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ABSTRACT

Despite the success of Test-time adaptation (TTA), recent work has shown that
adding relatively small adversarial perturbations to a limited number of samples
in test data leads to significant performance degradation. Therefore, it is crucial
to rigorously evaluate existing TTA algorithms against relevant threats and imple-
ment appropriate security countermeasures. Importantly, existing threat models
assume test-time samples will be labeled, which is impractical in real-world sce-
narios. To address this gap, we propose a new attack algorithm that does not rely
on access to labeled test samples, thus providing a concrete way to assess the
security vulnerabilities of TTA algorithms. Our attack design is grounded in the-
oretical foundations and can generate strong attacks against different state of the
art TTA methods. In addition, we show that existing defense mechanisms are al-
most ineffective, which emphasizes the need for further research on TTA security.
Through extensive experiments on CIFAR10-C, CIFAR100-C, and ImageNet-C,
we demonstrate that our proposed approach closely matches the performance of
state-of-the-art attack benchmarks, even without access to labeled samples. In
certain cases, our approach generates stronger attacks, e.g., more than 4% higher
error rate on CIFAR10-C.

1 INTRODUCTION

Although Deep Neural Networks (DNNs) are expected to generalize beyond the training data dis-
tribution, it is nearly impossible to account for all the variations of the input distribution during
training. As such, Test-time adaptation (TTA) has been proposed to adapt a trained DNN using su-
pervision from information extracted from unlabeled test data (Wang et al., 2020; Schneider et al.,
2020; Goyal et al., 2022). Although designing loss functions from unlabeled data is challenging,
TTA has been shown to outperform conventional DNN inference in various computer vision (CV)
tasks, particularly in classification (Wang et al., 2020), object detection (Ruan & Tang, 2024), se-
mantic segmentation (Wang et al., 2023) and multiple object tracking (Segu et al., 2023).

Despite the effectiveness of TTA, its robustness to adversarial samples is still unclear. In such threat
model, imperceptible perturbations are tactically generated by adversaries to degrade the perfor-
mance of TTA. Notice that this threat is fundamentally different from traditional evasion attacks
(Goodfellow et al., 2014; Madry et al., 2018) or poisoning attacks Shafahi et al. (2018); Carlini &
Terzis (2021), as adversaries do not need to modify specific samples or access the DNN training
routine to induce erroneous predictions. Therefore, it is imperative to rigorously study adversar-
ial threats to TTA. In particular, it is desirable to achieve appropriate utility-security trade-offs and
implement defensive measures before deploying TTA algorithms in real-world high-stakes contexts.

The first work to investigate TTA security vulnerabilities is DIA (Wu et al., 2023), where it is shown
that due to the transductive nature of learning of TTA, crafting an attack on some samples can
potentially cause drastic performance degradation in non-malicious samples. The key issue is that
DIA assumes access to the true labels of all test samples, thus crafting an adversarial perturbation
that overestimates the difficulty of TTA attacks. Even if a malicious insider had access to the TTA
system, as assumed in (Wu et al., 2023), only the prediction of the adapted DNN would be available
to the adversary, and not the true labels. Under such assumption, the attack proposed in (Wu et al.,
2023) becomes weak, which gives a false sense of robustness of existing TTA algorithms. In stark
opposition, in this work we show that even in the absence of true labels, an adversary can craft
strong malicious samples that can degrade the performance of all the existing TTA algorithms. For
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Figure 1: Fig. 1a shows that even with a malicious insider involved, an adversary trying to attack a
TTA system would not have access to true labels. Fig. 1b shows the efficacy of adversarial attacks
on TTA for different cases of Distribution Invading Attack (DIA)(Wu et al., 2023) for CIFAR10-C.
The attack efficacy also vanishes if access to true labels is not assumed.

the first time, our work provides a practical testbench to evaluate the adversarial robustness of TTA
algorithms against malicious samples.

Our main contributions can be summarized as follows.

• We evaluate an impractical assumption in the current design of adversarial attacks on TTA–
specifically, the access to test data labels—that renders it inapplicable in practical settings. Our
study reveals that existing TTA methods demonstrate considerable robustness when this assumption
is relaxed. This finding potentially opens new avenues for testing the security vulnerabilities of TTA
in practical scenarios.

•We derive a formulation of the robust risk for TTA, which is more nuanced and helps us highlight
the inherent security threats in existing TTA algorithms. From our formulation we design a novel
attack algorithm termed as Feature Collapse Attack (FCA) that can generate strong attacks even in
the absence of labels. Through extensive numerical experiments on three benchmark datasets and
five TTA methods, we demonstrate that in practical label-free settings, existing TTA algorithms are
almost equally or even more vulnerable in some cases against our proposed attack compared to the
attack that assumes labelled data access.

• We show that existing defense mechanisms for robust TTA deployment are either ineffective or
not directly applicable against our settings. This makes our proposed attack a prevalent threat that
requires countermeasures to ensure a robust and reliable deployment of TTA algorithms in real-
world applications.

