. 5c), whereas
the ML model of statistical learning using the morphology data only shows a significant difference
in parameter distribution (p(θ|DLF) ̸= p(θ|DHF)) compared to PT learning (Fig. 5d). The preserved
features of weight distribution across data of varying complexity demonstrate the generalizability to
complex geometries.

These observations indicate that the PT learning framework captures the essential physics of prob-
lems with high complexities, and explains its outstanding performance in addressing the accuracy-
performance dilemma. The learned physics in the PT approach is limited by the fidelity of digi-
tal libraries, which depend on the completeness of theoretical descriptions and experimental data.
Specifically, in materials strength screening, databases constructed with well-trained MLFFs are ex-
pected to offer more accurate physics than EAM or MEAM, although their computational costs are
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high, and a full set of MLFFs for all metal alloys is not available at present. Our studies show that
the error of PT-MLFF predictions using the physics learned from MLFF simulations is reduced to
e = 1.51% (Fig. 2j). This few-shot fine-tuning approach utilizing well-trained MLFFs substantially
improves the accuracy of the learned physics compared to the database constructed with EAM po-
tentials (Figs. 2c, 2f-h, 2j). For the prediction of human brain morphologies, the rareness of MRI
data could be resolved by the output of ongoing projects such as the Developing Human Connectome
Project (dHCP) (Makropoulos et al., 2018) or adding animal data.

The advancement of engineering sciences has often been marked by key moments where funda-
mental physics is distilled to form theoretical frameworks. Our PT approach continues these efforts
by leveraging data representation from real-world problems. By reducing the dimensionality of la-
tent variable spaces and abstracting data correlations, this method has the potential to reveal new
theoretical insights, which will be a focus of ongoing research.

Figure 5: Neural networks analysis for latent space features and weights parameters. (a,b) Emer-
gence of physics in the latent space. The model that has learned the physics of crystal plasticity
shows low correlation with input variables (a), but high correlation with the key physical variable of
dislocation width in crystal plasticity (b). (c,d) The weights parameters distribution of ML models
trained on the spherical and ellipsoidal data for PT learning (c) and statistical learning (d).
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A APPENDIX

A.1 MD SIMULATIONS

In calculations of the γ surfaces, a supercell with lattice vectors of a ([110]), b ([112]), and c ([111])
for the fcc metal is prepared, which contains 64 atoms and 32 atomic layers along the z-axis. A
vacuum layer of 30 Å along the z-axis is added to avoid interactions between the periodic images
of lattice mismatch. The upper 16 atomic layers are rigidly shifted relative to the lower 16 layers
progressively along the z-axis, and independently in the x and y directions, respectively. Relaxation
of the atomic layers along the z direction is allowed after the displacement. The γ surfaces are
constructed using a 31× 31 grid,

γ(x, y) =
Em(x, y)− E0

S
, (5)

where Em(x, y) is the energies of the lattice with a mismatch at different displacements, d = (x, y),
E0 is the energy of the crystal in its equilibrium structure, and S is the area of the slip plane.

For the calculations of the Peierls stress, a supercell with ∼ 0.8×106 atoms (160 nm×2 nm×40 nm)
is prepared. For the fcc metal, lattice mismatch is created between two half-crystals by shifting
along the burgers vector by a/

√
2. Subsequent structural relaxation then creates an initial edge

dislocation (Bulatov & Cai, 2006). Molecular statics calculations are used to calculate the Peierls
stress identified as the minimum stress at which the motion dislocation is activated (Lim et al., 2015).
A step-wise strain increment of 10−5 is applied to the supercell. For bcc and hcp metals, similar
procedures are adopted but along different lattice orientations and for different slip systems. All
MD simulations are performed using the large-scale atomic/molecular massively parallel simulator
(LAMMPS) (Plimpton, 1995).

A.2 DFT CALCULATIONS

To validate the hypothesis and feasibility of the PT framework, we directly calculate the Peierls stress
in small systems (‘S’, with 244 atoms) using Cu as an example. The DFT calculations are carried out
using the Vienna ab initio simulation package (VASP) using the projector augmented wave (PAW)
method and a plane-wave basis (Blöchl, 1994; Kresse & Joubert, 1999). The generalized gradient
approximation (GGA) in Perdew-Burke-Ernzerhof (PBE) parametrization is used for the exchange-
correlation energy (Perdew et al., 1996). A supercell for Cu with sizes of 3.48 nm × 0.44 nm ×
1.90 nm containing an edge dislocation is prepared by structural relaxation using EAM. A cutoff
energy of 500 eV is chosen for the plane waves and a 1×5×1 (kx×ky×kz) Monkhorst-Pack k-grid
is used to sample the Brillouin zone (Monkhorst & Pack, 1976). The convergence of self-consistent
field (SCF) calculations using the plane-wave cutoff and k-grid meshing is assured to be below
1meV/atom. Similar to the setup in MD simulations, a step-wise strain increment of 4 × 10−3 is
applied. The Peierls stress is calculated as the minimum stress at which the dislocation is activated
to move.

