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Abstract—Ensemble clustering has emerged as a powerful
framework for analyzing heterogeneous and complex data. De-
spite the abundance of existing schemes, co-association matrix-
based methods remain the mainstream approach. However, focus-
ing solely on pairwise correlations falls short of fully capturing
the intricate cluster relationships. Moreover, despite its potential,
ensemble clustering has yet to effectively leverage the powerful
representation capabilities of neural networks. To address these
limitations, we propose a deep ensemble clustering method called
Ensemble Clustering with Attentional Representation (ECAR).
Our method considers the results of base partitions as groups with
related information to explore higher-order fusion information.
ECAR captures the importance of each sample’s association with
its related group by employing an attentional network, and en-
codes this information into a low-dimensional representation. The
attentional network is trained by jointly optimizing the clustering
loss from soft assignments learned from the embeddings and the
reconstruction loss from the weighted graph generated from en-
semble clustering. During training, the weights of base partitions
are adaptively refined to promote diversity and consistency while
reducing the impact of low-quality and redundant base partitions.
Extensive experimental results on real-world datasets demonstrate
the substantial improvement of our method over existing baseline
ensemble clustering methods and deep clustering methods.

Index Terms—Deep clustering, ensemble clustering, graph auto-
encoder, self-attentional, unsupervised representation learning.

1. INTRODUCTION

HE proliferation of heterogeneous data from diverse
T sources has posed unprecedented challenges to the analysis
and modeling of Big Data. Among the many data analysis and
pattern recognition methods, clustering is a long-standing and
intricate research component [ 1]. Different clustering techniques
tend to extract data based on distinct structures, such as cluster
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Fig. 1. Traditional paradigm of ensemble clustering.

size and shape [2], [3]. While a well-designed clustering model
may yield satisfactory results on one dataset, it may not gen-
eralize to others. Moreover, some clustering algorithms exhibit
high sensitivity to initialization and hyperparameters, leading to
unstable clustering outcomes [4], [5]. In the absence of prior
knowledge about the structural properties of a dataset, identify-
ing an optimal or even reasonable clustering model becomes a
formidable task.

To address the above issues, researchers have proposed
ensemble clustering as a promising scheme [6], [7], [8], [9].
Ensemble clustering involves integrating different clustering
models to achieve an improved final result. By combining the
partition results obtained from different types of base partition,
ensemble clustering can uncover the structural information of the
dataset to a greater extent, capturing the structural elements of
the dataset from multiple perspectives. Thus, ensemble cluster-
ing is expected to overcome the limitations of unique algorithms
that rely on specific assumptions about the data structure. More-
over, ensemble clustering is also considered a viable approach
for enhancing the robustness and stability of clustering tasks.
Due to its sound clustering results, ensemble clustering methods
have been widely used in computer vision [10], [11], [12], text
mining [13], [14], multi-source fusion [15], [16], [17] and other
data-mining areas [18], [19], [20], [21], [22].

Over the years, ensemble clustering has emerged as a bur-
geoning area of research, garnering increasing attention [23].
In the existing methods, after the base clusters are generated
through various means or parameters, the typical process is to
fuse their results using a consensus function to obtain the final
clustering results, as illustrated in Fig. 1. It has been recognized
as an important alternative to the traditional cluster analysis [24]
Specifically, much of the research on ensemble clustering has
centered on the advancement of consensus functions.

Despite enhancing stability over individual partitions [25],
the existing ensemble clustering methods often fail to substan-
tially enhance clustering performance. In an effort to promote
the ensemble clustering performance, a novel deep ensemble
clustering method is proposed in this article, called Ensemble
Clustering with Attentional Representation (ECAR). Compared
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to existing ensemble clustering methods, ECAR boasts the fol-
lowing four distinctive characteristics:

® The commonly used co-association matrix merely captures
the pairwise associations between data points, which may
fail to uncover valuable clustering information. In contrast,
ECAR consider each class derived from the base partition
as a higher-order group that reveals the underlying rela-
tionships among samples.

® Most state-of-the-art ensemble clustering methods employ
the base partition results as new representations of the
samples, which heavily relies on the clustering outcomes
and neglects the original features. ECAR leverages the base
partition results as higher-order connections to guide the
clustering process on original features.

® By harnessing the representation capabilities of neural
networks, particularly self-supervised mechanisms, ECAR
learns a low-dimensional embedding that is customized for
clustering via an attentional encoder.

* To mitigate the impact of low-quality and redundant base
partitions, ECAR adaptively assigns weight to each base
partition based on their diversity and consistency, which
effectively enhances the discriminative power of the clus-
tering.

In general, the contributions of this article can be summarized

as follows:

e Firstly, we introduce deep self-supervised methods into
the ensemble clustering paradigm, thereby opening up the
potential to introduce other deep clustering approaches.
Specifically, we propose a novel autoencoder to achieve
clustering of features by the guidance of base partition
results, which is the first to our knowledge.

® QOur proposed ECAR method distinguishes itself from tra-
ditional ensemble clustering methods by incorporating the
aforementioned characteristics, which provides the pos-
sibility of achieving reliable clustering results on more
challenging data.

e Extensive experiments are conducted both on synthetic and
realistic datasets, and the results demonstrate considerable
improvement compared to existing ensemble clustering
algorithms. Besides the visualization of training and pa-
rameter study disclose the feasibility and effectiveness of
our proposed method.

The remainder of this article is organized as follows. In
Section II, we revisit the previous ensemble clustering methods
and deep clustering methods. The proposed method for deep
ensemble clustering, along with its corresponding optimization
and discussions, are presented in Section III. Extensive experi-
ments conducted on synthetic and real-world datasets are shown
in Section IV. Section V concludes the entire article.