2 RELATED WORK

2.1 ROBUSTNESS OF TEST-TIME ADAPTATION

Significant effort has been made to improve the robustness of TTA in a variety of challenging sce-
narios, i.e., continual distribution shift (Wang et al., 2022), continuously changing smooth transition
between domains (Press et al., 2024), when the distribution of labels changes in online test batches
(Gong et al., 2022; Zhou et al., 2023), when these shifts happen concurrently (Yuan et al., 2023)
and when some outlier samples are mixed in the data stream (Gong et al., 2024). However, the
threat of the model adapting to potential adversarial samples mixed in the test data stream – as well
as related defense mechanisms – are still underexplored. Two recent studies have shown that the
predictive performance of certain samples under TTA can degrade without direct adversarial manip-
ulation, simply by perturbing other parts of the online data batch in both white-box (Wu et al., 2023)
and black-box settings (Cong et al., 2024). However, (Wu et al., 2023) assumes access to labeled
samples to craft attacks, which is impractical in the TTA framework. On the other hand, the attack
proposed by (Cong et al., 2024) relies on mixing a portion of adversarial samples into consecutive
test batches to achieve adversarial action. If the adversary can manipulate test batches intermittently
or the model is reset frequently to prevent performance collapse, such threats become non-existent,
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potentially failing to reveal security concerns regarding TTA. As these threats gain attention, several
defense mechanisms have been proposed to mitigate their impact, including entropy-based sample
filtering combined with sharpness-aware minimization (Gong et al., 2024), median normalization
(Park et al., 2024) and adversarial training (Wu et al., 2023). However, we show in Section 7.1 that
these defense strategies are either ineffective or violate key assumptions of the original TTA frame-
work. Ultimately, this highlights the need for more rigorous evaluation of TTA algorithms, and calls
for the design and evaluation of robust TTA methods that can withstand adversarial action.

2.2 ADVERSARIAL MACHINE LEARNING

The literature on adversarial machine learning can be broadly divided into poisoning attacks on train-
ing data and evasion attacks on test data. Evasion attacks (Biggio et al., 2013; Carlini & Wagner,
2017) attempts to have the DNN misclassify inputs that have undergone minor perturbations. In a
white-box setting, where an adversary can query the model and obtain gradients of a backward pass,
this direction can be efficiently found through a gradient-based optimizer by maximizing the loss
with respect to the input while constraining the perturbation. Data poisoning leverages the training
process of DNNs to make it erroneously classify a benign sample by injecting some poisoned sam-
ples in the training set (Koh & Liang, 2017). There has been growing interest in adversarial attacks
within low-label regimes and unsupervised settings. For example, (Kim et al., 2020) introduced
instance-wise attacks without labels by maximizing contrastive loss for representation encoders, an
approach further improved by (Fan et al., 2021) who incorporated high-frequency views. (Cemgil
et al., 2020) developed adversarial attacks for variational autoencoders by maximizing the Wasser-
stein distance to the representations of clean samples. In the low-label regime, (Yang et al., 2023a)
proposed generating adversarial attacks through adaptive weight regularization and knowledge dis-
tillation to improve the robustness of semi-supervised learning. However, none of these adversarial
methods are directly applicable to our setting as they are not designed to deal with unlabeled test
data in TTA scenarios.

3 PRELIMINARIES

3.1 TEST-TIME ADAPTATION

Without loss of generality, we cast TTA in the context of a multi-class classification problem. Let
X ⊂ Rd be the input space and the set of C classes or output labels be denoted as Y = {1 . . . .C}.
Given a training data set from the source domain Ds :=

{
(xs

i , y
s
i )

Ns
i=1

}
we learn fθ : X → RC

parameterized by the DNN parameter θ through iterative minimization of some loss function
L(f(Xs; θ), Y s) (e.g., cross-entropy loss), where Xs := {xs

i}Ns

i=1 ⊂ X and Y s := {ysi }Ns

i=1 ⊂ Y .

The trained DNN is then deployed to perform inference on test dataset Dt :=
{
(xt

i, y
t
i)

Nt
i=1

}
where the labels Y t := {ysi }Nt

i=1 are unknown. In conventional inference, it is assumed that Ds

and Dt are sampled from the same distribution and the final predictions are calculated through
Fθ = argmaxc [fθ(x

t)]c ⊂ Y . However, in real-world deployments, training and test data distribu-
tions may differ, which ultimately results in poor performance of fθ on Xt := {xt

i}
Nt

i=1 (Hendrycks
& Dietterich, 2019). To address this issue, TTA dynamically adapts fθ to the test data Xt without
supervision from Y t, thus obtaining the adapted DNN fθ′ . Unlike Unsupervised Domain Adapta-
tion (UDA) where the entirety of the test samples is assumed to be available, in TTA fθ′ is obtained
with the test data available in batch mode Xt

