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1 INTRODUCTION

Drug combination therapy offers advantages like synergy and reduced resistance (Tyers & Wright,
2019), but traditional experimental methods are costly and slow. Computational approaches improve
efficiency but lack explainability. In recent years, computational methods have boosted the efficiency
of prediction (Madani Tonekaboni et al. (2018); Hu et al. (2023); Rafiei et al. (2023); Wang et al.
(2025)), but their explainability still faces severe challenges (Azuaje (2017); Tsigelny (2019); Chen
& Huang (2024)).

Most modern computational methods use the molecular structure of a drug within a drug combi-
nation to build a graph, whose each node represents an atom while each edge represents a bond.
Models based on graph neural networks, such as DeepDDS (Wang et al., 2022) and ACDGNN(Yu
et al., 2023), capture features of the molecular structure. Meanwhile, Transformer-based methods
use the multi-head attention mechanism to structure the relations between atoms. However, due
to molecular graph heterogeneity, existing transformers amplify high-frequency noise and suppress
low-frequency signals critical to functional groups (Zhao et al. (2021); Shui & Karypis (2020)).

In response to these problems, we proposed the Differential Graph Transformer (DiffGraphTrans),
a framework that combines the differential filter method and the multi-head attention mechanism.
This model achieves the effective extraction and representation learning of molecular features by
eliminating noise in the calculation process of attention scores based on the parameter λ, realizes the
conservation of computing resources as much as possible while ensuring performance, and provides
an embedding with a biochemical basis. We believe that this is a key step towards interpretable
artificial intelligence-driven drug discovery.

2 METHODS

We used lung cancer-related effective drug combinations from DCDB 2.0 (Liu et al., 2014), C-
DCDB (Shtar et al., 2022) and DrugMAP 2.0 (Li et al., 2025) as the train and test data, which are
publicly available. We retrieved molecular structures in SMILES (Simplified molecular input line
entry system) format (Weininger, 1988). We used RDKit (Landrum, 2013) to obtain the number
of non-hydrogen atoms of the molecule and their spatial relationships to construct the graph data,
where the atoms are represented as the nodes and the edges represents bonds, with node features
(atom type, hydrogen count, etc.) encoded via one-hot vectors. The features N of all nodes in the
graph were stored in a tensor x and served as the input of the attention module.

The differential multi-head attention computes two sets of queries Q, keys K, and values V for the
features of each node on the graph, and calculates the difference between the two sets of Q, K, and
V through a learnable parameter λ (Ye et al., 2024). Among them, the lambdas of these three are
denoted as λq , λk and λv respectively, where the λ is used to ensure non-linear scaling, allowing
our model to amplify meaningful attention differences while suppressing noise, like noise-canceling
headphones and differential amplifiers. More details about the differential multi-head attention are
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introduced in more detail in the appendix. The tensor x whose shape is determined by the number
of nodes in the graph and the dimension of the node feature vector, stored features of nodes, and is
input into the multi-head attention module. Subsequently, the tensors calculated from the features
of two drugs in a combination are added, as the embedding of this combination, passed through
a three-layer fully connected layer, and the result is output. The structure of the entire model is
shown in Figure 1, and the code is now available at https://github.com/Endurernura/
Differential-Graph-Transformer.

Dexrazoxane

Anastrozole

  

  

 

 

 
 

 
 

   

 
 

 

 

      

 

      

𝑄𝑖

𝐾𝑖

𝑉𝑖

…

…

…

𝑁𝑖
𝐸𝑖
𝐹𝑖

Linear

Linear

Linear

Atom i

…

…

1

2

3

4

5

6

1

2

3

4

128

1

2

256

Fully Connected Layer

𝑄𝑗

𝐾𝑗

𝑉𝑗

…

…

…

𝑁𝑗
𝐸𝑗

𝐹𝑗

Linear

Linear

Linear

Atom j

Differential Attention RepresentationGraph Construction and Graph Transformer

Drug A

Drug B

Drug A + Drug B

synergies or not

Prediction

Figure 1: The structure of DiffGraphTrans.

The differential attention mechanism was first proposed in October 2024. Its earliest and only ap-
plication was in natural language processing tasks. It was used to reduce the “hallucination phe-
nomenon” of large language models and improve the accuracy of Transformers in time series pre-
diction tasks. We noticed that the heterogeneity of molecular graphs makes it equally prone to cause
the multi-head attention mechanism to amplify invalid information in molecules, increase the weight
of meaningless nodes, and thereby lead to a decline in its performance. In the main drug combina-
tion databases, the number of drug combinations for a certain disease is often relatively small. When
the model pays insufficient attention to key functional groups , its performance in the prediction task
will deteriorate. We processed the original graph data, artificially changed the positions of some
bonds and functional groups, and conducted a new round of training to simulate the situation when
the model is used to develop new drugs or verify whether drugs or combinations that do not exist
in the data set are synergistic. We compared our model with other methods, such as Transformer,
Support Vector Machine(SVM), Random Forest(RF), and XGBoost. The experimental results are
shown in Table 1.