II. RELATED WORK

In this section, we revisit related works on ensemble clustering
and deep clustering separately, with a view to establishing their
respective strengths and weaknesses.

A. Ensemble Clustering Methods

Ensemble clustering comprises two fundamental research
aspects: constructing base partitions and designing a consensus
function to generate the final partitioning. The primary strategies
of the former include homogeneous ensembles [2], [26], [27],
heterogeneous ensembles [28], [29], [30], variable numbers of
clusters [2], [25], [31], and random sampling [32], [33], [34].
After obtaining base partitions, a series of effective ensemble
clustering methods have been proposed recently, which fuse
the base partition results from different perspectives. Current
ensemble clustering methods can be broadly categorized into
three classes based on the fusion mode: [8], [35], co-association
matrix-based methods [2], [36] and graph-based methods [6],
[37].

The voting-based methods utilize the voting strategy de-
rived from ensemble classification [38]. Unlike in ensemble
classification, where true labels are available, these methods
require mapping the labels of individual base partitions to a
unified label. This process essentially corresponds to solving
a weighted bipartite graph matching problem, which is typi-
cally accomplished using the Hungarian algorithm [27], [39].
Although these methods inherit the concept of majority voting,
their efficacy is compromised due to inadequate consideration
of the base partition fusion methodology and their inability to
accurately capture the inherent local structure of the data leads
to suboptimal performance.

The methods based on co-association (CA) matrix makes
use of pairwise-similarity relationships to aggregate multiple
partitions. Fred and Jain [2] presented a general framework
for such methods, where the base partition results are repre-
sented as the similarity between point pairs, and subsequent
clustering methods (e.g., spectral clustering [40], hierarchical
clustering [41]) can be used. This class of methods applies many
various consensus functions to such CA matrix to generate the
final clustering results. Li et al. [42] introduced a weighted
consensus clustering method, where each input clustering is
weighted and the weights are determined in such a way that
the final consensus clustering provides a higher-quality solu-
tion. Subsequently, Yang et al. [19] proposed a novel weighted
consensus function guided by clustering validation criteria to
reconcile initial partitions to candidate consensus partitions from
different perspectives. Lam-On et al. [43] achieved a link-based
approach using the similarity between clusters that are estimated
from a link network model of the ensemble. To alleviate the
higher time and space complexity, Liu et al. [44], [45] employed
spectral clustering on the CA matrix and developed an efficient
solution. It has theoretical equivalence to weighted K-means
clustering and results in vastly reduced algorithmic complexity.
To accomplish the same purpose, U-SENC [46] achieves nearly
linear time complexity with the construction of a sparse affinity
sub-matrix. Huang et al. [47] considered the weight assign-
ment of each cluster obtained as an individual and proposed
an ensemble-driven cluster uncertainty estimation with local
weighting strategy. Jia et al. [48] developed a low-rank tensor
approximation based ensemble method to address the issue
of the co-association matrix being dominated by inferior base
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partitions. The CA matrix-based methods have shown favorable
outcomes when applied to benchmark data. However, its efficacy
deteriorates when dealing with datasets encompassing intricate
global information. We attribute this reason to the fact that
focusing exclusively similarities among individual data points
does not provide a comprehensive portrayal of the inter-cluster
associations.

Graph-based ensemble clustering methods were initially pro-
posed by Strehl et al. [6]. In their work, CA matrix is treated as
an undirected weighted graph and partitioned into C' clusters of
similar size using a multi-level C'-way graph partitioning method
called METIS [49] in the CSPA. Similarly, HGPA treats the
result of base partition as a hypergraph and applies HMETIS [50]
to partition it. The idea of MCLA is to group and collapse the rel-
evant hyperedges and assign each object to the collapsed hyper-
edge in which it is most strongly involved. Fern and Brodley [7]
proposed a reduction method, HBGF, that constructs a bipartite
graph by a given base partitions. The resulting graph models both
instances and clusters of the ensemble simultaneously as vertices
in the graph. Yu et al. [51] developed an ensemble clustering
method based on double nearest neighbor propagation, which
used multiple distance functions and pruning of noisy attributes,
followed by a normalized cut algorithm to obtain the final result.
Huang et al. [52] proposed a ensemble clustering method based
on sparse graph representation with elite neighbor selection
strategy and probability trajectory analysis. Zhou et al. [53]
learned a structured bipartite graph by self-paced learning, where
the reliability of each edge is automatically decided and involved
in graph learning in order of their reliability. In addition to these,
there exist several effective methods that aim to address the issue
of base partition fusion from a range of different perspectives,
as detailed in the literature [54], [55], [56], [57], [58], [59], [60].
Despite the considerable progress that has been made in the field
of ensemble clustering, the approach has yet to be integrated
with deep learning techniques, which could potentially yield
advancements in the characterization of complex data.

B. Deep Clustering Methods

Deep clustering has gained favor in recent years due to its
expansive parameter space, which has been shown to effectively
handle increasingly complex and high-dimensional data. Tradi-
tional clustering methods such as those proposed in [61], [62],
[63] may lack the necessary power to accurately characterize
such data as its complexity and dimension grow. The majority
of current deep clustering techniques rely on self-supervised
strategies, which can be broadly categorized into two distinct
groups: contrastive-based methods [64] and reconstruction-
based methods [65]. Contrastive-based methods provide super-
visory signals for clustering tasks by pulling positive samples
closer together and pushing negative samples further apart,
aiming to learn embeddings with discriminative properties. In
this context, the classic work contrastive clustering [66], [67],
[68] introduced cluster-level contrastive loss and jointly opti-
mized it with instance-level objectives. Subsequent works [69],
[70], [71] aimed to enhance the uniformity of embeddings by
maximizing the distances between prototype representations.
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Fig. 2. Illustrative ensemble clustering problem.