B := {xt
i}

NB

i=1 by solving

θ
′
(Xt

B) = argmin
θ
′
A⊂θ′

LTTA

(
Xt

B ; θ
′
)
, (1)

where θ
′
(Xt

B) = θ
′

A ∪ θ
′

B ∪ θF . Here, θ
′

A indicates all adaptable parameters, θF are the fixed pa-
rameters and θ

′

B are the normalization statistics {µ, σ} across different layers and LTTA(·) indicates
the unsupervised TTA loss. Some existing work (Schneider et al., 2020; Gong et al., 2022) on TTA
provides empirical evidence of performance improvement by only re-estimating the statistics of the
Batch Normalization (BN) layers from test data. The absence of supervision is typically covered by
two unsupervised forms of losses, i.e., entropy minimization (Wang et al., 2021; Niu et al., 2022;
Goyal et al., 2022) and invariance regularization (Wang et al., 2022; Nguyen et al., 2023).
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3.2 NEURAL COLLAPSE (NC)
The NC phenomenon was first observed by (Papyan et al., 2020) in DNNs optimized with SGD,
where some distinctive characteristics become increasingly apparent, particularly during the termi-
nal phase of training. We formalize NC to ease the understanding of our attack algorithm. Let
the i-th sample within class c be denoted by xi,c and the last layer feature of a k-layer DNN as
hi,c = fk−1

θ (xi,c). The global sample mean and class mean are denoted by µC = 1
n

∑
i hi,c and

µG = 1
nC

∑
i,c hi,c, respectively, where c = 1, . . . , C and n is the number of data points per class.

We leverage the following three definitions directly from (Papyan et al., 2020).

Variability Collapse: For every class c, the within-class variation collapses to zero:

hi,c → µc ∀i ∈ [n] , c ∈ [C] (2)

Equinorm: Class feature mean vectors converge to equal distances from the global mean vector:

d(µc, µG)− d(µ′
c, µG)→ 0 ∀ c, c′ ∈ C (3)

Simplification to Nearest Neighbour Classifier (NNC): The prediction of the DNN becomes
equivalent to that of the NNC formed by non-centered class means:

argmax
c′

⟨wc′ , h⟩+ bc′ ≈ argmin
c′

d (h, µc′ ) (4)

3.3 UNDERSTANDING THE SECURITY VULNERABILITIES OF TTA
We start by describing the robust population riskR(θ), which is a commonly used term in adversar-
ial robustness (Zhang et al., 2019). Specifically, for a batch of test samples Xt

B with true labels Y t
B

and a predictive model fθ(·), the final predictions are obtained using Fθ(·) as:

R(θ) = E(Xt
B ,Y t

B) max
X̃t

B∈Bp( Xt
B ,ϵ)

1

{
Fθ(X̃

t
B) ̸= Y t

B

}
(5)

where Bp(x, ϵ) =
{
x̃ ∈ X : ∥x− x̃∥p ≤ ϵ

}
and 1(·) is the indicator function. Following the for-

mulation of (Yang et al., 2023b), the robust risk for a batch can be written as the sum of the natural
riskRnat(θ) and the boundary riskRbdy(θ):

R(θ) = Rnat(θ) +Rbdy(θ) (6)

As such, the natural and boundary risk terms are defined as

Rnat(θ) = E(Xt
B ,Y t

B)1

{
Fθ(X

t
B) ̸= Y t

B

}
Rbdy(θ) = E(Xt

B ,Y t
B)1

{
∃X̃t

B ∈ Bp(Xt
B , ϵ) : Fθ(X

t
B) ̸= Fθ(X̃

t
B), Fθ(X

t
B) = Y t

B

}
.

(7)

The natural risk represents the inherent failure of the DNN to fit certain data points, thus resulting
in erroneous predictions. Conversely, boundary risk refers to the risk associated with regions in the
manifold that are very close to the original data points but lead to incorrect predictions. In a tradi-
tional evasion attack, adding a bounded perturbation to samples potentially causes misclassification
of those specific samples if it has high boundary risk. However, during the inference with TTA,
the DNN is updated with the current data batch θ → θ′, which can increase both the boundary risk
Rbdy(θ

′) and the natural risk Rnat(θ
′) for the unperturbed samples if a small portion of the test

samples are maliciously perturbed.

4 THREAT MODEL

We provide a description of the threat model considered in this paper. In our attack settings, the
adversary has the ability to manipulate a small portion of the test samples within the entire batch
Xt

B , termed as compromised samples Xt
com. This is done by adding imperceptible noise to those

samples. Thus, the attacker targets the victim who gets a source model fθ and tries to update it to fθ′

using TTA as in Equation 1. The attacker’s objective is to indiscriminately degrade the predictions
of the benign portion of the batch, Xt

B\com, which can be defined as

max
δ: ∥δ∥p≤ϵ

L
[
f
(
Xt

B\com; θ∗((Xt
com + δ) ∪Xt

B\com), Y t
B\com

)]
, (8)
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where L [·] denotes a loss function that directly relates to the prediction error. Similar to (Wu et al.,
2023), we consider the worst-case scenario where the attacker has knowledge of the TTA algorithm
and has white-box access to the latest updated model parameters provided by some malicious insider.
However, unlike (Cong et al., 2024), we do not assume access to source data or true labels Y t

B\com
as in (Wu et al., 2023). Notice that this is not a design choice but an inherent constraint of the TTA
settings. Additionally, we realistically do not assume that the attacker has any access to the training
routine of the deployed DNN.

