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Abstract

Longitudinal generative modeling of high-resolution 3DMagnetic-Resonance-Imaging (MRI)
scans can reveal disease progression patterns in neurological disorders such as Alzheimer’s
disease. We introduce a novel approach called MRExtrap for simulating aging in brain
MRI volumes given previously observed MRIs, by performing linear regression in the la-
tent space of an autoencoder. We show that well-trained convolutional autoencoders can
yield latent representations that exhibit linearity with respect to the regional brain vol-
umes when interpolated, decoded, and segmented. We exploit this structure by training a
linear progression model in the latent space of the autoencoder to predict trajectories of
latent representations based on the age of the subject. On the ADNI dataset, we show that
predicted MRIs align closely with held-out longitudinal scans, enabling accurate modeling
of age-related structural brain changes.

Keywords: Brain MRI, Generative Modeling, Longitudinal Modeling, Autoencoders,
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1. Introduction

We consider the problem of generative modeling of a series of structural brain MRIs to
predict how a subject’s brain ages structurally. Faithful prediction of brain aging trajecto-
ries based on neuroimaging modalities have been used to detect anomalous brain atrophy
patterns (Chouliaras and O’Brien, 2023).

There is a growing body of work using deep generative models for 3D brain generation
(Kwon et al.; Pombo et al., 2021; Pinaya et al., 2022), and particularly, structural aging
(Ravi et al., 2022; Zhao et al.; Yoon et al., 2023; Jung et al., 2023). However, current
works for 3D brain aging either involve complicated training routines (Ravi et al., 2022)
and hyperparameter tuning or are hard to scale up to high resolution (Yoon et al., 2023),
unless slice-wise generation is used (Ravi et al., 2022).

In this work, we propose MRExtrap, a simple and effective method for simulating 3D
brain aging trajectories on the voxel level. We discover that training a convolutional au-
toencoder to compress T1 MRI volumes x ∈ RD×D×D yields a latent space z ∈ R4×d×d×d

that has allows linear predictions: In particular, in latent space, we find linear relationship
between key regional brain volumes v = Segment(x) and latent codes z within a subject
(see Fig. 1a). Using sequences of T1 MRIs from the ADNI database, we perform linear
regression to predict z from age a ∈ R+, and find that this simple approach allows us to
predict brain regions from the extrapolated latents with high accuracy.
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Figure 1: MRExtrap for longitudinal brain MRI aging. (a) We encode individual
brain MRI volumes into a compressed latent space using a convolutional autoen-
coder, trained with the loss in Eq. (1). We predict multidimensional latents using
age using linear regression and then decode the latents back into voxel space for
an unseen age. (b) The encoded MRIs are spatially similar to the original vol-
umes. (c) We find that a linear interpolation of two latents of a subject, when
decoded, results in smoothly varying regional volumes. (d) Across subjects, vol-
ume changes in key brain regions are linear with respect to the interpolation
factor α, although not all subjects exhibit this behaviour (in red).

2. Methods and Results

We train an autoencoder to compress 3D MRIs x ∈ X to a latent representation z ∈
Z using the same methodology as in Rombach et al. (2022) and Pinaya et al. (2022).
We use a combination of losses to train this autoencoder to reconstruct x, including L1

reconstruction loss, a perceptual loss proposed in Zhang et al. (2018), and a patch-based
adversarial discriminator (Isola et al., 2016). Further, we perform regularisation in latent
space, obtaining the total loss

LAE = ∥x− x̂∥1 + β1LPIPS(x, x̂) + β2AdvLoss(x, x̂) + β3DKL(Encµ,Σ(x),N (0, I)), (1)

where β1, β2, β3 are loss scaling terms, x̂ = Dec(Encµ(x)), and Encµ,Σ parameterizes the
normal distribution of z. Since this training only requires individual volumes, we can use
cross-sectional data as well as longitudinal data.

The latent space of the trained autoencoder exhibits useful interpolation properties.
Specifically, we found that, within a subject, linearly interpolating between two latents z1
and z2 corresponding to 3D images x1 and x2 and with segmentation volumes v1, v2 ∈ R+,
leads to xinterp with a segmentation volume vinterp that is a linear combination of v1, v2:

vinterp = Seg(x̂interp) ≈ αv1 + (1− α)v2, where

x̂interp = Dec(αEncµ(x1) + (1− α)Encµ(x2)). (2)

Here, the scalar volumes v are obtained by segmenting the MRI and computing the
voxels contained in each segmented region. In addition to exhibiting linearity, this interpo-
lation preserves the subject-specific morphological structure (Fig. 1c,d) for the hippocam-
pus, ventricle, GM, and WM volumes. This suggests that the relationship between age and
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MRExtrap

(1) Encode xk → zk

      for k=1 ... i

(2) Train linear regression
        
   zk = β ⋅ ak + z1

   where β ∈ ℝd×d×d , ak∈ ℝ

(3) At test age an,
     
  xn = Decoder(β ⋅ an + z1)
  vn = Segment(xn)

Figure 2: Brain aging performance of MRExtrap on subjects in the ADNI
dataset. (a) MRExtrap admits a trained autoencoder and a sequence x1 . . . xi
of longitudinal volumes per subject and predicts 3D MRI at test age an > ai. (b)
For an example subject 123 S 0298, linear regression from age to latents leads to
accurate forecasting of regional brain volumes in voxel space. (c) Model accuracy
improves when we consider more volumes for the regression. Linear regression
using multiple volumes is competitive with Ravi et al. (2022).

structural brain volumes may be modelled using a linear relationship in the latent space
(Salat et al., 2004). Thus, in order to predict a subject’s future brain changes as a function
of age, we fit a linear regression to the latents of that subject (algorithm in Fig. 2a).

To evaluate our method, we preprocessed 9200 T1 MRIs from 1700 patients from the
ADNI database by applying affine registration (3+3 d.o.f) to the MNI atlas, followed by
skull stripping. We then trained the autoencoder on 1500 patients for 230 epochs with
β1 = 1, β2 = 10−3, β3 = 10−6. We only applied the adversarial loss after 100 epochs to avoid
training instability. Once trained, the autoencoder was frozen, and we used the Synthseg
network (Billot et al., 2023) for segmentating the hippocampus, ventricular cerebrospinal
fluid (CSF), as well as total gray and white matter (GM & WM) for each image. We
found that on the test subjects, MRExtrap accurately forecasts the changes in the regional
volumes for hippocampus, Ventricular CSF, and total GM and WM when conditioned on
the first few volumes (Fig. 2b). Furthermore, the simpler linear regression prediction is
competitive with a GAN-based baseline DANINet by Ravi et al. (2022). In contrast to
DANINet, MRExtrap can use a variable number of MRIs as input – the forecasting error
decreases as we consider more volumes for the regression (Fig. 2c).

In this work, we performed linear regression in the autoencoder latent space and showed
its effectiveness in modeling structural aging patters for high-dimensional 3D brain MRIs.
Our work indicates that modeling brain aging trajectories in latent spaces is an interesting
and potentially fruitful research direction. Currently, our model requires at least two lon-
gitudinal scans for brain aging. As follow-up to this work, we will explore a combination of
our linear regression approach with a neural network-based prior that will allow predictions
conditioned on only one baseline scan.
Acknowledgements This work was funded by DFG EXC 2064/1, Project no. 390727645,
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