
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TIGHT TIME COMPLEXITIES IN PARALLEL STOCHAS-
TIC OPTIMIZATION WITH ARBITRARY COMPUTATION
DYNAMICS

Anonymous authors
Paper under double-blind review

ABSTRACT

In distributed stochastic optimization, where parallel and asynchronous methods are
employed, we establish optimal time complexities under virtually any computation
behavior of workers/devices/CPUs/GPUs, capturing potential disconnections due to
hardware and network delays, time-varying computation powers, and any possible
fluctuations and trends of computation speeds. These real-world scenarios are
formalized by our new universal computation model. Leveraging this model and
new proof techniques, we discover tight lower bounds that apply to virtually all
synchronous and asynchronous methods, including Minibatch SGD, Asynchronous
SGD (Recht et al., 2011), and Picky SGD (Cohen et al., 2021). We show that these
lower bounds, up to constant factors, are matched by the optimal Rennala SGD and
Malenia SGD methods (Tyurin & Richtárik, 2023).

1 INTRODUCTION

Optimization is one of the main workhorses in machine learning (ML), data science (DS), and
federated learning (FL) (Bottou et al., 2018; Kairouz et al., 2021). These fields rely on stochastic
optimization methods, with notable examples including the stochastic gradient descent method
(SGD) (Robbins & Monro, 1951) and ADAM (Kingma & Ba, 2015), which are considered to be the
de facto choices for solving large-scale optimization problems (Schmidt et al., 2021). Due to the
computational demands of modern functions, the size of datasets, and the need for data privacy,
parallelization and distribution are essential for building efficient systems (Kairouz et al., 2021;
Mayer & Jacobsen, 2020). However, it brings many challenges, including computation heterogeneity:
many workers/CPUs/GPUs/phones work in parallel but with varying computation speeds, fluctuating
performance over time, and potential disconnections due to hardware and network delays (Li et al.,
2020).

1.1 PROBLEM SETUP

Unconstrained smooth optimization problems that arise in ML, DS, and FL are described by

min
x∈Rd

f(x), (1)

where f : Rd → R with the following standard assumptions:

Assumption 1.1. f is differentiable & L–smooth, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥, ∀x, y ∈ Rd.

Assumption 1.2. There exist f∗ ∈ R such that f(x) ≥ f∗ for all x ∈ Rd.

In the nonconvex world, we want to find an ε–stationary point, a (random) vector x̄ ∈ Rd such that
E[∥∇f(x̄)∥2] ≤ ε, since, in general, it is intractable to find a global minimum in the nonconvex
setting (Nemirovskij & Yudin, 1983; Murty & Kabadi, 1985). We analyze convex functions in
Section H.

We consider a problem where workers do not have access to the gradients of the function f. Instead,
they can only calculate stochastic gradients. Such a problem arises when the computation cost of an
exact gradient is huge or even infeasible due to batch normalization (Ioffe & Szegedy, 2015), dropout,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

random data augmentation, and many other handcrafted and naturally occurring noise sources that do
not allow to calculate a gradient (Goodfellow et al., 2016).

Assume that n workers work asynchronously in parallel and calculate stochastic gradients. We focus
on two setups:
Homogeneous setup. For all i ∈ [n], worker i has access to an unbiased stochastic gradients
∇f(x; ξ) with σ2-variance-bounded variances, where ξ is a random variable from some distribution
D on Sξ. In ML and FL, this would mean that all workers have access to the same data.
Assumption 1.3 (Homogeneous setup). For all i ∈ [n], worker i can only calculate ∇f(x; ξ) and
Eξ[∇f(x; ξ)] = ∇f(x) and Eξ[∥∇f(x; ξ)−∇f(x)∥2] ≤ σ2 for all x ∈ Rd, where σ2 ≥ 0.

Heterogeneous setup. Unlike the previous setup, we assume that f(x) = 1
n

∑n
i=1 fi(x) in this

setting, where fi : Rd → R for all i ∈ [n], and worker i can only access stochastic gradients
∇fi(x; ξi) of the local function fi, where ξi is a random variable from some distribution Di on Sξ.
In ML and FL, this would mean that all workers have access to different data.
Assumption 1.4 (Heterogeneous setup). For all i ∈ [n], worker i can only calculate∇fi(x; ξi), and
Eξi [∇fi(x; ξi)] = ∇fi(x) and Eξi [∥∇fi(x; ξi)−∇fi(x)∥2] ≤ σ2 for all x ∈ Rd, where σ2 ≥ 0.

1.2 RELATED WORK

Oracle complexity with one worker. The optimal (dimension-free) oracle complexity, # of stochastic
gradient calls, and an optimal method are well-known in the homogeneous and heterogeneous setups.
In particular, Arjevani et al. (2022); Carmon et al. (2020) showed that the optimal oracle complexity
is O

(
L∆/ε + σ2L∆/ε2

)
achieved by SGD, i.e., xk+1 = xk−γ∇f(xk; ξk), where ξk are i.i.d. random

samples, ∆ := f(x0)− f∗, x0 ∈ Rd is a starting point, γ = Θ(min{1/L, ε/Lσ2}) is a step size.

Oracle complexities with n workers. There were several approaches, e.g., (Scaman et al., 2017;
Arjevani et al., 2020; Lu & De Sa, 2021), to generalize the classical oracle complexity (Nemirovskij
& Yudin, 1983; Arjevani et al., 2022) to the parallel setup with n workers. In the homogeneous
convex setup, the most relevant to our setup work (Woodworth et al., 2018), using the graph-based
oracle model, obtained the tight oracle complexities for several parallel setups. The heterogeneous
setup with the local smoothness assumption was addressed in (Arjevani & Shamir, 2015; Hanzely
et al., 2020; Lu & De Sa, 2021).

The listed works address key questions in parallel optimization by establishing lower bounds and
developing methods to achieve them. However, the assumptions regarding the computation processes
are overly idealistic, as they assume stable, unchanging, and equal computation speeds for all workers.
They fail to capture practical scenarios such as partial participation, random outages, computation
heterogeneity (some workers being faster than others), communication heterogeneity (some workers
sending vectors faster than others), and changing computation performance over time. It is unclear if
the optimal methods for their lower bounds will maintain optimality in more realistic computation
scenarios.

Time complexities with bounded computation times. Instead of using oracle complexities, another
way to compare algorithms is to use time complexities. Using this paradigm, Mishchenko et al. (2022);
Koloskova et al. (2022) showed that the celebrated Asynchronous SGD method (Recht et al., 2011;
Dean et al., 2012) with the proposer step sizes can provably improve Minibatch SGD in the homoge-
neous setup. Assume for now that worker i requires at most τi seconds to calculate one stochastic
gradient for all i ∈ [n]. Minibatch SGD is the iterative process xk+1 = xk − γ/n

∑n
i=1∇f(xk; ξki),

where γ is a stepsize, ξki are i.i.d. samples, and ∇f(xk; ξki) are calculated in parallel. This method
converges after O

(
L∆/ε + σ2L∆/nε2

)
iterations (Cotter et al., 2011; Goyal et al., 2017; Gower et al.,

2019) and after

O

(
max
i∈[n]

τi ×
(

L∆
ε + σ2L∆

nε2

))
(2)

seconds because this method waits for the slowest worker with the time maxi∈[n] τi. Using Asyn-
chronous SGD, the time complexity (2) can be improved to

O

((
1
n

n∑
i=1

1
τi

)−1 (
L∆
ε + σ2L∆

nε2

))
, (3)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0 2 4 6 8 10

Time
0.0

0.2

0.4

0.6

0.8

Co
m

pu
ta

tio
n

Po
we

rs
 v

i

Worker 1
Worker 2
Worker 3

Figure 1: Fixed Computation Model: The previous compu-
tation paradigm (Mishchenko et al., 2022) assumes that the
performances/powers of the workers remain constant over time.
Tyurin & Richtárik (2023) established the optimal time com-
plexities (12) and (19) for this paradigm.

0 2 4 6 8 10

Time

1

2

3

4

5

6

7

8

9

Co
m

pu
ta

tio
n

Po
we

rs
 v

i

Worker 1
Worker 2
Worker 3

(a) Nonlinear Powers

0 5 10 15 20 25 30

Time

8

9

10

11

12

13

14

Co
m

pu
ta

tio
n

Po
we

rs
 v

i

Worker 1
Worker 2
Worker 3

(b) Periodic Powers

0 2 4 6 8 10

Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Co
m

pu
ta

tio
n

Po
we

rs
 v

i

Worker 1
Worker 2
Worker 3

(c) Random Outages

Figure 2: Universal Computation Model: A new computation paradigm that captures virtually all
possible computation scenarios. The three subplots present illustrative and non-exhaustive examples
of nonlinear trends of {vi} (Fig. 2(a)), periodic noisy powers {vi} (Fig. 2(b)), and random outages
of the workers, where vi equals 0 periodically (Fig. 2(c)). For all possible scenarios, we establish
optimal time complexities (see Theorems 5.1, 5.3, 6.2, and 6.4). It is possible to get interpretable
and explicit formulas for the optimal time complexities in some scenarios (see Examples 3.2, 5.4,
5.5, 6.5, and 6.6). However, for Fig. 2(a), Fig. 2(b), and Fig. 2(c), it is arguably intractable to
find t̄⌈L∆/ε⌉ analytically. Instead, we can easily do it numerically in Fig. 2(a) and get the optimal
time complexities 6.57 and 13.02 sec with L∆/ε = 10 and σ2/ε = 100 in the homogeneous and
heterogeneous settings, respectively (Fig. 2(b): 2.34 and 2.53 sec; Fig. 2(c): 77.04 and 84.62 sec).

where the dependence on the processing times is harmonic (Mishchenko et al., 2022). An alternative
method that also achieves this time complexity is Picky SGD (Cohen et al., 2021).

Subsequently, Tyurin & Richtárik (2023) formalized the notion of time complexity using the time
oracle protocol, and under the assumption that worker i requires at most τi seconds to calculate one
stochastic gradient for all i ∈ [n], proved that the time complexity lower bound is

Θ

(
min
m∈[n]

[(
1
m

m∑
i=1

1
τπi

)−1 (
L∆
ε + σ2L∆

mε2

)])
(4)

seconds in the homogeneous setup, where π is a permutation that sorts τi : τπ1 ≤ · · · ≤ τπn .
Moreover, they developed a new method, Rennala SGD, that achieves the lower bound in the
homogeneous setup. Under the bounded computation and communication assumptions, Tyurin
et al. (2024b); Tyurin & Richtárik (2024) provided optimal time complexities in a setup where the
communication time between the workers cannot be ignored.

2 CONTRIBUTIONS

In this work, we aim to determine the optimal time complexities of distributed stochastic optimization
with parallel and asynchronous methods in scenarios where the computational performance of workers
can be arbitrarily heterogeneous and variable. We want to capture all possible cases, including random
outages, time-changing computation performances, and slow and straggler workers.

♠ We consider a new computation paradigm, for which we coin the name universal computa-
tion model, that includes virtually all possible computation scenarios that can appear in practical
distributed, parallel, and asynchronous optimization environments.

♣ Using the universal computation model, we prove a tight lower bound for time complexities of
parallel and asynchronous optimization methods in the homogeneous setting, which is matched, up
to constants, by our Theorem 5.3, saying that Rennala SGD (Tyurin & Richtárik, 2023) is optimal.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

♦ We also close the problem in the heterogeneous setup. We discover the optimal time complexity
and prove the optimality of Malenia SGD (Tyurin & Richtárik, 2023) (see Theorem 6.4). The proofs
of the lower bounds are based on new proof techniques and constructions (see Section A for an
overview).

♥ In Section H, we provide time complexities of (Accelerated) Rennala SGD and (Accelerated) Malenia
SGD in the convex setting.

3 UNIVERSAL COMPUTATION MODEL

To achieve the goal of finding the optimal time complexities for the stochastic optimization problem
under any heterogeneous asynchronous computation setup, we first have to formalize the computation
model of the workers. To formalize all possible cases, we propose using the following computation
model, called the universal computation model.

For all i ∈ [n], we consider a non-negative continuous almost everywhere function vi : R+ → R+
1

called a computation power of worker i.
Assumption 3.1. For all i ∈ [n], vi is non-negative continuous almost everywhere.

Without loss of generality, we assume that the time starts from zero. Using the same reasoning as in
physics, where the energy is the integral of power, in our domain, the number of stochastic gradients
that worker i can calculate from a time t0 to a time t1 is the Riemann integral2 of the computation
power vi followed by the floor operation (because we can not partially calculate a stochastic gradient):

“# of stoch. grad. by worker i in [t0, t1]” =

⌊∫ t1

t0

vi(τ)dτ

⌋
= ⌊Vi(t1)− Vi(t0)⌋ , (5)

where we additionally define a mapping Vi : R∞
+ → R∞

+ such that

Vi(t) :=

∫ t

0

vi(τ)dτ. (6)

For t1 ≥ t0, Vi(t1)− Vi(t0) is called a computation work of worker i from a time t0 to a time t1.

Example 3.2 (Fixed Computation Model). Let us consider the simplest example and take the
performances that do not change through time, i.e., vi(t) = vi ∈ R+ for all t ≥ 0. If we take t0 = 0,
then ⌊∫ t1

t0

vi(τ)dτ

⌋
= ⌊Vi(t1)− Vi(t0)⌋ = ⌊vit1⌋ .

This formula formalizes simple logic that it takes 1/vi seconds to find one stochastic gradient in
worker i because ⌊vi × 1/vi⌋ = 1, 2/vi seconds to find two stochastic gradients in worker i because
⌊vi × 2/vi⌋ = 2, and so forth. The higher the power vi, the less time it takes to find a new stochastic
gradient. Section 5.1 has more examples.
Theorem 3.3 (e.g. (Bartle & Sherbert, 2000)). For all i ∈ [n], Vi is continuous and non-decreasing
on R+ if vi is non-negative continuous almost everywhere (Assumption 3.1).

Notice this theorem can hold even if vi is discontinuous. In general, the computation powers {vi}
can be even random. Indeed, we can assume that vi : R+ × Ω→ R+ is a stochastic computation
power, where Ω a sample space of a probability space. Then, all the following results hold when
conditioned over all randomness in {vi}, assuming that the sources of randomness are statistically
independent. Without loss of generality, we continue assuming that vi : R+ → R+ for all i ∈ [n].
For all i ∈ [n], let us define the generalized inverse function3 V −1

i : R∞
+ → R∞

+ such that

V −1
i (S) = min {t ≥ 0 : Vi(t) = S} (7)

for all S ∈ R∞
+ . If Vi is strongly increasing, then V −1

i is the standard inverse function of Vi.

1Notations: R+ := [0,∞), R∞
+ := [0,∞], N := {1, 2, 3, . . . }, N0 := {0, 1, 2, . . . }, [n] := {1, . . . , n}.

2It is possible to consider the Lebesgue integral and assume that the functions {vi} are measurable, but we
will stick with the Riemann integral for simplicity.

3We use the standard convention min{∅} = ∞.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4 PRELIMINARIES

Before we present our main results, we have to formalize the notion of time and time complexity.
Recall that in the classical approach of deriving lower bounds, we examine the following protocol
(Nemirovskij & Yudin, 1983; Nesterov, 2018; Carmon et al., 2020):

Protocol 1 Classical Oracle Protocol
1: Input: function f ∈ F , oracle O ∈ O(f), algorithm A ∈ A
2: for k = 0, . . . ,∞ do
3: xk = Ak(g1, . . . , gk) ▷ x0 = A0 for k = 0.