5 ATTACK DESIGN

The attacker’s objective defined in Equation 8 essentially becomes the maximization of the robust
population risk R(θ′

) for the benign test samples. In (Wu et al., 2023), this is directly estimated
by maximization of the cross entropy loss, which cannot be directly calculated without Y t

B\com. A

viable alternative is to directly use the DNN prediction Ŷ t
B\com or its soft prediction scores. How-

ever, as demonstrated earlier and in the experiments, this leads to an ineffective attack. Therefore,
we provide an expression for the robust population risk that can be leveraged to successfully attack
TTA and assess its robustness when true labels are not available. The following theorem provides
an alternative expression for the risk in Equation 6. Details are provided in Appendix A1.

Theorem 1 For a batch of test samples, the robust population risk can be expressed as

R(θ) = E(Xt
B ,Y t

B)1
{
Fθ(X

t
B) ̸= Y t

B

}
+

p

(
∃X̃t

B ∈ Bp(Xt
B , ϵ) : Fθ(X

t
B) ̸= Fθ(X̃

t
B)

)
· p

(
Y t
B = Fθ(X

t
B)|Xt

B

)
.

(9)

This decomposition provides a more prominent vision on the design of TTA attacks. Firstly, an
adversary needs to increase the natural risk (first term) which needs access to true labels. In Section
5.1, we provide details on how this can be achieved from the assumptions of NC. Secondly, to maxi-
mize the boundary risk (second term), we need to add perturbations so as to increase the probability
that the prediction changes after adding perturbation. Moreover, the second term needs to be mul-
tiplied with the probability assigned to the true class from the current DNN. This straightforward
attack design directives are not readily available from Equation 6 and 7.

5.1 ESTIMATION OF ROBUST RISK

Using our decomposition of the robust risk, we design several loss functions that reliably estimate
the loss term L(·) in the attack objective without requiring labels. Below, we detail the loss functions
motivated by Equation9, which provides high-quality estimates of the objective function.

Nearest Centroid Loss: The natural risk (first term) is estimated using a loss function that we refer
to as the nearest centroid loss Lncc:

Lncc =
∑

xi∈Xt
B\com

d
(
fk−1
θ (xi) , µ[Ĉ=Fθ(xi)]

)
, (10)

where d(.) denotes some distance measure (e.g. cosine distance) and µĈ denotes the class centroid
vectors of the last layer features calculated from the activation values of the predicted classes Ĉ in
a batch. This is based on the third assumption of NC described in Section 3.2 suggesting that an
increased distance from the nearest centroid correlates with a higher likelihood of wrong prediction.

Feature Collapse Loss: As we are depending on the predicted labels for calculating the class cen-
troids and the number of samples is small, these estimated class centroids are not guaranteed to be
reliable and might not provide proper guidance for the design of perturbation to increase the natural
risk term. Hence, we incorporate the following term in our loss function:

Lcol =
∑

xi∈Xt
B\com

d
(
fk−1
θ (xi) , µĜ

)
. (11)

The predicted global mean µĜ is calculated by averaging out the activations in a batch. From the
Equinorm assumption of NC, this moves the TTA update to a direction that disrupts the distance
of class means from the global sample mean. This acts as a regularizer that helps guide the attack
design that is disrupted by the unreliable estimate of class centroids.

5
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Feature Scattering Loss: The second term in our robust risk formulation is estimated leveraging the
Variability Collapse assumption of NC. As the last layer activations converge to class mean vectors,
the likelihood of overlapping regions with different class centroids diminishes. The following loss
scatters the features away from forming tight clusters by maximizing the difference in the activation
values before and after the TTA update:

Lsc =
∑

xi∈Xt
B\com

d
(
fk−1
θ (xi) , f

k−1
θ′ (xi)

)
(12)

Here, fθ′ is the DNN state after update on test data with malicious examples. According to our
decomposition of robust risk in Equation 9, this loss term is multiplied by the probability of pre-
dicted class p

(
Ĉ == Fθ(xi)

)
. Some deviation from the original value occurs when the predicted

class is incorrect. An attacker would potentially benefit through a more accurate estimation of this
term. Despite this non-ideal estimation, we can still craft highly-effective attacks against TTA as
demonstrated in the experimental evaluation. The final loss function is:

L = Lncc − Lcol + Lsc · p
(
Ĉ == Fθ(xi)

)
. (13)

For the distance measure d(.), we use cosine similarity as it avoids explicit normalization.

5.2 FEATURE COLLAPSE ATTACK (FCA): ALGORITHM DESIGN

The earlier loss functions are inspired from the assumptions of NC. As such, we name our attack
algorithm as FCA. The process of adversarial perturbation generation in FCA is summarized in
Algorithm 1. The algorithm is relatively easy to implement uses basic iterative projected gradient
descent. At each iteration step, the perturbation vector is added to the compromised samples (line 6).
Next, the DNN is updated using the TTA algorithm being considered (line 7). Then, using Equation
10-13, our proposed loss value is calculated. In line 10, gradients of the loss are calculated. Finally,
the perturbation is updated using adversarial learning rate α and clip it into the (−ϵ, ϵ) to maintain
the l∞ norm constraint. The perturbation δ is also constrained such that the pixel values always
remain within the [0, 1] range.

