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Abstract

Large language models (LLMs) have demon-001
strated impressive instruction following capa-002
bilities, while still struggling to accurately man-003
age the length of the generated text, which is004
a fundamental requirement in many real-world005
applications. Existing length control methods006
involve fine-tuning the parameters of LLMs,007
which is inefficient and suboptimal for practi-008
cal use. In this paper, we propose a novel itera-009
tive sampling framework for text length control,010
integrating the Metropolis-Hastings algorithm011
with an importance sampling acceleration strat-012
egy. This framework efficiently and reliably013
regulates LLMs to generate length-constrained014
text without modifying the underlying param-015
eters, thereby preserving the original capabili-016
ties of LLMs. Experimental results demonstrate017
that our framework achieves almost 100% suc-018
cess rates of length control on LLAMA3.1 for019
tasks such as length-controlled abstractive sum-020
marization and length-constrained instruction021
following, with minimal additional computa-022
tional overhead. This also highlights the signif-023
icant potential of our method for precise length024
control across a broader range of applications,025
without compromising the versatility of LLMs.026

1 Introduction027

Recent advancement of pre-trained large language028

models (LLMs) has significantly improved the per-029

formance of various natural language processing030

tasks (Vaswani, 2017; Devlin, 2018; Brown, 2020).031

LLMs such as GPT-4 (Achiam et al., 2023) and032

LLAMA (Touvron et al., 2023a,b; Dubey et al.,033

2024) exhibit exceptional capabilities to follow in-034

structions (Ouyang et al., 2022), allowing them to035

generate text aligning closely with user intentions.036

Applications such as dialogue generation (Yi et al.,037

2024), code completion (Jiang et al., 2024), and038

reasoning (Plaat et al., 2024) have benefited greatly039

from these advances, establishing LLMs as the core040

component in building general AI systems.041

Despite the strong generative capability, LLMs 042

still struggle to precisely manage the length of gen- 043

erated text (Wang et al., 2024; Huang et al., 2024; 044

Li et al., 2024), due to inherent architectural lim- 045

itations such as subword tokenization (Sennrich, 046

2015; Devlin, 2018) and autoregressive decoding 047

(Sutskever, 2014; Vaswani, 2017; Brown, 2020). 048

This issue is critical because length control is a 049

fundamental requirement in many real-world appli- 050

cations. For example, summarization tasks often 051

require outputs of specific lengths to balance infor- 052

mativeness and conciseness (Fan et al., 2017; Liu 053

et al., 2018, 2022; Jie et al., 2024). In addition, 054

LLM-based chatbots favor longer responses due to 055

the length bias introduced in pairwise preference 056

optimization (Singhal et al., 2023), which under- 057

mines the fairness of model evaluation (Dubois 058

et al., 2024a; Yuan et al., 2024) and degrades the 059

user experience in practical conversations. 060

To address the issue of length control, various 061

methods have been proposed, including fine-tuning 062

based on specifically designed length instructions 063

(Yuan et al., 2024; Wang et al., 2024; Li et al., 2024) 064

and reinforcement learning with length feedback 065

(Stiennon et al., 2020; Jie et al., 2024). However, 066

we argue that it is necessary to design length control 067

methods tailored for black-box LLMs for the fol- 068

lowing reasons: (1) Fine-tuning LLMs specifically 069

for length control requires extensive computational 070

resources and can degrade their general-purpose 071

utility (Lin et al., 2024). Worse still, not all LLMs 072

are open source. The fine-tuning methods cannot 073

be applied to black-box LLMs. (2) Length control 074

has been actually considered in the instruction tun- 075

ing phase of LLMs (Wang et al., 2022; Taori et al., 076

2023). As such, a superior and more efficient so- 077

lution is to activate the inherent length-following 078

capabilities within LLMs rather than undertaking a 079

costly retraining process. 080

We propose a novel framework for black-box 081

LLMs that operates length control without the need 082
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for parameter training. The length controlled gener-083

