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Abstract
We consider the problem of quantifying the
amount of influence one agent can exert on an-
other in the setting of multi-agent reinforcement
learning (MARL). As a step towards a unified ap-
proach to express agents’ interdependencies, we
introduce the total and state influence measure-
ment functions. Both of these are valid for all
common MARL systems, such as the discounted
reward setting. Additionally, we propose novel
quantities, called the total impact measurement
(TIM) and state impact measurement (SIM), that
characterize one agent’s influence on another by
the maximum impact it can have on the other
agents’ expected returns and represent instances
of impact measurement functions in the average
reward setting. Furthermore, we provide approxi-
mation algorithms for TIM and SIM with simul-
taneously learning approximations of agents’ ex-
pected returns, error bounds, stability analyses un-
der changes of the policies, and convergence guar-
antees. The approximation algorithm relies only
on observing other agents’ actions and is, other
than that, fully decentralized. Through empirical
studies, we validate our approach’s effectiveness
in identifying intricate influence structures in com-
plex interactions. Our work appears to be the first
study of determining influence structures in the
multi-agent average reward setting with conver-
gence guarantees.

1. Introduction
Understanding the mutual influence among agents within
a multi-agent system is crucial for the effective learning of
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strategies in multi-agent reinforcement learning (MARL).
In MARL, agents operate within a shared environment, with
each agent’s action influencing the environment’s state and
the rewards received by all agents. Our work focuses on pro-
viding a unified, interpretable, and measurable framework
for quantifying influence among agents in such settings.

Previous studies in MARL have tackled influence from
various angles, such as minimizing collaboration needs
(Guestrin et al., 2002a), enhancing exploration (Wang et al.,
2020), or optimizing communication strategies (Jaques et al.,
2018). They focus on analyzing their method’s effect on the
system’s objective without explicitly addressing the influ-
ence measurement’s common theoretical aspects. Further-
more, the mentioned methods to measure influence among
agents are exclusively focusing on the discounted reward
setting (Sutton & Barto, 2018). As such, there is a lack of re-
search related to influence in the average reward setting (Put-
erman, 1994), which is particularly relevant for real-world
applications like energy network management(Callaway &
Hiskens, 2011), vehicle formation control (Fax & Murray,
2004), and repeated auctions (Hoen et al., 2005).

The existing approaches mentioned above seek to resolve
specific problems, such as a reduction of the joint action
space by using a proxy of agents’ influence on one another.
While our method can be used for these applications as well,
the main goal of our work is to address the fundamental
question of how to reliably detect the inherent influence
structure of an environment given a specific policy.

The main contributions of our work are the following. We
introduce a unified approach to express a multi-agent sys-
tem’s inherent influence structure, regardless of the reward
setting and overall objective. We then build upon this foun-
dation by introducing the total impact measurement and
state impact measurement. These measurements quantify
the overall and state-dependent influence structure, respec-
tively, in the multi-agent average reward setting. In addition,
we provide decentralized algorithms with stability analysis
and convergence guarantees along with complementary em-
pirical evaluations. To the best of our knowledge, our work
is the first study of determining influence structures in the
multi-agent average reward setting with provable conver-
gence guarantees.
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2. Related Work
The exploration of influence in multi-agent systems repre-
sents a complex and dynamic research area. Historically,
approaches like multi-agent influence diagrams (MAIDs)
(Koller & Milch, 2003) and influence-based abstraction
(Oliehoek et al., 2021) have sought to transition the focus
from strategy-centric to influence-centric search paradigms,
especially when the latter offers a less complex alternative.
While powerful, these models often present significant chal-
lenges in construction and practical solvability, due to the
inherent complexity of capturing all aspects of influence in
such systems.

Recognizing these limitations, our work, along with others
in the field, pivots towards a more manageable representa-
tion of system interdependencies. We opt for a simplified yet
effective model, avoiding the exhaustive detailing of every
interaction. A notable method in this regard are coordination
graphs (Guestrin et al., 2002a), which simplify influence
into a binary classification, indicating relevance between
agents’ actions. This concept, while efficient, sometimes
falls short in conveying nuanced relationships, as it reduces
interactions to mere binary terms.

In response to these shortcomings, a third strand of research
has emerged, focusing on scalar representations of influ-
ence. Works like Wang et al. (2020)’s Value of Interaction
propose innovative methods to quantify inter-agent depen-
dencies. Our approach aligns with this trend but diverges
in its avoidance of empirical estimations of state transition
probabilities, a common dependency in similar models.

Unique to our methodology is the provision of theoretical
error guarantees for our approximations, a feature conspic-
uously absent in other scalar representation models (Wang
et al., 2021; Jaques et al., 2018). Furthermore, we con-
sciously eschew reliance on often inaccessible data types
like counterfactual actions, setting our work apart in the
realm of practical applicability.

3. Background
This section introduces the multi-agent Markov decision
process (MDP) in the infinite horizon average reward setting.
It is the natural extension of the single-agent case introduced
by Puterman (1994), and is also known as Markov game
(Littman, 1994). In the second part, we present some results
from stochastic approximation (Borkar, 2008), which we
need to prove our main results.

3.1. Multi-Agent MDP

We consider a system of N agents operating in a shared
environment with discrete time steps t ∈ N. The set of
agents is denoted by N . The environment can be described

by a multi-agent MDP, which we specify in the following
definition.

Definition 3.1. A multi-agent MDP is defined by a tu-
ple (S, {Ai}i∈N , P, {ri}i∈N ), where N = {1, . . . , N}
denotes the set of agents, S is a finite state space which
is shared by all agents, A =

∏
i∈N Ai is the joint action

space, where Ai denotes the set of actions of agent i. Addi-
tionally, P : S×A×S → [0, 1] is the MDP’s state transition
probability. There exist functions Ri : S × A → R with
Ri(s, a) = E[rit+1|st = s, at = a], which are denoted as
the individual reward functions. Furthermore, the states and
the joint actions are observable by every agent.

For every time step, each agent chooses its action according
to its policy πi, which is a probability distribution over Ai.
The joint policy is given by π(s, a) =

∏
i∈N πi(s, ai) for

every s ∈ S and a ∈ A. For a subset of agents Bj =

{bj1, . . . , b
j
k} ⊂ N we denote aBj = (ab

j
1 , . . . , ab

j
k), and

−Bj = N \Bj . We are concerned with the average reward
setting. The individual expected time-average reward 1 of
agent i ∈ N is given by

J i(π) := lim
T→∞

1

T

T−1∑
t=0

E
[
rit+1

]
. (1)

To quantify the effects of a specific state and joint action,
we define the relative individual state-action function for
agent i ∈ N , state s ∈ S, and joint action a ∈ A as

Qi
π(s, a) :=

∑
t≥0

E
[
rit+1 − J i(π)|s0 = s, a0 = a

]
. (2)

Consider states s, s′ ∈ S. The probability of transition-
ing from state s to s′ given a joint policy π is given by
Pπ(s

′|s) =
∑

a∈A π(s, a) · P (s′|s, a). This induces a
Markov chain over the states {st}t≥0 with transition matrix
Pπ ∈ R|S|×|S|. We make the following assumption on this
Markov chain and the joint policy.

Assumption 3.2. The policies satisfy πi(s, a
i) > 0 for

every i ∈ N , s ∈ S and ai ∈ Ai. Moreover, for every joint
policy π the induced Markov chain over the states {st}t≥0

is ergodic, i.e., it is irreducible and aperiodic.

By Seneta (2006, Theorem 4.1, p.119), there exists a unique
stationary distribution for any ergodic Markov chain. We
denote the stationary distribution of the Markov chain
over the states by dπ. Given some states s, s′ ∈ S and
joint actions a, a′ ∈ A, the probability to transition from
(s, a) to (s′, a′) can be expressed by PA

π (s′, a′|s, a) =

1Other works, such as Mahadevan (1996), adopt a different def-
inition where the sum and expectation are interchanged. However,
due to the linearity of expectation, these definitions are equivalent.
Complications might only emerge if the expectation and the limit
were to be swapped, which is not the case here.
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P (s′|s, a) · π(s′, a′). This induces a Markov chain over
the states and actions {(st, at)}t≥0 with transition matrix
PA
π ∈ R|S|·|A|×|S|·|A|. Note that this Markov chain is er-

godic (Zhang et al., 2018) and its stationary distribution is
given by dAπ (s, a) = dπ(s) · π(s, a), for every s ∈ S and
a ∈ A. The existence of a stationary distribution simplifies
the study of the MDP immensely (Puterman, 1994). One
property that we use throughout this paper is a simplified
representation of averages of functions that depend on an
ergodic Markov chain (Zhang et al., 2018). For example,
one can represent the individual long-term return defined in
Equation 1 by

Jj(π) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) ·Rj(s, a). (3)

3.2. Stochastic iteration approximation

Our main results use the following statements of the field
of stochastic approximation iteration and motivate our al-
gorithms’ design. We state here a special case of Corollary
8 and Theorem 9 on pages 74-75 of Borkar (2008). These
special cases have been formulated by Zhang et al. (2018).
Consider an n-dimensional stochastic approximation itera-
tion

xt+1 = xt + γt [h (xt, Yt) +Mt+1 + βt+1] , t ≥ 0 (4)

where γt > 0 and {Yt}t≥0 is a Markov chain on a finite set
A.

Assumption 3.3. We make the following assumptions:

(a) h : Rn ×A → Rn is Lipschitz in its first argument;

(b) {Yt}t≥0 is an irreducible Markov chain with stationary
distribution π;

(c) The stepsize sequence {γt}t≥0 satisfies
∑

t≥0 γt = ∞
and

∑
t≥0 γ

2
t < ∞;

(d) {Mt}t≥0 is a martingale difference sequence, satisfy-
ing for some K > 0 and t ≥ 0

E
(
∥Mt+1∥2 | xτ ,Mτ , Yτ ; τ ≤ t

)
≤ K ·

(
1 + ∥xt∥2

)
;

(5)

(e) The sequence {βt}t≥0 is a bounded random sequence
with βt → 0 almost surely as t → ∞.

If Assumption 3.3 holds, then the asymptotic behavior of
the iteration in Equation 4 is related to the behavior of the
solution to the ordinary differential equation (ODE)

ẋ = h̄(x) =
∑
i∈A

π(i)h(x, i). (6)

Suppose the ODE in Equation 6 has a unique globally
asymptotically stable equilibrium x∗, then we have the fol-
lowing theorems connecting this solution to the original
algorithm 4.

Theorem 3.4. Under Assumption 3.3, if supt≥0 ∥xt∥ < ∞
a.s., we have xt → x∗

Theorem 3.5. Under Assumption 3.3, suppose that
limc→∞

h̄(cx)
c = h∞(x) exists uniformly on compact sets

for some h∞ ∈ C (Rn). If the ODE ẏ = h∞(y) has the ori-
gin as the unique globally asymptotically stable equilibrium,
then supt≥0 ||xt|| < ∞ almost surely.