The reconstruction of data in deep clustering is typically ac-
complished through the utilization of autoencoders [72]. Many
approaches encode and cluster data by incorporating specific
network modules and applying diverse clustering losses. For
example, DEC [73] and IDEC [74] are trained using the KL
divergence loss joint reconstruction loss. SDNE [75] exploits
the first-order and second-order proximity jointly to preserve
the network structure. Ji et al. [76] introduced a self-expressive
layer between the encoder and the decoder to mimic the self-
expressiveness property. Huang et al. [77] proposed DeepCIuE,
which integrates instance-level contrast, cluster-level contrast,
and multilayer collaborative ensemble clustering into a unified
framework. Although DeepCIuE attempts to achieve ensemble
clustering through deep learning, it is limited to image clustering
due to its utilization of convolutional neural networks as the
backbone. In general, there is still a gap that needs to be bridged
between deep learning and ensemble clustering.

III. PROPOSED METHOD

A. Formulation of Ensemble Clustering

Notations: Throughout the article, the vectors and matrices
are denoted by bold lowercase and bold uppercase letters, re-
spectively. The transpose, the j-th column, the (4, j)-th entry,
the trace and the Frobenius norm of matrix A are denoted by
AT a;, A, Tr(A), ||Al/%, respectively.

Matrix X = [x1,X2,...,%,] € RN is the numerical rep-
resentation of the feature of dataset X. C' denotes the number
of gound-truth classes for clustering and M denotes the number
of base partitions. For the m-th base partition, the number of
clusters is set to be k,,, typically larger than C. The m-th
partition is denoted as P("™) = {Pl(m), 772(7"), e ,P,Em)} In this
article, we only discuss hard clusters, which means clusters
do not overlap each other, i. e., pi(m) N P}m) =0,i# j and

Ukm ™ = x.

B. Ensemble Clustering With Attentional Encoder

The binary matrix H("™) € RN *¥m can be constructed as the
indicator matrix of the partition P (™):

(m) _
-

Fig. 2 shows an illustrative ensemble clustering problem with
two base partitions as an example.

1, z; € Pj(m),

(m) (M
0, s é Pj .
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Fig. 3. Attention mechanism employed in our model.

The overall base clustering results can be obtained by the con-
catenation operation || as H = [HV|| ... |[H(M)] ¢ RV*EK,
where K = 2%21 kp,. From this, the CA matrix can be con-
structed as

1 T

So = MHH . 2)
Each column of H is a cluster in the base partitions, which
we consider as a tiny “group” with tight association. The core
of our proposed method is to combine feature and topological
information to parametrically learn the importance of each sam-
ple with respect to the group of interest, thereby generating a
new representation of each sample. To achieve this, we adopt
a straightforward approach whereby we represent the group by
the centroid of all samples in that group:

1 n
pi = x;H;;. 3)
= Ty 2 XM

Thus, the importance of correlation between a sample and its
associated group can be learned in feature-level. A learnable
linear transformation is required for each layer to adequate
sufficient representational power that enables the production of
high-level features from input features. For this purpose, a shared
linear transformation parameterized by the matrix W € R%*? is
applied to each node. Besides, the existing ensemble clustering
methods fail to effectively portray the relationship between sam-
ple points and the corresponding groups. Drawing inspiration
from the shared self-attention mechanism on nodes [78], we
parameterize a vector a € R? in each layer to characterize the
degree of affiliation of each node to its groups of interest:

eij = 6 (a' [Wx;|[Wp,]) “

where 0 is the nonlinear activation function LeakyReLU with a
slope of 0.2. To facilitate the generation of new representations,
we apply the softmax function for normalization:

exp(e;;)
Zf:l exp(eir)Hip

Fig. 3 depicts a visualization of the self-attention mechanism. It
should be noted that each layer shares the same attention factor
a to maintain consistency across the entire data.

With the normalized attention coefficients obtained, the out-
put features of this layer for sample x; can be calculated through

&)

a;; = softmax;(e;;) =

» '
‘ azj |
j
| A1
v aZj

b

(a) For each sample (b) For each group

Fig. 4. Movement of sample points with attention factor.

a linear combination in the following form:

xl(.H_l) = layer® (xgl))

K

=03 alH;WOpY +1-0x". (6
j=1

Different from [78], an identity transformation is implemented

to prevent excessive shifts in the resulting representation. This is

due to the possibility that the centroids of the groups and samples

may be located far apart. The parameter 6 is consistently set to

be 0.5 in all our experiments.

Fig. 4(a) and (b) provide a visual representation of how the
sample points move with the attention coefficient. The blue point
represent a sample and the oval circles represent the groups asso-
ciated with it. Metaphorically speaking, various groups - denot-
ing varying topological connections - are persistently exerting
force on the sample points through the attention mechanism,
ultimately guiding the sample points towards their appropriate
large clusters. )

Further, the latent embedding Z € RV of the samples can
be obtained by stacking two attentional layers:

7, = layer(l)(fq),

z; = layer® (z). (7

K3

where the input X; is the normalization of the original features
x;. Despite comprising only two layers, our encoder module
exhibits a parsimonious but efficient design, without compro-
mising its functionality.

C. Loss Function

After the latent embedding Z obtained, there are various
decoders available. We adopt the following simple but effective
inner product decoder like [79]:

A =o(22"), ®)

where o is the sigmoid function that maps the inner product of
Z to the range of 0 and 1. This further derives the reconstruction
loss we require:

M
Lp=|A=Y Sl ©)
m=1

where S,,, = HmHEMT represents the adjacency matrix of

each base partition. -y is the weight of base partitions. It is worth
noting that during the pre-training stage, only the auto-encoder
is working. At this time -y is fixed to ﬁ, which is equivalent
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Fig. 5. The architecture for the proposed ECAR.

to reconstructing the original CA matrix in (2). The loss in the
pre-training stage can be simplified as a projection problem:

Lpre = |A = Sol1% (10)

In the training stage, the weight of the base partitions is expected
to be refined by joint clustering losses, at which point -y is
learnable.

