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Abstract

High-quality phrase representations are essen-001
tial to finding topics and related terms in doc-002
uments (a.k.a. topic mining). Existing phrase003
representation learning methods either simply004
combine unigram representations in a context-005
free manner or rely on extensive annotations006
to learn context-aware knowledge. In this007
paper, we propose UCTOPIC, a novel unsu-008
pervised contrastive learning framework for009
context-aware phrase representations and topic010
mining. UCTOPIC is pretrained in a large011
scale to distinguish if the contexts of two012
phrase mentions have the same semantics. The013
key to pretraining is positive pair construction014
from our phrase-oriented assumptions. How-015
ever, we find traditional in-batch negatives016
cause performance decay when finetuning on017
a dataset with small topic numbers. Hence, we018
propose cluster-assisted contrastive learning019
(CCL) which largely reduces noisy negatives020
by selecting negatives from clusters and fur-021
ther improves phrase representations for top-022
ics accordingly. UCTOPIC outperforms the023
state-of-the-art phrase representation model by024
38.2% NMI in average on four entity cluster-025
ing tasks. Comprehensive evaluation on topic026
mining shows that UCTOPIC can extract co-027
herent and diverse topical phrases.028

1 Introduction029

Topic modeling discovers abstract ’topics’ in a030

collection of documents. A topic is typically031

modeled as a distribution over terms. High-032

quality phrase representations help topic mod-033

els understand phrase semantics in order to find034

well-separated topics and extract coherent phrases.035

Some phrase representation methods (Wang et al.,036

2021; Yu and Dredze, 2015; Zhou et al., 2017)037

learn context-free representations by unigram em-038

bedding combination. Context-free representations039

tend to extract similar phrases mentions (e.g. “great040

food” and “good food”, see Section 4.3). Context-041

aware methods such as DensePhrase (Lee et al.,042

The United States is 

a federation of 50 

individual states.

Irving Washington’s 
book was popular in 

the United States.

The [MASK] [MASK] 

is a federation of 50 

individual states.

Irving Washington’s 
book was popular in 

the [MASK] [MASK].

①: The semantics of phrases are determined by their context.②: Phrases that have the same mentions have the same semantics.

Positive pairs

(same semantics)

① ②

Figure 1: Two assumptions used in UCTOPIC to pro-
duce positive pairs for contrastive learning.

2021) and LUKE (Yamada et al., 2020) need super- 043

vision from task-specific datasets or distant anno- 044

tations with knowledge bases. Manual or distant 045

supervision limits the ability to represent out-of- 046

vocabulary phrases especially for domain-specific 047

datasets. Recently, contrastive learning has shown 048

effectiveness for unsupervised representation learn- 049

ing in visual (Chen et al., 2020) and textual (Gao 050

et al., 2021) domains. 051

In this work, we seek to advance state-of-the- 052

art phrase representation methods and demonstrate 053

that a contrastive objective can be extremely effec- 054

tive at learning phrase semantics in sentences. We 055

present UCTOPIC, an Unsupervised Contrastive 056

learning framework for phrase representations and 057

TOPIC mining, which can produce superior phrase 058

embeddings and have topic-specific finetuning for 059

topic mining. To conduct contrastive learning for 060

phrase representations, we first seek to produce con- 061

trastive pairs. Existing data augmentation methods 062

for natural language processing (NLP) such as back 063

translation (Xie et al., 2020), synonym replace- 064

ment (Zhang et al., 2015) and text mix up (Zhang 065

et al., 2018) are not designed for phrase-oriented 066

noise, and thus cannot produce training pairs for 067

phrase representation learning. In UCTOPIC, we 068

propose two assumptions about phrase semantics 069

to obtain contrastive pairs: 070

1. The phrase semantics are determined by their 071

context. 072
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2. Phrases that have the same mentions have the073