ation can be viewed as sampling from a target distri-084

bution, which is influenced simultaneously by the085

length constraint and language probability. How-086

ever, it is intractable to directly sample from this087

distribution, and we utilize an iterative sampling088

framework called Metropolis-Hastings (Metropolis089

et al., 1953; Hastings, 1970), which is a classic090

and prevalent Markov chain Monte Carlo (MCMC)091

method specially suited for this complex scenario.092

In detail, our framework initiates from the original093

output of LLM and iteratively produces candidate094

outputs conditioned on the previous ones via a pro-095

posal distribution. The acceptance or rejection of096

these candidates is determined by their comparative097

advantage over previous candidates, which is quan-098

tified as an acceptance distribution that involves:099

the alignment with the target length, the generative100

probability density of the LLM, and the probabil-101

ity density of the proposal distribution. Further-102

more, we leverage importance sampling (Kahn and103

Marshall, 1953; Owen and Zhou, 2000) in the pro-104

posal distribution to accelerate the iteration process,105

where candidates with lengths closer to the desired106

target are more likely to be sampled. We treat the107

LLM as an immutable component, enabling the in-108

tegration of effective length control mechanisms109

across the broadest possible spectrum of LLMs.110

We assess the effectiveness of our method on111

several tasks, including the abstract text summa-112

rization task with precise length control and the113

instruction following task with maximum length114

constraint. Experimental results demonstrate that115

our black-box approach significantly improves ex-116

isting LLMs in length control and achieves the state-117

of-the-art performance without compromising the118

quality of generated contents. Specifically, in the119

case of the LLAMA3.1 model (Dubey et al., 2024),120

our method achieves success rates close to 100%121

of the length control in only five iterations at most,122

highlighting its efficiency and practicality. Our123

contributions are summarized as follows:124

1. We propose a novel framework for black-125

box LLMs, offering more flexible and general126

length control compared to existing methods.127

2. We introduce an innovative integration of the128

classic Metropolis-Hastings algorithm with129

modern LLMs, thereby enhancing the effi-130

ciency and precision of length control.131

3. We achieve remarkable length control perfor-132

mance in advanced LLMs, showcasing the ro-133

bustness and effectiveness of our framework.134

2 Related Work 135

2.1 Instruction Following 136

LLMs are endowed with powerful instruction fol- 137

lowing capabilities in the supervised fine-tuning 138

stage (Ouyang et al., 2022; Zhou et al., 2024). De- 139

spite being able to understand human instructions 140

and handle a broad spectrum of tasks, LLMs still 141

leave a large room for improvement in their instruc- 142

tion following capabilities (Liu et al., 2023). In 143

addition to training stronger instruction following 144

capabilities (Rafailov et al., 2024b,a), it is also im- 145

portant to better utilize and activate the power of 146

LLMs (Wei et al., 2022; Yao et al., 2023). 147

2.2 Length Control 148

Controlling the output length is a crucial skill in 149

text generation, particularly for tasks where lengths 150

vary significantly. Early length controllable gener- 151

ation methods focus on the abstractive summariza- 152

tion task. For example, some methods discretize 153

lengths into bins with specialized tokens (Fan et al., 154

2017), introduce length constraint factors to convo- 155

lutional blocks (Liu et al., 2018), or optimize out- 156

put quality through minimum risk training (Makino 157

et al., 2019). In addition, length control signals can 158

be incorporated in positional encodings (Takase 159

and Okazaki, 2019), attention units (Yu et al., 2021; 160

Liu et al., 2022), and natural language instructions 161

(Yuan et al., 2024; Wang et al., 2024; Jie et al., 162

2024; Li et al., 2024). These methods require the 163

length training, which is inefficient when applied 164

to LLMs and has the potential to damage general 165

abilities. Recent instruction-based control schemes 166

(Juseon-Do et al., 2024) can alleviate these issues 167

but still fail to achieve precise control. In contrast, 168

our framework effectively enhances LLM’s ability 169

to enable more precise text generation. 170

3 Methodology 171

3.1 Overall Framework: Metropolis-Hastings 172

As illustrated in Figure 1, we introduce how to ap- 173

ply the Metropolis-Hastings framework (Metropo- 174

lis et al., 1953; Hastings, 1970) to the length con- 175

trol scenario. Given the probability distribution of 176

LLMs P (y|x) and the score of length constraint 177

f(y), our target distribution π(y|x) is derived as: 178

π(y|x) = f(y)P (y|x)∫
f(y)P (y|x)dy , (1) 179

where x is the human instruction and y is the re- 180

sponse of the target LLM. We cannot directly sam- 181
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Figure 1: The overall sampling process of our Metropolis-Hastings framework. The iteration starts by sampling an
initial state from the distribution of LLM y0 ∼ P (y|x), and ends at y7, which maximizes the target combination of
length constraints and probability densities π(y|x) ∝ f(y)P (y|x). During each iteration, a new candidate content yi
is generated based on the previous one yi−1 via the proposal distribution p(yi|yi−1, x). The generated candidate yi
will be either accepted or rejected considering the degree to which the target objectives are satisfied. We enhance the
original proposal distribution by incorporating length constraints, yielding the importance distribution q(yi|yi−1, x),
which increases the acceptance rate of candidates and significantly improves the iteration efficiency.

ple y from the target distribution π(y|x) because:182

(1) f(y) is a deterministic function designed to183

evaluate length constraints, rather than a probabil-184

ity distribution, which is not suitable for sampling;185

and (2) the integral of the normalization constant186

Z =
∫
f(y)P (y|x)dy is intractable.187

The Markov chain Monte Carlo algorithms can188

handle the problem by starting from an initial state189

y0 ∼ P (y|x), iteratively generating a collection190

of states [y1, . . . , yn] with a transition distribution191

P (yi|yi91, x), and approaching the target distri-192

bution π(y|x) = lim
n→∞

P (y0|x)
n∏

i=1
P (yi|yi91, x).193

Therefore, yn can be considered as sampled from194

the target distribution π(y|x) when n → ∞.195

The Metropolis-Hastings algorithm designs the196

transition probability as a combination of two steps:197

P (yi|yi91, x) = p(yi|yi91, x)A(yi91 → yi), (2)198

where p(yi|yi91, x) is the proposal distribution that199

generates a new candidate yi given the previous200

one yi−1. The acceptance distribution A(yi91→yi)201

provides the probability of accepting the proposed202

candidate yi. To ensure convergence, π(y|x) must203

be the unique stationary distribution of the Markov204

chain. Thus the Metropolis-Hastings algorithm fur-205

ther requires the transition probability P (yi|yi91, x)206

to fulfill the detailed balance condition, which is a 207

sufficient condition for the stationary distribution, 208

π(yi91|x)P (yi|yi91, x) = π(yi|x)P (yi91|yi, x).
(3) 209

Based on eqs. (2) and (3), the acceptance distribu- 210

tion is derived to satisfy the following constraint: 211

A(yi91 → yi)

A(yi → yi91)
=

π(yi|x)p(yi91|yi, x)
π(yi91|x)p(yi|yi91, x)

=
f(yi)P (yi|x)p(yi91|yi, x)

f(yi91)P (yi91|x)p(yi|yi91, x)
,

(4) 212

where the normalization constant Z cancels, mak- 213

ing subsequent calculations convenient. In addi- 214

tion, the most popular choice of A(yi91 → yi) in 215

Metropolis-Hastings that satisfies eq. (4) is: 216

min

(
1,

f(yi)P (yi|x)p(yi91|yi, x)
f(yi91)P (yi91|x)p(yi|yi91, x)

)
, (5) 217

The sampling process of Metropolis-Hastings is 218

illustrated in algorithm 1. During each iteration 219

loop, a new candidate yi is generated from the pre- 220

vious one yi91. Whether to accept or reject the 221

new candidate is determined by the acceptance dis- 222

tribution A(yi91 → yi), where the randomness is 223

achieved with a uniform distribution u ∼ U(0, 1). 224

In the black-box setting where direct access 225

to the internal probability outputs of LLM is not 226
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Algorithm 1 Metropolis-Hastings Algorithm

1: Initialize the start state y0 ∼ P (y|x)
2: for i = 0 to n do
3: Propose: yi ∼ p(yi|yi91, x)
4: Calculate: A(yi91→yi) // eq. (5)
5: Randomize: u ∼ U(0, 1)
6: if u > A(yi91→yi) then
7: yi = yi91 // Reject
8: end if // else Accept
9: end for

10: Return yn

available, the following key components of the227

Metropolis-Hastings algorithm require careful and228

specialized designs: (1) the length constraint score229

f(y) (§3.2), which serves as a quantitative metric230

to assess the degree to which the generated sam-231

ples adhere to predefined length requirements; (2)232

the probability distribution of LLM P (y|x) (§3.3),233

which estimates the likelihood of the LLM gener-234

ating the specific sample y; and (3) the proposal235

distribution p(yi|yi91, x) (§3.4), which requires tai-236

lored construction to effectively generate candidate237

samples and efficiently explore the solution space,238

ensuring adherence to the length constraint while239

achieving sufficiently high generation quality.240

3.2 Length Constraint Score f(y)241

Given a word counter Len(·), such as the NLTK242

word tokenization function (Bird et al., 2009), the243

deviation of the LLM generated contents y from244

the target length ℓ can be quantitatively measured245

using the Manhattan distance, which is:246

D(y, ℓ) = | Len(y)− ℓ|. (6)247

Considering the target of our sampling process,248

the combination of f(y)P (y|x), we observe a re-249

semblance to the constrained optimization problem,250

where log f(y) can be interpreted as a constraint251

and logP (y|x) serves as an objective to be maxi-252

mized. Our target is similar to a Lagrangian func-253

tion f(y)P (y|x) ∝ logP (y|x) + λ log f(y) with254

the Lagrange multiplier λ = 1. Furthermore, our255

sampling process can be seen as analogous to exte-256

rior optimization, where the proposed candidates yi257

are always unable to satisfy the constraints during258

each iteration prior to the termination of the loop.259

Therefore, the constraint function f(y) needs to260

incentivize candidates that approximate the length261

constraint, and terminate the iterations with a sig-262

nificantly large reward when the length constraint263

is satisfied. Thus our length constraint score is de- 264

fined as follows. For an exact target length ℓ > 0: 265

f(y) =
1

D(y, ℓ)
. (7) 266

For an interval of target length [ℓ1, ℓ2]: 267

f(y) =



1

D(y, ℓ1)
, y < ℓ1

+∞, ℓ1 ≤ y ≤ ℓ2
1

D(y, ℓ2)
, y > ℓ2

, (8) 268

where 0 < ℓ1 < ℓ2 ≤ +∞ and ℓ2 can be +∞. 269

3.3 Probability Distribution of LLM P (y|x) 270

We can obtain the responses generated by black- 271

box LLMs such as GPT-4 (Achiam et al., 2023), 272

i.e., sampling from their distributions y ∼ P (y|x), 273

Prompt Template: y0 ∼ P (y|x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {y0}