Apart from minimizing the reconstruction loss, the guidance
for clustering loss is also indispensable. Following DEC [73],
we adopt the Student’s ¢-distribution as a kernel to measure the
similarity between embedding z; and centroid pt;:

v41
)

1+ |z; — pj||/v) 2
Q= Ot lz—ml/)

D h=1 (L llzi — | /o)™ 2

where v is the degree of freedom of the Student’s ¢-distribution
and the value of v is typically taken as 1. The resulting Q repre-
sents the soft clustering of each sample to class. We iteratively
strengthen the clustering predictions by learning from their high
confidence assignments with the assistance of the following
target distribution:

(1)

o 5/ 20m Qi
Y ke (QE/ 2 Quk)

The target distribution P can be regarded as a more ’confident’
clustering assignment to sharpen the initial assignment Q. Then
a KL divergence between the two distribution can be employed
as clustering loss:

P (12)

N ©
Lo=KL(P||Q) =) Pjlog

i=1j=1

(13)
Qij
Our proposed method is jointly trained through the above two
losses, and the total objective loss function is defined as:

Loss = Lr + ALc. (14)

A is the trade-off parameter to control the balance between
reconstruction loss and clustering loss. The inherent significance
of this joint loss lies in its persistent guidance of the current
embeddings, enabling them to acquire discriminative features
within an expansive feasible space that adheres to the constraints
of reconstruction error. The architecture for ECAR is shown in
Fig. 5.

585

D. Optimization and Discussions

The loss function involves several variables, including the
weight of base partitions -, the learned embedding z, its centroid
1 the soft assignment distribution QQ and the target distribution
P. This may appear difficult to optimize, but in fact the update of
1 depends only on z by k-means, the update of Q depends only
on w and z by (11), and the update of P depends only on Q by
(12). Therefore, the optimization process actually involves only
two variables: v and z. We adopt the alternating optimization
strategy to optimize the Loss(z,~) in (14).

Update « with z fixed. To avoid trivial solutions and concen-
tration of weights on few base partitions, the regular term of the
weight « is imposed. From the reconstruction loss in (9), the
subproblem of -« can be written as the following constrainted
optimization problem:

M
min & > YmSmlli + BlvI3,

m=1

st.yT1=1,v>0. (15)
Let S denote fo:l Ym Sm . Expanding through the matrix trace,
(15) is equivalent to

min 7r(STS) — QTT(STA) + BH’YH;
~

st.yf1=1,v>0. (16)

The first part of the objective function can further be rewritten
in polynomial form:

Tr(STS) — 2Tr(STA)

M M M B
=3 > Tr(SuS)vmm —2 Y Tr(SLA) (17

m=1 =1 m=1

Therefore (15) can be converted into the following quadratic
optimization problem

miny" (@ + AI)y — 20"y

st.yf1=1,v>0, (18)
where ®;; = Tr(S;S;) and n; = Tr(STA). And ® positive
semidefinite in accordance with (17). The above quadratic pro-
gramming problem with constraints can be solved by active set
mehtod [80], sequential quadratic programming [81], interior-
point [82] and so on.

Then we adopt Adam optimization strategy [83] to train
the network with ~ fixed. It should be noted that the target
distribution P is treated as the “current sharper assignment” to
strengthen the prediction, but frequent updates of P will cause
the soft distribution Q to be pulled back and forth, making it
difficult to update. Therefore, the update of P needs to be done
at intervals of several epochs (generally less than 5). The update
of the weight ~y is performed similarly.

The final clustering result can be obtained directly by selecting
the category with the highest confidence level from the soft
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assignment Q after convergence:

Y; = arg mjax QU (]9)
Furthermore, from the update of the weight of the base parti-
tions in (18), two properties can be summarized from the above
derivation:
Diversity: On the one hand, minimizing the term v ®~ in
(18) embodies the diversity of weight assignments. By defining
operator sum(X) = >_, >, X;; on matrix, there is

Tr(S:S;) = Tr(SZ-TSj) = sum(S; o S;) (20)

where o is hadamard product. According to (17), the larger the
value of sum(S; o S;), the smaller the value of y,,,7; is expected
to be. This is in line with the original intention of consensus
clustering, i.e., providing clustering results from multiple per-
spectives to uncover various types of structural information.

Consistency: On the other hand, maximizing the term 57~ in
(18) embodies the consistency of weight assignments. Similar
to the above, there is

Tr(STA) = sum(S; o A) 21

According to (17), the smaller the value of sum(S; o A), the
smaller the value of ~,,, is expected to be. This implies to reduce
the weights of base partitions that are of low quality or differ
significantly from the embedding. These two properties filter
the base partitions from the initial perspective of ensemble.

The procedure for our proposed ECAR is outlined in
Algorithm 1.

Algorithm 1: Procedure for ECAR.

Input: Feature matrix X € R¥*Y  ensemble size M,
trade-off parameters A and (3, learning rate [r, interval of
update ¢4, to, maximum epoch number 7.

Initialization: Run the clustering algorithm to get base
partitions H and the adjacency matrix S,, of each.
Pre-train the autoencoder by minimizing loss in (10).
for epoch = 1,2,...,T do:

if epoch%t; == 0 then
Update the weight ~ by solving (18).
end
Obtain the contriod p by k-means on Z.
Calculate the soft assignment Q by (11).
if epoch%ty == 0 then
Calculate the target distribution P by (12).
end
Backpropagate the loss in (14) and update W, c.
end
Output: Clustering result by (19).