same semantics.074

As shown in Figure 1, given two sentences that con-075

tain the same phrase mentions (e.g., United States),076

we can mask the phrase mentions and the phrase077

semantics should stay the same based on assump-078

tion (1). Then, the phrase semantics from the two079

sentences are same as each other given assump-080

tion (2). Therefore, we can use the two masked081

sentences as positive pairs in contrastive learning.082

The intuition behind the two assumptions is that083

we expect the phrase representations from different084

sentences describing the same phrase should group085

together in the latent space. Masking the phrase086

mentions forces the model to learn representations087

from context which prevents overfitting and repre-088

sentation collapse (Gao et al., 2021). Based on the089

two assumptions, our context-aware phrase repre-090

sentations can be pre-trained on a large corpus via091

a contrastive objective without supervision.092

For large-scale pre-training, we follow previous093

works (Chen et al., 2017; Henderson et al., 2017;094

Gao et al., 2021) and adopt in-batch negatives for095

training. However, we find in-batch negatives un-096

dermine the representation performance as finetun-097

ing (see Table 1). Because the number of topics098

is usually small in the finetuning dataset, exam-099

ples in the same batch are likely to have the same100

topic. Hence, we cannot use in-batch negatives for101

data-specific finetuning. To solve this problem, we102

propose cluster-assisted contrastive learning (CCL)103

which leverages clustering results as pseudo-labels104

and sample negatives from highly confident exam-105

ples in clusters. Cluster-assisted negative sampling106

has two advantages: (1) reducing potential posi-107

tives from negative sampling compared to in-batch108

negatives; (2) the clusters are viewed as topics in109

documents, thus, cluster-assisted contrastive learn-110

ing is a topic-specific finetuning process which111

pushes away instances from different topics in the112

latent space.113

Based on the two assumptions and cluster-114

assisted negative sampling introduced in this paper,115

we pre-train phrase representations on a large-scale116

dataset and then finetune on a specific dataset for117

topic mining in an unsupervised way. In our ex-118

periments, we select LUKE (Yamada et al., 2020)119

as our backbone phrase representation model and120

pre-train it on Wikipedia 1 English corpus. To121

evaluate the quality of phrase representations, we122

1https://dumps.wikimedia.org/

conduct entity clustering on four datasets and find 123

that pre-trained UCTOPIC achieves 53.1% (NMI) 124

improvement compared to LUKE. After learning 125

data-specific features with CCL, UCTOPIC outper- 126

forms LUKE by 73.2% (NMI) in average. We per- 127

form topical phrase mining on three datasets and 128

comprehensive evaluation indicates UCTOPIC ex- 129

tracts coherent and diverse topical phrases. Overall, 130

our contributions are three-fold: 131

• We propose UCTOPIC which produces supe- 132

rior phrase representations by unsupervised con- 133

trastive learning based on positive pairs from our 134

phrase-oriented assumptions. 135

• To finetune on topic mining datasets, we propose 136

a cluster-assisted negative sampling method for 137

contrastive learning. This method reduces false 138

negative instances caused by in-batch negatives 139

and further improves phrase representations for 140

topics accordingly. 141

• We conduct extensive experiments on entity type 142

clustering and topic mining. Objective metrics 143

and a user study show that UCTOPIC can largely 144

improve the phrase representations, then extracts 145

more coherent and diverse topical phrases than 146

existing topic mining methods. 147

2 Background 148

In this section, we introduce background knowl- 149

edge about contrastive learning and our phrase en- 150

coder LUKE (Yamada et al., 2020). 151

2.1 Contrastive Learning 152

Contrastive learning aims to learn effective repre- 153

sentations by pulling semantically close neighbors 154

together and pushing apart non-neighbors in the 155

latent space (Hadsell et al., 2006). Assume that we 156

have a contrastive instance {x, x+, x−1 , . . . , x
−
N−1} 157

including one positive andN−1 negative instances 158

and their representations {h,h+,h−1 , . . . ,h
−
N−1} 159

from the encoder, we follow the contrastive learn- 160

ing framework (Sohn, 2016; Chen et al., 2020; Gao 161

et al., 2021) and take cross-entropy as our objective 162

function: 163

l = − log
esim(h,h+)/τ

esim(h,h+)/τ +
∑N−1

i=1 esim(h,h−i )/τ

(1) 164

where τ is a temperature hyperparameter and 165

sim(h1,h2) is the cosine similarity h>1 h2

‖h1‖·‖h2‖ . 166
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E Encoder Positive instance (produced by 2 hypotheses) Negative instance

He lived on the east coast 
of the [MASK] [MASK].

How much does it cost to 
fly to the [MASK] [MASK]?

[MASK] drove to Boston 
for a meeting.

He was employed at the 
[MASK] [MASK].

E

United States

Allie

United Way

(a) Pre-training with in-batch negatives (b) Finetuning with cluster-assist negatives

E

The first printed edition 
appeared in [MASK].

His brother Robert was 
senior sheriff of [MASK].

London

James Gunn

Apple

[MASK] is an American 
film director, actor.

[MASK] is an edible fruit 
produced by a tree.

Figure 2: (a) Pre-training UCTopic on a large-scale dataset with positive instances from our two assumptions
and in-batch negatives. (b) Finetuning UCTopic on a topic mining dataset with positive instances from our two
assumptions and negatives from clustering.