4: gk+1 = O(xk)
5: end for

Where we want to find the worst-case oracle complexity formalized by

inf
A∈A

sup
f∈F

sup
O∈O(f)

inf
{
k ∈ N

∣∣∣E [∥∥∇f(xk)
∥∥2] ≤ ε

}
.

Protocol 1 is a reasonable way to establish lower bounds and compare algorithms, but it is not
convenient for analyzing parallel algorithms. In order to analyze parallel and asynchronous algorithms,
Tyurin & Richtárik (2023) proposed to use the time multiple oracles protocol:

Protocol 2 Time Multiple Oracles Protocol

1: Input: function f (or functions fi), oracles {Oi}ni=1 ∈ O(f), algorithm A = {Ak}∞k=0 ∈ A
2: s0i = 0 for all i ∈ [n]
3: for k = 0, . . . ,∞ do
4: (tk+1, ik+1, ck+1, xk) = Ak(g1, . . . , gk) ▷ tk+1 ≥ tk

5: (sk+1
ik+1 , g

k+1) = Oik+1(tk+1, xk, skik+1 , c
k+1) ▷∀j ̸= ik+1 : sk+1

j = skj
6: end for

Unlike the classical protocol where an algorithm returns a new point xk based on the current
information g1, . . . , gk, this protocol requires an algorithm to return a time tk+1, an index of an
oracle ik+1, a control variable ck+1, and a new point xk. In the parallel setting, algorithms have
access to many workers/oracles. In every iteration, an algorithm has the freedom to choose any oracle
using ik+1, and call the oracle at a point xk. The role of control variables {ck+1} will be clear later.

The main idea is that an algorithm controls time and decides when it is ready to go forward using a
time sequence {tk+1}. Let us introduce an oracle that emulates the behavior of a real worker, and
then we will provide clarifications. For all i ∈ [n], we consider the mapping

Oi : R+︸︷︷︸
time

× Rd︸︷︷︸
point

× (R+ × Rd × {0, 1})︸ ︷︷ ︸
input state

× {0, 1}︸ ︷︷ ︸
stop computation

→ (R+ × Rd × {0, 1})︸ ︷︷ ︸
output state

× Rd︸︷︷︸
output vector

such that

Oi(t, x, (st, sx, sq), c) =


((t, x, 1), 0), c = 0, sq = 0,

((st, sx, 1), 0), c = 0, sq = 1, Vi(t)− Vi(st) < 1,

((0, 0, 0), gi(sx; ξ, t)), c = 0, sq = 1, Vi(t)− Vi(st) ≥ 1,

((0, 0, 0), 0), c = 1,

(8)

whereDsx,t,i is some distribution that can depend on sx,t, ξ ∼ Dsx,t,i, and gi : Rd×Sξ×R+ → Rd

is a mapping. This oracle can return different outputs depending on an input it receives: i) if
c = 0, sq = 0, then the oracle is only starting the calculation of a stochastic gradient, and it
memorizes the time when it was called in the variable st; ii) if c = 0, sq = 1, Vi(t) − Vi(st) < 1,
then the oracle is still calculating; iii) if c = 0, sq = 1, Vi(t) − Vi(st) ≥ 1, then the oracle has
finished the calculation and returns gi(sx; ξ, t) at the point sx where the calculation was initialized.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

The condition Vi(t)− Vi(st) ≥ 1 means that “at the current time t, the oracle is ready to return the
stochastic gradient that began to be calculated at time st.” The control variable c allows algorithms to
stop the calculations at any time they want if they pass c = 1.

The oracles (8) force algorithms to increase times; otherwise, they will not get stochastic gradients and
enough information to find an ε–stationary point. Using Protocol 2, we consider the time complexity
measure

inf
A∈A

sup
f∈F

sup
(O,D)∈O(f)

inf

{
t ≥ 0

∣∣∣∣E [infk∈St

∥∥∇f(xk)
∥∥2] ≤ ε

}
, St :=

{
k ∈ N0

∣∣tk ≤ t
}

(9)

where the sequences tk and xk are generated by Protocol 2. This measure takes algorithm and function
classes and returns the worst-case time complexity. We refer to (Tyurin & Richtárik, 2023)[Sections
3–5] for more details.

In this work, we consider zero-respecting algorithms formalized by the definition below.

Definition 4.1 (Algorithm Class Azr). Let us consider Protocol 2. We say that an algorithm A =
{Ak}∞k=0 is a zero-respecting algorithm, if

1. Ak : Rd × · · · × Rd︸ ︷︷ ︸
k times

→ R≥0× [n]×{0, 1}×Rd ∀k ≥ 1, A0 ∈ R≥0× [n]×{0, 1}×Rd,

2. supp
(
xk
)
⊆
⋃k

j=1 supp
(
gj
)

for all k ∈ N0, where supp(x) := {i ∈ [d] |xi ̸= 0},

3. for all k ≥ 1 and g1, . . . , gk ∈ Rd, we have tk+1 ≥ tk, where tk+1 and tk are defined as
(tk+1, ·) = Ak(g1, . . . , gk) and (tk, ·) = Ak−1(g1, . . . , gk−1).

The first condition defines the domain and range, the second condition is the definition of a zero-
respecting algorithm (Carmon et al., 2020), the third condition ensures that the algorithm return a
non-decreasing sequence of times (Tyurin & Richtárik, 2023).

5 HOMOGENEOUS SETUP

We are ready to present our lower bound in the homogeneous setup. Let us also provide a simplified
and informal version of the theorem, followed by the formal one.

Theorem (Informal Formulation of the Lower Bound). Let Assumptions 1.1, 1.2, 1.3, and 3.1 hold.
It is impossible to converge faster than 1/2× t⌈c1×L∆

ε ⌉ seconds, where the sequence {tk} is defined
in (10) and c1 is a universal constant.

Theorem 5.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist a function f, which satisfy Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆, and stochastic
gradient mappings {gi} in (8), which satisfy Assumption 1.3, i.e., Eξ [gi(sx; ξ, t)] = ∇f(sx) and
Eξ[∥gi(sx; ξ, t)−∇f(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n] such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε

holds, where St :=
{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 × t⌊c1×L∆

ε ⌋,

and4

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1
}}

(t0 = 0) (10)

for all k ≥ 0. The quantities c′, c1, and c2 are universal constants. The sequences xk and tk are
defined in Protocol 2.

4We use the standard convention min{∅} = ∞.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method 3 Rennala SGD

1: Input: point x0, stepsize γ, batch size S
2: for k = 0, 1, . . . ,K − 1 do
3: Ask all workers to calculate stochastic gra-

dients at xk

4: Init gk = 0 and s = 1
5: while s ≤ S do
6: Wait for the next worker
7: Receive a calculated stochastic gradient

∇f(xk; ξks)
8: gk = gk + 1

S∇f(x
k; ξks); s = s+ 1

9: Ask this worker to calculate a stochastic
gradient at xk

10: end while
11: xk+1 = xk − γgk

12: Stop all the workers’ calculations
13: end for
(In practice, instead of xk+1 = xk−γgk (Line 11),
one can use any other update technique, including
ADAM (Kingma & Ba, 2015), AdaGrad (Duchi
et al., 2011), and SGD with momentum (Polyak,
1964; Nesterov, 1983))

Method 4 Malenia SGD

1: Input: point x0, stepsize γ, parameter S
2: for k = 0, 1, . . . ,K − 1 do
3: Ask all workers to calculate stochastic gra-

dients at xk

4: Init(a) gki = 0 and Bi = 0

5: while
(

1
n

∑n
i=1

1
Bi

)−1

< S
n do

6: Wait for the next worker j
7: Update Bj = Bj + 1
8: Receive a calculated stochastic gradient

∇fj(xk; ξkj,Bj
)

9: gkj = gkj +∇fj(xk; ξkj,Bj
)

10: Ask this worker to calculate a stochastic
gradient at xk

11: end while
12: gk = 1

n

∑n
i=1

1
Bi

gki
13: xk+1 = xk − γgk

14: Stop all the workers’ calculations
15: end for
(a): In practice, worker i can store gki

Unlike most previous works (e.g., (Nesterov, 2018; Arjevani et al., 2022; Tyurin & Richtárik, 2023)),
the obtained lower bound is implicit. This, we believe, is expected due to the generality of our
assumptions about the universal computation model. To find the lower bound, one must determine
the minimum of the set in (10) one by one (t1, t2, t3, . . .) to get 1/2× t⌊c1×L∆/ε⌋. Computationally,
this problem is not difficult since the function

∑n
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
is non-decreasing; thus, for

instance, we can employ the bisection method.

5.1 OPTIMAL ALGORITHM

The natural question is whether the lower bound is tight. The answer is yes (as usual, up to constant
factors). The lower bound can be matched by Rennala SGD (Method 3) (Tyurin & Richtárik, 2023).
In every iteration, the method collects a batch of size S, and performs a gradient-like step once
the batch has been collected. The following result was proved in (Tyurin & Richtárik, 2023).
The proof technique is simple and follows the classical analysis of SGD (Ghadimi & Lan, 2013;
Khaled & Richtárik, 2022) since the logic of Rennala SGD is equivalent to the steps xk+1 =

xk − γ/S
∑S

i=1∇f(xk; ξi), where {ξi} are i.i.d. samples.
Theorem 5.2. [(Tyurin & Richtárik, 2023)] Let Assumptions 1.1, 1.2, and 1.3 hold. We take
γ = 1/2L and batch size S = max{

⌈
σ2
/ε
⌉
, 1} in Method 3. For all K ≥ 24L∆/ε, we get

1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

The following result is new and proves the time complexity of Rennala SGD.
Theorem 5.3. Consider the assumptions and the parameters from Theorem 5.2, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄k−1)⌋ ≥ max
{⌈

σ2

ε

⌉
, 1
}}

(t̄0 ≡ 0) ∀k ≥ 1. (11)

Up to constant factors, Theorem 5.1 together with Theorem 5.3 provide the tight time complexity
for the problem (1) in the homogeneous setup. As we noted in Section 5, the obtained result
is implicit, we do not get a closed-form expression for t̄⌈24L∆/ε⌉ in Theorem 5.3. That said,
the sequence t̄k is mathematically rigorous, and we can provide explicit formulas in some cases.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Surprisingly, Rennala SGD gets the optimal complexity automatically, without prior knowledge about
the computation powers {vi}. Therefore, the absence of a closed-form expression is irrelevant for
practical implementations and is only of theoretical interest.

Example 5.4. [Fixed Computation Model] Consider Example 3.2 with vi(t) = vi ∈ R+ for all
t ≥ 0, i ∈ [n]. Then, for all i ∈ [n], Vi(t) = vit and

t̄⌈ 24L∆
ε ⌉ = Θ

(
min
m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (12)

π is a permutation such that vπ1 ≥ · · · ≥ vπn . The proofs of the examples are in Section I.

In Example 3.2, we discuss that τi = 1/vi is the time required to find one stochastic gradient in worker
i. If we reparametrize (12) with vi = 1/τi, then we get the time complexity (4). Thus, Example 5.4
restores the optimal time complexity obtained by Tyurin & Richtárik (2023) for the fixed computation
model, where the smaller the computation times τi (the higher the computation powers vi), the
smaller the complexities. Notice that if vj is small enough for some worker j, then it is possible that
the complexity (12) will not depend on vj , meaning that this worker potentially does not contribute
to an optimization process because it is too slow. We can immediately derive a more general result:

Example 5.5. [Nonlinear Trend] Assume that vi(t) = vi × g(t) with vi > 0 for all i ∈ [n] and a
continuous almost everywhere positive5 function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 · min

m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (13)

where π is a permutation such that vπ1
≥ · · · ≥ vπn

, G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can

depend on other parameters but is bounded).

Example 5.5 illustrates many practical cases. For example, the computation powers can vary
according to the function g(t) = 1.01 + sin(t), causing them periodically increase and decrease.
Then G(t) = 1.01t− cos t+ 1, which is invertible, and we can obtain a formula for the optimal time
complexity using (13).

Let us consider an example where all workers have the same performances, but any worker can
randomly shut down and, after a while, become available again. We could have chosen virtually any
(even random) example, but for the sake of simplicity, let us consider the following example to gain a
basic intuition.

Example 5.6. [“Random” Outages] Assume that

vi(t) =

v, t ∈
∞⋃
j=1

[ki(j − 1), (ki(j − 1) + 1)]

0, otherwise,
, (14)

v > 0, ki ∈ N, and hi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ ≈ Θ

(
min
m∈[n]

(
1
m

m∑
i=1

v
kπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (15)

where π is a permutation such that kπ1
≤ · · · ≤ kπn

.

In this example, worker i is active in the time intervals [0, 1], [kj , kj +1], [2kj , 2kj +1], and so forth.
The parameter kj characterizes how often the worker’s outages occur.

The formula (15) says that the more worker i is inactive (the larger ki), the more time it takes to solve
the problem. Due to the min operation in (15), the formula indicates that some workers can be ignored
if their ki are too large. In general, we could have analyzed (14) with

⋃∞
j=1[startk,j , endk,j], where

the pairs {startk,j , endk,j} are arbitrarily (random) values on R+, but would get less interpretable
formulas.

5We can relax these assumptions to measurability and non-negativity, but the proof will be more technical.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

6 HETEROGENEOUS SETUP

We now consider the heterogeneous setup discussed in Section 1, and present our first lower bound:
Theorem 6.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist functions {fi}ni=1, where the function f = 1

n

∑n
i=1 fi satisfies Assumptions 1.1, 1.2 and

f(0)− f∗ ≤ ∆, and stochastic gradient mappings {gi}ni=1 in (8), which satisfy Assumption 1.4, i.e.,
Eξ [gi(sx; ξ, t)] = ∇fi(sx) and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and
t ≥ 0, such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε holds, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t

⌊
c1×L∆

ε

log L∆
ε

⌋
and

tk := min

t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

Vi(t)−Vi(tk−1)

log(L∆
ε)

⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
} (16)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Unlike (11) where the dependencies on {Vi} are mean-like, the dependencies in (16) are harmonic-
like. Since the heterogeneous setting is more general and complicated, this leads to worse guarantees.
Looking ahead, up to logarithmic and constants factors, the obtained lower bound is tight and attained
by Malenia SGD (Tyurin & Richtárik, 2023) (see Section 6.1).

We asked ourselves if getting a tight lower bound without the logarithmic terms is possible. The
answer is affirmative, but instead of taking one group of predefined worst-case deterministic func-
tions {fi}, the following construction samples random functions {fi}. The fact that the functions
{fi}ni=1 are random helps to prove a tight lower bound (the main difference between the theorems is
highlighted in bold). This lower bound is fundamental and can not be bypassed by any parallel and
asynchronous method (Zheng et al., 2017; Gu et al., 2021; Mishchenko et al., 2022; Islamov et al.,
2024).
Theorem 6.2. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1
holds, and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm
A ∈ Azr, we sample {fi}ni=1 from some distribution of functions, where the function f = 1

n

∑n
i=1 fi

satisfies Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆ deterministically, and there exist stochastic
gradient mappings {gi}ni=1 in (8), which satisfy Assumption 1.4, i.e., Eξ [gi(sx; ξ, t)] = ∇fi(sx)
and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and t ≥ 0, such that
E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε holds6, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t⌊c1×L∆

ε ⌋
and

tk := min

{
t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

(
Vi (t)− Vi(tk−1)

)⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
}}

(17)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

6.1 OPTIMAL METHOD

The obtained lower bound is tight since it is matched by Malenia SGD (Tyurin & Richtárik, 2023).
This method is closely related to Rennala SGD with a similar structure, and mathematically, it is
the vanilla SGD method with a proper batch collection strategy (see Method 3). However, essential
algorithmic changes must be applied to make it work with heterogeneous functions. The following
theorem was proved by Tyurin & Richtárik (2023).