Besides, the time overhead of ECAR inevitably reaches a
quadratic complexity due to the loss of reconstruction involving
the weighted graph. Self-attentional operations for each sample
and its associated cluster can be performed in parallel. The
time overhead for the computation of each attention layer is
O(Kd + Ndd'), where d is the input dimension and d' is

the output dimension. The time overhead for the computation
of the loss function in (14) is O(d'N?). The time overhead
of solving the quadratic programming to update the weight is
approximately O(K?). In total, the time complexity of ECAR
is O((d'N? + K3)T), where T is the number of epochs.

IV. EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
our methods on real-world datasets and analyze the experimental
results.

A. Experimental Settings

To ensure the fairness and simplicity of the experiments, each
experiment utilizes the results of 20 times k-means as the base
partitions. We perform base partition using a number of clusters
greater than C) i.e., variable numbers of clusters, to explore the
local information contained within the data. Each of the base
partitions is produced by the k-means algorithm with the number
of clusters k,, randomly selected from the range of [2C,/N],
where C' is the known number of ground-truth clusters and NV
is the total number of samples. The number of pretraining and
training epochs in each experiment is set to 50 respectively. The
interval of update ¢, and ¢ is set by grid [1, 3, 5]. To rule out
the chance findings and increase reliability, each experiment is
repeatedly run five times and its mean value is reported.

To evaluate the effectiveness of the clustering, the study
used three metrics, namely accuracy (ACC), normalized mutual
information (NMI), and adjusted Rand index (ARI), all of which
have a range of values from O to 1, except for ARI which ranges
from —1 to 1. The labels obtained through the clustering process
are compared with the labels provided by the data set using these
metrics. A higher value for each of the metrics is considered
indicative of a better performance for the clustering algorithm.

B. Illustrative Experiment

A rudimentary toy data was generated to explicate the concept
of variable numbers of clusters. The dataset is composed of
two dimensions and encompasses 2200 samples, which can be
categorized into two linear classes and four spherical classes.
The linear classes each consist of 500 samples, while each
spherical class is made up of 300 samples. The dataset with
reference labels is visualized in Fig. 6(a)

We perform k-means on the toy data, commencing with &
being set to the true number of class and gradually increasing
it. The clustering results for k = 6 and k = 20 are depicted
in Fig. 6(b) and (c), respectively. The obtained results from
employing k-means clustering with £ = 6 on the rudimentary
data exhibit unsatisfactory performance, as evidenced by the
relatively low values of ACC and NMI measures, which amount
to 0.673 and 0.632, respectively. The suboptimal performance
of k-means on this particular dataset can be attributed to its
distance-based property, which is suited for spherical data. In
contrast, the partition mode of the toy dataset relies on density
connectivity, rendering the k-means approach less effective. This
phenomenon is more prominent in high-dimensional datasets
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Fig. 6.  Experiments on toy data.

due to the nature that data of the same class tend to be distributed
within the same subspace. However, through Fig. 6(c), it can be
found that, as the parameter k increases, the subdivision of the
overall division practically contain the desired results, i.e., the
convincing partition can be restored by merging mini-clusters.
This indicates that the variable number of cluster-based meth-
ods are capable of more comprehensively mining the intrinsic
structure of the data.

Utilizing the outcomes of base partitions as the input to
ECAR, ACC and NMI of the final result is 0.954 and 0.937,
which far exceed those obtained from a singular k-means.
During the training process, the dimension reduction results
generated by t-SNE [84] at epoch = 0, after pre-trained and after
trained are depicted in Fig. 6(e), (), and (g), respectively. The vi-
sual representation demonstrates that the toy data has been grad-
ually clustered into six distinguishable clusters. The distance
matrix of toy data and the graph refined by updating the weight
are presented as grayscale plots in Fig. 6(d) and (h), respectively.
It is evident that despite the infeasibility of distance-dependent
clustering techniques in the present scenario, it can be rectified
through the amalgamation of several base partitions.

C. Datesets and Compared Methods

We perform clustering experiments on 12 realistic datasets
and validate the performance of our proposed algorithm by
comparing it with a base clusterman and seven advanced and
representative ensemble clustering algorithms.

The datasets we choosed are widely-used and their details are
shown in Table I, where MSRA can be found at', ORL, Yale32,
USPS, MNIST, ISOLET, TOX can be found at?, ARCENE,
Letter, Segment, Vote, Vehicle can be found at®. They belong
to different types and come from different areas.

Uhttp://123.57.240.48/forum.php?mod=viewthread &tid=1327
Zhttps://github.com/jundongl/scikit- feature/tree/master/skfeature/data
3https://archive.ics.uci.edu/ml/datasets.php
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TABLE 1
DETAILS OF THE DATASETS

Dataset Instances  Features  Classes Data Type
MSRA 1799 256 12 Object Image
ORL 400 1024 40 Face Image
Yale32 2414 1024 38 Face Image
USPS 9298 256 10 Handwritten Image
MNIST 70000 784 10 Handwritten Image
ISOLET 1560 617 26 Speech
TOX 171 5748 4 Microarray
ARCENE 200 10000 2 Spectrometry
Letter 20000 16 26 Attribute
Segment 2310 19 7 Attribute
Vote 435 16 2 Attribute
Vehicle 946 18 4 Attribute