274

which is easily accomplished with a simple instruc- 275

tion. However, we are unable to access their inter- 276

nal parameters or underlying probability distribu- 277

tions. Consequently, it is intractable to verify the 278

probability density P (y|x) of specific samples y. 279

To address this issue, we employ the LLM-as-a- 280

Judge approach (Chiang et al., 2023; Zheng et al., 281

2023; Dubois et al., 2024b) as a solution. Lever- 282

aging the advanced understanding, reasoning, and 283

mathematical capabilities of the model, we require 284

LLMs to score samples generated by themselves, 285

thus implicitly estimating their probability density 286

distributions. Besides, we predefine a series of per- 287

spectives to unify the scoring mode for our tasks. 288

For the abstractive summarization task, we mea- 289

sure the information coverage, linguistic fluency, 290

conciseness, logical coherence, and faithfulness 291

of the generated summaries. For instruction fol- 292

lowing, we measure the response with helpfulness, 293

relevance, accuracy, depth, creativity, and level of 294

detail. Denoting the score function as ϕ(y|x), we 295

get the estimated probability distribution as: 296

P (y|x) ≃ ϕ(y|x)∫
ϕ(y|x)dy . (9) 297

Similarly to the eq. (4), we can cancel the calcu- 298

lation of the normalization constant
∫
ϕ(y|x)dy. 299
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Since the eq. (4) requires the calculation of the300

ratio P (yi|x) ÷ P (yi91|x), where yi and yi91 are301

both sampled from the target LLM, we can further302

refine the scoring function by employing a pairwise303

comparison function Φ(yi, yi91|x) that304

P (yi|x)
P (yi91|x)

≃ Φ(yi, yi91|x) ≃
ϕ(yi|x)
ϕ(yi91|x)

, (10)305

where the pairwise score can discern subtle differ-306

ences between the sample pair (yi, yi91) at adjacent307

iteration steps. In addition, the pairwise function308

will produce scores with less fluctuation than the309

absolute one ϕ(y|x) (Zheng et al., 2023).310

3.4 Proposal Distribution p(yi|yi91, x)311

The proposal distribution p(yi|yi91, x) plays a piv-312

otal role, as it directly influences the efficiency and313

quality of the sampling process. Since the prob-314

ability distribution of LLM, P (y|x), is estimated315

by itself (§3.3), requiring LLMs to further approxi-316

mate the probability density of the proposal distri-317

bution p(yi|yi91, x) not only introduces additional318

complexity, but also amplifies the estimation er-319

rors. Therefore, we impose a symmetry constraint320

(Chib and Greenberg, 1995; Haario et al., 2001)321

on the design of the proposal distribution, which is322

q(yi|yi91, x) = q(yi91|yi, x). And the acceptance323

distribution A(yi91→yi) (eq. (5)) reduces to324

min

(
1,

f(yi)P (yi|x)
f(yi91)P (yi91|x)

)
, (11)325

when current result is better than the previous one,326

we directly accept it. Otherwise, we accept with a327

probability equal to its ratio, enabling expansion328

of the sampling space. Therefore, we design time-329

unbiased instructions to make LLM satisfy the sym-330

metry constraints as much as possible. The detailed331

prompt template for LLMs is as follows:332

Prompt Template: yi ∼ p(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {yi91}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANT]: Answer: {yi}
333

where yi and yi91 are equivalent and interchange-334

able in the semantics of this template.335

However, this preliminary Metropolis-Hastings 336

framework, constructed with the current proposal 337

function p(yi|yi91, x), is not efficient due to fol- 338

lowing reasons. (1) Intuitively, when generating 339

new candidates, the length signal remains the initial 340

one ("using ℓ words or less"). Without introducing 341

updated length signals, LLM may remain trapped 342

in its own errors, unable to converge to improved 343

solutions. (2) From a theoretical perspective, the 344

sampling efficiency and quality will be maximized 345

when the proposal function p(yi|yi91, x) aligns 346

closely with the target distribution π(y|x) (Gel- 347

man et al., 1997). This means that the sampling 348

efficiency decreases as this discrepancy increases. 349

Therefore, we apply the importance sampling 350

strategy (Kahn and Marshall, 1953; Owen and 351

Zhou, 2000) to improve the proposal distribution. 352

We define an importance distribution q(yi|yi91, x) 353

that complies with length constraints, serving as a 354

replacement for the proposal distribution to facili- 355

tate accelerated sampling. Equations (5) and (11) 356

can be further derived when yi ∼ q(yi|yi91, x): 357

A(yi91→yi)=
p(yi|yi91, x)
q(yi|yi91, x)

min

(
1,

π(yi|x)
π(yi91|x)

)
358

≤ min

(
1,

f(yi)P (yi|x)
f(yi91)P (yi91|x)

)
, (12) 359

where p(yi|yi91,x)
q(yi|yi91,x) ≤1 and eq. (11) becomes an up- 360

per bound of A(yi91 → yi). By simply replac- 361

ing line 3 in algorithm 1 with yi ∼ q(yi|yi91|x) 362

and calculating the acceptance rate with the upper 363

bound eq. (12), we can significantly accelerate the 364

sampling process. Although calculating this upper 365

bound may lead to higher acceptance rates, poten- 366

tially compromising generation quality, the remark- 367

able capabilities of LLMs fortunately mitigate this 368

risk to an almost negligible level. In addition, the 369

detailed template for the importance distribution is: 370

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {yi91}

[USER]: The generated answer is too (long /
short) at {Len(y)} words.
Please (delete / add) {D(y, ℓ)} words appro-
priately based on the previous response:

[ASSISTANT]: Answer: {yi}
371
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Models Samplers ACC↑ L1↓ L2↓ ROUGE-1/2/3 BERTSCORE-P/R/F

LLAMA2
INST 4.1% 11.42 15.20 0.37/0.13/0.24 0.89/0.88/0.89
CMP 4.5% 8.58 11.22 0.37/0.13/0.24 0.89/0.88/0.88

OURS 81.6% 0.24 0.64 0.36/0.12/0.24 0.88/0.88/0.88

QWEN2.5
INST 3.2% 8.64 10.83 0.33/0.10/0.21 0.88/0.88/0.88
CMP 4.1% 8.39 10.54 0.33/0.10/0.21 0.88/0.88/0.88

OURS 86.4% 0.18 0.72 0.33/0.10/0.21 0.88/0.88/0.88

LLAMA3
INST 9.1% 4.78 6.10 0.39/0.14/0.25 0.89/0.89/0.89
CMP 9.8% 4.53 5.94 0.39/0.14/0.25 0.89/0.89/0.89

OURS 78.6% 0.29 0.66 0.38/0.14/0.25 0.89/0.89/0.89

LLAMA3.1
INST 7.7% 3.88 5.10 0.38/0.13/0.24 0.89/0.88/0.89
CMP 10.8% 3.83 5.14 0.38/0.13/0.24 0.89/0.88/0.89

OURS 100.0% 0.00 0.00 0.38/0.13/0.24 0.88/0.88/0.88

GPT-3.5
INST 5.1% 8.29 13.69 0.36/0.12/0.23 0.88/0.88/0.88
CMP 32.5% 1.75 4.35 0.36/0.12/0.23 0.88/0.88/0.88

OURS 95.0% 0.14 1.11 0.36/0.12/0.23 0.88/0.88/0.88

GPT-4
INST 15.7% 2.10 2.67 0.36/0.12/0.23 0.88/0.88/0.88
CMP 35.3% 1.43 1.99 0.36/0.12/0.23 0.88/0.88/0.88

OURS 99.2% 0.01 0.12 0.36/0.12/0.23 0.88/0.88/0.88

Table 1: Results of the length control on the CNN/DailyMail dataset. INST is the baseline response with length-
guided instructions. CMP is the InstructCMP baseline. OURS represents our iterative sampling framework.