6We take the expectation over all randomness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Theorem 6.3. [(Tyurin & Richtárik, 2023)] Let Assumptions 1.1, 1.2, and 1.4 hold. We take take
S = max

{⌈
σ2
/ε
⌉
, n
}
, and γ = min

{
1
L ,

εS
2Lσ2

}
= Θ(1/L) in Method 4, then after K ≥ 24∆L/ε

iterations the method guarantees that 1
K

∑K−1
k=0 E

[∥∥∇f(xk)
∥∥2] ≤ ε.

This is a new theorem analyzing Malenia SGD with the universal computation model:
Theorem 6.4. Consider the assumptions and the parameters from Theorem 6.3, plus Assumption 3.1.
Then Method 4 (Malenia SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊Vi(t)− Vi(t̄k−1)⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

(t̄0 ≡ 0) (18)

for all k ≥ 1.

Up to constant factors, Theorem 6.2 and Theorem 6.4 provide the optimal time complexity in the
heterogeneous setting. The result is implicit, which is not a problem in practice since Malenia SGD
does not require {Vi} to reach the optimality. Let us consider examples where we can get an explicit
formula.
Example 6.5. [Fixed Computation Model in the Heterogeneous Setting] Assume that vi(t) = vi
with vi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ = Θ

(
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
. (19)

Example 6.6. [Nonlinear Trend in the Heterogeneous Setting] Assume that vi(t) = vi × g(t) with
vi > 0 for all i ∈ [n] and a continuous almost everywhere positive function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 ·

[
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

])
, (20)

where G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can depend on other parameters but is bounded).

Example 6.5 shows that our result recovers the optimal complexity derived in (Tyurin & Richtárik,
2023). However, our time complexity works with virtually any computation model.

7 CONCLUSION

To the best of our knowledge, this is the first work that provides optimal time complexities under
virtually arbitrary computation behavior of workers in the distributed setting. We believe that our
lower bounds, Theorems 5.1 and 6.2, and upper bounds, Theorems 5.3 and 6.4, close an important
problem in parallel optimization. Our approach and techniques have the potential to serve as a
foundation for solving other mathematical questions from parallel and asynchronous optimization in
the future. One interesting question is determining the optimal time complexities when the universal
computation model is correlated with the randomness from stochastic gradients.

REFERENCES

Yossi Arjevani and Ohad Shamir. Communication complexity of distributed convex learning and
optimization. Advances in Neural Information Processing Systems, 28, 2015.

Yossi Arjevani, Ohad Shamir, and Nathan Srebro. A tight convergence analysis for stochastic gradient
descent with delayed updates. In Algorithmic Learning Theory, pp. 111–132. PMLR, 2020.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, pp. 1–50,
2022.

Robert G Bartle and Donald R Sherbert. Introduction to real analysis, volume 2. Wiley New York,
2000.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Yair Carmon, John C Duchi, Oliver Hinder, and Aaron Sidford. Lower bounds for finding stationary
points i. Mathematical Programming, 184(1):71–120, 2020.

Alon Cohen, Amit Daniely, Yoel Drori, Tomer Koren, and Mariano Schain. Asynchronous stochastic
optimization robust to arbitrary delays. Advances in Neural Information Processing Systems, 34:
9024–9035, 2021.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. Advances in Neural Information Processing Systems, 24, 2011.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks.
Advances in Neural Information Processing Systems, 25, 2012.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Robert Mansel Gower, Nicolas Loizou, Xun Qian, Alibek Sailanbayev, Egor Shulgin, and Peter
Richtárik. SGD: General analysis and improved rates. In International Conference on Machine
Learning, pp. 5200–5209. PMLR, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Xinran Gu, Kaixuan Huang, Jingzhao Zhang, and Longbo Huang. Fast federated learning in the
presence of arbitrary device unavailability. Advances in Neural Information Processing Systems,
34:12052–12064, 2021.

Cristóbal Guzmán and Arkadi Nemirovski. On lower complexity bounds for large-scale smooth
convex optimization. Journal of Complexity, 31(1):1–14, 2015.

Filip Hanzely, Slavomı́r Hanzely, Samuel Horváth, and Peter Richtárik. Lower bounds and optimal
algorithms for personalized federated learning. Advances in Neural Information Processing
Systems, 33:2304–2315, 2020.

Xinmeng Huang, Yiming Chen, Wotao Yin, and Kun Yuan. Lower bounds and nearly optimal algo-
rithms in distributed learning with communication compression. Advances in Neural Information
Processing Systems, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International Conference on Machine Learning, pp. 448–456.
PMLR, 2015.

Rustem Islamov, Mher Safaryan, and Dan Alistarh. AsGrad: A sharp unified analysis of asynchronous-
SGD algorithms. In International Conference on Artificial Intelligence and Statistics, pp. 649–657.
PMLR, 2024.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions on
Machine Learning Research, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Anastasia Koloskova, Sebastian U Stich, and Martin Jaggi. Sharper convergence guarantees for
asynchronous SGD for distributed and federated learning. Advances in Neural Information
Processing Systems, 2022.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Yucheng Lu and Christopher De Sa. Optimal complexity in decentralized training. In International
Conference on Machine Learning, pp. 7111–7123. PMLR, 2021.

Ruben Mayer and Hans-Arno Jacobsen. Scalable deep learning on distributed infrastructures:
Challenges, techniques, and tools. ACM Computing Surveys (CSUR), 53(1):1–37, 2020.

Konstantin Mishchenko, Francis Bach, Mathieu Even, and Blake Woodworth. Asynchronous SGD
beats minibatch SGD under arbitrary delays. Advances in Neural Information Processing Systems,
2022.

Katta G Murty and Santosh N Kabadi. Some NP-complete problems in quadratic and nonlinear
programming. Technical report, 1985.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17, 1964.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. Advances in Neural Information Processing Systems, 24,
2011.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathematical
Statistics, pp. 400–407, 1951.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
algorithms for smooth and strongly convex distributed optimization in networks. In International
Conference on Machine Learning, pp. 3027–3036. PMLR, 2017.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine Learning, pp.
9367–9376. PMLR, 2021.

Alexander Tyurin and Peter Richtárik. Optimal time complexities of parallel stochastic optimization
methods under a fixed computation model. Advances in Neural Information Processing Systems,
2023.

Alexander Tyurin and Peter Richtárik. On the optimal time complexities in decentralized stochastic
asynchronous optimization. arXiv preprint arXiv:2405.16218, 2024.

Alexander Tyurin, Kaja Gruntkowska, and Peter Richtárik. Freya PAGE: First optimal time complexity
for large-scale nonconvex finite-sum optimization with heterogeneous asynchronous computations.
arXiv preprint arXiv:2405.15545, 2024a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart SGD: Distributed
asynchronous SGD with optimal time complexity under arbitrary computation and communication
heterogeneity. arXiv preprint arXiv:2402.04785, 2024b.

Blake E Woodworth, Jialei Wang, Adam Smith, Brendan McMahan, and Nati Srebro. Graph
oracle models, lower bounds, and gaps for parallel stochastic optimization. Advances in Neural
Information Processing Systems, 31, 2018.

Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu.
Asynchronous stochastic gradient descent with delay compensation. In International conference
on machine learning, pp. 4120–4129. PMLR, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

CONTENTS

1 Introduction 1

1.1 Problem setup . 1

1.2 Related Work . 2

2 Contributions 3

3 Universal Computation Model 4

4 Preliminaries 5

5 Homogeneous Setup 6

5.1 Optimal algorithm . 7

6 Heterogeneous Setup 9

6.1 Optimal method . 9

7 Conclusion 10

A Proof Techniques 15

A.1 Proof techniques in the homogeneous setup . 15

A.2 Proof techniques in the heterogeneous setup . 15

B Proof of Theorem 5.3 16

C Proof of Theorem 6.4 16

D Proof of Theorem 5.1 17

E Proof of Theorem 6.1 21

F Proof of Theorem 6.2 26

G Auxiliary Lemmas 32

H Convex Setting 38

H.1 Homogeneous setup and nonsmooth case . 39

H.2 Homogeneous setup and smooth case . 39

H.3 Heterogeneous setup and nonsmooth case . 40

H.4 Heterogeneous setup and smooth case . 40

I Proof of Examples 41

I.1 Homogeneous setup . 41

I.2 Heterogeneous setup . 42

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A PROOF TECHNIQUES

A.1 PROOF TECHNIQUES IN THE HOMOGENEOUS SETUP

The proof of the upper bound (Theorem 5.3) is relatively simple and uses only (5). The proof of
the lower bound (Theorem 5.1) is standard at the beginning: we assume that the workers store
the “worst-case” function from (Carmon et al., 2020) and have access to oracles that calculate
the exact gradient but zero out the last non-zero coordinate with some probability (Arjevani et al.,
2022). The next steps are new and can be briefly described in the following way. The workers
calculate in parallel; thus, they can calculate at most

∑n
i=1 ⌊Vi(t)⌋ stochastic gradients by a time t.

At the same time, the oracles zero out the last coordinate with a probability p using i.i.d. Bernoulli
random variables. Therefore, the workers cannot get a point with a non-zero first coordinate earlier
than t1 := min {t ≥ 0 :

∑n
i=1 ⌊Vi(t)⌋ ≥ η1} seconds, where {ηk}Tk=1 are i.i.d. geometric random

variables. Using the same reasoning, the workers cannot get a point with a non-zero kth coordinate
earlier than tk := min {t ≥ 0 :

∑n
i=1 ⌊Vi(t)− Vi(tk−1)⌋ ≥ ηk} seconds, and T ≈ L∆/ε. With high

probability, the large chunk (at least a quarter of T ≈ L∆/ε) of {ηk} is not significantly smaller than
1/p ≈ max

{⌈
σ2
/ε
⌉
, 1
}
. Finally, with high probability, at least a quarter of indices from the set [T]

satisfy

tk ≥ min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tk−1)⌋ ⪆ max
{⌈

σ2
/ε
⌉
, 1
}}

. (21)

Note that all lower bounds in stochastic optimization ultimately reduce to the concentration analysis
of the sum of random variables. Tyurin & Richtárik (2023) approach this by analyzing the sum∑T

i=1 minj∈[n] τjηij , where ηj are i.i.d. geometric random variables. In our case, we cannot directly
apply this reduction anymore because the computation powers vary over time. Therefore, we found a
non-trivial modification: we have to reduce the problem to the concentration analysis of the sum of
indicators:

∑T
j=1 I[ηj > 1

p] and investigate this sum, which represents the number of indices that
satisfy (21).

A.2 PROOF TECHNIQUES IN THE HETEROGENEOUS SETUP

The proofs in the heterogeneous setup are more technical, so we suggest first understanding the idea
in the homogeneous setting. Unlike the homogeneous setting, where all workers have access to
stochastic gradients of the same function, the heterogeneous setting offers more freedom in designing
the worst-case construction. We can allocate the worst-case functions from (Carmon et al., 2020)
in almost any desired manner. We consider S functions {hj} such that hj(x) : RS×T → R and
hj depends only on the jth block xj ∈ RT of x = [x1, . . . , xS] ∈ RS×T , where T ≈ L∆/ε, and
consider the optimization problem with f(x) = 1/n

∑S
j=1 hj(x). As usual, the designed oracles zero

out the last non-zero coordinate of calculated gradients, and an algorithm cannot find an ε-solution
before at least roughly half of the functions {hj} are “solved,” requiring non-zero values in the
last coordinates of the corresponding blocks. The main question is how to distribute the functions
{hj} among the workers. Intuitively, the slower a worker, the more functions we want to assign
to this worker. This intuition works, and in Theorem 6.1, we take the first K “parts” of all the
functions {hj}, and assign the “parts” of the first c1/V1 (t̄1) functions to the first worker, the “parts”
of the second c1/V2 (t̄1) functions to the second worker, and so forth, where t̄1 ≈ t1 from (17),
c1 is a constant such that

∑n
i=1 c1/Vi (t̄1) = S. The next K “parts” we assign proportionally to

c2/(Vi (t̄2)−Vi (t̄1)), and so forth. In total, the allocation of the functions {hj} is dynamic since one
function can be stored on many workers. For all j ∈ [S], the “parts” of hj can be distributed among
different workers according to {Vi}. By taking the appropriate values S,K, and other parameters, we
can ensure the lower bound in Theorem 6.1 holds.

However, Theorem 6.1 is only tight up to logarithmic factors because the allocation of {hj} is
predefined. In response, we propose a construction where the functions {hj} are allocated based
on the randomness we receive from the oracles that calculate stochastic gradients in the proof of
Theorem 6.2. The idea is to track the Bernoulli random variables, which zero out the last coordinates,
and use them in the construction. We ensure that the workers still receive unbiased and σ–variance
bounded stochastic gradients.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREM 5.3

Theorem 5.3. Consider the assumptions and the parameters from Theorem 5.2, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄k−1)⌋ ≥ max
{⌈

σ2

ε

⌉
, 1
}}

(t̄0 ≡ 0) ∀k ≥ 1. (11)

Proof. From Theorem 5.2, we know that Method 3 converges after⌈
24L∆

ε

⌉
iterations. The algorithm waits for S = max{

⌈
σ2
/ε
⌉
, 1} stochastic gradients from all the workers in

every iteration. The workers work in parallel and after t seconds they guarantee to calculate
n∑

i=1

⌊Vi(t)⌋

stochastic gradients (see the discussion of the universal computation model in Section 3). It means
they will calculate the first S = max{

⌈
σ2
/ε
⌉
, 1} stochastic gradients after at most

t̄1 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ max

{⌈
σ2

ε

⌉
, 1

}}
,

seconds, where the min operation is well-defined due to Lemma G.1. After at most t̄1 seconds, the
algorithm stops the calculations in the workers and asks them to start the calculation of a new batch
of S stochastic gradients that will take at most

t̄2 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t̄1)⌋ ≥ max

{⌈
σ2

ε

⌉
, 1

}}
,

seconds because ⌊Vi(t)− Vi(t̄1)⌋ is the number of stochastic gradients that worker i can calculate
from time t̄1 to time t (see (5)). Using the same reasoning, it will take at most t̄⌈ 24L∆

ε ⌉ seconds to
finish all calculations.

C PROOF OF THEOREM 6.4

Theorem 6.4. Consider the assumptions and the parameters from Theorem 6.3, plus Assumption 3.1.
Then Method 4 (Malenia SGD) converges after at most t̄⌈ 24L∆

ε ⌉ seconds, where

t̄k := min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊Vi(t)− Vi(t̄k−1)⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

(t̄0 ≡ 0) (18)

for all k ≥ 1.

Proof. From Theorem 6.3, we know that Method 4 converges after⌈
24L∆

ε

⌉
iterations. In the first iteration, the algorithm waits for the moment when

1

n

n∑
i=1

1

Bi
≤ n

S
.