2.2 Phrase Encoder167

In this paper, our phrase encoder E is transformer-168

based model LUKE (Yamada et al., 2020). LUKE169

is a pre-trained language model that can directly170

output the representations of tokens and spans in171

sentences. Our phrase instance x = (s, [l, r]) in-172

cludes a sentence s and a character-level span [l, r]173

(l and r are left and right boundaries of a phrase).174

E encodes the phrase x and output the phrase rep-175

resentation h = E(x) = E(s, [l, r]). Although176

LUKE can output span representations directly, we177

will show that span representations from LUKE are178

not able to represent phrases well (see Section 4.2).179

Different from LUKE, which is trained by predict-180

ing entities, UCTOPIC is trained by contrastive181

learning on phrase contexts. Hence, the phrase pre-182

sentations from UCTOPIC are context-aware and183

robust to different domains.184

3 UCTopic185

UCTOPIC is an unsupervised contrastive learn-186

ing method for phrase representations and topic187

mining. Our goal is to learn a phrase encoder as188

well as topic representations, so we can represent189

phrases effectively for general settings and find top-190

ics from documents in an unsupervised way. In191

this section, we introduce UCTOPIC from two as-192

pects: (1) constructing positive pairs for phrases;193

(2) cluster-assisted contrastive learning.194

3.1 Positive Instances195

One critical problem in constrastive learning is196

to how to construct positive pairs (x, x+). Pre-197

vious works (Wu et al., 2020; Meng et al., 2021)198

apply augmentation techniques such as word dele-199

tion, reordering, and paraphrasing. However, these200

methods are not suitable for phrase representation 201

learning. In this paper, we utilize the proposed 202

assumptions introduced in Section 1 to construct 203

positive instances for contrastive learning. 204

Consider an example to understand our posi- 205

tive instance generation process: In Figure 2 (a), 206

phrase United States appears in two differ- 207

ent sentences “He lived on the east coast of the 208

United States” and “How much does it cost to fly to 209

the United States”. We expect the phrase (United 210

States) representations from the two sentences 211

to be similar to reflect phrase semantics. To en- 212

courage the model to learn phrase semantics from 213

context and prevent the model from comparing 214

phrase mentions in contrastive learning, we mask 215

the phrase mentions with [MASK] token. The two 216

masked sentences are used as positive instances. To 217

decrease the inconsistency caused by masking be- 218

tween training and evaluation, in a positive pair, we 219

keep one phrase mention unchanged in probability 220

p. 221

Formally, suppose we have phrase instance x = 222

(s, [l, r]) and its positive instance x+ = (s′, [l′, r′]) 223

where s denotes the sentence and [l, r] are left and 224

right boundaries of a phrase in s, we obtain the 225

phrase representations h and h+ by encoder E and 226

apply in-batch negatives for pre-training. The train- 227

ing objective of UCTOPIC becomes: 228

l = − log
esim(h,h+)/τ∑N
i=1 e

sim(h,hi)/τ
, (2) 229

for a mini-batch of N instances, where hi is an 230

instance in a batch. 231
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3.2 Cluster-Assisted Contrastive Learning232

We find that contrastive learning with in-batch neg-233

atives on small datasets can undermine the phrase234

representations (see Section 4.2). Different from235

pre-training on a large corpus, in-batch negatives236

usually contain instances that have similar seman-237

tics as positives. For example, one document has238

three topics and our batch size is 32. Thus, some239

instances in one batch are from the same topic but240

in-batch method views these instances as negatives241

with each other. In this case, contrastive learning242

has noisy training signals and then results in de-243

creasing performance.244

To reduce the noise in negatives while optimiz-245

ing phrase representations according to topics in246

documents, we propose cluster-assisted contrastive247

learning (CCL). The basic idea is to utilize prior248

knowledge from pre-trained representations and249

clustering to reduce the noise existing in the neg-250

atives. Specifically, we first find the topics in251

documents with a clustering algorithm based on252

pre-trained phrase representations from UCTOPIC.253

The centroids of clusters are considered as topic254

representations for phrases. After computing the255

cosine distance between phrase instances and cen-256

troids, we select t percent of instances that are close257

to centroids and assign pseudo labels to them. Then,258

the label of a phrase mention pm 2 is determined by259

the majority vote of instances {xm0 , xm1 , . . . , xmn }260

that contain pm, where n is the number of sen-261

tences assigned pseudo labels. In this way, we get262

some prior knowledge of phrase mentions for the263

following contrastive learning. See Figure 2 (b);264

three phrase mentions (London, James Gunn265

and Apple) which belong to three different clus-266

ters are labeled by different topic categories.267

Suppose we have a topic set C in our docu-268

ments, with phrases and their pseudo labels, we269

construct positive pairs (xci , x
+
ci) by method intro-270

duced in Section 3.1 for topic ci where ci ∈ C.271

To have contrastive instances, we randomly select272

phrases pmcj and instances xmcj from topic cj as neg-273

ative instances x−cj in contrastive learning, where274

cj ∈ C∧cj 6= ci. As shown in Figure 2 (b), we con-275

struct positive pairs for phrase London, and use276

two phrases James Gunn and Apple from the277

other two clusters to randomly select negative in-278

stances. With pseudo labels, our method can avoid279

instances that have similar semantics as London.280

2phrase mentions are extracted from sentence s, i.e., pm =
s[l : r]

The training objective of finetuning is: 281

l = − log
esim(hci ,h

+
ci
)/τ

esim(hci ,h
+
ci
)/τ +

∑
cj∈C e

sim(hci ,h
−
cj
)/τ
.