It should be noted that our method can perform372

parallel sampling as long as the corresponding LLM373

supports it, further improving the control efficiency.374

4 Experiments375

4.1 Experimental Setup376

Datasets For exact length control, we utilize the377

CNN/DailyMail dataset (CNNDM, Nallapati et al.378

(2016)), where the length instruction ℓ is extracted379

from the references. For length-interval control, we380

use the Alpaca-Eval-LI (ALPACA) and MT-Bench-381

LI (MTBENCH) datasets (Yuan et al., 2024), which382

are derived from the Alpaca-Eval dataset (Dubois383

et al., 2024b) and the MT-Bench dataset (Zheng384

et al., 2023). The length interval instructions are385

already provided in the dataset, where ℓ1 = 0 and386

ℓ2 is the length of the reference response. For CN-387

NDM, we randomly choose 1000 samples from388

the 3.0 version of the test set, since the instruction389

following task contains 1042 samples (802 from390

ALPACA and 240 from MTBENCH).391

LLMs We evaluate the effectiveness of our frame-392

work in the latest LLMs, including Llama-2-7B393

(LLAMA2, Touvron et al. (2023b), Qwen-2.5-394

7B (QWEN2.5, Team (2024)), Llama-3/3.1-8B395

(LLAMA3/3.1, Dubey et al. (2024)), and GPT-396

3.5/4 (Achiam et al., 2023). For white-box LLMs397

like LLAMA, we use them as black-box models,398

where the maximum iteration trial is 5 with a beam399

size of 16. For black-box models based on APIs400

like GPT-4, we set the maximum iteration trial as401

Models Samp. ACC↑ L1↓ L2↓ WIN.↑
ALPACA-EVAL-LI

LLAMA3.1

INST 91.6% 2.47 15.64 71.6%
CMP 95.3% 0.79 7.18 71.9%

OURS 99.8% 0.06 1.69 76.7%

GPT-4

INST 37.2% 21.38 37.61 30.2%
CMP 82.4% 1.43 4.92 69.5%

OURS 99.2% 0.02 0.17 92.0%

MT-BENCH-LI

LLAMA3.1

INST 80.4% 10.15 60.71 35.2%
CMP 90.1% 2.12 10.37 38.8%

OURS 98.8% 0.73 7.12 42.9%

GPT-4

INST 54.7% 13.99 29.16 27.4%
CMP 84.0% 1.69 6.13 41.8%

OURS 98.8% 0.05 0.41 63.7%

Table 2: Results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset.

15 without parallel sampling. We compare with 402

two baselines: naive instructions and InstructCMP 403

(Juseon-Do et al., 2024), which designs specialized 404

instructions for length compression. 405

Evaluation Metrics We use several metrics to 406

estimate the effect of the length control. ACCuracy 407

measures the ratio of generated contents that are 408

fully in accordance with the length constraint. 409

Given N generated contents, L1 measures the 410

average Manhattan distance 1
N

∑
y | Len(y) − ℓ| 411

and L2 measures the average Euclidean distance 412√
1
N

∑
y | Len(y)− ℓ|2. For quality evaluation of 413

the summary task, we use the classic score ROUGE 414
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Models WIN↑ TIE LOSE↓ KAPPA↑
QWEN2.5 69.5% 10.0% 20.5% 0.57
LLAMA3.1 59.0% 12.5% 30.5% 0.48

Table 3: Human Evaluation: OURS vs INST.

Trials ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
LLAMA3.1
0 7.7% 3.88 5.10 0.38/0.13/0.24
1 86.4% 0.18 0.55 0.38/0.13/0.24
2 99.2% 0.04 0.28 0.38/0.13/0.24
3 99.8% 0.01 0.03 0.38/0.13/0.24
4 100.0% 0.00 0.00 0.38/0.13/0.24
5 100.0% 0.00 0.00 0.38/0.13/0.24

Table 4: Analysis of the iteration trial on the CNNDM
dataset, where the beam size is 16.

(Lin, 2004), BERTSCORE (Zhang* et al., 2020)415

and human evaluation. For instruction following416

tasks, we use the length-instructed WINrate (Yuan417

et al., 2024), where responses are compared pair-418

wise with baselines. The winner is determined by419

both the quality of the responses provided by LLM-420

as-a-Judge (Zheng et al., 2023), and the adherence421

to the length constraints. If the response exceeds422

the length constraint, it is automatically lost.423

4.2 Main Results424

The detailed comparisons between the baselines425

and our framework are demonstrated in Tables 1426

and 2. Table 1 presents the results of length con-427

trol experiments conducted on the CNN/DailyMail428

dataset. Our method demonstrates significant im-429

provements over the baseline instruction meth-430

ods across all models and length-related metrics.431

Specifically, we achieve near-perfect or perfect432

accuracy (ACC), with values exceeding 95% for433

the most advanced LLMs (LLAMA3.1, GPT-3.5,434

and GPT-4), while the baselines struggle with ac-435

curacy values below 36%. Furthermore, our ap-436

proach exhibits substantially lower errors of L1437

and L2, indicating precise adherence to the target438

lengths. For example, on LLAMA3.1, our frame-439

work achieves an accuracy of 100%, demonstrat-440

ing flawless length control. Similarly, we attain a441

99.2% accuracy on GPT-4, reducing the L1 and442

L2 errors to 0.01 and 0.12, respectively. Beyond443

the significant improvement in length control, our444

method introduces almost no degradation in gen-445

eration quality, where ROUGE and BERTSCORE446

remain almost the same to baselines.447

Table 2 evaluates the performance of our method448

Beams ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
LLAMA3.1

0 7.7% 3.88 5.10 0.38/0.13/0.24
1 93.3% 0.14 0.88 0.37/0.13/0.24
2 98.9% 0.02 0.12 0.37/0.13/0.24
4 99.7% 0.01 0.05 0.38/0.14/0.25
8 100.0% 0.00 0.00 0.38/0.13/0.24

16 100.0% 0.00 0.00 0.38/0.13/0.24

Table 5: Analysis of the beam size on the CNNDM
dataset, where the iteration trial is 5.

Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 7.7% 3.88 5.10 0.38/0.13/0.24
RAND 38.8% 1.18 1.85 0.38/0.14/0.24
MH 40.2% 1.47 3.20 0.36/0.13/0.23
MH+IS 93.3% 0.14 0.88 0.37/0.13/0.24

Table 6: Ablation study of LLAMA3.1 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

on Alpaca-Eval-LI and MT-Bench-LI datasets. Al- 449

though these two datasets are relatively easier com- 450

pared to the exact length control task, the perfor- 451

mance improvement (with an accuracy increase of 452

at least 4.5%) brought about by our method com- 453

pared to the baselines is significant, confirming the 454

consistent superiority of our framework across dif- 455

ferent benchmarks. In addition, the LLM judged 456

pairwise WINrate of our approach improves. These 457

results highlight the effectiveness of our iterative 458

sampling framework in achieving robust and accu- 459

rate length control across diverse LLMs. 460

Table 3 is the human evaluation on CNNDM 461

with three human and three LLM annotators. Each 462

evaluator is presented with the article and the paired 463

summaries of two methods (OURS and INST). They 464

are asked to assign the win, tie, or lose for each 465

pair based on the informativeness and conciseness 466

of each summary. We randomly select 100 cases 467

for each method and shuffle their demonstrated 468

positions. It is observed that our method shows a 469

significant advantage over the baseline. Beisdes, 470

the human and LLM evaluations are highly aligned, 471

as evidenced by strong kappa correlations. 472

4.3 Analyses 473

We analyze the hyperparameters of our framework, 474

the number of iteration trials and the beam size, 475

which are illustrated in Tables 4 and 5. Both hy- 476

perparameters are used to expand and explore the 477

sampling space, with larger iteration trials demand- 478

ing greater time overhead and larger beam sizes in- 479
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Task Samp. STEPS↓ ACC↑ L1↓ L2↓