4. Influence Representations
The present work aims to specify and detect influence struc-
tures among agents in a multi-agent system. For this pur-
pose, we first specify dependent and independent agents,
following the definition of Guestrin et al. (2002b). After-
ward, we introduce a novel representation framework of
agents’ influence structures, which is valid for all common
reward settings and MDP formulations.

4.1. Dependencies and Independencies in Multi-Agent
Systems

Given a state s ∈ S, one agent’s actions are relevant for
another, if these directly influence the reward of the other
agent, or affect the state for the other agent and, therefore,
influence the reward indirectly. Both effects are captured
in the individual state-action functions. Let Bj ⊂ N be
a subset of agents and j ∈ N , then agent j is exclusively
dependent on the agents in Bj in state s ∈ S if

Qj
π(s, a

Bj

, a−Bj

) = Qj
π(s, a

Bj

) for all a ∈ A. (7)

If this holds for all s ∈ S, then agent j acts completely
independent in the MDP from agents in B−j .

4.2. Influence Measurement Functions

A binary representation of the dependency group Bj is given
by so-called coordination graphs (Guestrin et al., 2002b).
However, strict independence as defined above often does
not hold, which leads to large Bj’s or even Bj = N . Sev-
eral approaches demonstrated that one can approximate the
individual state-action functions quite well by assuming
some agents to be independent of each other (Sunehag et al.,
2018; Böhmer et al., 2019; Zhang & Lesser, 2013). That
means Qj

π(s, a) ≈ Qj
π(s, a

B̂j

) for B̂j ⊊ Bj . That indi-
cates that not every agent in Bj has equal influence on agent
j’s individual state-action function. Therefore, one needs a
representation that allows a more fine-grained distinction of
influence to express these differences.

There is no single quantity to express influence in a multi-
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agent system, as it depends on the specific use case. How-
ever, the study of different kinds of influence structures
offers great value as a descriptive inherent property of multi-
agent systems. Therefore, we propose a general framework
to express influence structures in the form of abstract func-
tions that are only bound by the independence criterion from
Equation 7. We introduce an expression of state-dependent
and global influence structures with the so-called state and
total influence measurement functions.

Definition 4.1 (State and total influence measurement func-
tions). Let Ω be an arbitrary set, N a set of N agents with
joint policy π =

∏
j∈N πj , and individual state-action func-

tions Q1
π, . . . , Q

N
π . Furthermore, let ΨS ,Ψ : S × Ω →

[0,∞)N×N be matrix-valued functions. For any s ∈ S and
ω ∈ Ω an entry ΨS

i,j(s, ω) > 0 if and only if there exist
actions a−i ∈ A−i, ai, âi ∈ Ai such that Qj

π(s, a
−i, ai) ̸=

Qj
π(s, a

−i, âi), then ΨS is called a state influence measure-
ment function of the system of agents N . Similarly, if for
any ω ∈ Ω an entry Ψi,j(ω) > 0 if and only if there exist
a state s ∈ S and actions a−i ∈ A−i, ai, âi ∈ Ai such that
Qj

π(s, a
−i, ai) ̸= Qj

π(s, a
−i, âi). Then, the function Ψ is

called a total influence measurement function of the system
of agents N .

Note that the definitions of state and total influence measure-
ment functions are valid for any setting with a well-defined
individual state-action function. Therefore, it holds for the
average reward setting, which we focus on in our later anal-
yses, but also for the discounted reward setting (Sutton &
Barto, 2018). Furthermore, it holds for setups with infinite
state and action spaces. The set Ω offers a parametrization
of an influence measurement, for example, in the form of a
prior that holds expert knowledge about the environment.

The value of an influence measurement function’s knowl-
edge is contingent on its semantic meaning. Nonetheless,
there are specific interpretations that are valid for any in-
fluence measurement function. For a total influence mea-
surement function, one can assume that for every agent j
there exists at least one agent i ∈ N such that the individ-
ual state-action function Qj

π is dependent on the actions of
agent i. Otherwise, no action in any state in the system
could influence the reward of agent j in any way. Note that
i = j is allowed here. That means that the matrix Ψ(ω)
has a positive entry in any row and column. Therefore, one
can always get either a row- or column-stochastic matrix
Ψ(ω) from Ψ(ω) by respectively normalizing the rows or
columns.

For a column stochastic Ψ(ω), one can interpret the column
j as a probability distribution of the influence the agents in
N can have on agent j’s state-action function. In this case,
one can deduce a ranking depending on Ψ, which means
one can, e.g., determine which agents should be in the coor-
dination group Bj . The entries in row i in a row-stochastic

matrix Ψ(ω) can, on the other hand, be interpreted as a
probability distribution of agent i’s influence on the system
of agents according to Ψ. This can be used, for example,
in a cooperative setting, where the objective is to maximize
the long-term return of the whole system. An entry Ψi,j(ω)
describes the influence agent i has on agent j according to
Ψ. If this entry is large compared to the other ones in the
row, then agent i should pay attention to its effects on agent
j’s expected reward when taking its actions.

The same deductions are valid for a state influence measure-
ment function ΨS , although the assumption of a positive
entry in every row and column does not necessarily hold.

5. Influence Measurement Functions in the
Average Reward Setting

We propose novel quantities to measure influence among
agents, as the maximum impact an agent can have on the
individual state-action function of another. We show that
the proposed quantities are instances of a state and total
influence measurement function respectively, and give ap-
proximation algorithms with convergence guarantees.

5.1. The Total Impact Measurement

The core of the proposed measurements consists of the
impact sample, which quantifies the maximum impact one
agent can have on the return of another given a specific state
and joint action.
Definition 5.1 (Impact sample). Let π =

∏
i∈N πi be a

joint policy of a set of agents N , which are acting in a multi-
agent MDP, and denote with Qj

π the individual state-action
function for agent j. For a state s ∈ S and joint action
a ∈ A, we define the impact sample of agent i on agent j as

U i→j
π (s, a) := max

ai∈Ai
Qj

π(s, a
−i, ai)− min

ai∈Ai
Qj

π(s, a
−i, ai).

(8)

The impact sample for agent j on agent i given a specific
s ∈ S and a joint action a ∈ A indicates how much agent
j can influence the expected long-term return of agent i.
Averaging this over all possible states and joint actions
yields the total impact measurement.
Definition 5.2 (Total impact measurement). Let π =∏

i∈N πi be a joint policy of the agents and {(st, at)}t≥0

the induced Markov chain over the states and actions in a
multi-agent MDP. The total impact measurement (TIM) of
agent i on agent j, for i, j ∈ N , is then defined as

TIi→j(π) := lim
T→∞

1

T

T−1∑
t=0

E
[
U i→j
π (st, at)

]
. (9)

Note that under Assumption 3.2, there exists a stationary
distribution over the states and actions dAπ = dπ · π, where
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dπ is the stationary distribution over the states. Then one
can represent TIM by

TIi→j(π) =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · U i→j
π (s, a). (10)

As the stationary distribution dAπ is strictly positive and the
impact samples U i→j

π are greater or equal to zero, we see
that TIi→j(π) = 0 if and only if U i→j

π (s, a) = 0 for all
s ∈ S, a ∈ A. When we observe Equation 8, we see that
TIi→j(π) = 0 if and only if Qj(s, a−i, ai) = Qj(s, a−i, âi)
for all s ∈ S, a−i ∈ A−i and ai, âi ∈ Ai. Therefore, the
constant matrix-valued function TIπ : Ω → [0,∞)N×N ,
with entries given by (TIπ)i,j (ω) = TIi→j(π), is a total
influence measurement function by Definition 4.1.

That means, if we can estimate TIM reliably, we obtain
an unbiased total influence measurement function. Its se-
mantic meaning is determined by the impact sample, i.e.,
it represents the maximum impact of an agent on the ex-
pected long-term return of another. In general, one does not
know the individual state-action functions, but only some
approximations of them. We denote an approximation of
an individual state-action function by Q

j

π and a resulting
formulation of an approximated TIM using Equation 10 by
TI

i→j
π . The following theorem gives an error bound between

the approximated TIM and the true TIM, depending on the
individual state-action functions’ approximation error. We
refer to Section A.1 for the proof.

Theorem 5.3. The error of the approximated TIM to the
true one of agent i on agent j satisfies∣∣∣TIi→j(π)− TI

i→j
(π)
∣∣∣ ≤ 2 ·

∥∥∥Qj
π −Q

j

π

∥∥∥
∞
. (11)

This bound shows that if we can determine TI
i→j

(π), we
get a good approximation of TIM provided that the approxi-
mation error of Q

j

π is small. For an approximation function,
we consider parametrized function classes. Denote with
Qj

π : S × A × Rkj → R the individual state-action func-
tion of agent j, parametrized by ηj ∈ Rkj for kj ∈ N.
We denote the parametrized impact samples and TIM by
U i→j
π (s, a, ηj) and TIi→j(π, ηj) respectively.

Our proposed approximation algorithm of TIM works to-
gether with a simultaneously learning state-action function
approximation algorithm, which provides an iteration se-
quence {ηjt }t≥0. For our later results, we state two mild
assumptions on the iteration algorithm creating {ηjt }t≥0 and
the parametrized individual state-action functions.

Assumption 5.4. The parametrized state-action function
Qj(s, a, η) is continuous in η ∈ Rkj , for every j ∈ N ,
s ∈ S, and a ∈ A.

Assumption 5.5. Let j ∈ N . We assume that the iteration
sequence {ηjt }t≥0 is almost surely bounded, i.e., there exists

a K > 0 such that supt≥0

∥∥∥ηjt∥∥∥ < K < ∞ almost surely.

Additionally, there exists an ηj,∗ ∈ Rkj such that ηjt → ηj,∗

almost surely.

The above assumption essentially demands that the itera-
tion algorithm, to approximate the individual state-action
function, converges at some point. The considered iteration
algorithm of TIM with parametrized individual state-action
functions is given by

νi→j
t+1 = (1− αt)ν

i→j
t + αt · U i→j

π (st, at, η
j
t ), (12)

where {αt}t≥0 is a stepsize sequence satisfying part (c)
of Assumption 3.3. With this, we can now state our main
result.

Theorem 5.6. Under Assumptions 3.2, 5.4, and 5.5, the iter-
ation defined in Equation 12 has the following convergence
property

νi→j
t+1 → TIi→j(π, ηj,∗π ) almost surely. (13)

Proof. With defining Mt+1 := 0 and

h(νi→j
t , (st, at)) := U i→j

π (st, at, η
j,∗
π )− νi→j

t ,

βt+1 := U i→j
π (st, at, η

j
t )− U i→j

π (st, at, η
j,∗
π ),

the iteration algorithm

νi→j
t+1 = νi→j

t + αt ·
(
h(νi→j

t , (st, at)) +Mt+1 + βt+1

)
is equal to the iteration algorithm defined in Equation (12).
We consider a slightly different algorithm first to show the
convergence of this iteration algorithm. By Assumption
5.5, the sequence {ηjt }t≥0 is almost surely bounded. That

means there exists K > 0 such that P (supt≥0

∥∥∥ηjt∥∥∥ <

K) = 1. Define the error term β̃t := I{supt≥0 ∥ηj
t∥<K} · βt,

where IA denotes the indicator function on a set A. Define
the following iteration algorithm with the restricted error
sequence β̃t

ν̃i→j
t+1 := ν̃i→j

t + αν,t ·
(
h(ν̃i→j

t , (st, at)) + β̃t+1

)
.