(3) 282

As for the masking strategy in pre-training, we 283

conduct masking for all training instances but keep 284

x+ci and x−cj unchanged in probability p. 285

To infer the topic y of phrase instance x, we 286

compute the cosine similarity between phrase rep- 287

resentation h and topic representations h̃ci , ci ∈ C. 288

The nearest neighbor topic of x is used as phrase 289

topic. Formally, 290

y = argmaxci∈C(sim(h, h̃ci)) (4) 291

4 Experiments 292

In this section, we evaluate the effectiveness of 293

contrastive learning. We start with entity clustering 294

to compare the phrase representations from differ- 295

ent methods. For topic modeling, we evaluate the 296

topical phrases from three aspects and compare 297

UCTOPIC to other topic modeling baselines. 298

4.1 Implementation Details 299

For pre-training, we start from a pretrained LUKE- 300

BASE model (Yamada et al., 2020). We follow 301

previous works (Gao et al., 2021; Soares et al., 302

2019) and two losses are used concurrently: the 303

masked language model loss and the contrastive 304

learning loss with in-batch negatives. To generate 305

the training corpus, we use English Wikipedia and 306

extract text with hyper links as phrases. Phrases 307

have the same entity ids from Wikidata 3 or have the 308

same mentions are considered as the same phrases 309

(i.e., phrases have the same semantics). We enumer- 310

ate all sentence pairs containing the same phrase 311

as positive pairs in contrastive learning. After pro- 312

cessing, the pre-training dataset has 11.6 million 313

sentences and 108.8 million training instances. Our 314

pre-training learning rate is 5e-5, batch size is 100 315

and our model is optimized by AdamW in 1 epoch. 316

The probability p of keeping phrase mentions un- 317

changed is 0.5 and the temperature τ in the con- 318

trastive loss is set to 0.05. 319

4.2 Entity Clustering 320

To test the performance of phrase representations 321

under objective tasks and metrics, we first apply 322

3https://www.wikidata.org/
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UCTOPIC on entity clustering and compare to323

other representation learning methods.324

Datasets. We conduct entity clustering on four325

datasets with annotated entities and their semantic326

categories are from general, review and biomed-327

ical domains: (1) CoNLL2003 (Sang and Meul-328

der, 2003) consists of 20,744 sentences extracted329

from Reuters news articles. We use Person, Lo-330

cation, and Organization entities in our experi-331

ments.4 (2) BC5CDR (Li et al., 2016) is the BioCre-332

ative V CDR task corpus. It contains 18,307 sen-333

tences from PubMed articles, with 15,953 chem-334

ical and 13,318 disease entities. (3) MIT Movie335

(MIT-M) (Liu et al., 2013) contains 12,218 sen-336

tences with Title and Person entities. (4) W-NUT337

2017 (Derczynski et al., 2017) focuses on identi-338

fying unusual entities in the context of emerging339

discussions and contains 5,690 sentences and six340

kinds of entities 5.341

Finetuning Setup. The learning rate for finetun-342

ing is 1e-5. We select t (percent of instances)343

from {5, 10, 20, 50}. The probability p of keep-344

ing phrase mentions unchanged and temperature τ345

in contrastive loss are the same as in pre-training346

settings. We apply K-Means to get pseudo labels347

for all experiments. Because UCTOPIC is an un-348

supervised method, we use all data to finetune and349

evaluate. All results for finetuning are the best350

results during training. We follow previous cluster-351

ing works (Xu et al., 2017; Zhang et al., 2021) and352

adopt Accuracy (ACC) and Normalized Mutual In-353

formation (NMI) to evaluate different approaches.354

Compared Baseline Methods. To demonstrate355

the effectiveness of our pre-training method and356

cluster-assisted contrastive learning (CCL), we357

compare baseline methods from two aspects:358

(1) Pre-trained token or phrase representations:359

• Glove (Pennington et al., 2014). Pre-trained360

word embeddings on 6B tokens and dimension is361

300. We use averaging word embeddings as the362

representations of phrases.363

• BERT (Devlin et al., 2019). Obtains phrase rep-364

resentations by averaging token representations365

(BERT-Ave.) or following CGExpan (Zhang366

et al., 2020) to substitute phrases with the367

[MASK] token, and use [MASK] representa-368

tions as phrase embeddings (BERT-MASK).369

• LUKE (Yamada et al., 2020). Use as back-370

4We do not evaluate on the Misc category because it does
not represent a single semantic category.