CNNDM

RAND 18.6 95.3% 0.06 0.35
MH 17.1 96.0% 0.34 1.85

MH+IS 2.4 100.0% 0.00 0.00

ALPACA

RAND 0.6 98.0% 0.21 1.71
MH 0.9 95.3% 0.32 2.67

MH+IS 0.1 100.0% 0.00 0.00

MTBENCH

RAND 3.0 97.9% 0.33 3.26
MH 3.3 96.7% 0.42 4.88

MH+IS 0.8 99.5% 0.06 0.85

Table 7: Convergence steps on LLAMA3.1.

curring higher space costs. As the sampling space480

reduces, the influence of length control progres-481

sively decreases. In particular, this reduction is482

non-linear, with the rate of decline accelerating sig-483

nificantly. Besides, comparing the two tables, we484

can observe that the number of iteration trials con-485

tributes more to the control effect than the beam486

size. With a smaller sampling space of 2 beams487

× 5 trials, the accuracy (98.9%) outperforms the488

situation with 16 beams × 1 trial (86.4%).489

4.4 Ablation Study490

Table 6 presents an ablation study evaluating the491

performance of different sampling strategies for492

LLAMA3.1 on the CNN/DailyMail dataset. We493

examine four sampling strategies: (1) INST is the494

instruction following baseline without iterations;495

(2) RAND extends the baseline to resample at each496

iteration and retains the best one; (3) MH is our497

initial version of the Metropolis-Hastings frame-498

work that resamples with the proposal distribution499

y ∼ p(yi|yi−1, x) during each iteration; and (4)500

MH+IS is our complete method which replaces the501

proposal distribution with the importance distribu-502

tion q(yi|yi−1, x). We set the beam size to 1, be-503

cause sampling a batch of initial states y0∼P (y|x)504

is actually the RAND method and we want to elimi-505

nate this influence. Experimental results show that506

with the powerful instruction following capabilities507

of LLMs, random sampling of more candidates can508

achieve good control effects. However, the origi-509

nal Metropolis-Hastings method does not make the510

process more efficient and is sometimes even worse511

than random sampling. By replacing the proposal512

distribution with an importance sampling strategy,513

our method achieves significant improvements.514

4.5 Convergence Study515

Furthermore, we analyze the accurate convergence516

speed of different sampling methods in Tables 7517

Task Samp. STEPS↓ ACC↑ L1↓ L2↓

CNNDM

RAND 2.6 93.8% 0.06 0.29
MH 2.5 91.4% 0.09 0.58

MH+IS 1.0 98.0% 0.02 0.14

ALPACA

RAND 2.5 77.3% 2.52 6.54
MH 3.0 93.6% 3.02 8.67

MH+IS 0.4 98.2% 0.09 0.81

MTBENCH

RAND 1.3 83.7% 2.57 7.89
MH 1.8 78.3% 4.09 14.71

MH+IS 0.1 99.8% 0.01 0.09

Table 8: Convergence steps on GPT-4.

and 8. We set the beam size to 1 as in section 4.4 518

and the maximum iteration step for each case is 519

100 for LLAMA3.1 and 15 for GPT-4. We report 520

the average iteration STEPS required to satisfy the 521

length constraints, which excludes the first sam- 522

pling step y0 ∼ P (y|x). We observe that differ- 523

ent models have different convergence steps for 524

different tasks. In general, precise length control 525

tasks are more difficult and require more iterations. 526

Even so, we achieve an almost perfect control ef- 527

fect with only 2.4 iteration steps on average for 528

LLAMA3.1. We even only need an average of 0.1 529

iterations for LLAMA3.1 to perform perfect control 530

on the Alpaca-Eval-LI dataset. For GPT-4, we only 531

need 1.0 iterations at most on average to obtain 532

good control results. Therefore, our framework can 533

achieve extremely effective length control perfor- 534

mance with acceptable time overhead. 535

5 Conclusion 536

We propose a novel length controllable sampling 537

framework for black-box models and verify the 538

effectiveness with experiments and analyses. Our 539

study confirms that an almost perfect length con- 540

trol can be achieved on LLMs, which is of great 541

significance to improve their instruction following 542

ability. In addition, although our framework per- 543

forms well, its sampling efficiency and generation 544

effect are affected by the capabilities of LLM it- 545

self. Fortunately, with the rapid development of 546

LLMs, this concern will gradually disappear. Its 547

worth noting that we do not directly compare with 548

the length training methods, because (1) the black- 549

box models are not trainable, and (2) the training 550

methods are based on specific datasets and possess 551

some data bias, which is contrary to the objective 552

of a more generalized length control. We hope to 553

explore more efficient and general length control 554

schemes in our future studies. 555
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Limitations556

Despite the promising results demonstrated in our557

experiments, our method has some limitations that558

merit further discussion:559

• Inference Overhead:560

Our approach introduces additional inference over-561

head due to the iterative nature of the method. Al-562

though the experimental results show that satisfac-563

tory results can often be achieved in 2 iterations for564

advanced models such as LLAMA3.1. However,565

more iteration steps are required for more difficult566

scenarios or weaker LLMs. This additional compu-567

tational cost may present challenges for large-scale568

batch generation tasks where inference speed is569

critical. Future research could explore optimiza-570

tion techniques to reduce the number of iterations571

required or design lightweight variants to better572

suit the high-throughput applications.573

• Dependency on Instruction Following Abilities:574

The performance of our method is highly depen-575

dent on the instruction following capabilities of576

the underlying model. For state-of-the-art LLMs577

such as LLAMA3.1 and GPT-4, fewer iterations578

are typically sufficient to achieve satisfactory re-579

sults. However, when applied to models with less580

robust instruction-following abilities, the number581

of iterations required may increase significantly,582

potentially affecting efficiency. Addressing this583

limitation could involve developing methods to en-584

hance instruction alignment for less capable models585

or incorporating external mechanisms to mitigate586

the dependency on instruction following abilities.587

Considering our experiments, the limitations are:588

• Baselines: We do not directly compare with train-589

ing methods for length control because: (1) our590

framework is dedicated to black-box LLMs, which591

is not trainable; (2) length instructions have already592

been incorporated in the supervised fine-tuning593

stage of LLMs, which means LLMs themselves are594

length trainable baselines; (3) the training methods595

are based on specific datasets and possess some596

data bias, which is contrary to the objective of a597

more generalized length control; and (4) large-scale598

training of length instructions on LLMs such as599

LLAMA3.1 requires a lot of computing resources600

that we cannot currently afford.601

• Models: Currently, we only test the most widely602

used LLMs. Due to the limitations of computing603

resources and costs, we are unable to test white-box 604

models with larger parameters (such as 70B), nor 605

can we afford the test of other API-based black-box 606

LLMs on a large scale. 607

Ethics Statement 608

This research focuses on controlling the output 609

length of LLMs to address practical usability and 610

fairness concerns in various applications, such as 611

summarization, dialogue systems, and content gen- 612

eration. By enabling precise length control, this 613

work aims to enhance user experience, ensure rele- 614

vance, and reduce unintended biases introduced by 615

excessively verbose or overly concise outputs. 616

We recognize the potential ethical risks associ- 617

ated with the misuse of controlled generation, such 618

as the creation of misleading or harmful content 619

tailored to specific lengths. To mitigate such risks, 620

our methodology emphasizes transparency, repro- 621

ducibility, and alignment with ethical guidelines 622

in AI development. Additionally, we advocate for 623

integrating robust content moderation mechanisms 624

in downstream applications to safeguard against 625

unintended consequences. 626

This research was conducted following estab- 627

lished ethical standards, ensuring that the datasets 628

used respect privacy and are free of harmful biases 629

to the best of our ability. Future work will further 630

explore the societal implications of this technology, 631

ensuring its responsible and equitable deployment. 632
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Yu, Lili Yu, et al. 2024. Lima: Less is more for align-870
ment. Advances in Neural Information Processing871
Systems, 36.872