The competitive algorithms include: 1) k-means average
(KM-avg), which is the average result of the base clusterings.
2) k-means best (KM-best), which is the best result of the base
clusterings. 3) Cluster-based Similarity Partitioning Algorithm
(CSPA) [6], which treats CA matrix as an undirected weighted
graph and partitioned into C' clusters. 4) HyperGraph Parti-
tioning Algorithm (HGPA) [6], which treats the result of base
clustering as a hypergraph and applies multi-level C'-way graph
partitioning method. 5) Probability Trajectory Accumulation
(PTA) [52], which bases on hierarchical agglomerative clus-
tering and probability trajectory analysis. 6) Spectral Ensem-
ble Clustering (SEC) [45], which performs spectral clustering
on CA matrix. 7) Locally Weighted Evidence Accumulation
(LWEA) [47], which performs hierarchical agglomerative clus-
tering on locally weighted CA matrix. 8) Autoencoder + k-means
(AE) [72], which consists of a three-layer encoder and decoder,
and employs k-means clustering on the learned embeddings.
9) Improved Deep Embedded Clustering (IDEC) [74], which
manipulates the feature space to scatter data points using a clus-
tering loss as guidance. 10) Deep Attentional Embedded Graph
Clustering (DAEGC) [85], which encodes the topological struc-
ture into a compact representation by capturing the importance
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TABLE II
AVERAGE PERFORMANCE COMPARISON OF DIFFERENT CLUSTERING METHODS

Datesets ~ Metrics KM-avg  KM-best CSPA HGPA  PTA SEC  LWEA AE  IDEC DAEGC SDCN ECAR
ACC 05292 0.5590 04986  0.5244 05407 04902  0.5612 05492  0.5631  0.5308  0.4479 0.9216

MSRA NMI 0.6323  0.6519 0.6306 0.5733  0.6344  0.5895  0.6529 0.6171 06174 05881 05393  0.9298
ARI 03858  0.3999 0.2808 04261 03691 03670 0.4404 03755 03918 03634 03090 0.8608

ACC 05725  0.6313 0.6231 0.6346  0.6403  0.5483  0.6070 0.5827 0.6874 0.7150  0.7050 0.7644

ORL NMI 0.7551  0.7804 07549 07852 0.7640 0.7274  0.7722 0.7254 0.7106  0.7828  0.7806 0.8784
ARI 04519  0.4644 04157 04779 0.4892 03427 0.3893 0.3808 0.5091  0.5457  0.5219 0.6793

ACC 0.1023  0.1219 0.1486  0.1548  0.1517  0.1390  0.1289 0.1371 0.1288  0.1446  0.1275  0.2730

Vale3?2 NMI 0.1377  0.1492 0.1192 0.1382 0.1553  0.1044  0.1099 0.1633 02216 0.1681  0.1583 0.3823
ale ARI 0.0167  0.0444 0.0492  0.0994 0.0957 0.0877 0.0718 0.0218 0.0400 0.0833  0.0784 0.1381
ACC 0.5858  0.6113 0.4967 04580 0.6025 0.5052 0.5916 0.6499 07597 0.6770  0.7722  0.8160

USPS NMI 0.5706  0.5906 04726 03955 0.6132 04594  0.5837 05930 0.7704  0.6492 07712 0.7472
ARI 04716  0.4843 03332 02059 04828 0.3008  0.4496 05093 0.6911 05826 0.7024 0.7328

ACC 04892  0.5303 04370 04227 0.6379 04923  0.6409 05618 0.7917  0.6308  0.7842  0.8308

MNIST NMI 04299  0.4607 04283 03917 05933 03618 0.6282 04954 0.7750 05112 0.7745  0.7996
ARI 03187  0.3381 03278 03003 0.5601 03198 0.6152 03931 0.7353 05092  0.7250 0.7738

ACC 05497  0.5722 05929  0.5407 0.6351 0.6117 0.6336 0.5466 0.6436 05125 04526 0.7173

ISOLET NMI 0.7398  0.7633 0.6995 0.6127 0.7194 0.6888  0.7285 0.7031 0.7712  0.6648  0.5962  0.8024
ARI 05060  0.5299 04608 03680 0.4592 04377 0.5424 04427 05666 04787 03112  0.5970

ACC 0.4266  0.4703 0.4425 04151 04300 0.4133 04229 0.4743 03801 04292 03626 0.4971

TOX NMI 0.1910  0.2332 0.1626  0.1237  0.1351  0.1276  0.1251 02667 0.0929 0.1251 0.0746 0.2812
ARI 0.1255  0.1858 0.1247  0.1003  0.0990  0.096  0.1083 0.1712 0.0504 0.1115 0.0456 0.2343

ACC 0.6425  0.6550 0.6286  0.5230  0.6390  0.5750  0.6085 0.6500 0.6600  0.6200  0.6300  0.6925

ARceng M 0.0829  0.0945 0.0563  0.0017 0.0878 0.0684  0.0834 0.0900 0.0908 0.0714 0.0738 0.1278
ARI 0.0852  0.1097 0.0893 -0.0507 0.1045 -0.0771 0.0938 0.0850 0.0977 0.0833  0.0623 0.1737

ACC 02596  0.2628 03381 03469 03003 0.2428  0.2976 02705 02872 02399 03297 0.3483

L NMI 03552 0.3864 03594 03580 03621 03361 0.3647 03635 03784 03618 04299 0.4180
etter ARI 0.1321  0.1466 0.1136  0.1225  0.1574  0.1302  0.1494 0.1404 0.1477  0.1397  0.1932  0.2000
ACC 0.5766  0.5923 02831 04269 05684 0.3512  0.5730 07047 05987 05602 05964  0.7310