5corporation, creative work, group, location, person, prod-
uct

Datasets CoNLL2003 BC5CDR MIT-M W-NUT2017

Metrics ACC NMI ACC NMI ACC NMI ACC NMI

Pre-trained Representations

Glove 0.528 0.166 0.587 0.026 0.880 0.434 0.368 0.188
BERT-Ave. 0.421 0.021 0.857 0.489 0.826 0.371 0.270 0.034

BERT-Mask 0.430 0.022 0.551 0.001 0.587 0.001 0.279 0.020
LUKE 0.590 0.281 0.794 0.411 0.831 0.432 0.434 0.205

DensePhrase 0.603 0.172 0.936 0.657 0.716 0.293 0.413 0.214
Phrase-BERT 0.643 0.297 0.918 0.617 0.916 0.575 0.452 0.241

Ours w/o CCL 0.704 0.464 0.977 0.846 0.845 0.439 0.509 0.287

Finetuning on Pre-trained UCTOPIC Representations

Ours w/ Class. 0.703 0.458 0.972 0.827 0.738 0.323 0.482 0.283
Ours w/ In-B. 0.706 0.470 0.974 0.834 0.748 0.334 0.454 0.301
Ours w/ Auto. 0.717 0.492 0.979 0.857 0.858 0.458 0.402 0.282

UCTOPIC 0.743 0.495 0.981 0.865 0.942 0.661 0.521 0.314

Table 1: Performance of entity clustering on four
datasets. Class. represents using a classifier on pseudo
labels. Auto. represents Autoencoder. The best results
among all methods are bolded and the best results of
pre-trained representations are underlined. In-B. repre-
sents contrastive learning with in-batch negatives.

bone model to show the effectiveness of our con- 371

trastive learning for pre-training and finetuning. 372

• DensePhrase (Lee et al., 2021). Pre-trained 373

phrase representation learning in a supervised 374

way for question answering problem. We use a 375

pre-trained model released from the authors to 376

get phrase representations. 377

• Phrase-BERT (Wang et al., 2021). Context- 378

agnostic phrase representations from pretraining. 379

We use a pre-trained model from the authors and 380

get representations by phrase mentions. 381

• Ours w/o CCL. Pre-trained phrase representa- 382

tions of UCTOPIC without cluster-assisted con- 383

trastive finetuning. 384

(2) Fine-tuning methods based on pre-trained rep- 385

resentations of UCTOPIC. 386

• Classifier. We use pseudo labels as supervision 387

to train a MLP layer and obtain a classifier of 388

phrase categories. 389

• In-Batch Contrastive Learning. Same as con- 390

trastive learning for pre-training which uses in- 391

batch negatives. 392

• Autoencoder. Widely used in previous neural 393

topic and aspect extraction models (He et al., 394

2017; Iyyer et al., 2016; Tulkens and van Cranen- 395

burgh, 2020). We follow ABAE (He et al., 2017) 396

to implement our autoencoder model for phrases. 397

Experimental Results. We report evaluation re- 398

sults of entity clustering in Table 1. Overall, 399

UCTOPIC achieves the best results on all datasets 400

and metrics. Specifically, UCTOPIC improves the 401

state-of-the-art method (Phrase-BERT) by 38.2% 402

NMI in average, and outperforms our backbone 403

model (LUKE) by 73.2% NMI. 404
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Model UCTopic LUKE

Metric ACC NMI ACC NMI

Context+Mention 0.44 0.29 0.39 0.21

Mention 0.32
(-27%)

0.15
(-48%)

0.28
(-28%)

0.10
(-52%)

Context 0.43
(-3%)

0.16
(-44%)

0.27
(-31%)

0.07
(-67%)

Table 2: Ablation study on the input of phrase instances
of W-NUT 2017. UCTOPIC here is pre-trained rep-
resentations without CCL finetuning. Percentages in
brackets are changes compared to Context+Mention.