Algorithm 1: FCA Algorithm
1: Input: Test batch Xt

B = Xt
com ∪Xt

B\com ; Adversarial learning rate α; Perturbation
constraint ϵ; Model paramaters before adaptation θ; Iteration steps for attack n;

2: Initialize: Adversarial perturbation δ = 0.5|Xt
com|×c×h×w.

3: Output: Adversarial perturbation vector δ
4: Make a separate copy of θ
5: for step = 1, 2, ....., n do
6: Xt

B = {Xt
com + δ} ∪XB\com

7: Update θ → θ
′

using Eq. 1
8: Calculate fk−1

θ (Xt
B\com) and fk−1

θ′ (Xt
B\com)

9: Calculate L(XB\com; ·)
10: Calculate grad = ▽δcom

(
L(Xt

B\com; ·)∣∣∣Xt
B\com

∣∣∣
)

11: Calculate δ ← clip ((δ + α · sign(grad)), (−ϵ, ϵ) )
12: Calculate δ ← clip ((Xt

com + δcom), (0, 1) )−Xt
com

13: end for
14: Return: Xt

com + δ

6 EXPERIMENTAL SETUP

Dataset and Architecture We leverage three primary benchmark datasets typically used for TTA
performance evaluation, i.e., CIFAR10-C, CIFAR100-C, and ImageNet-C. We directly obtain the
CIFAR10-C and CIFAR100-C test dataset from Robustbench (Croce et al., 2020). For ImageNet-C,
we use the provided data by (Hendrycks & Dietterich, 2019). These datasets are modified version

6
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Table 1: Performance (% error) comparison of different TTA methods.

Dataset Attack Method TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

w/o Attack 19.98 19.72 23.05 19.70 20.27
DIA 34.11 33.62 36.80 33.50 34.39
DIA (PL) 21.04 20.67 24.23 21.03 20.98
TePA 21.11 20.81 24.27 21.01 21.04
FCA 38.87 37.95 40.15 37.33 38.37

CIFAR100-C

w/o Attack 51.44 49.39 52.56 49.39 50.01
DIA 64.21 62.64 63.76 62.57 63.45
DIA (PL) 52.21 52.67 53.69 51.03 52.07
TePA 52.29 52.68 53.81 51.09 52.12
FCA 64.03 62.21 63.97 62.12 63.23

ImageNet-C

w/o Attack 43.78 42.33 43.38 43.37 42.82
DIA 51.54 50.65 49.54 52.06 51.23
DIA (PL) 46.29 45.11 44.88 44.77 44.79
FCA 51.06 50.63 49.06 50.22 50.33

of the original test data by 15 different synthetically generated corruption of 5 severity levels. For
our experiments, we use ResNet-321 for CIFAR10-C and CIFAR100-C datasets and ResNet-50 for
ImageNet-C2. For the two corrupted CIFAR datasets, all 15 corruptions for 5 severity levels are
used. For Imagenet-C, results are reported only for corruption of severity level 3.

Baseline TTA Methods. We evaluate 5 TTA methods as victim algorithms whose robustness is
tested against FCA. In line with the previous studies (Wu et al., 2023; Park et al., 2024), we select
TTA methods that focus on updating batch statistics or the affine parameters of BN layers. Test-
time Normalization (TeBN) (Nado et al., 2020) updates BN statistics for each test batch, while
Test-time Entropy Minimization (TENT) (Wang et al., 2021) adjusts the affine parameters in BN
layers through entropy minimization. Efficient Anti-forgetting Test-time Adaptation (EATA) (Niu
et al., 2022) enhances sample-efficient entropy minimization and incorporates a Fisher regularizer
to prevent knowledge loss from the pre-trained model. Sharpness-aware and Reliable Optimization
(SAR) (Niu et al., 2023) utilizes BN layers and sharpness-aware minimization to mitigate the adverse
effects of large gradients, and Screening-out Test-time Adaptation (SoTTA) (Gong et al., 2024)
employs sample filtering and sharpness-aware minimization.

Evaluation Setup To benchmark the performance of FCA, we consider each test batch as a trial.
For a given test batch, we randomly select some data samples as compromised ones and add pertur-
bations generated by one of the baseline attack methods as well as FCA. We assume the scenario
where the DNN is updated by the considered TTA algorithm up to the t − 1 trial and the adversary
attacks the update of trial t, fθ′

t(·)
with access to model parameters fθ′

t−1(·)
. We evaluate the effec-

tiveness of FCA by its average error rate increment on the benign (unperturbed) samples compared
to normal adaptation without attack across all trials. Unless otherwise specified, we use a test batch
size of 200 for each trial where 20% samples are selected as compromised ones, adversarial learning
rate α = 2/255, perturbation constraint ϵ = 8/255 and iteration steps for attack to be 100.

7 EXPERIMENTAL RESULTS

Comparison of Attack Performance. We compare our proposed FCA against the five state of
the art TTA methods and three datasets described earlier. We consider 2 attack benchmarks: DIA
(Wu et al., 2023) and its variant where the pseudo labels instead of true labels of the test samples
are used in the loss function DIA(PL). Pseudo labels can be obtained using the current model’s
prediction probabilities (soft PL) or the argmax of these predictions (hard PL) for benchmarking.
Both methods have similarly low efficacy on attack strength. For our experimental evaluations, we

1Model defination and trained weights are directly obtained from https://github.com/
chenyaofo/pytorch-cifar-models.