(14)

First, we check that parts (a) to (e) from Assumption 3.3
hold. The function h : Rkj × S × A → R is Lipschitz
continuous in its first argument, as it is even linear in its
first argument, i.e., part (a) holds. By Assumption 3.2, the
Markov chain {(st, at)}t≥0 is ergodic, which means that
it satisfies part (b). The stepsizes {αt}t≥0 satisfy part (c).
As the sequence {Mt}t≥0 is the zero sequence, it trivially
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satisfies part (d). Finally, for part (e), it remains to show
that {β̃t}t≥0 is a bounded random sequence that converges
to zero almost surely. For this, note that ηjt is uniformly
bounded on the set {supt≥0

∥∥∥ηjt∥∥∥ < K}. By Assumption

5.4, the parametrized impact samples U i→j
π (s, a, ηj) are

continuous in ηj . In particular, as it is a continuous function
on the compact set {ηj ∈ Rkj :

∥∥ηj∥∥ < K}, it is bounded.
Therefore, together with the convergence of ηjt → ηj,∗π ,
{β̃t}t≥0 is a bounded random sequence that converges to
zero. Therefore, Assumption 3.3 is satisfied for the iteration
algorithm from Equation (14). Next, consider the ODE

ν̇i→j =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · h
(
νi→j , (s, a)

)
= −νi→j +

∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · U i→j
π (s, a, ηj,∗)

and define the right-hand side as f(νi→j). νi→j =∑
s∈S dπ(s)

∑
a∈A π(s, a)U i→j

π (s, a, ηj,∗) is an equilib-
rium solution to the ODE above, and as f is Lipschitz
continuous, we get by the theorem of Picard-Lindelöf (Ad-
kins & Davidson, 2012, p.89), that this solution is unique.
Define the function fc(ν

i→j) = c−1 · f(cνi→j). Then
limc→∞ fc(ν

i→j) = −νi→j =: f∞(νi→j) exists and the
ODE ν̇i→j = f∞(νi→j) has the origin as unique asymp-
totically stable equilibrium. Therefore, by Theorem 3.5,
supt≥0 ||ν

i→j
t || < ∞ almost surely. Using Theorem 3.4

gives

ν̃i→j
t → TIi→j(π, ηj,∗π ) a.s.

To extend this result to the original iteration sequence, ob-
serve that

{
supt≥0

∥∥∥ηjt∥∥∥ ≥ K
}

is a null-set.

5.2. The State Impact Measurement

TIM averages the maximum impact one agent can have on
the individual state-action function of another over all possi-
ble transitions. However, given a specific state, some agents
might have a significant impact on the individual state-action
functions of others, even though their average influence is
small. Therefore, one would like to quantify state-dependent
influence structures among the agents. Therefore, we in-
troduce the state impact measurement, which constitutes a
state influence measurement function by Definition 4.1.

Definition 5.7 (State impact measurement). Let π be a
joint policy of the N agents over the joint action space
A. Take the state s ∈ S and denote the Markov chain
over the actions in state s by {asts}ts≥0. The state impact
measurement (SIM) of agent i on agent j, for i, j ∈ N is
defined as

SIi→j(s, π) := lim
T s→∞

1

T s

T s−1∑
ts=0

E
[
U i→j
π (s, asts)

]
. (15)

Note that SIM only considers the Markov chain over the
actions {asts}ts≥0 given a specific state s ∈ S. Hence, one
ignores the MDP’s state transition probabilities and only
considers the distribution over the joint actions for a state s.
As we only consider the actions for a given state s, π(s, ·)
is the stationary distribution of the Markov chain {asts}ts≥0.
Therefore, one can represent SIM by

SIi→j(s, π) =
∑
a∈A

π(s, a) · U i→j
π (s, a). (16)

Under Assumption 3.2, one can record the instances of
{at}t≥0 for each state s in a tabular fashion, which allows
sampling from {asts}ts≥0. With this insight, one can observe
that the theoretical results from Section 5.1 carry over with
only slight variations in the proofs. Therefore, the detailed
proofs for the following statements are given in Sections
A.3 and A.4.

First, we give an error bound similar to the statement from
Theorem 5.3. We denote the approximated SIM by SI

i→j

using the approximated individual state-action function Q
j

π .

Theorem 5.8. Let s be in S . The error of the approximated
SIM in s to the true one of agent i on agent j satisfies∣∣∣SIi→j(s, π)− SI

i→j
(s, π)

∣∣∣ ≤ 2 ·
∥∥∥Qj

π(s, ·)−Q
j

π(s, ·)
∥∥∥
∞
.

We denote the parametrized SIM by SIi→j(·, π, ηj) for
i, j ∈ N and ηj ∈ Rkj . The tabular approximation al-
gorithm is

νi→j
ts+1(s) = (1− αts)ν

i→j
ts (s) + αts · U i→j

π (s, asts , η
j
t ),
(17)

where {αts}ts≥0 denotes a stepsize sequence satisfying part
(c) of Assumption 3.3.

Theorem 5.9. Under Assumptions 3.2, 5.4, and 5.5, the iter-
ation defined in Equation 17 has the following convergence
property for every s ∈ S

νi→j
ts+1(s) → SIi→j(s, π, ηj,∗π ) almost surely. (18)

5.3. Continuity in Policy Changes

In the preceding analysis, we considered the joint policy π to
be static. We now extend this to dynamic scenarios, examin-
ing how TIM and SIM respond to changes in the joint policy
π. This investigation is crucial for practical applications,
where stability and predictability of these measurements are
vital under varying policies.

We consider parameterized functions to track changes in
the policies. Let θj ∈ Rmj for mj ∈ N and πj

θj be the

6
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(a) TIM error with static πθ and varying
dependency structures

(b) SIM error with static πθ and varying
dependency structures

(c) TIM and SIM approximation error with
learning πθt

Figure 1. Performance of TIM and SIM’s approximation algorithms in the random environment, conducted over 50 seeds. The bold line
represents the median, while the shaded areas denote the 95%-quantiles.

policy of agent j. Denote with θ = [(θ1)T , . . . , (θN )T ]T ∈
Rm :=

∏
j∈N Rmj the joint policy parameters, and denote

the parametrized joint policy by πθ =
∏

j∈N πj
θj . When we

require Assumption 3.2 to hold, that it is assumed that the
parametrized policies have a positive probability for every
state and action. Furthermore, we assume the following:
Assumption 5.10. The function πj

θj (s, a
j) is continuously

differentiable in θj ∈ Rmj .

To prove the continuity of TIM and SIM in θ, one needs to
establish the continuity of the stationary distribution dθ, the
joint policy πθ, and the impact samples U i→j

θ .
Theorem 5.11. Let Θ ⊂ Rm be a compact set, and let
πθ be the joint policy. Under Assumptions 3.2 and 5.10,
TIi→j(πθ) and SIi→j(s, πθ) are continuous in θ ∈ Θ for
every i, j ∈ N and s ∈ S.

This result establishes that an estimation, up to a specified
timestep, maintains its relevance despite minor changes in
the policy, as there can be no jumps. Although conver-
gence guarantees similar to Theorems 5.6 and 5.9 can be
established for policies that are updated sufficiently slowly,
for example through a time-scale separation argument as
suggested by Borkar (2008), such an approach would neces-
sitate additional constraints on policy updates. Conversely,
Theorem 5.11 does not introduce extra conditions on the
policy update rule yet still offers a degree of robustness
against changes in the policies. For a detailed proof and
further elaboration, we refer to Section A.5 in the appendix.

6. Empirical Results
The stochastic approximation techniques applied to ensure
the convergence of our proposed algorithms do not guar-
antee specific convergence behaviors in practice (Borkar,
2008). Thus, to better understand these behaviors, we eval-
uate our concepts in two contrasting environments. The
first environment is a small, randomly generated one. The

second environment is a multi-agent extension of the coin
game (Lerer & Peysakhovich, 2017).

For both environments, we use iteration algorithms from
Equations 12 and 17 to estimate TIM and SIM, initializing
them for all i, j ∈ N to 1

|N | . Note that the choice of ini-
tialization is arbitrary, and our results hold for any finite
value. TIM’s and SIM’s approximations are represented
by TI(πθ, ηt) and SI(s, πθ, ηt). All experiments employ
Boltzmann policies (Sutton & Barto, 2018), meeting the As-
sumptions 3.2 and 5.10. Further details and supplementary
results are available in the appendix.

6.1. Random Environment

We generate a random multi-agent MDP with five agents,
five states, and binary action spaces (see Section C.1 for
details). We aim to understand how TIM and SIM approxi-
mation algorithms respond to different agent influence struc-
tures. Therefore, when we conduct experiments where some
agents are independent of others, we set the rows of the
transition probability matrix all equal to the first row, i.e.,
P (s′|·, ·) = P (s0|·, ·) for all s′ ∈ S. This prevents the
agents to influence one another over long-term effects on
the transitions to other states. Furthermore, to achieve that
agent j is independent of the immediate effects on the re-
ward of agent i’s actions, we set the entries for a state s ∈ S ,
and actions a−i = (a1, . . . , ai−1, ai+1, . . . aN ) ∈ A−i in
the reward matrix to Rj(s, a−i, ai) = Rj(s, a−i, âi) for all
ai, âi ∈ Ai.

Experiments in the random environment took two forms.
First, we consider a static policy πθ for different dependency
structures among the agents. We assume that each agent can
at least influence its individual state-action function. To de-
termine the overall dependency structures among the agents,
we randomly sample a number of additional dependencies
Ladd. The second experiment has no enforced influence
structure but changing policy parameters θt. As the poli-

7
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(a) TI1→i
(πθt , ηt) (b) TI2→i

(πθt , ηt) (c) TI3→i
(πθt , ηt)

Figure 2. Mean TIM approximations in coin game over 10 seeds. The shaded area shows the standard deviation.

cies’ learning algorithm, we use Algorithm 1 of Zhang et al.
(2018), which is a multi-agent actor-critic algorithm for a
fully cooperative setup. For approximating individual state-
action functions Qj

θ(·, ·, ηj), we use the tabular SARSA
algorithm in the average-reward setting (Sutton & Barto,
2018). Note that this algorithm satisfies Assumptions 5.4
and 5.5. We compare the approximations with analytically
determined TIM and SIM matrices, which are denoted by
TIana(πθ) and SIana(s, πθ).

The results with a stationary policy can be seen in Fig-
ures 1(a) and 1(b). They show the approximation errors
of TI(πθ, ηt) to TIana(πθ) and SI(s, πθ, ηt) to SIana(s, πθ)
for different values of Ladd. In all scenarios, the error is
monotonically decreasing in t. One observes that the initial
approximation error increases with an increasing number
of dependencies among the agents. However, the final ap-
proximation error has the reversed order. This results from
the fact that impact samples need to be zero to detect that
two agents are independent. However, a non-zero approxi-
mation error in the individual state-action functions leads
to an overestimation of the TIM and SIM approximations.
For the dynamic policy, results are in Figure 1(c). It shows
consistent, albeit slower, reduction in approximation errors
compared to the static policy. Nonetheless, this experiment
demonstrates the validity of using the approximation algo-
rithms in the context of changing policies.