S NMI 04990  0.5322 03012 04077 05540 04659  0.6028 0.6449 05967 0.5898  0.5830 0.6286
egment ARI 0.4460  0.4729 0.0913 02358 03561 0.3824  0.4969 0.5436 04525 04762 0.4708 0.5641
ACC 0.8590  0.8763 0.8478  0.7456  0.8965 0.8411  0.8706 0.8368 0.8391 0.8719 0.8799 0.9257

v NMI 0.4495  0.4629 0.4234 02758 04925 0.4489  0.4696 03734 03845 04261 04574 0.5574
ote ARI 05433 0.5752 05482 03695 0.6147 0.5282  0.5746 04524 04586 05306 05540 0.6677
ACC 03472 0.3588 03926 03862 03610 0.3294  0.3881 04314 04326 04872 04921  0.5396

Vehicl NMI 0.1100  0.1292 0.1923  0.1605 0.1448  0.0981  0.1920 0.1667 0.1940 0.1945 02212  0.2609
ehicle ARI 0.0731  0.0912 0.0962  0.0842 0.0934 0.0793  0.1009 0.1083 0.1131  0.1174  0.1718 0.2170

of neighboring nodes. 11) Structural Deep Clustering Network
(SDCN) [86], which transfers the representations learned by AE
to a GCN layer, and employs a dual self-supervised mechanism
to unify the two neural architectures. We retain all the default
parameter settings from the authors’ original implementation,
while employing grid search to achieve a fair and comprehensive
comparison.

D. Experimental Results

The results of the clustering experiments conducted on twelve
chosen datasets, compared with eleven algorithms, are presented
in Table II. With the exception of KM-avg and KM-best, the best
results are bolded and the second best results are underlined. As
can be seen from the table, ECAR achieves clear improvement
over other ensemble clustering algorithms for the three metrics,
especially on MSRA, ORL and other datasets. As is evident
from the data, ECAR demonstrates significant improvement
over other ensemble clustering methods across all three metrics,

with particular promote observed on the MSRA, ORL, USPS,
etc. Itis apparent that the traditional ensemble clustering method
falls short in comparison to KM-best in the majority of cases,
whereas ECAR outperforms KM-best on all datasets. Moreover,
the implementation of ECAR does not necessitate a complex
training process, but rather involves only two layers of atten-
tional networks. From the comparative experiments, it is evident
that ECAR consistently outperforms the selected traditional and
deep algorithms across all datasets.

To visually demonstrate the impact and training methodology
of ECAR, we present several visualizations in Fig. 7, where
“Initial” represents the t-SNE for the original data, while ”After
pre-trained” and “After trained” represent the t-SNE for the
pre-trained and the final embedding, respectively. It is evident
that the raw dimensionality-reduced data points are widely
dispersed, and without the aid of color-coded class labels, the
underlying distribution of classes may not be readily discernible.
As shown in Fig. 7(c), (f), (i), and (j), ECAR eventually con-
gregates the scattered data points belonging to the same class
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Fig. 7. Visualization on realistic datasets. USPS: (a)—(c), MSRA: (d)-(f), Wine: (g)-(i), Vote: (j).
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Fig. 8.  The relationship between the base clustering quality and the learned weight.

into one cluster, forming a more distinct partition. Interestingly,
for example in Fig. 7(c),we observe that the blue class in the
lower left corner splits into four subclasses, possibly due to the
separation of the samples by several tiny cluster’s attentional
pull. This indicates that the number of classes k& in the base
partitions should not be excessive. In other words, it is advisable
to retain a few base clusterers with a relatively small number of
classes to preserve global information.

To assess the efficacy of the graph correction approach in
ECAR, we examined the correlation between the quality of the
base clusterings and the learned weights. To make the quality
measurable, we uniformly set m the number of categories per
base clustering apparatus set to k,, = C,m =1,..., M and
use ACC and NMI as indicators. Although somewhat incom-
plete, these two measures provide an intuitive reflection of the
clustering results in relation to the ground truth labels. After
the training process converged, we arranged the weights of the
20 base clusterings in the final graph in descending order. In
Fig. 8, the ACC and NMI of the top three and bottom three base
clustering on four datasets are counted. The weight value of each
base clustering is shown at the top of its corresponding two bars.
From the figure, we can see that there is indeed a notable gap
between the ACC and NMI of top three and bottom three (top
18 to 20), underscoring the rationality of the graph refinement
strategy in ECAR.

Fig. 9 illustrates the loss values of the model as well as the
variations in ACC and NMI of the learned embedding over
the course of the training process. Notably, the first 50 epochs
are devoted to pre-training, while the remaining 50 epochs are
reserved for training process. It can be found that the pre-training
results are somewhat unstable, but this is offset by a more stable
and superior clustering outcome in training process with the
integration of clustering loss and graph refinement. Throughout
the training process, the clustering metric exhibits a gradual
and consistent increase that correlates with a reduction in the
loss function. This trend indicates both effectiveness and stable
convergence behavior of the algorithm.

E. Parameter Analysis

In contrast to traditional methods, deep learning-based tech-
niques are frequently hindered by a larger number of parameters
that are challenging to fine-tune. Nevertheless, our proposed
method has a relatively simple architecture, consisting of only
two layers of network results, which makes it less complicated
and more manageable. In this subsection, we study the parame-
ters of the model. To keep things concise, we perform parameter
sensitivity analysis on four data sets, MSRA, ORL, ISOLET and
Dermatology.
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Fig. 11.  Parameter study on two trade-off parameters.

Firstly, we explore the impact of varying the number of base
clusterings M on the clustering performance. In the context of
cluster analysis, the stability and representational power of the
training results are influenced by the number of base clusterings
utilized. Specifically, when a limited number of base clusterings
are employed, the results obtained are prone to instability, and
the representational capacity of the clustering model may be
inadequate. On the other hand, a high number of base cluster-
ings may lead to an abundance of redundant and low-quality
clustering outcomes. Fig. 10 shows the performance of ECAR
under three clustering metrics when M ranges from [10, 20, 30,
40, 50]. It can be seen that the performance is generally superior
when M is set to 20. Meanwhile, the impact on clustering is
insignificant as M fluctuates between 10 and 50, indicating that
ECAR is robust to changes in the number of base clusterings.