When we compare different pre-trained represen-405

tations, we find that our method (Ours w/o CCL)406

outperforms the other baselines on three datasets407

except MIT-M. There are two reasons: (1) All408

words in MIT-M are lower case which is incon-409

sistent with our pretraining dataset. The incon-410

sistency between training and test causes perfor-411

mance to decay. (2) Sentences from MIT-M are412

usually short (10.16 words in average) compared413

to other datasets (e.g., 17.9 words in W-NUT2017).414

UCTOPIC can obtain limited contextual informa-415

tion with short sentences. However, the perfor-416

mance decay caused by the two reasons can be417

eliminated by our CCL finetuning on dataset since418

on MIT-M UCTOPIC achieves better results (0.661419

NMI) than Phrase-BERT (0.575 NMI) after CCL.420

On the other hand, compared to other finetun-421

ing methods, our CCL finetuning can further im-422

prove the pre-trained phrase representations by cap-423

turing data-specific features. The improvement424

is up to 50% NMI on the MIT-M dataset. Ours425

w/ Class. performs worse than our pre-trained426

UCTOPIC in most cases which indicates that427

pseudo labels from clustering are noisy and can-428

not directly be used as supervision for represen-429

tation learning. Ours w/ In-B. is similar as Ours430

w/ Class. which verifies our motivation on using431

CCL instead of in-batch negatives. An autoencoder432

can improve pre-trained representations on three433

datasets but the margins are limited and the per-434

formance even drops on W-NUT2017. Compared435

to other finetuning methods, our CCL finetuning436

consistently improves pre-trained phrase represen-437

tations on different domains.438

Context or Mentions. To investigate the source of439

UCTOPIC phrase semantics (i.e., phrase mentions440

or context), we conduct an ablation study on the441

type of input and compare UCTOPIC to LUKE. To442

eliminate the influence of repeated phrase mentions443

on clustering results, we use only one phrase in- 444

stance (i.e., sentence and position of a phrase) for 445

each phrase mention. As shown in Table 2, there 446

are three types of inputs: (1) Context+Mention: 447

The same input as experiments in Table 1 includ- 448

ing the whole sentence that contains the phrase. 449

(2) Mention: Use only phrase mentions as inputs 450

of the two models. (3) Context: We mask the 451

phrase mentions in sentences and models can only 452

get information from the context. We can see 453

that UCTOPIC gets more information from con- 454

text (0.43 ACC, 0.16 NMI) than mentions (0.32 455

ACC, 0.15 NMI). Compared to LUKE, UCTOPIC 456

is more robust to phrase mentions (when predicting 457

on only context, UCTOPIC −3% ACC and −44% 458

NMI vs. LUKE −31% ACC and −67% NMI). 459

4.3 Topical Phrase Mining 460

In this section, we apply UCTOPIC on topical 461

phrase mining and conduct human evaluation to 462

show our model outperforms previous baselines. 463

Experiment Setup. To find topical phrases in doc- 464

uments, we first extract noun phrases by spaCy 6 465

noun chunks and remove single pronoun words. 466

Before CCL finetuning, we obtain the number of 467

topics for each dataset by computing the Silhou- 468

ette Coefficient (Rousseeuw, 1987) (details in Ap- 469

pendix A.1). Then, we conduct CCL on the dataset 470

with the same settings as described in Section 4.2. 471

Finally, after obtaining topic distribution zx ∈ R|C| 472

for a phrase instance x in a sentence, we get 473

context-agnostic phrase topics by using averaged 474

topic distribution zpm = 1
n

∑
1≤i≤n zxmi , where 475

phrase instances {xmi } in different sentences have 476

the same phrase mention pm. The topic of a phrase 477

mention has the highest probability in zpm . 478

Dataset. We conduct topical phrase mining on 479

three datasets from news, review and computer 480

science domains. 481

• Gest. We collect restaurant reviews from Google 482

Local7 and use 100K reviews containing 143,969 483

sentences for topical phrase mining. 484

• KP20k (Meng et al., 2017) is a collection of 485

titles and abstracts from computer science papers. 486

500K sentences are used in our experiments. 487

• KPTimes (Gallina et al., 2019) includes news 488

articles from the New York Times from 2006 489

to 2017 and 10K news articles from the Japan 490

Times. We use 500K sentences for topic mining. 491

6https://spacy.io/
7https://www.google.com/maps
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Datasets Gest KP20k KPTimes

# of topics 22 10 16

Table 3: The numbers of topics in three datasets.

GEST KP20k KPTimes0.0
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Figure 3: Results of phrase intrusion task.

The number of topics determined by Silhouette492

Coefficient is shown in Table 3.493

Compared Baseline Methods. We compare494

UCTOPIC against three topic baselines:495

• Phrase-LDA (Mimno, 2015). LDA model in-496

corporates phrases by converting phrases into497

unigrams (e.g., “city view” to “city_view”).498

• TopMine (El-Kishky et al., 2014). A scalable499

pipeline that paritions a document into phrases,500

then uses phrases as constraints to ensure all501

words are placed in the same topic.502

• PNTM (Wang et al., 2021). A topic model with503

Phrase-BERT by using an autoencoder that re-504

constructs a document representation. The model505

is the state-of-the-art topic model.506

We do not include topic models such as LDA (Blei507

et al., 2003), PD-LDA (Lindsey et al., 2012),508

TNG (Wang et al., 2007), KERT (Danilevsky et al.,509

2014) as baselines, because these models are com-510

pared in TopMine and PNTM. For Phrase-LDA and511

PNTM, we use the same phrase list produced by512

UCTOPIC. TopMine produced phrases by itself.513

UCTOPIC PNTM TopMine P-LDA

Gest 20 18 20 11
KP20k 10 9 9 4

Table 4: Number of coherent topics on Gest and
KP20k.