2We have used the model definition and weights from torchvision(resnet50-v2)
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use hard pseudo labels and refer to them simply as PL for brevity. Notice that the original DIA setup
assumes access to the true labels of the data, which are unavailable at test time. From Table 1, we
observe that in CIFAR-10C, the proposed FCA consistently increases the error rate by more than
4% for TENT and TeBN and by similar margin in other TTA algorithms. However, without access
to the true labels, DIA is almost ineffective. This is because the predicted labels are inherently noisy
due to the distribution change in the data. For CIFAR-100C and ImageNet-C, our proposed attack
mechanism also performs very close to the DIA benchmark. Across these three datasets, we observe
that with the increasing number of unique classes, our attack is still very effective but weakens
slightly compared to DIA. We believe this is due to the effect of the NC assumptions getting slightly
relaxed as the number of classes increases.

Effect of Sample Size. In Table 3, the performance of the FCA and DIA attacks is reported for
different numbers of maliciously perturbed samples on the CIFAR-10C dataset. Interestingly, FCA
exhibits a higher error rate across all TTA benchmarks compared to DIA, indicating that it does not
have any extra sensitivity to number of malicious samples compared to the DIA. To evaluate the
efficacy of the attack with different batch sizes, Table 2 reports the performance of FCA on three
different batch sizes for the CIFAR-100C dataset. The CIFAR-100C dataset was chosen due to its
larger number of classes compared to CIFAR-10C, which could reveal any potential sensitivity of our
designed attack as class centroid estimation becomes unreliable with smaller batch sizes and higher
unique classes. However, we observe that the performance of FCA does not decrease significantly
compared to DIA for low sample sizes.

Effect of Different Loss Components of FCA. To analyze the efficacy of different FCA loss terms,
we evaluate the performance of FCA in CIFAR-10C in the common attack parameter settings. From
Table 4, it can be observed that feature scattering loss is the most influential in the efficacy of attack.
However, each of the loss terms has a notable effect on the effectiveness of our porposed attack.

Table 2: Performance (% error) across different batch size on CIFAR-100C

Batch
Size

TTA Method
TeBN TENT EATA SAR SoTTA

(DIA/FC) (DIA/FC) (DIA/FC) (DIA/FC) (DIA/FC)
64 70.93 / 68.98 70.86 / 69.03 71.04/ 69.22 69.03 / 68.55 69.21/ 67.84

128 64.93 / 64.24 63.96 / 62.3 65.01 / 64.88 63.12 / 62.74 63.44 / 62.29
200 64.21 / 64.03 62.64 / 62.21 63.76 / 63.97 62.57 / 62.21 63.45 / 63.23

Table 3: Performance (% error) with different number of malicious samples on CIFAR-10C

# of
Malicious
Samples

TTA Method
TeBN TENT EATA SAR SoTTA

(DIA/FC) (DIA/FC) (DIA/FC) (DIA/FC) (DIA/FC)
10 (5%) 23.33 / 25.11 23.02 / 24.81 24.11 / 26.77 23.03 / 24.21 23.02 / 24.21

20 (10%) 26.33 / 31.22 25.77 / 29.98 27.64 / 32.24 25.44 / 29.67 36.75 / 30.11
40 (20%) 34.11 / 38.77 33.62 / 37.95 36.80 / 40.15 33.50 / 37.33 34.39 / 38.37
80 (40%) 45.33 / 49.81 43.77 / 48.21 47.03 / 52.31 43.98 / 47.75 43.21 / 47.33

7.1 LIMITATION OF EXISTING DEFENSE MECHANISM

Sharpness Aware Learning Sharpness-aware learning (Niu et al., 2023) aims to enhance the stabil-
ity of model parameters by steering them towards a flat minimum on the loss surface. This method
is grounded in the idea that a flat minimum is preferable for model robustness, particularly when
dealing with noisy or large gradients. However, as shown in Fig. 2a, adversarial samples generated
by our attack mechanism exhibit gradients similar to those of normal samples. Additionally, there
is a high concentration of malicious samples in the region where gradient norms are small. This
suggests that sharpness-aware learning may not be an effective strategy for mitigating the impact
of adversarial data. From, Table 1, it is also evident that methods that incorporate sharpness aware
learning (SoTTA) are not more robust than other TTA scheme that does not involve such mechanism.

8
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Figure 2: Limitation of different defense algorithms. The plots are generated with CIFAR10-C with
the default attack parameters setting.

Sample Filtering Scheme As a defense mechanism, (Gong et al., 2024) proposed filtering out high
entropy samples. However, the histogram in Figure 2b reveals that the entropy values of adversarial
samples and normal samples are similarly distributed. In fact, most adversarial samples crafted by
our method are concentrated in the low entropy region. Consequently, TTA methods that use a
simple entropy-based filtering scheme, as suggested by (Niu et al., 2022; Gong et al., 2024), do not
demonstrate significant robustness in our experiments.