Since

S = max

{⌈
σ2

ε

⌉
, n

}
≤ max

{
2σ2

ε
, n

}
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

we get
n

S
≥ min

{ nε

2σ2
, 1
}
.

According to the computation model, after t seconds, worker i can calculate

Bi = ⌊Vi(t)⌋

stochastic gradients meaning that

1

n

n∑
i=1

1

Bi
=

1

n

n∑
i=1

1

⌊Vi(t)⌋
.

Therefore, the algorithm exits the first iteration after at most

t̄1 := min

{
t ≥ 0 :

1

n

n∑
i=1

1

⌊Vi(t)⌋
≤ min

{ nε

2σ2
, 1
}}

= min

t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)⌋

)−1

≥ max

{
2σ2

nε
, 1

}
seconds, where we use Lemma G.1.

The second iteration will start at least after t̄1 seconds. Since, after t seconds, worker i can calculate
at least

⌊Vi(t)− Vi(t̄1)⌋

stochastic gradients in the second iteration. Using the same reasoning as in the first iteration, the
algorithm exits the second iteration after at most

t̄2 := min

t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)− Vi(t̄1)⌋

)−1

≥ max

{
2σ2

nε
, 1

}
seconds. We can continue and show that it will take at most t̄⌈ 24L∆

ε ⌉ seconds to finish all calculations.

D PROOF OF THEOREM 5.1

In our lower bound proofs, we employ the following well-known function. Let us define

prog(x) := max{i ≥ 0 |xi ̸= 0} (x0 ≡ 1).

For any T ∈ N, Carmon et al. (2020); Arjevani et al. (2022) define a function FT : RT → R such
that

FT (x) = −Ψ(1)Φ(x1) +

T∑
i=2

[Ψ(−xi−1)Φ(−xi)−Ψ(xi−1)Φ(xi)] , (22)

where xi is the ith coordinate of a vector x ∈ Rd and

Ψ(x) =

{
0, x ≤ 1/2,

exp
(
1− 1

(2x−1)2

)
, x ≥ 1/2,

and Φ(x) =
√
e

∫ x

−∞
e−

1
2 t

2

dt.

In the proofs, we will only use the results from the following lemma.
Lemma D.1 (Carmon et al. (2020); Arjevani et al. (2022)). The function FT satisfies:

1. FT (0)− infx∈RT FT (x) ≤ ∆0T, where ∆0 = 12.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

2. The function FT is l1–smooth, where l1 = 152.

3. For all x ∈ RT , ∥∇FT (x)∥∞ ≤ γ∞, where γ∞ = 23.

4. For all x ∈ RT , prog(∇FT (x)) ≤ prog(x) + 1.

5. For all x ∈ RT , if prog(x) < T, then ∥∇FT (x)∥ > 1.

We are ready to prove our first main result.
Theorem 5.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist a function f, which satisfy Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆, and stochastic
gradient mappings {gi} in (8), which satisfy Assumption 1.3, i.e., Eξ [gi(sx; ξ, t)] = ∇f(sx) and
Eξ[∥gi(sx; ξ, t)−∇f(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n] such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε

holds, where St :=
{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 × t⌊c1×L∆

ε ⌋,

and7

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1
}}

(t0 = 0) (10)

for all k ≥ 0. The quantities c′, c1, and c2 are universal constants. The sequences xk and tk are
defined in Protocol 2.

Proof.
(Part 1). In the first part of the proof we use the same idea as in (Carmon et al., 2020; Arjevani
et al., 2022; Tyurin & Richtárik, 2023; Huang et al., 2022; Lu & De Sa, 2021). We will construct a
“worst-case” function. Let us take any λ > 0, T ∈ N and take the function

f(x) :=
Lλ2

l1
FT

(x
λ

)
.

We have to show that f satisfy Assumptions 1.1, 1.2 and f(0)− f∗ ≤ ∆. Indeed,

∥∇f(x)−∇f(y)∥ = Lλ

l1

∥∥∥∇FT

(x
λ

)
−∇FT

(y
λ

)∥∥∥ ≤ Lλ
∥∥∥x
λ
− y

λ

∥∥∥ = L ∥x− y∥ ∀x, y ∈ Rd,

where l1–smoothness of FT (Lemma D.1). Let us take

T =

⌊
∆l1

Lλ2∆0

⌋
,

then

f(0)− inf
x∈RT

f(x) =
Lλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2∆0T

l1
≤ ∆.

Next, we construct a stochastic gradient mapping that satisfy Assumption 1.3. As in (Arjevani et al.,
2022), for all i ∈ [n], let us take

[gi(x; ξ, t)]j := [∇f(x)]j
(
1 + 1 [j > prog(x)]

(
ξj,m
p
− 1

))
∀x ∈ RT , (23)

and {ξj} are i.i.d. from Bernouilli(p) for all i ∈ [n], where p ∈ (0, 1]. We denote [v]j as the jth index
of a vector v ∈ RT . This mapping satisfy Assumption 1.3 since

E [[gi(x; ξ, t)]j] = [∇f(x)]j
(
1 + 1 [i > prog(x)]

(
E [ξj]

p
− 1

))
= [∇f(x)]j

7We use the standard convention min{∅} = ∞.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

for all j ∈ [T], and

E
[
∥gi(x; ξ, t)−∇f(x)∥2

]
≤ max

j∈[T]
|[∇f(x)]j |2 E

[(
ξj
p
− 1

)2
]

because the difference is non-zero only in one coordinate. Therefore

E
[
∥gi(x; ξ, t)−∇f(x)∥2

]
≤
∥∇f(x)∥2∞ (1− p)

p
=

L2λ2
∥∥∇FT

(
x
λ

)∥∥2
∞ (1− p)

l21p

≤ L2λ2γ2
∞(1− p)

l21p
≤ σ2,

where we take into account Lemma D.1 and choose

p = min

{
L2λ2γ2

∞
σ2l21

, 1

}
.

We also choose

λ =

√
2εl1
L

to ensure that

∥∇f(x)∥2 =
L2λ2

l21

∥∥∥∇FT

(x
λ

)∥∥∥2 = 2ε
∥∥∥∇FT

(x
λ

)∥∥∥2
for all x ∈ RT . Using Lemma D.1, if prog(x) < T, then ∥∇FT (x)∥ > 1. Thus

∥∇f(x)∥2 > 2ε1 [prog(x) < T] (24)

Using the choice of λ, one can easily show that

T =

⌊
∆L

2εl1∆0

⌋
(25)

and

p = min

{
2εγ2

∞
σ2

, 1

}
. (26)

The inequality (24) implies

inf
k∈St

∥∥∇f(xk)
∥∥2 > 2ε inf

k∈St

1
[
prog(xk) < T

]
, (27)

where {xk}∞k=0 are defined in Protocol 2.
(Part 2). The last inequality in (27) says that if an algorithm wants to find an ε–stationary point of
the function f, then it is necessary to return a point xk such that the last coordinate of xk is not zero.
All algorithms start with the point x0 = 0, and the only way to discover a new non-zero coordinate
is through the oracles (8) since the family of algorithms Azr is zero-respecting. The function f is
a zero-chain (Arjevani et al., 2022) meaning that prog(∇FT (x)) ≤ prog(x) + 1 for all x ∈ RT

(Lemma D.1). Therefore, the oracles can reveal the next non-zero coordinate with the probability p
due the construction (23).

For all i ∈ [n], oracle Oi emulates the behavior of a real computation process that can calculate at
most

⌊Vi(t1)− Vi(t0)⌋
stochastic gradients in the time interval [t0, t1]. Effectively, the condition Vi(t)− Vi(st) ≥ 1 ensures
that sufficient time passes before worker i receives a new stochastic gradient.

All workers work in parallel and ask the oracles to return new stochastic gradients. Thus, for all
t ≥ 0, in the interval [0, t], all workers can can calculate at most

n∑
i=1

⌊Vi(t)⌋

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

stochastic gradients. At the same time, the stochastic mapping (23) is constructed so that the
last potentially non-zero coordinate is zeroed out using i.i.d. Bernoulli random variables with the
parameter p. All workers have to wait for the moment when one of the oracles samples a Bernoulli
random variables equals to 1. Therefore, the workers have to calculate at least η1 stochastic gradients,
where η1 is a geometric random variable with the parameter p. Finally, we can conclude that the
workers can progress to the first non-zero coordinate after at least

t1 := inf

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ η1

}
= min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥ η1

}
seconds, where we use Lemma G.1. In order to get a second non-zero coordinate, the workers should
continue calculating stochastic gradients at points with the progress equals to one. Using the same
reasoning, the workers can progress to the second non-zero coordinate after at least

t2 := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(t1)⌋ ≥ η2

}
seconds, where η2 is a geometric random variable with the parameter p. Because worker i first gets a
point with the progress equals to one, which takes at least t1 seconds, and then can calculate at most

⌊Vi(t)− Vi(t1)⌋

stochastic gradients by a time t ≥ 0. We continue: let us define

ti := min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(ti−1)⌋ ≥ ηi

}
(t0 ≡ 0),

and take i.i.d. {ηi}Ti=1 geometric random variables with the probability p. We can conclude that all
algorithms from Azr require at least tT seconds to get a point where the T th coordinate is non-zero.
(Part 3).
It is left to find a concentration bound for tT . Using Lemma G.2 with pi,η1,...,ηi−1

= p for all i ∈ [T],
we have

P

(
T∑

i=1

1

[
ηi >

1

4p

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1] (Note: Clearly, Lemma G.2 is too redundant for the current case when {ηi}Ti=1 are
i.i.d., but we will use the lemma in other proof where the generality is justified).

Since

T

2
+ log

1

2
≥
⌊
T − 1

2

⌋
.

With a probability at least 1/2, there exist
⌊
T−1
2

⌋
indices such that ηi > 1

4p , i.e.,∣∣∣∣{i ∈ [T]

∣∣∣∣ ηi > 1

4p

}∣∣∣∣ ≥ ⌊T − 1

2

⌋
.

With a probability at least 1/2, there exist 1 ≤ j1 < j2 < · · · < j⌊T−1
2 ⌋ ≤ T such that ηjk > 1

4p for

all k ∈
[⌊

T−1
2

⌋]
. Using a proof by induction, let us show that

tjk ≥ tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ 1

4p

}
(t0 = 0) (28)

for all k ∈
[⌊

T−1
2

⌋]
.

Recall the definition of tj1 . Using it, we have

tj1 = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tj1−1)⌋ ≥ ηj1

}
.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using Vi(tj1−1) ≥ 0 and ηj1 ≥ 1
4p , we get

n∑
i=1

⌊Vi(t)⌋ ≥
n∑

i=1

⌊Vi(t)− Vi(tj1−1)⌋ ≥ ηj1 ≥
1

4p

and

tj1 ≥ t1 = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)⌋ ≥
1

4p

}
.

Thus, we have proved the base case. Assume that (28) holds for k − 1. Note that

tjk = min

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− Vi(tjk−1)⌋ ≥ ηjk

}
.

Using ηjk ≥ 1
4p , tjk−1 ≥ tj(k−1)

, the induction assumption tj(k−1)
≥ tk−1, and the fact that the

functions {Vi} are non-decreasing, we get

Vi(tjk−1) ≥ Vi(tj(k−1)
) ≥ Vi(tk−1)

and
n∑

i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥

n∑
i=1

⌊Vi(t)− Vi(tjk−1)⌋ ≥ ηjk ≥
1

4p
.

Therefore

tjk ≥ tk = min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ 1

4p

}
.

In total, with a probability at least 1/2, due to (25) and (26), we have

tT ≥ tj⌊T−1
2 ⌋
≥ t⌊T−1

2 ⌋ ≥ t⌊c1×L∆
ε ⌋,

where

tk := min

{
t ≥ 0 :

n∑
i=1

⌊
Vi(t)− Vi(tk−1)

⌋
≥ c2 ×max

{⌈
σ2

ε

⌉
, 1

}}
(t0 = 0) (29)

and c1, c2 are universal constants. Recall that tT is a necessary number of seconds to get a point
where the T th coordinate is non-zero. Due to (27),

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > 2εP (tT > t) ≥ 2εP

(
tT ≥ t⌊c1×L∆

ε ⌋
)
≥ ε

for

t =
1

2
× t⌊c1×L∆

ε ⌋.

The first inequality follows from the fact that if tT > t, then the set St :=
{
k ∈ N0 | tk ≤ t

}
contains

the indices of iterations from Protocol 2 where all returned by the algorithm points have prog(·) less
than T.

E PROOF OF THEOREM 6.1

Theorem 6.1. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1 holds,
and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm A ∈ Azr,
there exist functions {fi}ni=1, where the function f = 1

n

∑n
i=1 fi satisfies Assumptions 1.1, 1.2 and

f(0)− f∗ ≤ ∆, and stochastic gradient mappings {gi}ni=1 in (8), which satisfy Assumption 1.4, i.e.,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Eξ [gi(sx; ξ, t)] = ∇fi(sx) and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and
t ≥ 0, such that E

[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε holds, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t

⌊
c1×L∆

ε

log L∆
ε

⌋
and

tk := min

t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

Vi(t)−Vi(tk−1)

log(L∆
ε)

⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
} (16)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Proof. As in Theorem 5.1, we base our proof on the function FT (x) from Section D. Let us fix
any algorithm A ∈ Azr. First, we define S ∈ N functions such that, for all j ∈ [S], we have
hj(x) : RS×T → R and

hj(x) =
nLλ2

l1
FT

(xj

λ

)
, (30)

where T, S, and λ are defined later. We assume that x = [x1, . . . , xS] ∈ RS×T . We define xj ∈ RT

as the jth block of a vector x = [x1, . . . , xS] ∈ RS×T . The function hj depends only on a subset of
variables xj from x. We construct a function f : RS×T → R such that

f(x) =
1

n

S∑
i=1

hi(x). (31)

While the final structure of the local stochastic functions fi is not yet defined, during the proof, we
will ensure that (31) holds.

(Step 1: f ∈ F∆,L)
First, we show that f satisfies Assumptions 1.1, 1.2 and f(0)−f∗ ≤ ∆. Let us show that the function
f is L-smooth. Indeed, we have

∥∇f(x)−∇f(y)∥2 =
1

n2

∥∥∥∥∥
S∑

i=1

(∇hi(x)−∇hi(y))

∥∥∥∥∥
2

=
1

n2

S∑
i=1

∥∇hi(x)−∇hi(y)∥2

=
1

n2

S∑
i=1

∥∥∥∥nLλl1 ∇FT

(xi

λ

)
− nLλ

l1
∇FT

(yi
λ

)∥∥∥∥2
i

,

where ∥·∥j is the Euclidean norm w.r.t. jth block. Then,

∥∇f(x)−∇f(y)∥2 =
L2λ2

l21

S∑
i=1

∥∥∥∇FT

(xi

λ

)
−∇FT

(yi
λ

)∥∥∥2
i
≤ L2

S∑
i=1

∥xi − yi∥2i = L2 ∥x− y∥2 ,

where the last inequality due to Lemma D.1. Let us take

T =

⌊
∆l1

Lλ2S∆0

⌋
(32)

then

f(0)− inf
x∈RS×T

f(x) =
1

n

S∑
i=1

nLλ2

l1
(FT (0)− inf

x∈RT
FT (x)) ≤

Lλ2S∆0T

l1
≤ ∆,

where the first inequality due to Lemma D.1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(Step 2: Construction of local functions fi)
Each function hi(x) depends only on T coordinates of the ith block. We split these T coordinates
into T̄ + 1 groups with T̄ := ⌊T/K⌋ , where we choose K later. For all w ∈ [T̄ + 1], let us take any

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1. (33)

It is convenient to define the length of each segment: aw,i := sw,i − sw,(i−1) for all w ∈ [T̄ + 1] and
i ∈ [n]. Also, we take any times

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞ (34)

associated with the coordinates’ groups. We construct functions in the following way. For all i ∈ [n],
we define

f̂i(x) :=

s1,i−1∑
j=s1,(i−1)

(−Ψ(1)Φ(xj,1) + · · ·+Ψ(−xj,K−1)Φ(−xj,K)−Ψ(xj,K−1)Φ(xj,K))

+

s2,i−1∑
j=s2,(i−1)

(Ψ(−xj,K)Φ(−xj,K+1)−Ψ(xj,K)Φ(xj,K+1) + . . .