6.2. Coin Game

Three agents navigate a 10× 10 grid, with the actions being
to move in one of four directions or to remain static. Unique
coins, designated for each agent, randomly spawn on the
grid, with up to four coins per agent at any given time.
Collecting a coin grants an agent a reward of 1. However, if
an agent collects another’s coin, penalties ensue. Deviating
from the original game to emphasize asymmetries in agent-
dependencies, we employ a one-sided penalty system. In
our setting, if agent 1 collects coins of agents 2 or 3, they
incur a penalty of −2. Additionally, agent 3 suffers a −2
penalty if agent 2 collects its coins. Notably, agent 1 remains

unpenalized throughout, while agent 2 only faces penalties
from agent 1’s actions.

For the experiment, agents independently learn using the
PPO algorithm (Schulman et al., 2017). We utilize the
deep SARSA algorithm (Zhao et al., 2016) to approximate
Qj

θ(·, ·, ηj), which satisfies Assumption 5.4 but not neces-
sarily Assumption 5.5. As the state space is intractable,
we train an additional neural network to approximate SIM
instead of using a tabular method.

The PPO policies learned to greedily gather coins, irrespec-
tive of coin type. The TIM approximations of agent 1’s
influence on other agents are depicted in Figure 2(a). As
anticipated, the estimated impact is high across all agents,
especially considering agent 1’s capacity to impose penalties
on agents 2 and 3. Conversely, Figure 2(b) highlights agent
2’s significant impact on itself and agent 3, but minimal
effect on Agent 1, mirroring the unique penalty structure.
Figure 2(c) underscores that TIM for Agent 3 is predomi-
nantly elevated only for itself. Note that the absence of direct
penalties does not render the agents independent. Agent 3,
for instance, possesses the capability to either block agent 1
or seize its coins. Consequently, TIM estimations give us
insights—without any knowledge of the environment—into
which agent can significantly influence others.

7. Final Remarks
The present work investigates influence structures in MARL
systems. We introduce influence measurement functions as
a unified descriptive framework for influence structures in
all common setups. Within this framework, we propose total
and state influence measures tailored to the average reward
setting. Thorough theoretical analyses of their stability
and the convergence and error bounds of the corresponding
approximation algorithms are given. Experiments in the
randomly generated environment demonstrate convergence
of the approximation error, even with evolving policies.
The coin game further demonstrates the applicability of the
concepts to complex, dynamic settings and provides insight

8
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into influence in black-box environments.

Future work offers promising directions. A key area in-
volves expanding the application of TIM and SIM beyond
their current descriptive roles, using them to enhance learn-
ing processes within MARL. Another avenue is to inves-
tigate the potential of influence measurement functions in
other environments, such as those with discounted reward
or infinite state and action spaces.
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J. A. L. An Overview of Cooperative and Competi-
tive Multiagent Learning. In Tuyls, K., Hoen, P. J.,
Verbeeck, K., and Sen, S. (eds.), Learning and Adap-
tion in Multi-Agent Systems, volume 3898 of Lecture
Notes in Computer Science, pp. 1–46, Utrecht, jul 2005.
Springer. doi: 10.1007/11691839 1. URL https:
//doi.org/10.1007/11691839{_}1.

Jaques, N., Lazaridou, A., Hughes, E., Gulcehre, C., Or-
tega, P. A., Strouse, D., Leibo, J. Z., and de Freitas,
N. Social Influence as Intrinsic Motivation for Multi-
Agent Deep Reinforcement Learning. arXiv e-prints, pp.
arXiv:1810.08647, oct 2018. URL http://arxiv.
org/abs/1810.08647.

Koller, D. and Milch, B. Multi-agent influence diagrams for
representing and solving games. Games and Economic
Behavior, 45(1):181–221, October 2003. doi: 10.1016/
S0899-8256(02)00544-4.

Lax, P. D. Linear Algebra and Its Applications. Pure
and Applied Mathematics: A Wiley Series of Texts,
Monographs and Tracts. Wiley, 2 edition, 2007. ISBN
9780471751564.

Lerer, A. and Peysakhovich, A. Maintaining cooperation
in complex social dilemmas using deep reinforcement
learning. CoRR, abs/1707.01068, 2017.

Levin, D. A., Peres, Y., and Wilmer, E. Markov
chains and mixing times. American Mathematical
Soc., 2 edition, 2017. ISBN 978-1-4704-2962-1.
URL https://pages.uoregon.edu/dlevin/
MARKOV/mcmt2e.pdf.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Proceedings of the
Eleventh International Conference on Machine Learn-
ing, ICML’94, pp. 157–163, San Francisco, CA, USA,
July 1994. Morgan Kaufmann Publishers Inc.

9

http://link.springer.com/10.1007/978-1-4614-3618-8
http://link.springer.com/10.1007/978-1-4614-3618-8
http://link.springer.com/10.1007/978-93-86279-38-5
http://link.springer.com/10.1007/978-93-86279-38-5
http://ieeexplore.ieee.org/document/5643088/
http://ieeexplore.ieee.org/document/5643088/
http://ieeexplore.ieee.org/document/1333200/
http://ieeexplore.ieee.org/document/1333200/
https://doi.org/10.1007/11691839{_}1
https://doi.org/10.1007/11691839{_}1
http://arxiv.org/abs/1810.08647
http://arxiv.org/abs/1810.08647
https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e.pdf
https://pages.uoregon.edu/dlevin/MARKOV/mcmt2e.pdf


Detecting Influence Structures in MARL

Mahadevan, S. Average reward reinforcement learning:
Foundations, algorithms, and empirical results. Machine
Learning, 22(1):159–195, March 1996.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
Atari with Deep Reinforcement Learning. arXiv e-prints,
pp. arXiv:1312.5602, dec 2013.

Oliehoek, F., Witwicki, S., and Kaelbling, L. A Sufficient
Statistic for Influence in Structured Multiagent Environ-
ments. Journal of Artificial Intelligence Research, 70:
789–870, February 2021. doi: 10.1613/jair.1.12136.

Puterman, M. L. Markov Decision Processes. Wiley Series
in Probability and Statistics. John Wiley & Sons, Inc.,
Hoboken, New Jersey, apr 1994. ISBN 9780470316887.
doi: 10.1002/9780470316887. URL http://doi.
wiley.com/10.1002/9780470316887.

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M.,
and Dormann, N. Stable-Baselines3: Reliable Reinforce-
ment Learning Implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

Seneta, E. Non-negative Matrices and Markov Chains.
Springer Series in Statistics. Springer Science & Business
Media, New York, 2 edition, 2006. ISBN 978-0-387-
29765-1. doi: 10.1007/978-0-387-32792-1.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zam-
baldi, V., Jaderberg, M., Lanctot, M., Sonnerat, N., Leibo,
J. Z., Tuyls, K., and Graepel, T. Value-Decomposition
Networks For Cooperative Multi-Agent Learning Based
On Team Reward. In Seventeenth International Con-
ference on Autonomous Agents and Multiagent Systems,
AAMAS ’18, pp. 2085–2087, Stockholm, jul 2018. Inter-
national Foundation for Autonomous Agents and Multia-
gent Systems.

Sutton, R. S. and Barto, A. G. Reinforcement Learning:
An Introduction. A Bradford Book, Cambridge, Mas-
sachusetts, 2 edition, 2018. ISBN 0262039249.

Wang, T., Wang, J., Wu, Y., and Zhang, C. Influence-Based
Multi-Agent Exploration. In Eighth International Con-
ference on Learning Representations, Addis Ababa, apr
2020. OpenReview.net. URL https://openreview.
net/forum?id=BJgy96EYvr.

Wang, T., Zeng, L., Dong, W., Yang, Q., Yu, Y., and Zhang,
C. Context-Aware Sparse Deep Coordination Graphs.
arXiv:2106.02886 [cs], October 2021.

Zhang, C. and Lesser, V. Coordinating Multi-Agent Rein-
forcement Learning with Limited Communication. In
Twelfth International Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’13, pp. 1101–1108,
St. Paul, Minnesota, may 2013. International Foundation
for Autonomous Agents and Multiagent Systems. ISBN
9781450319935.

Zhang, K., Yang, Z., Liu, H., Zhang, T., and Basar, T.
Fully Decentralized Multi-Agent Reinforcement Learn-
ing with Networked Agents. In Dy, J. G. and Krause,
A. (eds.), Thirty-fifth International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 5867–5876, Stockholm, jul
2018. PMLR. URL http://proceedings.mlr.
press/v80/zhang18n.html.

Zhao, D., Wang, H., Shao, K., and Zhu, Y. Deep re-
inforcement learning with experience replay based on
SARSA. In IEEE Symposium Series on Computational
Intelligence, pp. 1–6, Athens, Greece, December 2016.
IEEE.

10

http://doi.wiley.com/10.1002/9780470316887
http://doi.wiley.com/10.1002/9780470316887
https://openreview.net/forum?id=BJgy96EYvr
https://openreview.net/forum?id=BJgy96EYvr
http://proceedings.mlr.press/v80/zhang18n.html
http://proceedings.mlr.press/v80/zhang18n.html


Detecting Influence Structures in MARL

A. Proofs for TIM and SIM Statements
A.1. Proof of Theorem 5.3 (TIM Error Bound)

Proof. Let i, j ∈ N , then we see∣∣∣TIi→j(π)− TI
i→j

(π)
∣∣∣ ≤∑

s∈S
dπ(s)

∑
a∈A

π(s, a) ·
(∣∣∣∣max

ai∈Ai
Qj

π(s, a
−i, ai)− max

ai∈Ai
Q

j

π(s, a
−i, ai)

∣∣∣∣
+

∣∣∣∣ min
ai∈Ai

Qi
π(s, a

−i, ai)− min
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣)
≤
∑
s∈S

dπ(s)
∑
a∈A

π(s, a)
(
2 ·
∥∥∥Qj

π −Q
j

π

∥∥∥
∞

)
= 2 ·

∥∥∥Qj
π −Q

j

π

∥∥∥
∞
,

which gives us the statement.