Table 4: Performance (% error) on different FCA variants on
CIFAR-10C

FC Variant TeBN TENT EATA SAR SoTTA
w/o attack 19.98 19.72 23.05 19.7 20.27
Lnc 21.21 20.93 22.01 21.03 20.87
Lcol 23.22 23.01 24.55 23.97 22.66
Lsc 34.33 33.11 36.24 35.18 34.13
Lcol + Lnc 23.24 23.03 24.61 23.95 22.67
Lsc + Lcol 35.91 35.11 37.89 36.22 34.74
Lsc + Lnc 37.91 37.03 38.94 36.54 37.26
Final L 38.87 37.95 40.15 37.33 38.37

Robust Statistics Estimation
(Wu et al., 2023) proposed
using robust BN statistics by
treating source statistics as a
prior and updating them with
test data statistics using a mo-
mentum term. Since source
data statistics remain unaffected
by adversarial attacks, it im-
proves robustness. However,
overemphasizing source statis-
tics can hinder the extrac-
tion of information from test
samples, affecting TTA per-
formance. Therefore, select-
ing the appropriate momentum value, which balances this trade-off, is crucial. How-
ever, the optimal momentum value varies across different TTA methods, as shown in Ta-
ble 5, making the defense mechanism highly dependent on this hyper parameter choice.
A recent defense mechanism proposed by (Park et al., 2024) demonstrates that Median Batch Nor-
malization (MedBN), being robust to outliers, is a viable alternative to BN. However, incorporating
median normalization or its variants only complicates the generation of adversarial examples. A crit-
ical flaw in this defense mechanism is that it only superficially increases the difficulty of generating
adversarial samples without providing substantial robustness to the TTA method. An adversary can
easily bypass this defense by crafting adversarial perturbations using a traditional BN layer instead
of the MedBN layer. Figure 2c illustrates that even when the victim TTA adapters are equipped with
MedBN, it is still largely ineffective in preventing performance degradation in the event of attack.

8 CONCLUSIONS

Table 5: Performance (% error) for different momentum values
for robust statistics estimation on CIFAR10-C

Momentum TeBN TENT EATA SAR SoTTA
0 38.87 37.95 40.15 37.33 38.37

0.4 37.70 35.26 35.33 35.22 34.67
0.6 36.21 34.48 35.36 35.14 33.67
0.8 34.22 33.56 35.33 35.03 33.71

Our study highlights significant
vulnerabilities in current TTA
methods when faced with ad-
versarial attacks, especially un-
der practical conditions where
test sample labels are not ac-
cessible. We challenge the
prevailing assumptions in exist-
ing threat models and demon-

9
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strate that many TTA methods
are more robust than previously
thought when these assumptions are relaxed. However, our newly proposed attack algorithm, which
does not rely on labeled test samples, reveals that TTA methods still possess inherent security risks.
Our extensive experiments on benchmark datasets confirm that our approach can generate strong
attacks, sometimes surpassing state-of-the-art benchmarks which assume access to labels. Addi-
tionally, we find that existing defense mechanisms are largely ineffective against these types of
attacks, underscoring the need for further research and development in this area.
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A1 DETAILS OF THEOREM 1

Here, we provide a detailed proof of the decomposition of the robust risk given in Eq. 9.

Theorem 1. For a DNN fθ, parameterized by θ , the robust risk R(θ) for a batch of samples
(Xt

B , Y
t
B) can be written as:

R(θ) = E(Xt
B ,Y t

B)1

{
Fθ(X

t
B) ̸= Y t

B

}
+

p

(
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Proof. From Eq. 6, R(θ) = Rnat(θ) +Rbdy(θ). where, Rnat(θ) = E(Xt
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Thus the equality holds.

A2 PERFORMANCE EVALUATION IN GREY BOX SETTINGS

For the main reported results, we evaluated the effectiveness of FCA under a worst-case scenario
where the adversary has access to the latest DNN weights during model updates. Although this
setting reveals the worst-case scenario, it may not always be practical for real-world deployment.
To assess the performance of FCA under more restrictive grey-box settings, we relaxed the initial
assumptions. We assume a threat model where the adversary only has access to the source DNN
weights and architecture used for TTA, but not the latest updated parameters. The evaluation results,
presented in Table 6, show that our proposed attack mechanism remains highly effective in these
settings, with only a ∼ 2% reduction in attack effectiveness across different TTA methods.

A3 EFFECT OF DNN ARCHITECTURE ON FCA

To examine whether the source DNN architecture significantly impacts TTA vulnerabilities, we eval-
uated the performance of FCA on the MobileNet family of DNNs, specifically using MobileNet-v2
as the source DNN. We assessed the performance of five baseline TTA methods across three bench-
mark datasets and reported the results in Table 7. Our findings show that TTA methods exhibit simi-
lar vulnerabilities on CIFAR-10C and CIFAR-100C datasets as those observed with ResNet variants.
However, for the ImageNet-C benchmark, MobileNet-v2 proved to be even more vulnerable, with
performance degradation under FCA being ∼ 10% greater compared to the ResNet-50.
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Table 6: Performance (% error) comparison in grey box settings