The sensitivity analysis of the two trade-off parameters is
depicted in Fig. 11, where X is the parameter to balance the two
terms in our loss function while (3 is the parameter related to
the weight distribution. Specifically, we varies each parameter’s
value within the range of [10, 100, 200, 500, 1000] and observed
the resulting effects. Our analysis indicated that the optimal val-
ues of lambda and beta vary for different datasets. For instance,

the optimal value of A for the ORL dataset is aound 1000, while
the optimal value of A for the ISOLET dataset is around 100.
Fortunately, the effect of varying these two parameters within
range [10, 1000] on the clustering performance is not significant.
This indicates that ECAR is stable with respect to the two
parameters and does not depend on precise parameter tuning
to achieve satisfactory performance.

Regarding the network structure, we vary the dimension of
the learned embedding, with different ranges of variation for
different datasets, and the results are shown in Fig. 12. Upon
initial inspection, it can be noticed that the performance de-
creases significantly when the dimension of the embedding is
larger. Specifically, if the dimension of the embedding is not
considerably smaller than the original dimension, the number of
parameters to be learned increases, and it becomes challenging
to ensure the validity of the features in the embedding. On the
other hand, if the dimension of the embedding is too small, such
as less than 10, it becomes relatively difficult to perform the
reconstruction task, which further affects the graph correction,
resulting in poorer results. In the case of datasets with a restricted
number of feature dimensions, such as toy data and Glass, opti-
mal results can be achieved by appropriately increasing the size
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TABLE III
TIME COST (SECONDS) OF COMPARISON METHODS
Datesets Instances  Features CSPA PTA SEC LWEA AE IDEC DAEGC SDCN ECAR
ARCENE 200 10000 1.7 3.0 1.0 1.3 13.6 14.8+10.3 3.4+2.4 40.6+14.9 3.7+2.5
Vehicle 946 18 1.9 2.9 1.6 1.3 4.3 4.3+4.4 2.2+42.3 51.8+18.3 2.2+2.9
MSRA 1799 256 2.7 9.0 44 3.5 9.6 9.4+12.0 6.8+6.8 5.4+7.3 9.5+7.3
USPS 9298 256 13.7 449 14.6 12.0 46.0 34.6+40.6 28.0+12.6 64.0+42.5 23.9+15.5
Letter 20000 16 36.8 167.3 22.9 25.0 174.1 125.5+284.0 69.2429.8 410.8+261.1 83.7+47.9
MNIST 70000 784 762.8 2740.6 249.2  303.6 3429.7 3373.242147.2  2983.0+1332.2  7241.4+5360.5 3850.3+1697.2

of the hidden layer. Our findings suggest that the model achieves
better performance when the dimension of the embedding is
slightly less than the number of categories, which can be utilized
as an experimental prior.

F. Efficiency

Due to the absence of network training procedures in tradi-
tional ensemble clustering algorithms, we place emphasis on the
efficiency of ECAR during the experiments, as it significantly
impacts the practical viability. Building on the previous exper-
iments, we selected six datasets with increasing data sizes and
examined the time overhead. We compared various traditional
ensemble clustering methods and deep clustering methods, and
the runtime of each algorithm is presented in Table III.

Deep clustering methods require pretraining to ensure stable
results. In the table, the value on the left side of the "+ sign
represents the pretraining time, while the value on the right
side represents the training time. To ensure fairness, all deep
methods are pretrained and trained for 50 epochs. Due to device
memory limitations (DAEGC, SDCN, ECAR out of memory),
all experiments on the MNIST dataset were conducted on a
CPU. All experiments are conducted on the same machine with
the Intel(R) Xeon(R) Gold 6248R 3.00 GHz CPU and NVIDIA
TITAN Xp GPU with 10 GB RAM, running on the Ubuntu 20.04
operating system.

Apart from the MNIST (on CPU), the running time of ECAR
slightly exceeds that of traditional ensemble clustering methods,
but within an acceptable range. This is in line with our expec-
tations: we trade off more parameters for improved clustering
results. During actual execution, ECAR has fewer network lay-
ers and does not involve a decoding process, which mitigates the
time cost associated with reconstruction error computation. As

observed from the table, our proposed method and other deep
learning methods have comparable runtime in high-dimensional
and large-scale data scenarios, validating the feasibility of our
method. From a holistic perspective, ECAR exhibits an enhance-
ment in clustering performance within a permissible temporal
range.

V. CONCLUSION

In conclusion, the proposed ECAR addresses the limitations
of current mainstream ensemble clustering methods by incorpo-
rating attentional representation. By considering the results of
base partition as groups with higher-order information, ECAR
captures the importance of each sample’s association with its
related group in feature-level through the attentional network.
The joint optimization of the clustering loss and reconstruction
loss enhances the performance of ECAR. Moreover, the adaptive
refinement of base partition weights during training ensures
diversity and consistency, reducing the impact of low-quality
and redundant base partitions. More importantly, our proposed
method is a meaningful attempt to apply non-graph data to
graph-based neural networks. The conducted experiments on
parameter sensitivity and efficiency provide empirical evidence
of the feasibility of our method. Extensive experimental results
on real-world datasets demonstrate the substantial improvement
of ECAR in comparison to existing baseline ensemble clustering
methods and deep clustering methods, highlighting its potential
for addressing complex data in the clustering domain.
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