+ Ψ(−xj,2K−1)Φ(−xj,2K)−Ψ(xj,2K−1)Φ(xj,2K))

+ . . .

+

sT̄ ,i−1∑
j=sT̄ ,(i−1)

(
Ψ(−xj,(T̄−1)K)Φ(−xj,(T̄−1)K+1)−Ψ(xj,(T̄−1)K)Φ(xj,(T̄−1)K+1) + . . .

+ Ψ(−xj,T̄K−1)Φ(−xj,T̄K)−Ψ(xj,T̄K−1)Φ(xj,T̄K)
)

+

sT̄+1,i−1∑
j=sT̄+1,(i−1)

(
Ψ(−xj,T̄K)Φ(−xj,T̄K+1)−Ψ(xj,T̄K)Φ(xj,T̄K+1) + . . .

+ Ψ(−xj,T−1)Φ(−xj,T)−Ψ(xj,T−1)Φ(xj,T))

and

fi(x) :=
nLλ2

l1
f̂i

(x
λ

)
,

where xj,i is the ith coordinate of xj ∈ RT .

Let us explain the idea. For all j ∈ [S], we take the function hj from (30), which consists of T
parts with the structure Ψ(−xj,·)Φ(−xj,·)−Ψ(xj,·)Φ(xj,·), and distribute these parts between the
workers according to the predefined segments {sw,i}. The first K parts of the function hj will be
stored in worker i1 such that s1,(i1−1) ≤ j < s1,i1 , the second K parts will be stored in worker i2
such that s2,(i2−1) ≤ j < s2,i2 , and so on. One can easily show that

∑S
j=1 hj =

∑n
i=1 fi.

(Step 3: Time-dependent stochastic oracles)
We now construct a stochastic oracle. Let us take

pw,i := min

{
aw,in

2L2λ2γ2
∞

σ2l21
, 1

}
(35)

for all w ∈ [T̄ + 1], i ∈ [n]. The stochastic mapping takes a point x, a random variable ξ, a time t,
and returns

[gi(x; ξ, t)]j,m := [∇fi(x)]j,m×

×
(
1 + 1

[
m > prog(xj) ∧

⌊
m− 1

K

⌋
+ 1 = w(t)

](
ξj,m
pw(t),i

− 1

))
∀x ∈ RS×T ,

(36)

where [x]j,m is the mth coordinate of the jth block of x ∈ RS×T , {ξj,m}j,m are i.i.d. from
Bernoulli(pw(t),i), and w(t) ∈ [T̄] is the index such that t̄(w(t)−1) ≤ t < t̄w(t).

The idea is almost the same as in (Arjevani et al., 2022): we also zero out the last potentially non-zero
coordinate with the probability pw(t),i. However, we only zero out a coordinate if it belongs to the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

parts from the set {(K − 1)w(t) + 1, . . . ,Kw(t)}, where w(t) is associated with the current time
interval [t̄(w(t)−1), t̄w(t)) where the current time t belongs to.

Then, gi(x; ξ, t) is unbiased because Eξ

[(
ξj,m

pw(t),i
− 1
)]

= 0 and

Eξ

[
∥gi(x; ξ, t)−∇fi(x)∥2

]
≤

sw(t),i−1∑
j=sw(t),(i−1)

n2L2λ2
∥∥∇FT

(xj

λ

)∥∥2
∞ (1− pw(t),i)

l21pw(t),i

because, due the condition
⌊
m−1
K

⌋
+ 1 = w(t), we only consider the blocks from the sum∑sw(t),i−1

j=sw(t),(i−1)
. Using Lemma D.1, we have ∥∇FT (x)∥2∞ ≤ γ2

∞ for all x ∈ RT and

Eξ

[
∥gi(x; ξ, t)−∇fi(x)∥2

]
≤

aw(t),in
2L2λ2γ2

∞(1− pw(t),i)

l21pw(t),i
≤ σ2,

where the last inequality follows from the choice of pw,i in (35).

(Step 4: Analysis of Protocol)

Using the definition of f, we get

∥∇f(x)∥2 =
1

n2

S∑
i=1

∥∇hi(x)∥2 =

S∑
i=1

L2λ2

l21

∥∥∥∇FT

(xi

λ

)∥∥∥2
>

L2λ2

l21

S∑
i=1

1[prog(xi) < T] (37)

for all x = [x1, . . . , xn] ∈ RT . In the last inequality, we use Lemma D.1. Let us take

λ =

√
4εl21
L2S

. (38)

to ensure that

inf
k∈St

∥∥∇f(xk)
∥∥2 > inf

k∈St

4ε

S

S∑
i=1

1[prog(xk
i) < T] ≥ 4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T], (39)

where xk are points defined in Protocol 2. Using Markov’s inequality, we get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)

= P

(
1

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] ≤ 1

2

)

= P

(
1

S

S∑
i=1

sup
k∈St

1[prog(xk
i) ≥ T] ≥ 1

2

)

≤ 2E

[
1

S

S∑
i=1

sup
k∈St

1[prog(xk
i) ≥ T]

]
=

2

S

S∑
i=1

E
[
sup
k∈St

1[prog(xk
i) ≥ T]

]
.

(40)

(Step 5: Bound on the expectations)

In this step of the proof, we fix j ∈ [S], and consider the function hj from (30).

Recall that worker i can calculate ⌊Vi(t)⌋ stochastic gradients by a time t. Therefore, it takes at least

min {t ≥ 0 : ⌊Vi(t)⌋ ≥ η} ≥ V −1
i (η)

seconds to calculate η ∈ N stochastic gradients, where we use the definition (7).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

By the construction of the functions {fi}, the first K parts of hj belong to worker i1,j such that
s1,i1,j−1 ≤ j < s1,i1,j . While the algorithm A is returning times tk such that t̄0 ≡ 0 ≤ tk < t̄1, by
the construction of the stochastic mapping (36), whenever the algorithm calls oracle Oi1,j , the oracle
zeros out the last potentially non-zero coordinate with the probability p1,i1,j . However, due to the
condition

⌊
m−1
K

⌋
+ 1 = w(t), the stochastic mapping will zero out the first K coordinates only if

tk < t̄1. Thus, the time required to progress to the K th coordinate in the block xj is at least

t̂1,j := min

{
t̄1, V

−1
i1,j

(
K∑

v=1

η1,i1,j ,v

)}
seconds, where {η1,i1,j ,v} are i.i.d. geometric random variables with the probability p1,i1,j . Because
either the algorithm returns tk ≥ t̄1, or it keeps returning tk < t̄1, but then A should calculate at
least

∑K
v=1 η1,i1,j ,v stochastic gradients since the stochastic mapping zeros out the last potentially

non-zero coordinate, and A should wait K times for the “lucky” (ξ = 1) draws of Bernoulli random
variables.

Using the same reasoning, for all w ∈ [T̄], it will take at least

t̂w,j := min

{
t̄w, V

−1
iw,j

(
K∑

v=1

ηw,iw,j ,v + Viw,j (t̂w−1,j)

)}
(t̂0,j ≡ 0) (41)

seconds to progress to the w × K th coordinate in the block xj , where {ηw,iw,j ,v} are i.i.d. geo-
metric random variables with the probability pw,iw,j , and iw,j is the index of the worker such that
sw,iw,j−1 ≤ j < sw,iw,j

. Because either the algorithm returns tk ≥ t̄w, or it keeps returning tk < t̄w,

but then A should first progress to the (w− 1)×K th coordinate, which takes at least t̂w−1,j seconds,
and then should calculate at least

∑K
v=1 ηw,iw,j ,v stochastic gradients. This will take at least

min

{
t ≥ 0 :

⌊
Viw,j (t)− Viw,j (t̂w−1,j)

⌋
≥

K∑
v=1

ηw,iw,j ,v

}
(cont. of Viw,j

)
= min

{
t ≥ 0 : Viw,j

(t)− Viw,j
(t̂w−1,j) =

K∑
v=1

ηw,iw,j ,v

}
(7)
= V −1

iw,j

(
K∑

v=1

ηw,iw,j ,v + Viw,j (t̂w−1,j)

)
seconds.

Using Lemma G.3, with a probability at least 1− T̄ e−K/2, we have
K∑

v=1

ηw,iw,j ,v ≥
K

8pw,iw,j

for all w ∈ [T̄]. Using these inequalities and (41), we get

t̂w,j ≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j (t̂w−1,j)

)}
, (42)

for all w ∈ [T̄].

Note that {t̄w}T̄w=1,{sw,i}w∈[T̄+1],i∈[n], and S are free parameters with the conditions (33) and (34).
Due to (35) and (38), we have

pw,i = min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
.

Therefore, we can use Lemma G.4: we can find {t̄w}T̄w=1,{sw,i}w∈[T̄+1],i∈[n], and S such that

V −1
i

(
K

8p1,i

)
≥ t̄1 for all i ∈ [n]. With a probability at least 1− T̄ e−K/2, with the chosen parameters,

we have

t̂1,j ≥ min

{
t̄1, V

−1
i1,j

(
K

8p1,i1,j

)}
≥ min {t̄1, t̄1} = t̄1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Using a proof by induction, with a probability at least 1− T̄ e−K/2, let us prove that t̂w,j ≥ t̄w for
all w ∈ [T̄] with the parameters from Lemma G.4. The base case has been proved. Assume that

t̂w−1,j ≥ t̄w−1,

then, using (42), we get

t̂w,j ≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j
(t̂w−1,j)

)}
≥ min

{
t̄w, V

−1
iw,j

(
K

8pw,iw,j

+ Viw,j
(t̄w−1)

)}
.

In Lemma G.4, we show that V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w for all i ∈ [n]. Thus

t̂w,j ≥ min {t̄w, t̄w} = t̄w.

(Step 6: Choose a parameter K)
In the previous step, we prove that, with a probability at least 1− T̄ e−K/2, the algorithm requires at
least t̄T̄ seconds to progress to the K × T̄ th coordinate (K × T̄ ≤ T), where t̄T̄ is defined in in the
proof of Lemma G.4.

Let us take

K = ⌊2 log 4T ⌋ ,

then, with a probability at least 3/4, the algorithm will require at least t̄T̄ seconds to get a non-zero
last coordinate in the block xj . Thus

E
[
sup
k∈St

1[prog(xk
j) ≥ T]

]
≤ 1

4

for all j ∈ [n] and for all t ≤ 1
2 t̄T̄ . We substitute these inequalities to (40) and (39), and get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)
≤ 1

2

and

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > E

[
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T]

]
> 2εP

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] > 2ε

)
≥ ε

for all

t ≤ 1

2
t̃T̄

(59)

≤ 1

2
t̄T̄ ,

where

T̄ =

⌊
T

⌊2 log 4T ⌋

⌋
(32),(38)

≥

⌊
c1 × L∆

ε

log L∆
ε

⌋
for some universal constant c1, where we use the assumption ε < c′L∆ of the theorem. Finally, since
t̃w ≥ tw for all w ∈ [T̄] with the chosen K, where the later sequence is defined in (16), we can take

t =
1

2
t⌊ c1×L∆

ε

log L∆
ε

⌋.

F PROOF OF THEOREM 6.2

Theorem 6.2. Consider Protocol 2. We take computation powers {vi} such that Assumption 3.1
holds, and fix L,∆, ε > 0 and σ2 ≥ 0 that satisfy the inequality ε < c′L∆. For any algorithm
A ∈ Azr, we sample {fi}ni=1 from some distribution of functions, where the function f = 1

n

∑n
i=1 fi

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

satisfies Assumptions 1.1, 1.2 and f(0) − f∗ ≤ ∆ deterministically, and there exist stochastic
gradient mappings {gi}ni=1 in (8), which satisfy Assumption 1.4, i.e., Eξ [gi(sx; ξ, t)] = ∇fi(sx)
and Eξ[∥gi(sx; ξ, t)−∇fi(sx)∥2] ≤ σ2 for all sx ∈ Rd, i ∈ [n], and t ≥ 0, such that
E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > ε holds8, where St :=

{
k ∈ N0 | tk ≤ t

}
,

t = 1
2 t⌊c1×L∆

ε ⌋

and

tk := min

{
t ≥ 0 :

(
1
n

∑n
i=1

⌊
c3 ×

(
Vi (t)− Vi(tk−1)

)⌋−1
)−1

≥ max
{
c2 × σ2

nε , 1
}}

(17)

for all k ≥ 1 (t0 ≡ 0). The quantities c′, c1, c2, and c3 are universal constants. The sequences xk

and tk are defined in Protocol 2.

Proof. We base our proof on the function FT (x) from Section D. Let us fix any algorithm A ∈ Azr.
First, we define S ∈ N functions such that, for all j ∈ [S], we have hj(x) : RS×T → R and

hj(x) =
nLλ2

l1
FT

(xj

λ

)
, (43)

where T, S, and λ are defined later. We assume that x = [x1, . . . , xS] ∈ RS×T . We define xj ∈ RT

as the jth block of a vector x = [x1, . . . , xS] ∈ RS×T . The function hj depends only on a subset of
variables xj from x. We construct a function f : RS×T → R such that

f(x) =
1

n

S∑
i=1

hi(x). (44)

While the final structure of the local stochastic functions fi is not yet defined, during the proof, we
will ensure that (44) holds.

(Step 1: f ∈ F∆,L)
We have to show that f satisfies Assumptions 1.1, 1.2 and f(0)− f∗ ≤ ∆. This step is exactly the
same as in the proof of Theorem 6.1. It is sufficient to take

T =

⌊
∆l1

Lλ2S∆0

⌋
. (45)

(Step 2: Construction of local functions fi and stochastic mappings)
Unlike the proof of Theorem 6.1 where the functions are predetermined, in this construction the
functions {fi} depend on sequences of random variables and are constructed algorithmically in the
following way.

For all w ∈ [T + 1], let us take any

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1, (46)

and define aw,i := sw,i − sw,(i−1). We also take any pw,i > 0 for all w ∈ [T], i ∈ [n], and any times

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T ≤ t̄T+1 ≡ ∞ (47)

associated with {sw,·}w∈[T+1] and {pw,·}w∈[T]. We construct the functions {fi} using the algorithm
below.