A.2. Proof of Theorem 5.6 (Convergence of TIM Approximation)

Proof. We define

h(νi→j
t , (st, at)) := U i→j

π (st, at, η
j,∗
π )− νi→j

t ,

Mt+1 := 0,

βt+1 := U i→j
π (st, at, η

j
t )− U i→j

π (st, at, η
j,∗
π ),

where we can see that the iteration algorithm

νi→j
t+1 = νi→j

t + αt ·
(
h(νi→j

t , (st, at)) +Mt+1 + βt+1

)
(19)

is equal to the iteration algorithm defined in Equation 12. To show the convergence of this iteration algorithm, we
consider in the first step a slightly different algorithm. For this, observe that by Assumption 5.5, the sequence {ηjt }t≥0

is almost surely bounded. That means there exists K > 0 such that P (supt≥0

∥∥∥ηjt∥∥∥ < K) = 1. Define the error term

β̃t := I{supt≥0 ∥ηj
t∥<K} · βt, where IA denotes the indicator function on a set A. Define the following iteration algorithm

with the restricted error sequence β̃t

ν̃i→j
t+1 := ν̃i→j

t + αν,t ·
(
h(ν̃i→j

t , (st, at)) + β̃t+1

)
. (20)

First, we check that parts (a) to (e) from Assumption 3.3 hold. The function h : Rkj × S ×A → R is Lipschitz continuous
in its first argument, as it is even linear in its first argument, i.e.

|h(ν, (s, a))− h(ν′, (s, a))| = |ν − ν′| for any s ∈ S, a ∈ A,

and part (a) holds. By Assumption 3.2, the Markov chain {(st, at)}t≥0 is ergodic, which means that it satisfies part (b).
Furthermore, the stepsizes {αt}t≥0 satisfy part (c). As the sequence {Mt}t≥0 is the zero sequence, it is trivially a martingale
difference sequence with a conditionally bounded norm, and satisfies part (d). Finally, for part (e), it remains to show that
{β̃t}t≥0 is a bounded random sequence that converges to zero almost surely. For this, note that ηjt is uniformly bounded

on the set {supt≥0

∥∥∥ηjt∥∥∥ < K}. By Assumption 5.4, we get that the parametrized impact samples U i→j
π (s, a, ηj) are

continuous in ηj . In particular, as it is a continuous function on the compact set {ηj ∈ Rkj :
∥∥ηj∥∥ < K}, we get that it is

bounded. Therefore, together with the convergence of ηjt → ηj,∗π , we get that {β̃t}t≥0 is a bounded random sequence that
converges to zero. Therefore, Assumption 3.3 is satisfied for the iteration algorithm from Equation 20. Next, consider the
ODE given by

ν̇i→j =
∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · h
(
νi→j , (s, a)

)
= −νi→j +

∑
s∈S

dπ(s)
∑
a∈A

π(s, a) · U i→j
π (s, a, ηj,∗)
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and define the right-hand side as f(νi→j). We can see that νi→j =
∑

s∈S dπ(s)
∑

a∈A π(s, a)U i→j
π (s, a, ηj,∗) is an

equilibrium solution to the ODE above, and as f is Lipschitz continuous, we get by the theorem of Picard-Lindelöf,
see page 89 in the book of Adkins & Davidson (2012), that this solution is unique. Define the function fc(ν

i→j) =
c−1 · f(cνi→j). Then limc→∞ fc(ν

i→j) = −νi→j =: f∞(νi→j) exists and the ODE ν̇i→j = f∞(νi→j) has the origin as
unique asymptotically stable equilibrium. Therefore, we get by Theorem 3.5 that supt≥0 ||ν

i→j
t || < ∞ almost surely. Then,

we can use Theorem 3.4 to conclude that

ν̃i→j
t → TIi→j(π, ηj,∗π ) a.s. (21)

To extend this result to the original iteration sequence, observe that
{
supt≥0

∥∥∥ηjt∥∥∥ ≥ K
}

is a null-set.

A.3. Proof of Theorem 5.8 (SIM Error Bound)

Proof. Let i, j ∈ N , then we see∣∣∣SIi→j(s, π)− SI
i→j

(s, π)
∣∣∣ = ∣∣∣∣∣∑

a∈A
π(s, a)

(
U i→j
π (s, a)− U

i→j

π (s, a)
)∣∣∣∣∣

≤
∑
a∈A

π(s, a)

(∣∣∣∣max
ai∈Ai

Qj
π(s, a

−i, ai)− max
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣
+

∣∣∣∣ min
ai∈Ai

Qi
π(s, a

−i, ai)− min
ai∈Ai

Q
j

π(s, a
−i, ai)

∣∣∣∣)
≤
∑
a∈A

π(s, a)
(
2 ·
∥∥∥Qj

π(s, ·)−Q
j

π(s, ·)
∥∥∥
∞

)
= 2 ·

∥∥∥Qj
π(s, ·)−Q

j

π(s, ·)
∥∥∥
∞
,

which gives us the statement.

A.4. Proof of Theorem 5.9 (Convergence of SIM Approximation)

Proof. Let s ∈ S . Note that for any subsequence {ηtk}k≥0 of {ηt}t≥0 it still holds that ηtk → ηj,∗π almost surely. Therefore,
we denote the subsequences originally indexed by ts for state s also by t instead, as it does not change the proof’s statement.
We define

h(νi→j
t (s), ast ) := U i→j

π (s, ast , η
j,∗
π )− νi→j

t (s),

Mt+1 := 0,

βt+1 := U i→j
π (s, ast , η

j
t )− U i→j

π (s, ast , η
j,∗
π ),

where we can see that the iteration algorithm

νi→j
t+1 (s) = νi→j

t (s) + αt ·
(
h(νi→j

t (s), ast ) +Mt+1 + βt+1

)
(22)

is equal to the iteration algorithm defined in Equation 17. Before showing the convergence of this iteration algorithm, we
consider a different one. For this, observe that by Assumption 5.5, the sequence {ηjt }t≥0 is almost surely bounded. That

means there exists K > 0 such that P (supt≥0

∥∥∥ηjt∥∥∥ < K) = 1. Define the error term β̃t := I{supt≥0 ∥ηj
t∥<K} · βt, where

IA denotes the indicator function on a set A. Define the following iteration algorithm with the restricted error sequence β̃t

ν̃i→j
t+1 (s) := ν̃i→j

t (s) + αt ·
(
h(ν̃i→j

t (s), ast ) + β̃t+1

)
. (23)

To get the convergence of the iteration defined in Equation 23, we first check that part (a) to (e) from Assumption 3.3 hold.
The function h : Rkj ×A → R is Lipschitz continuous in its first argument, as it is even linear in its first argument, i.e.,

|h(ν, a)− h(ν′, a)| = |ν − ν′| for any a ∈ A,

and part (a) holds. By Assumption 3.2, the Markov chain {ast}t≥0 is irreducible and aperiodic. Therefore, the Markov chain
satisfies part (b). Furthermore, the stepsizes {αt}t≥0 satisfy part (c). As the sequence {Mt}t≥0 is the zero sequence, it is

12
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trivially a martingale difference sequence with a conditionally bounded norm, and satisfies part (d). Finally, for part (e),
it remains to show that {β̃t}t≥0 is a bounded random sequence that converges to zero almost surely. For this, note that

{ηjt }t≥0 is uniformly bounded on the set {supt≥0

∥∥∥ηjt∥∥∥ < K}. By Assumption 5.4, we get that the functions

max
ai∈Ai

Qj
π(s, a

−i, ai, ηj) and min
ai∈Ai

Qj
π(s, a

−i, ai, ηj) (24)

are continuous functions in ηj . Therefore, the function U i→j
π (s, ast , ·) is, as a sum of continuous functions, also continuous

in ηj . In particular, as it is a continuous function on the compact set {ηj ∈ Rkj :
∥∥ηj∥∥ < K}, we get that it is bounded.

Therefore, together with the convergence of ηjt → ηj,∗π , we get that {β̃t}t≥0 is a bounded random sequence that converges
to zero. Therefore, Assumption 3.3 is satisfied for the iteration algorithm from Equation 23.

Next, consider the ODE given by

ν̇i→j(s) =
∑
a∈A

π(s, a) · h
(
νi→j(s), a

)
= −νi→j(s) +

∑
a∈A

π(s, a) · U i→j
π (s, a, ηj,∗) (25)

and define the right-hand side as f(νi→j(s)). We can see that νi→j(s) =
∑

a∈A π(s, a)U i→j
π (s, a, ηj,∗) is an equilibrium

solution to the ODE above, and as f is Lipschitz continuous, we get by the theorem of Picard-Lindelöf, see page 89 in the
book of Adkins & Davidson (2012), that this solution is unique. Define the function fc(ν

i→j(s)) = c−1 · f(cνi→j(s)).
Then limc→∞ fc(ν

i→j(s)) = −νi→j(s) =: f∞(νi→j(s)) exists and the ODE ν̇i→j(s) = f∞(νi→j(s)) has the origin as
unique asymptotically stable equilibrium. Therefore, we get by Theorem 3.5 that supt≥0 ||ν

i→j
t (s)|| < ∞ almost surely.

Then, we can use Theorem 3.4 to conclude that

ν̃i→j
t (s) → SIi→j(s, π, ηj,∗π ) almost surely. (26)

We extend this result to the original iteration sequence {νi→j
t (s)}t≥0. As the sequence {ηjt }t≥0 is almost surely bounded,

we see that

P

(
{ω ∈ Ω : sup

t≥0

∥∥∥ηjt (ω)∥∥∥ < K}
)

= 1 ⇔ P

({
ω ∈ Ω : sup

t≥0

∥∥∥ηjt (ω)∥∥∥ ≥ K

})
= 0, (27)

which means that
{
supt≥0

∥∥∥ηjt∥∥∥ ≥ K
}
=
{
supt≥0

∥∥∥ηjt∥∥∥ < K
}∁

is a null-set. Therefore, we get

νi→j
t+1 (s) → SIi→j

(
s, π, ηj,∗

)
a.s. ⇔ P

({
ω ∈ Ω : lim

t→∞
νi→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)
})

= P

({
ω ∈ Ω \

{
sup
t≥0

∥∥∥ηjt∥∥∥ < K

}∁

: lim
t→∞

νi→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)

})
= P

({
ω ∈ Ω : lim

t→∞

(
νi→j
t (s) · I{supt≥0 ∥ηj

t∥<K}

)
(ω) =

(
SIi→j

(
s, π, ηj,∗

)
· I{supt≥0 ∥ηj

t∥<K}

)
(ω)
})

= P
({

ω ∈ Ω : lim
t→∞

ν̃i→j
t (s)(ω) = SIi→j

(
s, π, ηj,∗

)
(ω)
})

= 1,

which gives us the statement.

A.5. Proof for Theorem 5.11 (Continuity in Policy Changes)

To prove the continuity of SIM and TIM in the policy, we show the continuity of their individual terms. So, recall that, under
Assumption 3.2, we can represent SIM and TIM of agent i on agent j by

SIi→j(s, πθ) =
∑
a∈A

πθ(s, a) · U i→j
θ (s, a), (28)

TIi→j(πθ) =
∑
s∈S

dθ(s)
∑
a∈A

πθ(s, a) · U i→j
θ (s, a). (29)

13
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First, we show the continuity of the stationary distribution dθ in θ ∈ Rm. To do this, we need some results from linear
algebra, which we state without proof. The first is the well-known Perron-Frobenius theorem, which was originally
introduced in this form by Frobenius (1912). Before stating the theorem, we introduce the notion of primitive matrices and a
result connecting these to irreducible and aperiodic matrices. The following definition and two theorems are taken from the
book of Seneta (2006).
Definition A.1. A square non-negative matrix A is said to be primitive if there exists a positive integer k such that Ak > 0.