A.3 MLFF CALCULATIONS

The neuroevolution-potential (NEP) framework is adopted to develop MLFFs for fcc Cu, Al, bcc
Fe, and hcp Ti (Fan et al., 2021; Song et al., 2023). The local atomic environments are encoded by
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two-body (radial) and three-body (angular) descriptors. A FNN with one hidden layer (30 neurons)
is used to predict atomic energies from these descriptors. For systems considering dislocation mo-
tion and plastic flow, configurations with applied strain and random perturbation of atomic positions,
surfaces, and stacking faults are included in the training set, and the energies of these configurations
are labeled using DFT calculations. Instead of using gradient descent-based back-propagation to
update the parameters of neural networks, the separable natural evolution strategy algorithm is im-
plemented in the training process to minimize the relatively complex loss functions (Fan et al., 2021;
Song et al., 2023). The well-trained MLFFs achieve a prediction accuracy of < 1 meV/atom in the
energy of atoms and < 50 meV/Å in the force on atoms. Atomic simulations using the well-trained
MLFFs accurately predict the γ surfaces, comparable to the DFT calculations but with three orders
lower computational cost.

A.4 MODELING MORPHOLOGICAL DEVELOPMENT

Brain development is regulated by genetic, molecular, cellular, and mechanical factors across mul-
tiple spatiotemporal scales (Klingler et al., 2021; Llinares-Benadero & Borrell, 2019b), and the
differential tangential growth hypothesis is commonly used (Tallinen et al., 2016; Klingler et al.,
2021; Llinares-Benadero & Borrell, 2019b). FEA can model morphological evolution during brain
growth at the continuum level (Tallinen et al., 2016; 2014; Darayi et al., 2022; Budday & Stein-
mann, 2018; Wang et al., 2021). In the TG model, the tangential growth of the outer gray matter is
faster than the inner white matter (Tallinen et al., 2016). Compression resulting from the mismatch
in deformation may then lead to mechanical instabilities of the brain surface, forming characteristic
sulci and gyri structures (Tallinen et al., 2014; 2016; Striedter et al., 2015; Darayi et al., 2022; Wang
et al., 2021; Budday & Steinmann, 2018; da Costa Campos et al., 2021).

In continuum modeling, the reference configuration can be mapped to the current one through the
deformation gradient tensor as

F = Fe · G, (6)
where Fe is the elastic deformation gradient and G is the growth term. In the TG model, the growth
tensor G is

G = gI + (1− g)n̂ ⊗ n̂, (7)
where n̂ is the surface normal of the reference configuration, I is the unit tensor, and

g = 1 +
αt

1 + e10(
y
T −1)

(8)

is the growth coefficient, where αt controls the magnitude of local cortical expansion. There is a
smooth transition from the surface of the gray matter layer to the white matter layer with a gradually
decreasing growth coefficient. y is the distance to the surface, and T is the thickness of the cortex.
The brain is modeled as a nonlinear neo-Hookean hyperelastic material, where the strain energy
density is

W =
µ

2
[Tr(FeFeT)J−2/3 − 3] +

K
2
(J − 1)2, (9)

where µ is the shear modulus, J is the determinant of Jacobian matrix, K is the bulk modulus. For
brain growth, a core-shell structure with a spherical geometry is used for its simplicity. The outer
radius is 10 mm and the shell thickness ranges from 0.03 to 1.63 mm, which are determined from
the measurements of abnormal and normal human cerebral cortices (Fischl & Dale, 2000; Wang
et al., 2021). 4-node tetrahedral elements with a density of 106 tetrahedra/cm3 for discretization
with the convergence confirmed (Tallinen et al., 2016; Wang et al., 2021). The bulk modulus of
the core and shell is 5 times the shear modulus (Tallinen et al., 2016). Following the experimental
evidence, the relative shear modulus (µshell/µcore) ranges from 0.65 to 1 (Budday et al., 2015).
The morphogenesis of brains is triggered by internal elastic stresses generated from differential
core-shell growth. The interaction between surfaces is modeled with an energy penalty via vertex-
triangle contact, which prevents the nodes from penetrating the faces of elements (Ericson, 2004).
An explicit solver is used to minimize the total (elastic and contact) energy of the quasi-static system.
The time step ∆t = 0.05a

√
ρ/K is set to ensure the convergence, where a is mesh size and ρ is

mass density (Belytschko et al., 2014).
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