8We take the expectation over all randomness.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Algorithm 5 “Resisting allocation” of the functions {hj}
1: fi(x)← 0 for all i ∈ [n]
2: for j = 1, . . . , S do
3: Current time window w = 1
4: for m = 1, . . . , T do
5: Find iw,j such that sw,iw,j−1 ≤ j < sw,iw,j

6: Set bj,m ← (w, iw,j)

7: Update fiw,j
(x)← fiw,j

(x) + nLλ2

l1

(
Ψ
(
−xj,m−1

λ

)
Φ
(
−xj,m

λ

)
−Ψ

(xj,m−1

λ

)
Φ
(xj,m

λ

))
(xj,0 ≡ 0 for all j ∈ [S])

8: Draw an infinite i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pw,iw,j
)

9: Find the first moment when ξj,m,s = 1, i.e., ηj,m = inf{s ≥ 1 : ξj,m,s = 1}
10: if V −1

iw,j

(
ηj,m + Viw,j (t̄w−1)

)
≥ t̄w then

11: w ← w + 1
12: end if
13: end for
14: end for

As in the proof of Theorem 6.1, the stochastic mapping takes a point x, a random variable ξ, a time t,
and returns

[gi(x; ξ̄, t)]j,m :=

{
[∇fi(x)]j,m × ξ̄j

pw(t),i
, m = prog(xj) + 1 ∧ bj,m = (w(t), i),

[∇fi(x)]j,m, otherwise,
(48)

where [x]j,m is the mth coordinate of the jth block of x ∈ RS×T , ξ̄ ≡ (ξ̄1, . . . , ξ̄S), ξ̄j is the “next”
random variable from {ξj,(prog(xj)+1),s}∞s=1 (see Alg. 5), and w(t) ∈ [T] is the index such that
t̄(w(t)−1) ≤ t < t̄w(t).

Let us clarify what we mean by the “next” random variable. In Line 8 of Alg. 5, we draw an infinite
i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pw,iw,j

). For the first time when the mapping gi has to
take the “next” random variable from {ξj,(prog(xj)+1),s}∞s=1, it takes ξj,(prog(xj)+1),1. For the second
time, it takes ξj,(prog(xj)+1),2, and so forth.

For all i ∈ [n], the mapping gi in the oracle Oi zeroes out the coordinate m of the gradient ∇fi(x)
corresponding to m = prog(xj) + 1 (idea is the same as in (Arjevani et al., 2022)). However, we
only zero out this coordinate if the corresponding part of the function hj is stored on worker i at the
time t (condition bj,m = (w(t), i)).

We now explain the idea. For all i ∈ [n], deterministically, we have

fi(x) =
nLλ2

l1

s1,i∑
j=s1,i−1+1

−Ψ(1)Φ
(xj,1

λ

)
+

where xj,i is the ith coordinate of xj ∈ RT . Thus, the first part −Ψ(1)Φ(x1) of the functions (43)
(see (22)) are allocated according to the values {s1,i}.
As always, we rely on the fact that the algorithm is zero-respecting, meaning that at the beginning, it
starts with the point x0 = 0. While xk = 0, it does not matter where we allocate the other parts of the
functions hj . The main idea is to decide the allocation based on the random variables {ξj,m,s}∞s=1
from Alg. 5. By the construction of the functions {fi}, the first part of hj belongs to worker i1,j
such that s1,i1,j−1 ≤ j < s1,i1,j . The oracle Oi1,j zeroes out the first coordinate of the jth block of
gradients with the probability p1,i1,j (see (48)).

In Alg. 5, we consider two cases:
If V −1

i1,j
(ηj,1) < t̄1, then in the next iteration of Alg. 5, we allocate the second part of the function hj

to the same worker i1,j , i.e.,

fi1,j (x)← fi1,j (x) +
nLλ2

l1

(
Ψ
(
−xj,1

λ

)
Φ
(
−xj,2

λ

)
−Ψ

(xj,1

λ

)
Φ
(xj,2

λ

))
.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Otherwise, if V −1
i1,j

(ηj,1) ≥ t̄1, then we increment the parameter w in Alg. 5 and allocate the second
part to worker i2,j :

fi2,j (x)← fi2,j (x) +
nLλ2

l1

(
Ψ
(
−xj,1

λ

)
Φ
(
−xj,2

λ

)
−Ψ

(xj,1

λ

)
Φ
(xj,2

λ

))
,

where i2,j such that s2,i,j−1 ≤ j < s2,i2,j .

The mapping gi is unbiased and σ2–variance bounded. If m > prog(xj) + 1, then [∇fi(x)]j,m = 0
deterministically due to Lemma D.1. If m = prog(xj) + 1 and bj,m = (w(t), i), then we have to
show that

Eξ̄

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
= [∇fi(x)]j,m

for all j ∈ [S],m ∈ [T]. Notice that due the construction in Alg. 5, the gradient ∇fi(x) can depend
on {ξj,m,s}∞s=1 since the random variables affect the allocation of parts starting from

Ψ
(
−xj,m

λ

)
Φ
(
−xj,m+1

λ

)
−Ψ

(xj,m

λ

)
Φ
(xj,m+1

λ

)
,

Ψ
(
−xj,m+1

λ

)
Φ
(
−xj,m+2

λ

)
−Ψ

(xj,m+1

λ

)
Φ
(xj,m+2

λ

)
,

. . .

Ψ
(
−xj,T−1

λ

)
Φ
(
−xj,T

λ

)
−Ψ

(xj,T−1

λ

)
Φ
(xj,T

λ

)
.

(49)

However, i) the jth block does no depend on ξj′,m′,s′ with j′ ̸= j,m′ ∈ [T], s′ ≥ 1 ii) all the previous
parts in the jth block depend only on {ξj,m′,s}m′<m,s≥1, and iii) all the parts from (49) are zero
because m = prog(xj) + 1. Therefore

Eξ̄

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
i)
= Eξ̄j

[
[∇fi(x)]j,m ×

ξ̄j
pw(t),i

]
ii), iii)
= [∇fi(x)]j,mEξ̄j

[
ξ̄j

pw(t),i

]
= [∇fi(x)]j,m.

For m = prog(xj) + 1 and bj,m ̸= (w(t), i), we have

Eξ̄

[
[gi(x; ξ̄, t)]j,m

]
= Eξ̄ [[∇fi(x)]j,m]

i)
= Eξ̄j [[∇fi(x)]j,m]

ii), iii)
= [∇fi(x)]j,m.

For m < prog(xj) + 1, we have

Eξ̄

[
[gi(x; ξ̄, t)]j,m

]
= Eξ̄ [[∇fi(x)]j,m]

i)
= Eξ̄j [[∇fi(x)]j,m]

ii)
= [∇fi(x)]j,m.

Using the same reasoning, we have

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2]

= Eξ̄

 ∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

([∇fi(x)]j,m)
2

(
ξ̄j

pw(t),i
− 1

)2


=

∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

([∇fi(x)]j,m)
2 Eξ̄

[(
ξ̄j

pw(t),i
− 1

)2
]

=
∑

j,m : bj,m=(w(t),i),
m=prog(xj)+1

([∇fi(x)]j,m)
2

(
1− pw(t),i

)
pw(t),i

=
∑

j,m : bj,m=(w(t),i),
m=prog(xj)+1

([
∇FT

(xj

λ

)]
m

)2 n2L2λ2
(
1− pw(t),i

)
l21pw(t),i

.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Due to Lemma D.1, we get ∥∇FT (x)∥2∞ ≤ γ2
∞ for all x ∈ RT and

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2] ≤ ∑
j,m : bj,m=(w(t),i),

m=prog(xj)+1

n2L2λ2γ2
∞
(
1− pw(t),i

)
l21pw(t),i

=
aw(t),in

2L2λ2γ2
∞
(
1− pw(t),i

)
l21pw(t),i

because, due the condition bj,m = (w(t), i), we only consider the blocks from the set
{sw(t),(i−1), . . . , sw(t),i − 1} (see Alg. 5), take one coordinate from each block, and recall that
aw(t),i := sw(t),i − sw(t),(i−1). Using the choice

pw,i := min

{
aw,in

2L2λ2γ2
∞

σ2l21
, 1

}
(50)

for all w ∈ [T], i ∈ [n], we get

Eξ̄

[∥∥gi(x; ξ̄, t)−∇fi(x)∥∥2] ≤ σ2.

(Step 3: Analysis of Protocol)

Mirroring the proof of Theorem 6.1, using

λ =

√
4εl21
L2S

, (51)

one can show

inf
k∈St

∥∥∇f(xk)
∥∥2 >

4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T], (52)

where xk are points defined in Protocol 2, and

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)
≤ 2

S

S∑
i=1

E
[
sup
k∈St

1[prog(xk
i) ≥ T]

]
. (53)

(Step 4: Bound on the expectations)

The time required to progress (get a non-zero value) to the 1th coordinate in the block xj is at least

min
{
t̄1, V

−1
i1,j

(ηj,1)
}

seconds, where V −1
i is defined in (7) and ηj,1 is a geometric random variable with the probability

p1,i1,j . Because, due the condition bj,1 ≡ (1, i1,j) = (w(t), i), the mapping (48) zeroes out the first
coordinate only if the algorithm returns tk < t̄1 and i1,j = i. Therefore, either the algorithm returns
tk ≥ t̄1 and (48) does not zero out the coordinate of gradients, or it keeps returning tk < t̄1, but then
A should calculate at least ηj,1 stochastic gradients in worker i1,j since the stochastic mapping zeros
out the potentially non-zero coordinate in (48).

Recall that the “resisting” allocator (Alg. 5) tracks the random variable ηj,1.

Opt. 1: If V −1
i1,j

(ηj,1) < t̄1, then Alg. 5 allocates the second part of the function hj to the same
worker i1,j , meaning that the time required to progress (get a non-zero value) to the 2th coordinate in
the block xj is at least

min
{
t̄1, V

−1
i1,j

(ηj,1 + ηj,2)
}
≥ min

{
t̄1, V

−1
i1,j

(ηj,2)
}

seconds, where ηj,2 is a geometric random variable with the probability p1,i1,j .

Opt. 2: If V −1
i1,j

(ηj,1) ≥ t̄1, then we allocate the second part to worker i2,j , where i2,j such that

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

s1,i2,j−1 ≤ j < s1,i2,j , meaning that the time required to progress (get a non-zero value) to the 2th

coordinate in the block xj is at least

min
{
t̄2, V

−1
i2,j

(
ηj,2 + Vi2,j (t̄1)

)}
seconds, where ηj,2 is a geometric random variable with the probability p2,i2,j , because either the
algorithm returns tk ≥ t̄2, or it keeps returning tk < t̄2, but then A should first progress to the 1th

coordinate, which takes at least t̄1 seconds, and then should calculate at least ηj,2 stochastic gradients.
This will take at least

min
{
t ≥ 0 :

⌊
Vi2,j (t)− Vi2,j (t̄1)

⌋
≥ ηj,2

}
(cont. of Vi2,j

)
= min

{
t ≥ 0 : Vi2,j (t)− Vi2,j (t̄1) = ηj,2

}
(7)
= V −1

i2,j

(
ηj,2 + Vi2,j (t̄1)

)
seconds. Notice that the parameter of the geometric random variable ηj,2 depends on the previous
randomness.

In the case Opt. 1, we can only conclude that the algorithm A will require at least t̄0 ≡ 0 seconds to
get a non-zero value in the T th coordinate. In the case Opt. 2, we have better guarantees and can
infer that the algorithm A will require at least t̄1 ≥ t̄1 seconds to get a non-zero value in the T th

coordinate because the inequality V −1
i1,j

(ηj,1) ≥ t̄1 holds. Hence, the condition in Line 10 of Alg. 5
determines a necessary time to get the T th with a non-zero value.

For all j ∈ [m], we have the following Markov process that generalizes our previous discussion.

Algorithm 6 Markov process in the jth block

1: Current time window wm = 1
2: for m = 1, . . . , T do
3: Find iwm,j such that swm,iwm,j−1 ≤ j < swm,iwm,j

4: Draw an infinite i.i.d. sequence {ξj,m,s}∞s=1 from Bernoulli(pwm,iwm,j)
5: Find the first moment when ξj,m,s = 1, i.e., ηj,m = inf{s ≥ 1 : ξj,m,s = 1}
6: if V −1

iwm,j

(
ηj,m + Viwm,j

(t̄wm−1)
)
≥ t̄wm

then
7: wm+1 ← wm + 1
8: else
9: wm+1 ← wm

10: end if
11: end for
12: Return: t̄(wT−1) is a necessary time to get the T th non-zero coordinate in the jth block

The provided random Markov process determines the time t̄(wT−1) required to get the T th non-zero
coordinate in the jth block.

For all j ∈ [m],m ∈ [T], ηj,m has the geometric distribution with the parameter pwm,iwm,j
, which

depends only on the previous random variables ηj,1, . . . , ηj,m−1. Therefore, we can use Lemma G.2
and get

P

(
T∑

m=1

1

[
ηj,m >

1

4pwm,iwm,j

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1]. The last inequality means that with a probability at least 3/4, there exist 1 ≤ m1 <
m2 < · · · < m⌊T−2

2 ⌋ ≤ T such that

ηj,mk
>

1

4pwmk
,iwmk

,j

≥ 1

8pwmk
,iwmk

,j

(54)

for all k ∈
[⌊

T−2
2

⌋]
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Due to (50) and (51), we have

pw,i := min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
.

Recall that {t̄w}w∈[T̄],{sw,i}w∈[T̄+1],i∈[n], and S ∈ N are free parameters with the only conditions
(46) and (47). Therefore, we can use Lemma G.4 with K = 1 and ensure that there exist parameters
such that

V −1
i

(
1

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w.

for all w ∈ [T], i ∈ [n]. Putting the last inequality, (54), and Line 6 of Alg. 6 together, we can
conclude that, with a probability at least 3/4, the value of wT − 1 is greater or equal to

⌊
T−2
2

⌋
since

the condition in Line 6 of Alg. 6 will hold at least
⌊
T−2
2

⌋
times.

(Step 5: Endgame)
In the previous step, we prove that, with a probability at least 3/4, the algorithm requires at least
t̄⌊T−2

2 ⌋ seconds to progress to the T th coordinate of the jth block, where t̄T̄ is defined in the proof of
Lemma G.4.

Thus

E
[
sup
k∈St

1[prog(xk
j) ≥ T]

]
≤ 1

4

for all j ∈ [n] and for all t ≤ 1
2 t̄⌊T−2

2 ⌋. We substitute these inequalities to (53) and (52), and get

P

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] ≤ 2ε

)
≤ 1

2

and

E
[
inf
k∈St

∥∥∇f(xk)
∥∥2] > E

[
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T]

]
> 2εP

(
4ε

S

S∑
i=1

inf
k∈St

1[prog(xk
i) < T] > 2ε

)
≥ ε

for all

t ≤ 1

2
t̃⌊T−2

2 ⌋
(59)

≤ 1

2
t̄⌊T−2

2 ⌋.

Using the assumption ε < c′L∆ of the theorem, (45), and (51), we get⌊
T − 2

2

⌋
≥
⌊
c1 ×

L∆

ε

⌋
for some universal constant c1.

Finally, since t̃w ≥ tw for all w ∈ [T], where the later sequence is defined in (17), we can take

t =
1

2
t⌊c1×L∆

ε ⌋.

G AUXILIARY LEMMAS

Lemma G.1. Let Vi : R∞
+ → R∞

+ is a continuous and non-decreasing function for all i ∈ [n]. For
all η, b1, . . . , bn ∈ R∞

+ , the minimums of the sets{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− bi⌋ ≥ η

}

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

and t ≥ 0 :

(
1

n

n∑
i=1

1

⌊Vi(t)− bi⌋

)−1

≥ η


exist, considering the convention min{∅} =∞.