Topical Phrase Evaluation. We evaluate the qual-514

ity of topical phrases from three aspects: (1) topical515

separation; (2) phrase coherence; (3) phrase infor-516

mativeness and diversity.517

To evaluate topical separation, we perform the518

phrase intrusion task following previous work (El-519

Kishky et al., 2014; Chang et al., 2009). The phrase520
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Figure 4: Results of top n precision.

Datasets Gest KP20k

Metrics tf-idf word-div. tf-idf word-div.

TopMine 0.5379 0.6101 0.2551 0.7288
PNTM 0.5152 0.5744 0.3383 0.6803
UCTopic 0.5186 0.7486 0.3311 0.7600

Table 5: Informativeness (tf-idf) and diversity (word-
div.) of extracted topical phrases.

intrusion task involves a set of questions asking 521

humans to discover the ‘intruder’ phrase from other 522

phrases (details in Appendix B.1). Results of the 523

task evaluate how well the phrases are separated by 524

topics. The evaluation results are shown in Figure 3. 525

UCTOPIC outperforms other baselines on three 526

datasets, which means our model can find well- 527

separated topics in documents. 528

To evaluate phrase coherence in one topic, we 529

follow ABAE (He et al., 2017) and ask annotators 530

to evaluate if the top 50 phrases from one topic 531

are coherent (i.e., most phrases represent the same 532

topic). 3 annotators evaluate four models on Gest 533

and KP20k datasets. Numbers of coherent topics 534

are shown in Table 4. We can see that UCTOPIC, 535

PNTM and TopMine can recognize similar num- 536

bers of coherent topics, but the numbers of Phrase- 537

LDA are less than the other three models. For a co- 538

herent topic, each of the top phrases will be labeled 539

as correct if the phrase reflects the related topic. 540

Same as ABAE, we adopt precision@n to evalu- 541

ate the results. Figure 4 shows the results; we can 542

see that UCTOPIC substantially outperforms other 543

models and maintain high precision with a large n 544

when the precision of other models decreases. 545

Finally, to evaluate phrase informativeness and 546

diversity, we use tf-idf and word diversity (word- 547

div.) to evaluate the top topical phrases (details 548

in Appendix B.2). Results are shown in table 5. 549

PNTM and UCTOPIC achieve similar tf-idf scores, 550

because the two methods use the same phrase lists 551

extracted from spaCy. UCTOPIC extracts the most 552

diverse phrases in a topic, because our phrase rep- 553

resentations are more context-aware. In contrast, 554

7



Gest KP20k

Drinks Dishes Programming

UCTOPIC PNTM UCTOPIC PNTM TopMine UCTOPIC TopMine

lager drinks cauliflower fried rice great burger mac cheese markup language software development
whisky bar drink chicken tortilla soup great elk burger ice cream scripting language software engineering
vodka just drink chicken burrito great hamburger potato salad language construct machine learning
whiskey alcohol fried calamari good burger french toast java library object oriented
rum liquor roast beef sandwich good hamburger chicken sandwich programming structure open source
own beer booze grill chicken sandwich awesome steak cream cheese xml syntax design process
ale drink order buffalo chicken sandwich burger joint fried chicken module language design implementation
craft cocktail ok drink pull pork sandwich woody ’s bbq fried rice programming framework programming language
booze alcoholic beverage chicken biscuit excellent burger french fries object-oriented language source code
tap beer beverage tortilla soup beef burger bread pudding python module support vector machine

Table 6: Top topical phrases on Gest and KP20k and the minimum phrase frequency is 3.