3 DISCUSSION AND FURTHER WORK

The results of the experiment prove that the multi-head differential attention module is crucial to en-
hance the model’s performance. Generally speaking, graph-based neural networks and drug molec-
ular structures only serve as a part in predicting drug combinations or drug-drug interaction events.
DiffGraphTrans addresses the high - noise problem in molecular representation under few - shot
scenarios through differential attention, offering new ideas for the generalization of biological data.
Future work will integrate multi-omics data (e.g., genomic profiles) and extend to multi-drug pre-
dictions via hypergraphs.

MEANINGFULNESS STATEMENT

A “meaningful representation of life” in drug discovery requires embeddings that reflect biochemi-
cal mechanisms and functional group interactions. Our work contributes by integrating differential
attention into graph Transformers, which dynamically suppresses molecular noise and amplifies key
functional groups (e.g., hydroxyl bonds). This enhances both prediction accuracy and interpretabil-
ity, bridging AI-driven models with actionable biological insights. By linking attention weights to
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biochemical relevance, DiffGraphTrans advances the design of transparent AI systems for precision
medicine.
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A APPENDIX

A.1 DIFFERENTIAL TRANSFORMER

The differential attention is defined as

DiffAttn(X) = (softmax(
Q1K

T
1√

dn
)− λ · softmax(

Q2K
T
2√

dn
))V

where λ is parameterized by

λ = exp(λq1 · λk1)− exp(λq2 · λk2) + λinit

and the multi-head differential attention is defined as

headi = DiffAttn(X;W q
i ,W

K
i ,WV

i , λ)

headi = (1− λinit) · LN(headi)

Multihead(X) = Concat(head1, . . . ,headn) ·WO
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Figure 2: The differential attention heatmaps of drugs.

Figure 3: The differential attention heatmaps of drugs, when attention scores are standardized.

where WO is a learnable projection matrix, and the LN(·) uses RMSNorm (Zhang & Sennrich,
2024) for each head to normalize.

In the model presented in the original “Differential Transformer”, rotational position encoding
(RoPE,Su et al. (2024)) and optimization methods including Apex and flash attention(Dao et al.,
2022) were used. Given that there is no problem of very long sequences in our prediction task,
in order to reduce the complexity of the model, compared to the traditional Transformer structure,
we only modified the attention part and calculated the attention score according to the differential
multi-head attention method proposed in the article.

To present the performance of the DiffGraphTrans, We selected four drugs, namely Paclitaxel, Ol-
mutinib, Erlotinib, and Pemetrexed, respectively, as demonstrations to showcase the model’s per-
formance in feature extraction. The attention heatmaps are shown in Figure 2. Also, we conducted
a z-score standardization on the attention scores of the drugs. The heatmaps of the standardized
scores are presented as Figure 3. From the top to the bottom of the figures 2 and 3, they represent
Paclitaxel, Olmutinib, Erlotinib, and Pemetrexed respectively.
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Palitaxel is a complex drug, which can only be derived from nature before, and can now be fully
synthesized artificially. Its structure contains a special part called Taxane Ring, and a hydroxyl group
ad a carbamate group, which are on the side chain and can form hydrogen bonds with proteins.
Therefore, the paclitaxel can bind to β - tubulin and form hydrogen bonds, inhibiting its function,
resulting in failed chromosome segregation and apoptosis (Weaver, 2014).

Olmutinib is a third - generation epidermal growth factor receptor - tyrosine kinase inhibitor (EGFR
- TKI), belonging to the same type of drugs as afatinib. Its chemical structure contains a Pyrimidoin-
dole Core and an Acrylamide Group, enabling it to interact with EGFR, inhibit the kinase activity
of EGFR mutants, and block the signaling pathway (Soria et al., 2018) .

Erlotinib is a first - generation epidermal growth factor receptor - tyrosine kinase inhibitor (EGFR
- TKI). Its chemical structure contains a Quinazoline Core, allowing it to competitively bind to the
ATP - binding site of the EGFR kinase, blocking the signaling pathway and inhibiting the prolifera-
tion of tumor cells. It is worth noting that there are certain differences between its structure and that
of olmutinib (Steins et al., 2018) .