A Prompt Templates 873

A.1 Initial States 874

For the abstractive summarization task with exact 875

length constraints, we randomly choose an exam- 876

ple (xc, yc, ℓc) from the training set as an one-shot 877

demonstration for LLMs, because the chat LLMs 878

are not specifically trained for the output mode of 879

summary tasks. The detailed template is: 880

Prompt Template: y0 ∼ P (y|x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: {xc}
Based on the previous document, provide a
high-quality summary in exactly {ℓc} words:

[ASSISTANT]: Summary: {yc}

[USER]: Document: {x}
Based on the previous document, provide a
high-quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: {y0}
881

For instruction following tasks with length inter- 882

vals, we directly use zero-shot with the template: 883

Prompt Template: y0 ∼ P (y|x)

[USER]: Answer the following instruction
using {ℓ} words or less: {x}
[ASSISTANT]: Answer: {y0}

884

A.2 Probability Densities of Current States 885

We demonstrate the detailed {Criteria} of eval- 886

uation for different tasks. For abstractive summa- 887

rization: we score the generated summaries in 5 888

dimensions on a scale of 1-10. 889

1. Information Coverage: Does the summary in- 890

clude the most important and critical informa- 891

tion from the document? 892

2. Linguistic Fluency: Are the sentences in the 893

summary fluent, natural, and grammatically cor- 894

rect? 895

3. Conciseness: Does the summary avoid redun- 896

dancy while retaining key information? 897

4. Logical Coherence: Is the summary well- 898

structured with clear and logical flow? 899
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5. Faithfulness: Does the summary accurately re-900

flect the facts in the original document without901

adding false or misleading information?902

The evaluation {Criteria} for the general in-903

struction following task is of 6 dimensions:904

1. Helpfulness: Does the response directly ad-905

dress the instruction and provide meaningful906

assistance?907

2. Relevance: Does the response stay on topic and908

avoid unnecessary or unrelated information?909

3. Accuracy: Is the information in the response910

factually correct and free of errors?911

4. Depth: Does the response demonstrate a deep912

understanding of the topic, including nuanced913

explanations where relevant?914

5. Creativity: Does the response display original-915

ity, creativity, or a unique approach to address-916

ing the instruction?917

6. Level of Detail: Is the response sufficiently918

detailed, providing comprehensive and thorough919

explanations where necessary?920

Following the setting of MT-Bench, we set a921

special evaluation {Criteria} for math-related in-922

struction following tasks such as reasoning, math923

and coding, which is described below.924

1. Correctness: Is the answer logically sound, fac-925

tually accurate, and free from errors?926

2. Helpfulness: Does the response directly ad-927

dress the instruction and provide meaningful928

assistance?929

3. Clarity: Is the response well-structured and930

easy to understand?931

4. Efficiency: Does the response provide an opti-932

mal solution without unnecessary complexity?933

5. Completeness: Does the response fully cover934

the instruction’s requirements and edge cases?935

6. Robustness: Can the response handle ambigu-936

ity or complexity in the instruction?937

We formalize the output to facilitate the extrac-938

tion of key information, where the {Format} is939

#### Response 1:
1. Information Coverage:: [Score]/10
2. Linguistic Fluency: [Score]/10
. . . . . .
**Overall Score:** [Total Score]/50
#### Response 2:
1. Information Coverage:: [Score]/10
2. Linguistic Fluency: [Score]/10
. . . . . .
**Overall Score:** [Total Score]/50
### Conclusion:
- **Better Response:** [Response 1/Re-
sponse 2].
- **Score Ratio (Response 1 ÷ Response
2):** [Ratio, rounded to two decimal places].

940

We calculate the eq. (10) via 941

P (yi|x)
P (yi91|x)

≃ ϕ(yi|x)
ϕ(yi91|x)

=
Score of Response 1

Score of Response 2
.

(13) 942

Therefore, the prompt templates for estimating the 943

target probability density are: 944

Prompt Template: Φ(yi, yi−1|x)

[SYSTEM]: You are a powerful evaluator for
abstractive summarization.

[USER]: I need to compare and evaluate the
quality of two summaries generated for a
given document. Please provide a quantita-
tive assessment of their performance based
on the criteria below.
Document: {x}
Summary 1: {yi}
Summary 2: {yi−1}
Evaluation Criteria (each scored on a scale
of 1-10, with 10 being the best): {Criteria}
Instructions:
* Score each summary based on the above
criteria.
* Calculate an overall score for each sum-
mary as the sum of all criteria scores (maxi-
mum 50).
* Conclude by identifying which summary
is better overall.
* Calculate a score ratio of Summary 1 to
Summary 2 (Summary 1 Score ÷ Summary
2 Score).
Output Format: {Format}

945
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where we force LLMs to score the responses of the946

adjacent steps generated by itself. By extracting947

the score ratio from {Format}, we can estimate948

the fraction of the target distribution.949

For instruction following tasks, we use the pair-950

wise template derived from the Alpaca-Eval, which951

emphasizes that the length of the generated content952

and the position of the presentation should not be a953

bias in scoring.954

Prompt Template: Φ(yi, yi−1|x)

[SYSTEM]: You are a highly efficient assis-
tant, who evaluates and selects the best large
language model (LLMs) based on the quality
of their responses to a given instruction.
This process will be used to create a leader-
board reflecting the most accurate and
human-preferred answers.

[USER]: I require a leaderboard for various
large language models. I’ll provide you with
an instruction given to these models and their
corresponding responses. Your task is to as-
sess these responses, provide a quantitative
assessment of their performance based on
the criteria below, and select the model that
produces the best output from a human per-
spective. Avoid any position biases and en-
sure that the order in which the responses
were presented does not influence your deci-
sion.
Instruction: {x}
Response 1: {yi}
Response 2: {yi−1}
Tasks:
* Score each response based on the above
criteria.
* Calculate an overall score for each response
as the sum of all criteria scores (maximum
60).
* Conclude by identifying which response is
better overall.
* Calculate a score ratio of Response 1 to
Response 2 (Response 1 Score ÷ Response
2 Score).
Output Format: {Format}

955

A.3 Propose New States956

Proposal Distribution For the abstractive sum-957

marization task, the prompt template for sampling958

from the proposal distribution p(yi|yi91, x) is:959

Prompt Template: yi ∼ p(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: {x}
Based on the previous document, provide a
high-quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: {yi−1}

[USER]: Please generate a new summary
based on the previous one:

[ASSISTANT]: Summary: {yi}
960

The template for instruction following task is: 961

Prompt Template: yi ∼ p(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer:\n{yi−1}

[USER]: Please generate a new answer
based on the previous one:

[ASSISTANT]: Answer: \n {yi}
962

Importance Distribution We split the impor- 963

tance distribution into two segments. When the can- 964

didate length is far from the target length D(y, ℓ) > 965

3, we use a looser objective so that LLMs can 966

have more opportunities for semantic organization, 967

which is beneficial for the quality of generation. 968

The template for abstractive summarization is: 969

Prompt Template: yi ∼ q(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {x} \n\n Based
on the previous document, provide a high-
quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: \n {yi−1}

[USER]: The generated summary is too
(long / short) at {Len(y)} words.
Please improve it to be exactly {ℓ} words
by (focusing on the core ideas and removing
some redundant details / adding some details
and maintaining clarity and relevance):

[ASSISTANT]: Summary: \n {yi}
970
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The prompt template for instruction following is:971

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer: \n {yi−1}

[USER]: The generated answer is too long
at {Len(y)} words. Please improve it to be
exactly {ℓ} words or less by focusing on the
core contents and removing any unhelpful,
irrelevant, or inaccurate parts:

[ASSISTANT]: Answer: \n {yi}
972

When the candidate length is close to the target973

length D(y, ℓ) ≤ 3, we force an accurate length974

control such that LLMs are required to add or delete975

an exact number of words. The prompt template976

for abstractive summarization is:977

Prompt Template: yi ∼ q(yi|yi91, x)

[SYSTEM]: You are a powerful abstractive
summarizer.