Proof. We now focus on the first set. If the set is empty, then the minimum is∞ by the convention.
Otherwise, let us define

t := inf

{
t ≥ 0 :

n∑
i=1

⌊Vi(t)− bi⌋ ≥ η

}
<∞.

If the minimum does not exist, then
n∑

i=1

⌊Vi(t)− bi⌋ < η.

For all i ∈ [n], the functions Vi is continuous and non-decreasing meaning that there exists δi > 0
such that

⌊Vi(t)− bi⌋ = ⌊Vi(t+ δ)− bi⌋ .

for all 0 ≤ δ ≤ δi. Let us take δ = min
i∈[n]

δi > 0, then

n∑
i=1

⌊Vi(t+ δ)− bi⌋ =
n∑

i=1

⌊Vi(t)− bi⌋ < η.

This contradicts the fact that t is the infimum. The reasoning for the second set is the same.

Lemma G.2. Let T ≥ 1 and {ηi}Ti=1 are geometric random variables such that given η1, . . . , ηi−1,
ηi ∼ Geometric(pi,η1,...,ηi−1

) and the probability pi,η1,...,ηi−1
∈ (0, 1] depends only on η1, . . . , ηi−1

for all i ∈ [T]. Then

P

(
T∑

i=1

1

[
ηi >

1

4pi,η1,...,ηi−1

]
≤ T

2
+ log δ

)
≤ δ

for all δ ∈ (0, 1].

Proof. Let us consider the simplified notation pi ≡ pi,η1,...,ηi−1
and take any T̄ , s > 0. Using

Chernoff’s method, we get

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T̄

)
= P

(
−s

T∑
i=1

1

[
ηi >

1

4pi

]
≥ −sT̄

)

≤ esT̄E
[
e
−s

∑T
i=1 1

[
ηi>

1
4pi

]]
= esT̄E

[
T∏

i=1

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]]
,

(55)

where we use the definition of conditional expectation.

For all i ∈ [T], we now consider the ith expectation separately:

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
= P

(
ηi ≤

1

4pi

∣∣∣∣η1, . . . , ηi−1

)
+ e−sP

(
ηi >

1

4pi

∣∣∣∣η1, . . . , ηi−1

)

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

= (1− e−s)P
(
ηi ≤

1

4pi

∣∣∣∣η1, . . . , ηi−1

)
+ e−s.

Due the assumption of our theorem, given η1, . . . , ηi−1, ηi is a geometric random variable with the
parameter pi ≡ pi,η1,...,ηi−1 . Therefore

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
= (1− e−s)

(
1− (1− pi)

⌊
1

4pi

⌋)
+ e−s,

where 1−(1−pi)

⌊
1

4pi

⌋
= 0 if pi = 1 and

⌊
1

4pi

⌋
= 0. Since 1−(1−p)⌊S⌋ ≤ p ⌊S⌋ for all p ∈ (0, 1]

and S ≥ 0, we get

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
≤ (1− e−s)pi

⌊
1

4pi

⌋
+ e−s

≤ (1− e−s)pi ×
1

4pi
+ e−s = (1− e−s)

1

4
+ e−s.

Let us take s = 1, then

E
[
e
−s1

[
ηi>

1
4pi

]∣∣∣∣ η1, . . . , ηi−1

]
≤ (1− e−1)

1

4
+ e−1 ≤ e−1/2.

We substitute the last inequality and the chosen value of s to (55) and get

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T̄

)
≤ eT̄−T

2 .

For all δ ∈ (0, 1], we can take

T̄ =
T

2
+ log δ

to ensure that

P

(
T∑

i=1

1

[
ηi >

1

4pi

]
≤ T

2
+ log δ

)
≤ δ.

Lemma G.3. Let η1,1, . . . , η1,K ∼ Geometric(p1), η2,1, . . . , η2,K ∼ Geometric(p2), . . . ,
ηT̄ ,1, . . . , ηT̄ ,K ∼ Geometric(pT̄) are mutually independent geometric random variables. Then

P

 ⋃
k∈[T̄]


K∑
j=1

ηk,j ≤
K

8pk


 ≤ T̄ e−K/2.

Proof. Let us fix any ak ≥ 0 for all k ∈ [T̄]. Using the union bound, we get

P

 ⋃
k∈[T̄]


K∑
j=1

ηk,j ≤ ak


 ≤ T̄∑

k=1

P

 K∑
j=1

ηk,j ≤ ak

 . (56)

For all k ∈ [T̄] and s > 0, we obtain the following series of inequalities:

P

 K∑
j=1

ηk,j ≤ ak

 = P

−s K∑
j=1

ηk,j ≥ −sak

 = P
(
e−s

∑K
j=1 ηk,j ≥ e−sak

)

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

≤ esakE
[
e−s

∑K
j=1 ηk,j

]
,

where we use Markov’s inequality. Since the random variables are mutually independent, we have

P

 K∑
j=1

ηk,j ≤ ak

 ≤ esak
(
E
[
e−sηk,1

])K
= esak

(
pk

es − (1− pk)

)K

,

where we use the moment-generating function of the geometric random variables. Since pk ≥ 0 and
es ≥ 1 + s for all s ∈ R, we get

P

 K∑
j=1

ηk,j ≤ ak

 ≤ esak

(pk
s

)K
.

Let us take s = 4pk to ensure that

P

 K∑
j=1

ηk,j ≤ ak

 ≤ e4pkak−K .

We can take ak = K
8pk

to get

P

 K∑
j=1

ηk,j ≤
K

8pk

 ≤ e−K/2.

It is left to substitute the last inequality to (56).

Lemma G.4. For all T̄ ,K ∈ N, there exist non-negative parameters {t̄w}w∈[T̄],{sw,i}w∈[T̄+1],i∈[n],
and S ∈ N such that

1.
sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1 ∀w ∈ [T̄ + 1],

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞.
(57)

2.

V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w. (58)

for all w ∈ [T̄], i ∈ [n],

3.

t̄w ≥ t̃w := min

t ≥ 0 :

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

} (t̃0 ≡ 0)

(59)

for all w ∈ [T̄],

where

pw,i := min

{
4εγ2

∞aw,in
2

σ2S
, 1

}
, (60)

aw,i := sw,i − sw,(i−1), and ε, γ2
∞, σ2 are arbitrarily non-negative constants.

Proof. We have the free parameters {t̄w}w∈[T̄],{sw,i}w∈[T̄+1],i∈[n], and S ∈ N with the only condi-
tion

sw,0 ≡ 1 ≤ sw,1 ≤ · · · ≤ sw,n−1 ≤ sw,n ≡ S + 1 ∀w ∈ [T̄ + 1],

t̄0 ≡ 0 ≤ t̄1 ≤ · · · ≤ t̄T̄ ≤ t̄T̄+1 ≡ ∞.
(61)

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

We now choose values of these parameters to ensure that (58) holds. Instead of {sw,i}, we will work
with {aw,i}, then one can restore {sw,i} using the definition aw,i := sw,i − sw,(i−1). We have to
ensure that

n∑
i=1

aw,i = S (62)

holds for all w ∈ [T̄ + 1] to get (61). It is sufficient to validate that

pw,i <
K

8(Vi(t̄w)− Vi(t̄w−1))
(t̄0 ≡ 0)

for all w ∈ [T̄] to guarantee that

V −1
i

(
K

8pw,i
+ Vi(t̄w−1)

)
≥ t̄w

for all w ∈ [T̄]. Due to (60), it is sufficient to find {aw,i}, {t̄w}, and S such that (62) holds and

min

{
aw,in

24εγ2
∞

Sσ2
, 1

}
(62)
= min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
<

K

8(Vi(t̄w)− Vi(t̄w−1))
(63)

for all i ∈ [n] and for all w ∈ [T̄].
Assume that t̄w−1 is defined (t̄0 ≡ 0), and let us now consider w ∈ [T̄].
Let us define

t̄1w := max
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
(64)

and

t̄2w := min

{
t ≥ 0 :

n∑
i=1

Kσ2

n24εγ2
∞ (Vi (t)− Vi(t̄w−1))

= 64

}
. (65)

Opt. 1: If t̄1w > t̄2w, then we take t̄w = t̄1w, āw,i := 0 for all i ̸= j∗, and āw,j∗ := 1, where

j∗ = argmax
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
. (66)

Opt. 2: If t̄1w ≤ t̄2w, then we take t̄w = t̄2w, and 9

āw,i :=

max
i∈[n]
{Vi (t̄w)− Vi(t̄w−1)}

Vi (t̄w)− Vi(t̄w−1)

 (67)

for all i ∈ [n].

For w = T̄ + 1, we take āw,i := 0 for all i ̸= 1, and āw,1 := 1.

We choose the following S :

S = max
w∈[T̄+1]

(
n∑

i=1

āw,i

)
,

and for all w ∈ Argmaxw∈[T̄+1] (
∑n

i=1 āw,i) , we take aw,i := āw,i. Let us take any w such that∑n
i=1 āw,i < S, then, for all w ∈ [T̄ + 1], there exists the smallest kw ≥ 2 that yields

n∑
i=1

kw × āw,i ≥ S.

9Vi (t̄w) > Vi(t̄w−1) for all i ∈ [n] since t̄w ≥ t̄1w and Vi(t̄w) ≥ K
16

+ Vi(t̄w−1) for all i ∈ [n], due to (64)
and the definition (7).

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Opt. 1: If t̄1w > t̄2w, then we take aw,j∗ := kw × āw,j∗ = kw and aw,i := kw × āw,i = 0 for all
i ̸= j∗ (j∗ from (66)) to ensure that

∑n
i=1 aw,i = S.

Opt. 2: If t̄1w ≤ t̄2w, there exist rw,i ∈ {0, . . . , āw,i} that if we take

aw,i := (kw − 1)× āw,i + rw,i,

then we guarantee the equality
∑n

i=1 aw,i = S.

It is left to ensure that (63) holds.

Opt. 1: If t̄1w > t̄2w, then (63) holds since

min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
= 0 ∀i ̸= j∗

and

min

{
aw,in

24εγ2
∞∑n

i=1 aw,iσ2
, 1

}
≤ 1 <

K

8(Vi(t̄w)− Vi(t̄w−1))
for i = j∗,

where the last inequality due to the definition (7) and the choice of t̄1w:

Vj∗(t̄
1
w) =

K

16
+ Vj∗(t̄w−1) <

K

8
+ Vj∗(t̄w−1).

Opt. 2: If t̄1w ≤ t̄2w, then (63) holds since

aw,i∑n
i=1 aw,i

≤ kwāw,i

(kw − 1)
∑n

i=1 āw,i
≤ 2

āw,i∑n
i=1 āw,i

because kw ≥ 2. Using (67) and x ≥ ⌊x⌋ ≥ x
2 for all x ≥ 1, we get

aw,i∑n
i=1 aw,i

≤ 4

1
Vi(t̄w)−Vi(t̄w−1)∑n
i=1

1
Vi(t̄w)−Vi(t̄w−1)

(65)

≤ Kσ2

64n2εγ2
∞ (Vi (t̄w)− Vi(t̄w−1))

.

The last inequality ensures that (63) holds. In total, we have t̄w = max{t̄1w, t̄2w}.
It is left to prove (59). Let us define

t̃w := min

t ≥ 0 :

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

} (t̃0 ≡ 0).

(68)

We know that t̃0 ≡ 0 ≤ t̄0 ≡ 0. Using a proof by induction and assuming t̃w−1 ≤ t̄w−1, we have

t̃w = min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:

 1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max

{
σ2

32γ2
∞εn

, 1

}
= min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ min

{
32γ2

∞εn

σ2
, 1

}
because if

 1
n

∑n
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋
−1

≥ max
{

σ2

32γ2
∞εn , 1

}
, then, necessarily, 16(Vi (t)−

Vi(t̃w−1)) ≥ K for all i ∈ [n]. Then

t̃w = min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̃w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ 32γ2
∞εn

σ2


37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

because 1
n

∑n
i=1

1⌊
16(Vi(t)−Vi(t̃w−1))

K

⌋ ≤ 1 for all t ≥ max
j∈[n]

V −1
j

(
K
16 + Vj(t̃w−1)

)
. Further

t̃w ≤ min

t ≥ max
j∈[n]

V −1
j

(
K

16
+ Vj(t̄w−1)

)
:
1

n

n∑
i=1

1⌊
16(Vi(t)−Vi(t̄w−1))

K

⌋ ≤ 32γ2
∞εn

σ2


≤ min

{
t ≥ max

j∈[n]
V −1
j

(
K

16
+ Vj(t̄w−1)

)
:

n∑
i=1

σ2

n24εγ2
∞

(Vi(t)−Vi(t̄w−1))
K

≤ 64

}

because t̃w−1 ≤ t̄w−1, {Vi} are non-decreasing, and ⌊x⌋ ≥ x
2 for all x ≥ 1. Then

t̃w ≤ min

{
t ≥ max

j∈[n]
V −1
j

(
K

16
+ Vj(t̄w−1)

)
:

n∑
i=1

Kσ2

n24εγ2
∞(Vi (t)− Vi(t̄w−1))

≤ 64

}
≤ max{t̄1w, t̄2w} = t̄w

due to the definitions (64), (65) of t̄1w,t̄
2
w, and t̄w.

Lemma G.5. (Tyurin et al., 2024a)[Section K] Consider a sequence∞ > v1 ≥ . . . ≥ vn and fix
some S > 0. For all j ∈ [n], define

g(j) :=

(
j∑

i=1

vi

)−1

(S + j) .

1. Let j∗max be the largest index such that min
j∈[n]

g(j) = g(j∗max). For j∗max < n, we have

min
j∈[n]

g(j) <
1

v(j∗max+1)
.

2. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). For j∗ < n, we have

min
j∈[n]

g(j) ≤ 1

v(j∗+1)
.

3. Let j∗min be the smallest index such that min
j∈[n]

g(j) = g(j∗min). Then

1

vj∗min

< min
j∈[n]

g(j).

4. Let j∗ be any index such that min
j∈[n]

g(j) = g(j∗). Then

1

vj∗
≤ min

j∈[n]
g(j).

H CONVEX SETTING

In the convex setting, the time complexities do not change significantly in a conceptual sense
compared to the nonconvex case. Therefore, we will provide a somewhat less detailed description in
this section. The obtained time complexities also hinge on the sequences (11) and (18). The only
difference is the number of iterations that the methods do in each particular setup.

Using the same reasoning as in other sections and (Tyurin & Richtárik, 2023)[Section B], we
conjecture that the following results are optimal up to constant factors. It is sufficient to use an
appropriate “difficult” function (Guzmán & Nemirovski, 2015; Nesterov, 2018; Woodworth et al.,
2018) designed for the convex domain instead of (22).

We use the following assumptions:

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Assumption H.1. The function f is convex and attains a minimum at some point x∗ ∈ Rd.

Assumption H.2. The function f is M–Lipschitz, i.e.,

|f(x)− f(y)| ≤M ∥x− y∥ , ∀x, y ∈ Rd

for some M ∈ (0,∞].

Assumption H.3 (Homogeneous setup). For all i ∈ [n], worker i can only calculate ∇f(x; ξ).
For all x ∈ Rd, stochastic (sub)gradients∇f(x; ξ) are unbiased and are σ2-variance-bounded, i.e.,
Eξ [∇f(x; ξ)] ∈ ∂f(x) and Eξ

[
∥∇f(x; ξ)− Eξ [∇f(x; ξ)]∥2

]
≤ σ2, where σ2 ≥ 0.