Pemetrexed is a multi-target, anti-metabolic and anti-tumor drug. Its structure contains the
Pyrrolo[2,3 - d]pyrimidine and Glutamate moiety. It can interact with enzymes and targets such
as thymidylate synthase (TS), dihydrofolate reductase (DHFR), and glycinamide ribonucleotide
formyltransferase (GARFT), and exhibits broad spectrum anti - tumor activity (Mok et al., 2017).

A.2 DATABASE

In this article, we chose Drug Combination Database 2.0 (DCDB 2.0), Continuous-Drug Combi-
nation Database (C-DCDB), and DrugMAP 2.0 as the training and validation databases. Since all
the provided drug combinations in these databases are synergistic drug combinations, we manually
selected the drug combination methods that did not exist in all the databases as artificial negative
samples for model training. A total of approximately 350 artificial negative samples were added,
accounting for approximately 20% of the total number of samples.

The DCDB is the first database dedicated to collecting and organizing information on drug combi-
nations, containing 1,363 drug combinations involving 1,735 individual drugs. This study focuses
on the subset of drug combinations related to lung cancers in the DCDB. We excluded the drug
combinations with the classification of “Effective type: Need further study” or containing the clas-
sification of “Not approved” in the DCDB because the experimental results of these combinations
are unclear.

The C-DCDB encompasses over 30,000 drug combinations and 4,000 related drugs, and this
database is updated in real time. The data we used was downloaded on October 9, 2024. The
data in the database mainly come from ClinicalTrials.gov, the FDA Orange Book, and patent liter-
ature. In our research, we selected the drug combinations which treats lung cancer and include 395
combinations and 119 different kinds of drugs.

The DrugMAP 2.0 (DrugMAP 2025) is a comprehensive platform designed to map drug combina-
tions within biological networks, with a particular emphasis on drug combination therapies. This
database contains more than 20,831 drug combinations covering various diseases and is updated
regularly. The data we used was updated in January 2025. In this study, we selected 1,543 drug
combinations related to the treatment of lung cancer, which included 111 different drugs. DrugMAP
2.0 offers extensive experimental data on drug synergy, molecular mechanisms, and the efficacy of
various drug combinations, making it a valuable resource for both research and clinical applications.

A.3 DESCRIPTION OF TRAINING PARAMETERS

During the Transformer and DiffGraphTrans training process, we trained 40 epochs for each model,
using 1800 drug combinations,and set the parameters as: head=8,learning rate=0.01, and the initial
learning rate is 0.01, adjusted in real time. The batch size for mini batch training is 32, and the
dimension of the hidden layer is 32. Specifically, we set the λinit of DffGraphTrans as 0.8.

For the setting of the λinit ,we tried several different parameters. It is certainly that when the λinit

is set as 0.8, the model has the best performance. It is worth noting that this is consistent with the
performance of the differential transformer in the original article.
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Table 1: Experimental outcomes with/without noise
Condition Model ROC AUC PR AUC ACC BACC PREC TPR F1
No
Noise

Ours 0.9051 0.9612 0.8796 0.7463 0.8801 0.9666 0.9210

Transformer 0.9011 0.9589 0.8793 0.7486 0.8797 0.9803 0.9269
RF 0.7932 0.8910 0.8740 0.7932 0.8983 0.9436 0.9201
SVM 0.8553 0.9188 0.8520 0.7994 0.9094 0.8968 0.9030
XGBoost 0.8888 0.8907 0.7476 0.7270 0.9155 0.7598 0.8293

With
Noise

Ours 0.8932 0.9580 0.8787 0.7471 0.8779 0.9817 0.9265

Transformer 0.8806 0.9544 0.8645 0.7324 0.8729 0.9747 0.9206
RF 0.7424 0.8005 0.8440 0.6762 0.8742 0.9315 0.9017
SVM 0.6223 0.8512 0.7407 0.6722 0.8598 0.8124 0.8350
XGBoost 0.6650 0.7601 0.7368 0.6550 0.7690 0.7063 0.7732

A.4 EXTENDED ANALYSES

In our experiments, the predictive performance of the DiffGraphTrans compared to the Transformer,
Support Vector Machine(SVM), Random Forest(RF), and XGBoost in two environments, presented
as Table 1, clearly demonstrate the differences in performance between scenarios with and without
noise. In table 1, we represent the area under the receiver operating characteristic curve using
ROC AUC, represent the area under the precision curve using PR AUC, represent the accuracy and
balanced accuracy using ACC and BACC, represent precision using PREC, represent true positive
rate or recall using TPR. F1 is the harmonic mean of precision and recall.

In the noise experiment, we randomly deleted 30% of the points and the connected edges in the
graph. For some special chemical structures, such as benzene rings, we chose to skip them in the
deletion method to ensure that the chemical formula after the operation conformed to the require-
ments of the kekule formula.
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