[USER]: Document: \n {x} \n\n Based
on the previous document, provide a high-
quality summary in exactly {ℓ} words:

[ASSISTANT]: Summary: \n {yi−1}

[USER]: Please (delete / add) {D(y, ℓ)}
words appropriately based on the previous
summary:

[ASSISTANT]: Summary: \n {yi}
978

The prompt template for instruction following is:979

Prompt Template: yi ∼ q(yi|yi91, x)

[USER]: Answer the following instruction
using {ℓ} words or less. \n\n {x}
[ASSISTANT]: Answer: \n {yi−1}

[USER]: The generated answer is too long
at {Len(y)} words. Please delete {D(y, ℓ)}
words appropriately based on the previous
response:

[ASSISTANT]: Answer: \n {yi}
980

Models Top-K Top-P Temp. Rep.
QWEN2.5 20 0.8 0.7 1.05
LLAMA2 50 0.9 0.6 1.00
LLAMA3 50 0.9 0.6 1.00
LLAMA3.1 50 0.9 0.6 1.00

Table 9: Generation configurations of LLMs.

Models WIN↑ TIE LOSE↓ KAPPA↑
QWEN2.5 71.0% 12.0% 17.0% 0.61
LLAMA3.1 58.0% 14.0% 28.0% 0.53

Table 10: Human Evaluation: OURS vs INST. (three
human evaluators)

B Experimental Details 981

Our experiments are implemented on the Hugging- 982

face Transformers package1. All LLMs we used 983

are the chat version trained with supervised fine 984

tuning, where LLAMA2 and QWEN2.5 have 7B pa- 985

rameters while LLAMA3 and LLAMA3.1 have 8B 986

parameters. The generation configurations of each 987

model are set by default, as demonstrated in Table 9. 988

There is no training stage of our framework, and the 989

inference is performed on an NVIDIA A100 80GB 990

GPU with a random seed of 0. For the CNN/Daily 991

Mail dataset, we randomly choose 1000 samples 992

from the 3.0 version of the test set, since the instruc- 993

tion following task contains 1042 samples (802 994

from Alpaca-Eval-LI and 240 from MT-Bench-LI). 995

We conduct a human evaluation involving three 996

Ph.D. students with expertise in natural language 997

processing and IELTS scores of at least 6.5. Each 998

evaluator is presented with the article and the paired 999

summaries of two methods (OURS and INST). They 1000

are tasked with assigning a score for each pair as a 1001

win, tie, or lose based on the informativeness and 1002

conciseness of each summary. We randomly shuf- 1003

fle the demonstrated position of summaries from 1004

different samplers and the evaluators are blinded 1005

to the identity of the samplers to prevent bias. We 1006

randomly select 100 cases for each model on CN- 1007

NDM. To compensate for the inability to hire na- 1008

tive English-speaking evaluators, we further lever- 1009

age state-of-the-art English-oriented LLMs as ad- 1010

ditional evaluators, which are GPT-4o-latest, Meta- 1011

Llama-3.1-405B-Instruct, and claude-3.5-sonnet- 1012

20241022. These models have been extensively 1013

validated in numerous studies, demonstrating per- 1014

1https://github.com/huggingface/transformers
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Models WIN↑ TIE LOSE↓ KAPPA↑
QWEN2.5 68.0% 8.0% 24.0% 0.68
LLAMA3.1 56.0% 11.0% 33.0% 0.59

Table 11: Human Evaluation: OURS vs INST. (three
LLM evaluators)

Models WIN↑ TIE LOSE↓ KAPPA↑
QWEN2.5 69.5% 10.0% 20.5% 0.57
LLAMA3.1 59.0% 12.5% 30.5% 0.48

Table 12: Human Evaluation: OURS vs INST. (three
human and three LLM evaluators)

formance that exceeds human evaluators in vari-1015

ous NLP tasks. By incorporating both human and1016

AI-based assessments, we ensure a more compre-1017

hensive and reliable evaluation of summary quality.1018

The results and kappa correlations among three hu-1019

man evaluators, three LLM evaluators, and three1020

human and three LLM evaluators are demonstrated1021

in Tables 10 to 12. We can observe that the human1022

evaluations are highly aligned with the LLM anno-1023

tations, with strong kappa correlations. Our method1024

shows a significant advantage over the instruction1025

baseline considering the informativeness and con-1026

ciseness of the summaries. This improvement is1027

not in line with the ROUGE score. Because the1028

ROUGE score calculates the correlation between1029

the generated summaries and the reference sum-1030

maries, and the zero-shot / one-shot LLMs share a1031

totally different distribution compared to the refer-1032

ences. Therefore, our method can improve both the1033

accuracy of length control and the quality of gen-1034

erated contents. In addition, the slight decrease in1035

the ROUGE score of our method can be explained1036

by the fact that ROUGE is a recall score and it is1037

easy for longer contents to have a higher score. The1038

prompt used for LLM evaluators are as follows.1039

C Analyses1040

Full results of the length control on the Alpaca-1041

Eval-LI dataset and the MT-Bench-LI dataset are1042

demonstrated in Table 15. We demonstrate the1043

hyperparameter analyses in Tables 16 and 17. Sim-1044

ilar to the observation in §4.3, the marginal effect1045

of LLAMA3 as the sampling space grows is be-1046

tween QWEN2.5 and LLAMA3.1. For ablation1047

studies in QWEN2.5 (Table 14) and LLAMA3 (Ta-1048

ble 13), our sampling framework outperforms other1049

methods. However, since the instruction following1050

Prompt Template: LLM Evaluator

[SYSTEM]: Please act as an impartial judge
and evaluate the quality of the summaries
provided by two AI assistants to the
document displayed below.
You should choose the assistant that summa-
rizes the document more informative and
concise.
Your evaluation should also consider factors
such as the information coverage, linguistic
fluency, conciseness, logical coherence, and
faithfulness.
Begin your evaluation by comparing the two
summaries and provide a short explanation.
Avoid any position biases and ensure that
the order in which the summaries were
presented does not influence your decision.
Do not allow the length of the summaries to
influence your evaluation.
Do not favor certain names of the assistants.
Be as objective as possible.
After providing your brief explanation,
output your final verdict by strictly following
this format: "[[A]]" if assistant A is better,
"[[B]]" if assistant B is better, and "[[C]]"
for a tie.
Document: article
Assistant A’s Answer: summary1
Assistant B’s Answer: summary2

capabilities of these models are not as powerful 1051

as LLAMA3.1, their improvement may not be as 1052

significant. 1053

D Generated Cases 1054

The generated cases of LLAMA3.1 on the Alpaca- 1055

Eval-LI dataset are demonstrated in Table 18. 1056
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Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 9.1% 4.78 6.10 0.39/0.14/0.25
RAND 30.7% 3.05 5.49 0.38/0.14/0.25
MH 30.1% 4.07 5.98 0.38/0.13/0.24
MH+IS 36.4% 1.63 2.51 0.39/0.14/0.25

Table 13: Ablation study of LLAMA3 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

Samp. ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
INST 3.2% 8.64 10.83 0.33/0.10/0.21
RAND 17.7% 3.54 5.23 0.33/0.10/0.21
MH 14.1% 4.73 7.65 0.32/0.10/0.21
MH+IS 24.6% 2.41 4.02 0.33/0.10/0.21

Table 14: Ablation study of QWEN2.5 on CNNDM,
where the iteration trial is 5 and the beam size is 1.