The following theorem connects primitive to irreducible and aperiodic matrices. Note that transition matrices of irreducible
and aperiodic Markov chains are irreducible and aperiodic.
Theorem A.2. A matrix A is irreducible and aperiodic if and only if it is primitive.

With this, we now state the Perron-Frobenius theorem for primitive matrices.
Theorem A.3. Suppose A is an n× n non-negative primitive matrix. Then there exists an eigenvalue r such that:

(a) r is a real value and strictly larger than 0

(b) with r can be associated strictly positive left and right eigenvectors

(c) r > |λ| for any eigenvalue λ ̸= r

(d) the eigenvectors associated with r are unique to constant multiples

(e) r is a simple root of the characteristic polynomial of A

One calls r the Perron-Frobenius eigenvalue and its corresponding positive eigenvectors, the Perron-Frobenius eigenvectors.

The next theorem is an adapted version of a result of theorem 8 on page 130 in the book by Lax (2007), about the continuity
of eigenvectors for simple eigenvalues.
Theorem A.4. Let A(t) be a square matrix whose elements are continuously differentiable in t ∈ Rm. Suppose that a0 is
an eigenvalue of A(0) of multiplicity one, in the sense that a0 is a simple root of the characteristic polynomial of A(0). Then
there exists a δ > 0 such that for ∥t∥ ≤ δ, there exists an eigenvalue a(t) of A(t) that depends continuously differentiable
on t, with a(0) = a0. Furthermore, we can choose an eigenvector h(t) of A(t) pertaining to the eigenvalue a(t) to depend
continuously differentiable on t.

The original version of the theorem is for the case m = 1. However, the extension to multiple dimensions is straightforward,
as one only needs to assume A(t) to be continuously differentiable in t ∈ Rm, instead of only differentiable and the proof
carries over without changes. With the previous results, we now give our proof for the continuity of stationary distributions.
Lemma A.5. Let A : Rm → Rn×n be a continuously differentiable function. Additionally, the matrix A(t) is a transition
matrix of an irreducible and aperiodic Markov chain for every t ∈ Rm. Then the function t 7→ d(t) is continuously
differentiable for all t ∈ Rm, where d(t) ∈ Rn is the stationary distribution of A(t).

Proof. As the matrix A(t) is the transition matrix of an irreducible and aperiodic Markov chain, the associated stationary
distribution d(t) exists and is unique by theorem 4.1 on page 119 in the book of Seneta (2006). Therefore, the function
f : t 7→ d(t) is well-defined. It remains to show that f is continuously differentiable for all t ∈ Rm.

For this, we want to use Theorem A.4 for the matrix A(t)T , as the stationary distribution d(t) is a right eigenvector of A(t)T

to the eigenvalue one. We observe that A(t) is a square non-negative irreducible and aperiodic matrix and by Theorem
A.2 also primitive, i.e., there exists an r ∈ N such that A(t)r > 0. Therefore, Theorem A.3 holds for A(t). As A(t) is
row-stochastic, its largest eigenvalue is one and is by part (c) of Theorem A.3 also the Perron-Frobenius eigenvalue. We
show next that the same holds for A(t)T . For this, we observe that

A(t)r > 0 ⇔ (A(t)r)
T
> 0 ⇔

(
A(t)T

)r
> 0.

That means, A(t)T is primitive, i.e., the Perron-Frobenius theorem holds for A(t)T as well. Furthermore, for λ ∈ R it holds
that

det
(
A(t)T − λI

)
= det

(
(A(t)− λI)

T
)
= det (A(t)− λI) ,

14
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which means that A(t)T has the same eigenvalues as A(t). This again means by part (c) of Theorem A.3 that the value one
is also the Perron-Frobenius eigenvalue of A(t)T . Using part (e) of Theorem A.3, we get that one is a simple root of the
characteristic polynomial of A(t)T .

Let u ∈ Rm be arbitrary. From our deductions about A(t)T so far, we can now use Theorem A.4. Therefore, there exists a
δ > 0 such that, on the set Λ := {t ∈ Rm : ∥t− u∥}, there exist continuously differentiable functions a : Λ → R, h : Λ →
Rn. Whereas a(t) is an eigenvalue of A(t)T with a(u) = 1 and h(t) is an eigenvector of A(t)T pertaining to the eigenvalue
a(t).

The Perron-Frobenius Theorem holds for all t ∈ Λ and therefore, by part (c) of Theorem A.3, we see for all eigenvalues λ of
A(t)T with λ ̸= 1, that |λ| < 1. However, the function a is continuously differentiable, which means that a ≡ 1. In turn,
this means by part (b) that h(t) is a strictly positive eigenvector for all t ∈ Λ. Now, define the scaling function

k(t) :=

(
n∑

i=1

h(t)i

)−1

⇔ 1 = k(t) ·

(
n∑

i=1

h(t)i

)
.

That means that k(t) · h(t) is an eigenvector of A(t)T to the eigenvalue one for all t ∈ Λ. In particular, that means that
k(t) · h(t) is a stationary distribution of A(t) and, therefore, f(t) = k(t) · h(t) for all t ∈ Λ. As h(t) is strictly positive and
continuously differentiable, k is continuously differentiable as well. That means that f is continuously differentiable for all
t ∈ Λ, which means in particular that it is continuously differentiable in u. As u ∈ Rm has been arbitrary, we get that f is
continuously differentiable for all t ∈ Rm. This concludes the proof.

Before we can prove the main result of this subsection, we need another lemma about the convergence of the expected
distribution after several steps from an initial distribution of a Markov chain to its stationary distribution. The proof of this
Lemma is inspired by the proof of the Convergence Theorem 4.9 on page 52 in the book of Levin et al. (2017).
Lemma A.6. Let A : Rm → Rn×n be a matrix-valued continuously differentiable function and Λ ⊂ Rm a compact set.
Furthermore, for every t ∈ Rm, matrix A(t) is a transition matrix of an irreducible and aperiodic Markov chain with
stationary distribution d(t). Finally, if there exists a ti,j ∈ Rm such that the entry A(ti,j)i,j > 0, then A(t)i,j > 0 for all
t ∈ Rm. In this case, there exist constants C ≥ 1 and α ∈ (0, 1) such that

∥x0A(t)τ − d(t)∥2 ≤ n · Cατ , (30)

for all t ∈ Λ and j ∈ {1, . . . , n} where x0 is a non-negative vector, which entries sum up to one, that represents some initial
distribution over the states of the Markov chain.

Proof. Since A(t) is the transition matrix of an irreducible and aperiodic Markov chain it is primitive by Theorem A.2, i.e.,
there exists a minimal rt ∈ N such that A(t)rt has only positive entries. If an entry of A(t) is positive, it is positive for all
t ∈ Rm. Together with the fact that A(t) has no negative entries for all t ∈ Rm, we get that rt = ru =: r for all t, u ∈ Rm.
The entries of A(t) are continuous on a compact set Λ, therefore there exists a minimal positive entry of A(t)r for all t ∈ Λ,
which we denote by

amin := min{(A(t)r)i,j |i, j ∈ {1, . . . n}, t ∈ Λ}.

By Lemma A.5, the entries of d(t) are continuous for t ∈ Λ. Therefore, there exists a maximum entry of d(t) for all t ∈ Λ,
i.e.,

dmax := max{d(t)i|i ∈ {1, . . . , n}, t ∈ Λ}.

Please note that d(t) is a probability distribution that has only positive entries. Therefore, let t ∈ Λ be arbitrary and take
δ ∈ (0, 1) such that amin ≥ δ · dmax. Define λ := 1− δ and let D(t) be a matrix with n rows, where all rows are equal to
d(t). Then the equation

A(t)r = (1− λ)D(t) + λH(t), (31)

defines a row-stochastic matrix H(t). Note that, as every row of D(t) is identical, MD(t) = D(t) for every row-stochastic
matrix M ∈ Rn×n. That means in particular that H(t)D(t) = D(t) and A(t)D(t) = D(t). The rows of D(t) are the
stationary distribution of A(t), which means that D(t)A(t) = D(t). Next, we show by induction that

A(t)rk =
(
1− λk

)
D(t) + λkH(t)k, for k ≥ 1. (32)
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The starting condition for k = 1 holds by Equation 31. Assuming that it holds for k = l, we see

A(t)r(l+1) = A(t)rl ·A(t)r

=
[(
1− λl

)
D(t) + λlH(t)l

]
·A(t)r

=
(
1− λl

)
D(t) ·A(t)r + λlH(t)l ·A(t)r

=
(
1− λl

)
D(t) + λlH(t)l · [(1− λ)D(t) + λH(t)]

=
(
1− λl

)
D(t) + λl (1− λ)H(t)l ·D(t) + λl+1H(t)l+1

=
(
1− λl

)
D(t) +

(
λl − λl+1

)
D(t) + λl+1H(t)l+1

=
(
1− λl+1

)
D(t) + λl+1H(t)l+1,

which shows that the claim in Equation 32 holds for all k ≥ 1. Rearranging this equation yields

A(t)rk −D(t) = λk
(
H(t)k −D(t)

)
. (33)

For j ∈ N, we multiply each side of Equation 33 by A(t)j and get

A(t)rk+j −D(t) = λk
(
H(t)kA(t)j −D(t)

)
. (34)

Let x0 ∈ Rn be a non-negative row-vector, which entries sum up to one. Multiplying Equation (34) by x0 from the left and
taking the ∥·∥2-norm of both sides yields∥∥x0A(t)rk+j − d(t)

∥∥
2
= λk

∥∥x0H(t)kA(t)j − d(t)
∥∥
2
.

Note that H(t) and A(t) are row-stochastic matrices and that the product of row-stochastic matrices is again row-stochastic.
Therefore, the rows of H(t)kA(t)j sum up to one, as does a convex combination over the sum of the rows. Therefore, the
distance to the stationary distribution d(t) can be bounded by n. This gives us∥∥x0A(t)rk+j − d(t)

∥∥
2
≤ n · λk. (35)

Now, define C := 1
λ and α := λ1/r. For τ > r, there exist k ∈ N and j ∈ {1, . . . , r} such that τ = rk + j. This gives us

with Equation 35

∥x0A(t)τ − d(t)∥2 ≤ n · λ
τ−j
r = n ·

(
1

λ

) j
r

· λ τ
r ≤ n · C · ατ , (36)

where we used that C ≥ 1 and j ≤ r in the last step. For τ < r, we note that λ
τ
r −1 ≥ 1 and as A(t) is row-stochastic we get

∥x0A(t)τ − d(t)∥2 ≤ n ≤ n · λ τ
r −1 = n · C · ατ . (37)

As t ∈ Λ has been arbitrary and the constants C and α are independent of t, Equations 36 and 37 conclude the statement.

With this result, we can establish the continuity of SIM and TIM in changes in the policy.

Theorem A.7. Let Θ ⊂ Rm be a compact set, and let πθ be the joint policy. Under Assumptions 3.2 and 5.10, the total
impact measurement TIi→j(πθ) and state impact measurement SIi→j(s, πθ) are continuous in θ ∈ Θ for every i, j ∈ N
and s ∈ S.