Dataset Attack Method TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

w/o Attack 19.98 19.72 23.05 19.70 20.27
DIA 33.22 31.77 33.53 31.03 32.09
DIA (PL) 20.91 20.63 24.23 21.05 20.87
TePA 21.11 20.81 24.27 21.01 21.04
FCA 36.03 35.98 37.41 34.83 36.29

CIFAR100-C

w/o Attack 51.44 49.39 52.56 49.39 50.01
DIA 61.03 60.21 60.51 60.11 62.34
DIA (PL) 52.13 52.58 53.66 50.81 52.05
TePA 52.29 52.68 53.81 51.09 52.12
FCA 60.22 60.04 60.58 69.91 62.07

ImageNet-C

w/o Attack 43.78 42.33 43.38 43.37 42.82
DIA 49.36 48.88 47.15 50.11 49.38
DIA (PL) 45.23 44.87 43.15 43.39 42.92
FCA 49.03 48.55 47.13 50.07 49.21

Table 7: (% Error) comparison on MobileNet architectures.

Dataset Attack Method TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

w/o Attack 21.04 21.55 23.94 20.93 19.91
DIA 35.54 35.11 35.56 34.44 34.48
DIA (PL) 22.07 22.64 24.87 21.55 21.03
TePA 22.44 22.61 24.81 21.63 21.15
FCA 39.33 38.34 40.01 38.07 38.09

CIFAR100-C

w/o Attack 45.55 44.81 45.83 44.63 43.84
DIA 57.13 55.45 57.03 56.14 55.93
DIA (PL) 46.67 46.55 47.03 46.41 45.59
TePA 46.74 46.51 46.98 46.55 45.71
FCA 56.88 55.19 57.21 56.04 55.45

ImageNet-C

w/o Attack 54.2 52.97 53.78 52.83 51.29
DIA 71.56 70.37 70.45 70.87 68.55
DIA (PL) 57.5 56.44 56.29 55.31 54.92
FCA 71.44 70.01 70.31 70.15 70.22

A4 PERFORMANCE EVALUATION FOR ADVERSARIALLY TRAINED MODELS

A potential defense against the vulnerabilities highlighted by FCA is proactively using an adversari-
ally trained source DNN. To evaluate this, we utilized the adversarially trained WideResNet-28 with
an l∞ budget (ϵ∞ = 8/255) from Robustbench Croce et al. (2020) by Wu et al. (2020), and assessed
its performance on CIFAR10-C and CIFAR-100C benchmark datasets. The results are reported in
Table 8. Adversarially trained DNNs are highly effective against FCA when the same perturbation
is used for both crafting adversarial examples and training the source DNN. However, with a dif-
ferent perturbation budget, such as an l2 norm constraint of (ϵ∞ = 8/255), FCA can still degrade
performance by approximately 4%. Furthermore, for the CIFAR-100C dataset, adversarially trained
source DNNs result in more than a 10% increase in error rate during adaptation with benign data.
This is unexpected, as TTA is generally intended to handle online data batches without adversar-
ial perturbation, raising concerns about the robustness-utility trade-off in deploying adversarially
trained DNNs. Additionally, adversarial training is known to reduce accuracy on clean data Zhang
et al. (2019); Tsipras et al. (2018). Thus, further scrutiny is required to develop computationally

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 8: (% Error) comparison on adversarially trained models.

Dataset Evaluation Setup TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C

Unattacked(Standard) 17.14 16.98 19.21 16.88 16.42
Unattacked(Adv trained) 19.21 16.22 18.44 17.91 15.40
FCA (ϵ∞ = 8/255) 21.44 18.01 20.25 19.83 17.17
FCA (ϵ2 = 0.5) 23.45 20.14 22.03 21.55 19.03

CIFAR100-C

Unattacked(Standard) 31.27 30.91 31.87 30.9 29.3
Unattacked(Adv trained) 42.04 41.59 42.14 41.51 41.04
FCA (ϵ∞ = 8/255) 43.01 42.57 20.25 42.79 41.85
FCA (ϵ2 = 0.5) 46.44 45.22 44.55 45.01 44.76

Table 9: (% Error) comparison on robust models

Dataset Evaluation Setup TTA Method
TeBN TENT EATA SAR SoTTA

CIFAR10-C Unattacked(AugMix) 15.37 14.81 16.47 14.53 14.11
FCA (ϵ∞ = 8/255 24.33 23.21 24.98 23.05 22.87

CIFAR100-C Unattacked(AugMix) 29.34 28.77 30.21 28.55 27.87
FCA 36.41 35.22 37.02 34.75 34.28

lightweight test-time defenses that are effective against FCA without impairing TTA performance
on clean or benign samples from different domains.

A5 PERFORMANCE EVALUATION FOR ROBUST MODELS

To further understand how the robustness of the source DNN influences FCA, we analyzed the per-
formance of FCA against source DNNs known for their robustness to distribution shifts. Specifically,
we utilized the WideResNet-28 model trained with AugMix Hendrycks et al. (2019) from Robust-
bench Croce et al. (2020), and the evaluation results are presented in Table 9. While AugMix-trained
models are effective in enhancing robustness against various distribution shifts, they remain highly
vulnerable to FCA when deployed for TTA.
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