Models Samp. ACC↑ L1↓ L2↓ WIN.↑
ALPACA-EVAL-LI

LLAMA3

INST 92.2% 1.48 9.12 76.5%
CMP 95.6% 0.37 3.01 73.3%

OURS 99.8% 0.02 0.05 83.5%

LLAMA3.1

INST 91.6% 2.47 15.64 71.6%
CMP 95.3% 0.79 7.18 71.9%

OURS 99.8% 0.06 1.69 76.7%

GPT-3.5

INST 91.5% 1.16 4.92 57.0%
CMP 94.0% 0.91 4.63 59.8%

OURS 100.0% 0.00 0.00 65.3%

GPT-4

INST 37.2% 21.38 37.61 30.2%
CMP 82.4% 1.43 4.92 69.5%

OURS 99.2% 0.02 0.17 92.0%

MT-BENCH-LI

LLAMA3

INST 78.8% 2.80 7.73 41.1%
CMP 83.3% 1.15 4.32 41.3%

OURS 100.0% 0.00 0.00 42.1%

LLAMA3.1

INST 80.4% 10.15 60.71 35.2%
CMP 90.1% 2.12 10.37 38.8%

OURS 98.8% 0.73 7.12 42.9%

GPT-3.5

INST 87.9% 2.51 9.46 24.6%
CMP 93.5% 0.64 3.20 26.2%

OURS 98.6% 0.09 0.73 27.3%

GPT-4

INST 54.7% 13.99 29.16 27.4%
CMP 84.0% 1.69 6.13 41.8%

OURS 98.8% 0.05 0.41 63.7%

Table 15: Full results of the length control on the Alpaca-
Eval-LI dataset and the MT-Bench-LI dataset.

Trials ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
QWEN2.5
0 3.2% 8.64 10.83 0.33/0.10/0.21
1 25.4% 3.58 5.80 0.33/0.10/0.21
2 52.8% 0.96 2.07 0.33/0.10/0.21
3 70.6% 0.51 1.55 0.33/0.10/0.21
4 79.1% 0.29 1.16 0.33/0.10/0.21
5 86.4% 0.18 0.72 0.33/0.10/0.21

LLAMA3
0 9.1% 4.78 6.10 0.39/0.14/0.25
1 48.3% 0.98 1.80 0.38/0.14/0.24
2 64.8% 0.58 1.05 0.38/0.13/0.24
3 68.4% 0.44 0.85 0.38/0.13/0.24
4 72.3% 0.36 0.75 0.38/0.14/0.25
5 78.6% 0.29 0.66 0.38/0.14/0.25

LLAMA3.1
0 7.7% 3.88 5.10 0.38/0.13/0.24
1 86.4% 0.18 0.55 0.38/0.13/0.24
2 99.2% 0.04 0.28 0.38/0.13/0.24
3 99.8% 0.01 0.03 0.38/0.13/0.24
4 100.0% 0.00 0.00 0.38/0.13/0.24
5 100.0% 0.00 0.00 0.38/0.13/0.24

Table 16: Analysis of the iteration trial on the CNNDM
dataset, where the beam size is 16.

Beams ACC↑ L1↓ L2↓ ROUGE-(1/2/L)
QWEN2.5

0 3.2% 8.64 10.83 0.33/0.10/0.21
1 24.6% 2.41 4.02 0.33/0.10/0.21
2 38.7% 1.75 3.69 0.33/0.10/0.21
4 57.1% 0.82 1.93 0.32/0.10/0.21
8 72.6% 0.46 1.49 0.32/0.10/0.20
16 86.4% 0.18 0.72 0.33/0.10/0.21

LLAMA3
0 9.1% 4.78 6.10 0.39/0.14/0.25
1 36.4% 1.63 2.51 0.39/0.14/0.25
2 47.2% 1.08 2.10 0.38/0.14/0.25
4 55.8% 0.72 1.25 0.38/0.14/0.25
8 67.2% 0.47 0.93 0.38/0.14/0.25
16 78.6% 0.29 0.66 0.38/0.14/0.25

LLAMA3.1
0 7.7% 3.88 5.10 0.38/0.13/0.24
1 93.3% 0.14 0.88 0.37/0.13/0.24
2 98.9% 0.02 0.12 0.37/0.13/0.24
4 99.7% 0.01 0.05 0.38/0.14/0.25
8 100.0% 0.00 0.00 0.38/0.13/0.24
16 100.0% 0.00 0.00 0.38/0.13/0.24

Table 17: Analysis of the beam size on the CNNDM
dataset, where the iteration trial is 5.
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LLAMA3.1 INST LLAMA3.1 OURS

Answer the following instruction using 46 words or less.
Is the US border open to Canada?

Number of Words: 48 Number of Words: 44

The US border with Canada is open, but with restric-
tions. Land and sea borders are open for essential
travel, while air travel requires a valid visa or elec-
tronic travel authorization. Some restrictions may
apply, so it’s best to check the official government
websites for the latest information.

The US-Canada border is open, but with re-
strictions. Travelers must provide proof of
COVID-19 vaccination, a negative test, or re-
covery from the virus. Additionally, some land
ports of entry may be closed or have limited
hours, so it’s best to check before traveling.

Answer the following instruction using 50 words or less.
Write me a top 10 list of the funniest ways to die.

Number of Words: 110 Number of Words: 48

Please note that this is a dark humor list and not meant
to be taken seriously. Here’s a list of the funniest ways
to die (in a fictional context):
1. Dying from laughing too hard at a dad joke.
2. Choking on a chicken nugget.
3. Falling into a giant pile of pillows.
4. Getting hit by a runaway inflatable unicorn.
5. Accidentally hugging a cactus.
6. Dying from a massive sneeze.
7. Getting stuck in a giant toilet.
8. Falling off a unicycle while riding a unicycle.
9. Dying from eating too much wasabi.
10. Being attacked by a swarm of bees while trying
to get a selfie.

Here’s a list of humorous ways to die:
1. Laughing too hard.
2. Choking on a whoopee.
3. Drowning in Jell-O.
4. Falling into feathers.
5. Being crushed by cats.
6. Overdosing on laughter.
7. Sneezing from feather.
8. Excessive flatulence.
9. Cheese coma.
10. Snoring loudly.

Answer the following instruction using 128 words or less.
Who made Berlin?
Number of Words: 151 Number of Words: 125

Berlin, the capital city of Germany, has a complex and
multifaceted history. The city’s origins date back to
the 13th century when it was a small trading post on
the Spree River. Over time, Berlin grew and became
a significant center for trade, culture, and politics.
In 1237, the Margraviate of Brandenburg was
founded, and Berlin became its capital. In 1415, the
Hohenzollern dynasty took control of the city, and
Berlin continued to grow and prosper. Throughout
the centuries, Berlin was influenced by various cul-
tures and empires, including the Prussian Empire, the
German Empire, and the Weimar Republic.
The city’s modern history is marked by significant
events, including World War I and II, the division
of Germany during the Cold War, and the fall of the
Berlin Wall in 1989. Today, Berlin is a vibrant and
diverse city, known for its rich history, cultural attrac-
tions, and thriving arts scene.

Berlin, the capital of Germany, has a complex
and evolving history. The area has been inhab-
ited since the Stone Age, with various tribes
and cultures contributing to its development.
The city of Berlin as we know it today began
to take shape in the 13th century, when it was
a small trading post on the Spree River. In
1237, the Margraviate of Brandenburg was es-
tablished, and Berlin became the capital. Over
the centuries, the city grew and was influenced
by various rulers, including the Hohenzollern
dynasty, which played a significant role in
shaping modern Berlin.
In 1871, Berlin became the capital of Germany,
and it continued to grow and evolve through-
out the 20th century, experiencing significant
changes under the Weimar regime, and the
post-war period.

Table 18: Generated cases of LLAMA3.1 on the Alpaca-Eval-LI dataset.
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