Proof. Under Assumption 3.2, one can represent SIM and TIM using Equations 28 and 29. From this, we see that the
continuity in θ ∈ Θ follows if we can show continuity of the individual terms. According to Assumption 5.10, the term
πθ(s, a) is continuous in θ for every s ∈ S and a ∈ A. Additionally, this means that the function θ 7→ Pθ is continuously
differentiable as well, and denotes the transition matrix of the irreducible and aperiodic Markov chain over the states {st}t≥0

for every θ ∈ Rm. By using Lemma A.5, we get that the stationary distribution dθ is continuous in θ ∈ Θ. Therefore, it
remains to show that U i→j

θ (s, a) is continuous in θ. The impact sample for state s and action a is given by

U i→j
θ (s, a) = max

ai∈Ai
Qj

θ(s, a
−i, ai)− min

ai∈Ai
Qj

θ(s, a
−i, ai).
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Assume Qj
θ(s, a) is continuous in θ ∈ Θ, then we get that U i→j

θ (s, a) is continuous in θ ∈ Θ for every i, j ∈ N , s ∈ S,
and a ∈ A as maximum or minimum of finitely many continuous terms. To complete the proof, it remains to show the
continuity of Qj

θ(s, a) in θ ∈ Θ.

Denote the transition matrix of the Markov chain {st, at}t≥0 induced by the policy πθ by PA
θ . The stationary distribution

of {st, at}t≥0 is given by dAθ = {dθ(s) · πθ(s, a)}s∈S,a∈A ∈ R|S×A|. Furthermore, for a state-action pair (s, a) set v0 as
starting distribution, where the entry corresponding to (s, a) equals one and zero else and denote the expected rewards
vector of agent j by Rj = {Rj(s, a)}s∈S,a∈A. Then the state-action function can be written as

Qj
θ(s, a) =

∑
t≥0

(
v0
(
PA
θ

)t − dAθ

)T
Rj := f(θ).

Additionally define a sequence of functions {ft}t≥0 as

ft(θ) :=

t∑
τ=0

(
v0
(
PA
θ

)τ − dAθ

)T
Rj .

Observe that θ 7→ PA
θ is a continuously differentiable matrix-valued function by Assumption 5.10. Furthermore, it is

a transition matrix of an irreducible and aperiodic Markov chain over the states and actions {st, at}t≥0. Finally, as the
transition probabilities of the underlying MDP P (s′|s, a) are constant, and the probabilities of the policy satisfy π(s, a) > 0
for all s, s′ ∈ S, a ∈ A, entries of PA

θ are positive for all θ ∈ Rm if they are positive for one θ ∈ Rm. That means we can

apply Lemma A.6 and get that there exist constants C ≥ 1 and α ∈ (0, 1) such that
∥∥∥v0 (PA

θ

)t − dAθ

∥∥∥
2
< |S × A| · Cαt

for every t ≥ 0. Then we see that with

sup
θ∈Θ

|f(θ)− ft(θ)| = sup
θ∈Θ

∣∣∣∣∣∣
∑

τ≥t+1

(
v0
(
PA
θ

)τ − dAθ

)T
Rj

∣∣∣∣∣∣
≤ sup

θ∈Θ

∑
τ≥t+1

∣∣∣⟨v0 (PA
θ

)τ − dAθ , R
j⟩
∣∣∣

≤ sup
θ∈Θ

∑
τ≥t+1

∥∥∥v0 (PA
θ

)τ − dAθ

∥∥∥
2
·
∥∥Rj

∥∥
2

≤
∥∥Rj

∥∥
2
· |S × A| · C ·

∑
τ≥t+1

ατ ,

we can bound the difference of f and ft uniformly for all θ ∈ Θ. As |α| < 1 we get that

lim
t→∞

sup
θ∈Θ

|f(θ)− ft(θ)| = 0.

Therefore, the sequence {ft}t≥0 converges uniformly on Θ to f . As the function ft is a finite sum of continuous functions,
it is continuous in θ ∈ Θ for every t ≥ 0. By the uniform limit theorem (Forster, 2013), we get that f is continuous as well,
which concludes the proof.

B. SIM results in Coin Game
In this section, we provide additional findings related to the SIM estimation within the context of the coin game. Specifically,
we assess the descriptive capabilities of SIM by closely examining particular states.

Considering the coin game’s unique reward structure, we have spotlighted two distinct grid positions for our evaluation.
Note that while it is possible, the likelihood of these board positions arising during training is low, which shows also the
generalization capabilities of the SIM estimation. Nevertheless, we found that training the SIM estimations suffer from a
higher variance than the TIM estimations. Which is why we restrict ourselves rather to a relative comparison between the
two states instead of directly interpreting the absolute values.

The first scenario, illustrated in Figure 3(a), situates the agents directly adjacent to an opponent’s coin. To detail further,
agent 1 is positioned next to agent 2’s coin, agent 2 is adjacent to agent 3’s coin, and agent 3 finds itself beside agent 1’s
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(a) SIM impact matrix SI(sbeside opponent coin, πθ, ηt). (b) SIM impact matrix SI(sbeside own coin, πθ, ηt).

Figure 3. Average SIM estimation over 10 seeds for specific grid positions. Once agents spawn beside their opponent’s coin and once
beside their own coin.

coin. If, in their subsequent move, all agents opt to collect these coins, each will earn a reward of 1. Beyond this, agent 1
would impose a penalty on agent 2, while agent 2 would similarly penalize agent 3. Agent 3 cannot inflict penalties on any
of the others.

In our second scenario, presented in Figure 3(b), all agents are spawned directly beside their respective coins. In this
configuration, there are no penalties in the immediate next time-step. Thus, even though penalization could arise in later
iterations, the expected impact on agents that are susceptible to penalties should be considerably diminished when compared
to the first scenario.

We compare the estimated state impact measurements in the considered scenarios, which are illustrated on the right side of
Figures 3(a) and 3(b), next. When assessing agent 1, we observe that its estimated impact on agent 2 is markedly high when
poised to collect the latter’s coin. However, this impact drops significantly when agent 1 is about to retrieve its own coin.
Agent 2 showcases a different pattern. In the penalty-rich first scenario, its estimated impact is high for both itself and agent
3. However, when there’s no looming penalty—as when agent 2 targets its own coin—the projected impact on agent 3 drops
significantly.

Drawing from these observations, it becomes evident that the state impact measurements align with intuitive expectations
based on the coin game’s unique reward structure. The SIM’s responsiveness to agent positioning, in relation to coin
ownership and the subsequent potential for penalties, showcases its efficacy and descriptive power. In essence, this analysis
demonstrates the robustness of SIM and its applicability as a tool for understanding agent interdependencies and influence
in complex multi-agent environments.

C. Detailed Experiment Setup
We give a detailed overview of the setup and methodology of the empirical experiments. We repeat the already mentioned
parts for the convenience of the reader.

C.1. Random Environment

The specifics of the generation process are taken from the work of Zhang et al. (2018). Consider a set of |N | = 5 agents
and |S| = 5 states. Each agent can choose from a binary action space Aj = {0, 1}. We uniformly sample the values of the
transition probabilities P (s′|s, a) from the interval [0, 1] and store them in a |S| × |S| · |A| matrix. To ensure irreducibility
and aperiodicity of the resulting Markov chain over the states, we add the constant 5e−5 to all entries and normalize the
rows of the matrix, so that they sum up to one. We sample the reward matrix’s entries uniformly from [0, 2] and store them
in a |N | × |S| · |A| matrix. That means for every agent j, state s ∈ S, and action a ∈ A a reward matrix entry Rj(s, a)
is sampled uniformly from [0, 2]. Furthermore, we create embeddings for the state and action pairs ϕ(s, aj) ∈ Rmj , with
mj = 20 for all j ∈ N , by sampling every entry uniformly from [0, 1]. Accordingly, we sample the entries of the policy
parameters θj ∈ Rmj uniformly from [− 1√

mj
, 1√

mj
]. To determine the probability distribution of the policies πj

θj , we use
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the Boltzmann policies (Sutton & Barto, 2018), i.e.,

πj
θj (s, a

j) =
exp

(
ϕ(s, aj)T θj

)∑
bj∈Aj exp (ϕ(s, bj)T θj)

.

At time step t, where the system is in state st, the actions at = (a1t , . . . a
N
t ) are sampled according to ajt ∼ πj

θj (st|·). The
instantaneous reward of agent j is then given by Rj(st, at). The following state st+1 is sampled from P (·|st, at), and
the initial state s0 is sampled uniformly from S. Note that this setup satisfies Assumption 3.2 and the policies satisfy
Assumption 5.10.

If we conduct experiments with some enforced influence structure among the agents, we adjust the environment in the
following way. We set the rows of the transition probability matrix all equal to the first row, i.e., P (s′|·, ·) = P (s0|·, ·) for
all s′ ∈ S. Additionally, we set the entries for a state s ∈ S, and actions a−i = (a1, . . . , ai−1, ai+1, . . . aN ) ∈ A−i in the
reward matrix to Rj(s, a−i, ai) = Rj(s, a−i, âi) for all ai, âi ∈ Ai.

For all experiments, we assume that each agent can at least influence its individual state-action function. To determine
the overall dependency structures among the agents, we randomly sample a number of additional dependencies Ladd from
the remaining ones. For example, for the dependency structure with Ladd = 1, each agent can have an influence on its
state-action function and there exists exactly one pair of agents i, j ∈ N with i ̸= j such that i can influence the individual
state-action function of j. Enforcing no influence structure corresponds to the case of Ladd = N2 −N = 20.

We determine different quantities analytically in the following way. The stationary distribution over the states and actions
dAθ is the left eigenvector to the eigenvalue one of the transition matrix PA

θ . It can be easily determined by solving the linear
system

(
PA
θ

)T − I|S×A| = 0 and extracting a strictly positive vector of length one. The individual long-term return of
agent j is given by Jj(πθ) = dAθ R

j . Under Assumption 3.2, we can express the individual state-action functions as

Qj
θ(s, a) =

∑
t≥0

(
x0

(
PA
θ

)t − dAθ

)T
Rj ,

where x0 ∈ R1×|S|·|A| is the starting distribution with x0(s, a) = 1 and zero else. By using
∥∥∥x0

(
PA
θ

)t − dAθ

∥∥∥ < 1e−8

as stopping criterion, we can approximate the individual state-action functions analytically. We denote the individual
state-action function approximations that use this method with Qj,ana

θ for j ∈ N . Finally, we can use the analytically
approximated individual state-action functions Qj,ana

θ to approximate SIM and TIM analytically. For this, we use the
formulas from Equations 28 and 29. The corresponding SIM and TIM matrices, with entries calculated by this method, are
denoted by TIana(πθ) and SIana(s, πθ) respectively.

For a learning approximation of individual state-action functions Qj
θ(·, ·, ηj), we use the tabular SARSA algorithm for

the average-reward setting, see Section 10.3 in the book of Sutton & Barto (2018). The learning rates α and β are set to
α = β = 0.036. The entries of the state-action table are initially set to one. The TIM and SIM approximation matrices
using the learning state-action function for the iteration algorithm are denoted by TI(πθ, ηt) and SI(s, πθ, ηt).