since PNTM gets representations dependent on555

phrase mentions, the phrases from PNTM contain556

the same words and hence are less diverse.557

Case Study. We compare top phrases from558

UCTOPIC, PNTM and TopMine in Section 4.3.559

From examples, we can see the phrases are con-560

sistent with our user study and diversity evalua-561

tion. Although the phrases from PNTM are co-562

herent, the diversity of phrases is less than others563

(e.g., “drinks”, “bar drink”, “just drink” from Gest)564

because context-agnostic representations let similar565

phrase mentions group together. The phrases from566

TopMine are diverse but are not coherent in some567

cases (e.g., “machine learning” and “support vector568

machine” in the programming topic). In contrast,569

UCTOPIC can extract coherent and diverse topical570

phrases from documents.571

5 Related Work572

Many attempts have been made to extract topical573

phrases via LDA (Blei et al., 2003). Wallach (2006)574

incorporated a bigram language model into LDA575

by a hierarchical dirichlet generative probabilistic576

model to share the topic across each word within577

a bigram. TNG (Wang et al., 2007) applied addi-578

tional latent variables and word-specific multino-579

mials to model bi-grams and combined bi-grams580

to form n-gram phrases. PD-LDA (Lindsey et al.,581

2012) used a hierarchical Pitman-Yor process to582

share the same topic among all words in a given583

n-gram. Danilevsky et al. (2014) ranked the resul-584

tant phrases based on four heuristic metrics. TOP-585

Mine (El-Kishky et al., 2014) proposed to restrict586

all constituent terms within a phrase to share the587

same latent topic and assign a phrase to the topic of588

its constituent words. Compared to previous topic589

mining methods, UCTOPIC builds on the success590

of pre-trained language models and unsupervised591

contrastive learning on a large-scale dataset. There-592

fore, UCTOPIC provides high-quality pre-trained593

phrase representations and state-of-the-art finetun- 594

ing for topic mining. 595

Early works in phrase representation build upon 596

a composition function that combines component 597

word embeddings together into simple phrase em- 598

bedding. Yu and Dredze (2015) implemented the 599

function by rule-based composition over word vec- 600

tors. Zhou et al. (2017) applied a pair-wise GRU 601

model and datasets such as PPDB (Pavlick et al., 602

2015) to learn phrase representations. Phrase- 603

BERT (Wang et al., 2021) composed token em- 604

beddings from BERT and pretrained on positive 605

instances produced by GPT-2-based diverse para- 606

phrasing model (Krishna et al., 2020). Lee et al. 607

(2021) learned phrase representations from the su- 608

pervision of reading comprehension tasks and ap- 609

plied representations on open-domain QA. Other 610

works learned phrase embeddings for specific tasks 611

such as semantic parsing (Socher et al., 2011) and 612

machine translation (Bing et al., 2015). In this 613

paper, we present unsupervised contrastive learn- 614

ing method for pre-training phrase representations 615

of general purposes and for finetuning to topic- 616

specific phrase representations. 617

6 Conclusion 618

In this paper, we propose UCTOPIC, a contrastive 619

learning framework that can effectively learn 620

phrase representations without supervision. To fine- 621

tune on topic mining datasets, we propose cluster- 622

assisted contrastive learning which reduces noise 623

by selecting negatives from clusters. During fine- 624

tuning, our phrase representations are optimized for 625

topics in the document hence the representations 626

are further improved. We conduct comprehensive 627

experiments on entity clustering and topical phrase 628

mining. Results show that UCTOPIC largely im- 629

proves phrase representations. Objective metrics 630

and a user study indicate UCTOPIC can extract 631

coherent and diverse topical phrases. 632
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7 Ethical Consideration633

We do not anticipate any major ethical concerns;634

topic mining is a fundamental problem in natural635

language processing. A minor consideration is636

the potential for certain types of hidden biases to637

be introduced into our results (i.e., performance638

regressions for some subset of the data in spite639

of overall performance gains), for example by a640

biased selection of topical phrases. We did not641

observe any such issues in our experiments, and642

indeed these considerations seem low-risk for the643

specific datasets studied here.644
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A Topical Phrase Mining817

A.1 Find Numbers of Topics818

We randomly sample 10K phrases from dataset819

and apply K-Means clustering on pre-trained820

UCTOPIC phrase representations with different821

cluster numbers. We compute Silhouette Coef-822

ficient score for different topic numbers and the823

number with the largest score will be used as the824

topic number in a dataset.825

B User Study826

B.1 Phrase Intrusion827

In our experiments, each question has 6 phrases828

and 5 of them are randomly sampled from the top829

50 phrases of one topic and the remaining phrase830

is randomly chosen from another topic (top 50831

phrases). Annotators are asked to select the in-832

truder phrase. We sample 50 questions for each833

method and each dataset (600 questions in total)834

and shuffle all questions. Because these questions835

are sampled independently, we asked 4 annotators836

to answer these questions and each annotator an-837

swers 150 questions in average.838

B.2 Phrase Informativeness and Diversity839

Informative phrases cannot be very common840

phrases in a corpus (e.g., “good food” in Gest)841

and we use tf-idf to evaluate the “importance” of842

a phrase. To eliminate the influence of phrase843

length, we use averaged word tf-idf in a phrase844

as the phrase tf-idf. Specifically, tf-idf(p, d) =845
1
m

∑
1≤i≤m tf-idf(wpi ), where d denotes the docu-846

ment and p is the phrase. In our experiments, a847

document is a sentence is a review.848

Furthermore, we hope that our phrases are di-849

verse enough in a topic instead of expressing the850

same meaning (e.g., “good food” and “great food”).851

To evaluate the diversity of the top phrases, we cal-852

culate the ratio of distinct words among all words.853

Formally, given a list of phrases [p1, p2, . . . , pn],854

we tokenize the phrases into a word list w =855

[wp11 , w
p1
2 , . . . , w

pn
m ] and w′ is the set of unique856

words in w. The word diversity is computed by857
|w′|
|w| . We only evaluate coherent topics labeled in858

phrase coherence and the coherent topics numbers859

of Phrase-LDA are obviously smaller than others,860

hence we evaluate the other three models. We861

compute the tf-idf and word-div. on the top 10862

phrases and use the averaged value on topics as863

final scores.864
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