For both approximation algorithms, we initialize the approximation of SIM and TIM for all i, j ∈ N to 1
|N | = 1/5 and set

the learning rates to αTIM
t = 0.471

t0.726 and αSIM
t = 0.74

t0.539 .

C.2. Coin Game

The coin game is structured within a 10× 10 grid where three agents initially start at random positions, ensuring no overlaps.
For every state s, agents have five potential actions: moving left, right, up, down, or staying put. Movements are constrained
by the grid’s boundaries—if an agent attempts to exit the grid, it remains stationary. When two agents simultaneously aim
for the same spot, one’s move is prioritized at random, leaving the other unmoved.

Each agent is associated with a distinct coin type. Coins spawn at random time intervals on random positions, avoiding any
overlap with existing coins. If a coin materializes on an agent-occupied spot, the agent must stay there for an additional
round to claim it. However, an agent collects a coin when it moves on a field that is already occupied by a coin. The spawn
rate is chosen so that, in expectation, a coin of each type appears every four to five steps, with a cap of four coins of the
same type coexisting on the grid. The average collecting rate of the agents with a trained (greedy) policy, is slightly below
the expected spawning rate, so that there usually are coins present on the field.
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The reward dynamics of the coin game are structured in the following manner. Upon collecting any coin, an agent is awarded
a reward of 1, irrespective of the coin’s type. However, if an agent collects a coin not designated for it, the owner of that
coin might incur a penalty. The penalty system is deliberately one-sided. Agent 3 is penalized by −2 each time an opposing
agent collects one of its coins. Agent 2 specifically incurs a penalty when Agent 1 collects one of its coins. This means
Agent 1 can consistently impose penalties by collecting opposing coins, while Agent 3 never penalizes opponents through
its actions. It’s noteworthy that, while the standard coin game is constructed as a social dilemma, our adaptation deviates
from this by ensuring agents 1 and 2 faces no adverse consequences from acting greedily.

The representation ϕ(s) ∈ R6×10×10 of a state s is encoded in a one-hot tensor with dimensions 6× 10× 10, where six
channels detail the game’s state. Specifically, each agent occupies two channels: one marking its location and another
indicating the placements of its designated coins. All agents can observe the full state s.

We examine this environment with evolving acting policies. Each agent j operates under an independent policy πj

θj
t

. The

parameters θjt are refined using the Proximal Policy Optimization (PPO) algorithm (Schulman et al., 2017). Despite our
focus on a continuing task, we implement the conventional PPO approach, targeting the maximization of the discounted
cumulative reward. This choice underscores the versatility and independence of TIM and SIM from acting policies, given
that they are formulated for the average reward setting.

For estimating the on-policy state-action functions, denoted as Qj
θt

: R6×10×10 × A → R, each agent employs a deep
SARSA network (Zhao et al., 2016). We have tailored the network’s update rule to provide estimates for the state-action
values consistent with the average reward setting, as defined by Equation 2.

We initialize the approximation of TIM for all i, j ∈ N to 1
|N | = 1/3. Rather than adjusting the TIM estimates at every

incremental time step, we accumulate a batch of transitions and then update the estimate, using the mean impact samples
derived from this batch. We found that this approach is more stable. Importantly, this modification does not conflict with the
theoretical guarantees associated with the original update rule as denoted in Equation 12.

Due to the large state space, the tabular SIM estimation approach delineated in Section 5.2 becomes infeasible. To circumvent
this limitation, for every agent i, we introduce an additional neural network featuring three output heads—one for each
agent—to estimate SIi→j(ϕ(s), πθt). We proceed by training this network using a supervised method. Specifically, we
gather a batch of transitions, identify the associated impact samples, and then condition the network to align with these
impact samples. To ensure a more stable and consistent training process, transitions are stored in a replay buffer, from which
batches are subsequently drawn.

For implementing the PPO algorithm, we leverage the standard version offered by StableBaselines3 (SB3) (Raffin et al.,
2021). The deep SARSA algorithm can be conceptualized as an on-policy version of the widely recognized DQN algorithm
(Mnih et al., 2013). Accordingly, we modify the DQN implementation of SB3 to the deep SARSA algorithm for the
average-reward setting. It is worth noting that the SB3 library is traditionally designed for single-agent scenarios. In our
case, we have modified it to ensure concurrent learning across all our algorithms. In terms of computational strategy, we
chose to run the environment simulations entirely on a GPU. This approach allows us to run 10, 000 environments in parallel.
Consequently, a single timestep, denoted as t, produces a batch of 10, 000 transitions for us. All of our experiments specific
to the coin game were conducted using a consumer-grade Nvidia Geforce RTX 2080Ti GPU.

D. Hyperparameters for Experiments
In this section, we give a detailed overview of the used hyperparameters and how they were chosen for the empirical
experiments.

D.1. Random Environment

A summary of the used hyperparameters are given in Table 1.

The experiments to evaluate the approximation algorithms for SIM and TIM have several tuneable hyperparameters. First,
we determined the learnings rates α and β for the SARSA approximation algorithm (Sutton & Barto, 2018), the initial
learning rates αSIM

0 and αTIM
0 , and the decay rates dSIM

decay and dTIM
decay of the TIM approximation algorithms. The learning rates
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Table 1. Overview hyperparameters in random environment determined by random search.

Declaration Symbol Algorithm Value

State-action learning rate α SARSA algorithm 0.036
Long-term return step size β SARSA algorithm 0.036
Initial Learning rate (TIM) αTIM

0 TIM approximation 0.471
Learning rate decay (TIM) dTIM

decay TIM approximation 0.726

Initial Learning rate (SIM) αSIM
0 SIM approximation 0.740

Learning rate decay (SIM) dSIM
decay SIM approximation 0.539

Critic initial learning rate β0,ω Algorithm 1 of Zhang et al. 0.128
Critic learning rate decay dω,decay Algorithm 1 of Zhang et al. 0.039
Actor initial learning rate β0,θ Algorithm 1 of Zhang et al. 0.924
Actor learning rate decay dθ,decay Algorithm 1 of Zhang et al. 0.088
Size of state individual action embedding m Algorithm 1 of Zhang et al. 20
Size of state joint action embedding K Algorithm 1 of Zhang et al. 80

for the SIM and TIM approximation algorithms in timestep t were then given by

αSIM
t =

αSIM
0

td
SIM
decay

and αTIM
t =

αTIM
0

td
TIM
decay

.

Next, we set the number of agents N = 5, the number of states |S| = 5, the size of the action spaces
∣∣Aj
∣∣ = 2 for all

j ∈ N , the number of approximation steps to T = 10.000, initialized the tables of the individual state-action function
approximations with one, initialized the approximation of SIM and TIM by 1/|N | = 1/5, and set α = β. With this
in place, we performed a random search with 1.000 different seeds and sampled α, α0, and ddecay uniformly from [0, 1]
for every seed. The remainder of the environment and the policy parameters were randomly chosen without enforcing
any influence structure. The details of this can be found in Section C. We then measured the error of the approximation
algorithms using the SARSA algorithm to the analytically determined SIM and TIM for a given policy, i.e., we measured
∥SIana(·, πθ)− SI(·, πθ, ηt)∥1 and ∥TIana(πθ)− TI(πθ, ηt)∥1 after T steps. We chose the set of parameters that resulted in
the minimal approximation errors over the random search. This gave us α = β = 0.036, αSIM

0 = 0.740, αTIM
0 = 0.471,

dSIM
decay = 0.539, and dTIM

decay = 0.726.

The hyperparameters for the actor-critic algorithm of Zhang et al. (2018) were determined similarly. For this we set the
number of agents to N = 10, the number of states to |S| = 10, the size of the action-spaces

∣∣Aj
∣∣ = 2 for all j ∈ N , the

number of simulation steps to T = 20.000, and do not enforce any influence structure. We perform a random search for
1.000 different seeds. For each simulation, we sample the initial learning rate for the critic βω,0 and actor βθ,0 uniformly
from [0, 1]. The corresponding decay rate for the critic dω,decay is uniformly sampled from [0, 1], and the decay rate for the
actor dθ,decay is sampled from [dω,decay, 1]. This results in learnings rates at time step t given by

βt,ω =
β0,ω

tdω,decay
and βt,θ =

β0,θ

tdθ,decay
.

Furthermore, we sample the size m = mj for every j ∈ N of the embeddings of the states and individual actions uniformly
from the set {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, and the size of the embeddings of the state and joint actions denoted by
K uniformly from {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The remainder of the environment and parameters, e.g., for the
policies or global state-action function approximations, were chosen randomly. For each run, we measure the globally
averaged long-term return, which is given for time step t by

Jt =
1

t

t−1∑
k=0

1

N

∑
j∈N

rjk+1, (38)

where rjk+1 denotes the instantaneous reward of agent j in time step k. We chose the final parameters from the simulation
with the highest final globally averaged long-term return, i.e., the parameter set with the highest value of J20.000 of the
simulations. These parameters were βω,0 = 0.128, βθ,0 = 0.924, dω,decay = 0.039, dθ,decay = 0.088, m = 20, and K = 80.
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The performance of the actor-critic learning algorithm, i.e., the value Jt, is sensitive to the parameter choice. The learned
policies do not perform better than random for most of the randomly sampled parameters.

D.2. Coin Game

Given the coin game’s complexity and the intricacies of the algorithms we employ, a random search approach—like the one
used in the random environment—is infeasible. Instead, we opt for hand-tuning the hyperparameters, building upon the
default settings provided by SB3. Modifications from these default values are detailed in Table 2.

All neural networks utilized in our study employ a consistent architecture for feature extraction. Specifically, the feature
extractor consists of three convolutional layers, each with a kernel size of three and a stride of one, which is subsequently
followed by a ReLU activation function. For the networks dedicated to the PPO and deep SARSA algorithms, the remaining
architecture builds upon SB3’s default networks, which operate on the embedded output from the feature extractor. On the
other hand, the SIM network uses a simple feed forward design, comprised of three fully connected layers. Each of these
layers has a hidden size of 64 and is followed by ReLU activations.

Table 2. Overview hyperparameters in coin game determined by hand tuning.

Declaration SB3 variable name or symbol Algorithm Value

State-action learning rate learning rate Deep SARSA 0.0001
Replay buffer size buffer size Deep SARSA 500, 000
Transitions before training starts learning starts Deep SARSA 100, 000
Target network update interval target update interval Deep SARSA 500, 000
Training batch size batch size Deep SARSA 8096
Number of steps t before update n rollout steps Deep SARSA 8
Long-term return step size - Deep SARSA 0.01
Initial Learning rate (TIM) αTIM

0 TIM approximation 1.0
Learning rate decay (TIM) dTIM

decay TIM approximation 0.50

Learning rate (SIM) - SIM approximation 0.0001
Discount rate γ PPO 0.98
Learning rate learning rate PPO 0.001
Number of steps t before update n rollout steps PPO 25
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