Assumption H.4 (Heterogeneous setup). For all i ∈ [n], worker i can only calculate ∇fi(x; ξi). For
all x ∈ Rd, i ∈ [n] stochastic (sub)gradients ∇fi(x; ξi) are unbiased and are σ2-variance-bounded,
i.e., Eξi [∇fi(x; ξi)] ∈ ∂fi(x) and Eξi

[
∥∇fi(x; ξi)− Eξi [∇fi(x; ξi)]∥

2
]
≤ σ2, where σ2 ≥ 0.

We consider four cases.

H.1 HOMOGENEOUS SETUP AND NONSMOOTH CASE

Theorem H.5. [(Tyurin & Richtárik, 2023)] Let Assumptions H.1, H.2 and H.3 hold. Choose any
ε > 0. Let us take the batch size S = max

{⌈
σ2
/M2

⌉
, 1
}
, stepsize γ = ε

M2+σ2/S ∈
[

ε
2M2 ,

ε
M2

]
in Method 3. Then after K ≥ 2M2R2

/ε2 iterations the method guarantees E
[
f(x̂K)

]
− f(x∗) ≤ ε,

where x̂K = 1
K

∑K−1
k=0 xk and R =

∥∥x∗ − x0
∥∥ .

Theorem H.6. Consider the assumptions and the parameters from Theorem H.5, plus Assumption 3.1.
Then Method 3 (Rennala SGD) converges after at most t̄⌈ 2M2R2

ε2

⌉ seconds, where the sequence t̄k is

defined in (11).

Proof. The proof is identical to the proof of Theorem 5.3.

H.2 HOMOGENEOUS SETUP AND SMOOTH CASE

In the homogeneous and smooth case, we can use an accelerated technique (Nesterov, 1983; Lan,
2020). Instead of Line 11 of Method 3, we use the following steps suggested by Lan (2020):

γk+1 = γ · (k + 1), αk+1 = 2/(k + 2)

yk+1 = (1− αk+1)x
k + αk+1u

k, (u0 = x0)

uk+1 = uk − γk+1

sk
gk,

xk+1 = (1− αk+1)x
k + αk+1u

k+1.

(69)

A new method with these steps is called the Accelerated Rennala SGD method (Tyurin & Richtárik,
2023).

Theorem H.7. [(Tyurin & Richtárik, 2023)] Let Assumptions H.1, 1.1 and 1.3 hold. Choose
any ε > 0. Let us take the batch size S = max

{⌈
(σ2R)/(ε3/2

√
L)
⌉
, 1
}
, and γ =

min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated Method 3 (Accelerated Rennala SGD), then after

K ≥ 8
√
LR√
ε

iterations the method guarantees that E
[
f(xK)

]
− f(x∗) ≤ ε, where R =

∥∥x∗ − x0
∥∥ .

Theorem H.8. Consider the assumptions and the parameters from Theorem H.7, plus Assumption 3.1.
Then Accelerated Method 3 (Accelerated Rennala SGD) converges after at most t̄⌈ 8

√
LR√
ε

⌉ seconds,

where the sequence t̄k is defined in (11).

Proof. The proof is identical to the proof of Theorem 5.3.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

H.3 HETEROGENEOUS SETUP AND NONSMOOTH CASE

Consider the heterogeneous setup discussed in Section 1.
Theorem H.9. Let Assumptions H.1, H.2, and H.4 hold. Choose any ε > 0. Let us take S =
max

{⌈
σ2
/M2

⌉
, n
}
, and γ = ε

M2+σ2/S ∈
[

ε
2M2 ,

ε
M2

]
in Method 4, then after K ≥ 2M2R2

/ε2

iterations the method guarantees that E
[
f(x̂K)

]
− f(x∗) ≤ ε, where x̂K = 1

K

∑K−1
k=0 xk and

R =
∥∥x∗ − x0

∥∥ .
Proof. Notice that Malenia SGD is equivalent to the classical SGD method with the step

xk+1 = xk − γ
1

n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i),

where the variance of the unbiased gradient estimator can be bounded in the following way:

Eξk


∥∥∥∥∥∥ 1n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i)−∇f(xk)

∥∥∥∥∥∥
2
 ≤ σ2

n2

 n∑
j=1

1

Bj

 .

In Method 4, we ensure that
(∑n

j=1
1
Bj

)
≤ n2

S . Therefore

Eξk


∥∥∥∥∥∥ 1n

n∑
j=1

1

Bj

Bj∑
i=1

∇fj(xk; ξkj,i)−∇f(xk)

∥∥∥∥∥∥
2
 ≤ σ2

S
.

Thus, we can use the classical result from the literature (e.g. (Lan, 2020)). We get

E
[
f(x̂K)

]
− f(x∗) ≤ ε

if

K ≥
2M2

∥∥x∗ − x0
∥∥2

ε2
≥

(M2 + σ2

S)
∥∥x∗ − x0

∥∥2
ε2

for the stepsize
γ =

ε

M2 + σ2

S

∈
[ε

2M2
,

ε

M2

]
,

where we use the fact that S ≥ σ2
/M2.

Theorem H.10. Consider the assumptions and the parameters from Theorem H.9, plus Assump-
tion 3.1. Then Method 4 (Malenia SGD) converges after at most t̄⌈ 2M2R2

ε2

⌉ seconds, where the sequence

t̄k is defined in (18).

Proof. The proof is identical to the proof of Theorem 6.4.

H.4 HETEROGENEOUS SETUP AND SMOOTH CASE

Using the same idea as in Section H.2, we will modify Malenia SGD and, instead of Line 13 from
Algorithm 4, we use the lines (69). Such a method is called Accelerated Malenia SGD.
Theorem H.11. Let Assumptions H.1 and 1.1, and 1.4 hold. Choose any ε > 0. Let us take

S = max
{⌈

(σ2R)/(ε3/2
√
L)
⌉
, n
}
, and γ = min

{
1
4L ,
[

3R2S
4σ2(K+1)(K+2)2

]1/2}
in Accelerated

Method 4 (Accelerated Malenia SGD), then after K ≥ 8
√
LR√
ε

iterations the method guarantees that

E
[
f(xK)

]
− f(x∗) ≤ ε, where R =

∥∥x∗ − x0
∥∥ .

Proof. Accelerated Malenia SGD is equivalent to the classical accelerated stochastic gradient method
with a mini-batch from (Lan, 2020). The proof repeats the proofs of Theorem H.7 and Theorem H.9.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

Theorem H.12. Consider the assumptions and the parameters from Theorem H.11, plus Assump-
tion 3.1. Then Accelerated Method 4 (Accelerated Malenia SGD) converges after at most t̄⌈ 8

√
LR√
ε

⌉
seconds, where the sequence t̄k is defined in (18).

Proof. The proof is identical to the proof of Theorem 6.4.

I PROOF OF EXAMPLES

I.1 HOMOGENEOUS SETUP

Example 5.4. [Fixed Computation Model] Consider Example 3.2 with vi(t) = vi ∈ R+ for all
t ≥ 0, i ∈ [n]. Then, for all i ∈ [n], Vi(t) = vit and

t̄⌈ 24L∆
ε ⌉ = Θ

(
min
m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (12)

π is a permutation such that vπ1
≥ · · · ≥ vπn

. The proofs of the examples are in Section I.

Proof. Clearly, Vi(t) =
∫ t

0
vidτ = vit. Substituting this to (11), we get t̄k =

min
{
t ≥ 0 :

∑n
i=1 ⌊vi(t− t̄k−1)⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

(t̄0 ≡ 0). Equivalently, we have to find
δ̄ such that

δ̄ = min

{
δ ≥ 0 :

n∑
i=1

⌊viδ⌋ ≥ max
{⌈

σ2
/ε
⌉
, 1
}}

(70)

and obtain t̄k = δ̄ + t̄k−1 = kδ̄. Let us show that

δ̄1/4 ≤ δ̄ ≤ δ̄4 (71)

where π is a permutation such that vπ1
≥ · · · ≥ vπn

, and the δ̄· is defined as

δ̄c := c× min
j∈[n]

(∑j
i=1 vπi

)−1 (
σ2

ε + j
)
= c×

(∑j∗

i=1 vπi

)−1 (
σ2

ε + j∗
)
, (72)

where j∗ is the largest index that minimizes the formula, and c > 0 is a constant. Using Lemma G.5,
we obtain 1/(4vπ∗

j
) ≤ δ̄1/4 < 1/(4vπ(j∗+1)

), where we define 1/vn+1 ≡ ∞ for convenience. Thus

n∑
i=1

⌊
viδ̄1/4

⌋ δ̄1/4<
1/vj∗+1
=

j∗∑
i=1

⌊
vπi δ̄1/4

⌋
≤

j∗∑
i=1

(
2vπi δ̄1/2 − 1

2

) (72)
= σ2

2ε < max
{⌈

σ2

ε

⌉
, 1
}
,

where the first inequality due to ⌊x⌋ ≤ 2x− 1
2 for all x ≥ 1/4. Therefore δ̄ ≥ δ̄1/4. On the other hand

n∑
i=1

⌊
viδ̄4

⌋
≥

j∗∑
i=1

⌊
vπi

δ̄4
⌋ L.G.5,δ̄4≥1/vj∗

≥ 1
2

j∗∑
i=1

vπi
δ̄4

(72)
= 2

(
σ2

ε + j∗
)
≥ max

{⌈
σ2

ε

⌉
, 1
}
.

We can conclude that δ̄ ≤ δ̄4, and using the inequality δ̄ ≥ δ̄1/4, we have proved (71). It is left to use
the equality t̄k = kδ̄.

Example 5.5. [Nonlinear Trend] Assume that vi(t) = vi × g(t) with vi > 0 for all i ∈ [n] and a
continuous almost everywhere positive10 function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 · min

m∈[n]

(
1
m

m∑
i=1

vπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (13)

where π is a permutation such that vπ1
≥ · · · ≥ vπn

, G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can

depend on other parameters but is bounded).
10We can relax these assumptions to measurability and non-negativity, but the proof will be more technical.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Proof. We have Vi(t) =
∫ t

0
vig(τ)dτ = viG(t). We substitute this equality to (11) and get t̄k =

min
{
t ≥ 0 :

∑n
i=1 ⌊vi(G(t)−G(t̄k−1))⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

. Since G(t) is continuous and in-
creasing, one can show that G(t̄k) = min

{
t ≥ 0 :

∑n
i=1 ⌊vi(t−G(t̄k−1))⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

.

Therefore G(t̄k) = δ̄ +G(t̄k−1) = kδ̄ and t̄k = G−1(kδ̄), where δ̄ is defined in (70). Using (71),
we get (13).

Example 5.6. [“Random” Outages] Assume that

vi(t) =

v, t ∈
∞⋃
j=1

[ki(j − 1), (ki(j − 1) + 1)]

0, otherwise,
, (14)

v > 0, ki ∈ N, and hi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ ≈ Θ

(
min
m∈[n]

(
1
m

m∑
i=1

v
kπi

)−1 (
L∆
ε + L∆σ2

mε2

))
, (15)

where π is a permutation such that kπ1
≤ · · · ≤ kπn

.

Proof Sketch. We have Vi(t) =
∫ t

0
vi(τ)d = v × 1 [measure of intervals before the time t] ≈ vt/ki.

We substitute it to (11) and get t̄k := min
{
t ≥ 0 :

∑n
i=1 ⌊vt/ki − vt̄k−1/ki⌋ ≥ max

{⌈
σ2
/ε
⌉
, 1
}}

.
Using the same reasoning as in Example 5.4, one can easily get (15).

I.2 HETEROGENEOUS SETUP

Example 6.5. [Fixed Computation Model in the Heterogeneous Setting] Assume that vi(t) = vi
with vi > 0 for all i ∈ [n]. Then

t̄⌈ 24L∆
ε ⌉ = Θ

(
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
. (19)

Proof. Clearly, Vi(t) =
∫ t

0
vidτ = vit. Substituting this to (18), we get t̄k :=

min
{
t ≥ 0 : (1/n

∑n
i=1 ⌊vi(t− t̄k−1)⌋−1

)−1 ≥ max
{
2σ2

/nε, 1
}}

. Equivalently, we have to find

δ̄ such that

δ̄ = min

{
δ ≥ 0 : 1/n

n∑
i=1

⌊viδ⌋−1 ≤ min {nε/2σ2, 1}

}
(73)

and calculate t̄k = δ + t̄k−1 = kδ̄. Let us show that

δ̄1/4 ≤ δ̄ ≤ δ̄4 (74)

where the δ̄· is defined as

δ̄c := c×
(
maxi∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

)
(75)

and c > 0 is a constant. Since δ̄4 ≥ maxi∈[n]
1
vi
, we have ⌊viδ4⌋ ≥ viδ4

2 for all i ∈ [n] and

1

n

n∑
i=1

⌊viδ4⌋−1 ≤ 1

n

n∑
i=1

2

viδ4

(75)

≤ 1

n

n∑
i=1

1

1 + 2vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

≤ min

 1

n

n∑
i=1

1

2vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

, 1

 = min
{ nε

2σ2
, 1
}
.

Thus δ̄ ≤ δ̄4. On the other hand, let us show that 1
n

∑n
i=1

⌊
viδ1/4

⌋−1
> min {nε/2σ2, 1} .

If maxi∈[n]
1/vi >

(
1
n

∑n
i=1

1/vi

)
σ2
/nε, then δ1/4 < 1/2maxi∈[n]

1/vi,
⌊
vjδ1/4

⌋
= 0 for j =

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

argmaxi∈[n]
1/vi, and 1

n

∑n
i=1

⌊
viδ1/4

⌋−1
= ∞ ≥ nε/2σ2. If maxi∈[n]

1/vi ≤
(
1
n

∑n
i=1

1/vi
)
σ2
/nε,

then since ⌊x⌋ ≤ x for all x ≥ 0, we get

1

n

n∑
i=1

⌊
viδ1/4

⌋−1 ≥ 1

n

n∑
i=1

(viδ1/4)
−1

(75)

≥ 1

n

n∑
i=1

2

vi

(
1
n

∑n
i=1

1
vi

)
σ2

nε

>
nε

2σ2
.

Therefore 1
n

∑n
i=1

⌊
viδ1/4

⌋−1
> min {nε/2σ2, 1} , meaning δ̄ ≥ δ1/4.

Example 6.6. [Nonlinear Trend in the Heterogeneous Setting] Assume that vi(t) = vi × g(t) with
vi > 0 for all i ∈ [n] and a continuous almost everywhere positive function g(t) : R∞

+ → R+. Then

t̄⌈ 24L∆
ε ⌉ = G−1

(
c1 ·

[
max
i∈[n]

1
vi

+
(

1
n

∑n
i=1

1
vi

)
σ2

nε

])
, (20)

where G(t) :=
∫ t

0
g(τ)dτ, and c1 ∈ [1/4, 4] (can depend on other parameters but is bounded).

Proof. We have Vi(t) =
∫ t

0
vig(τ)dτ = viG(t). We substitute this equality to (18)

and get t̄k = min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊vi (G(t)−G(t̄k−1))⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

.

Since G(t) is continuous and increasing, one can show that G(t̄k) =

min

{
t ≥ 0 :

(
1
n

∑n
i=1 ⌊vi (t−G(t̄k−1))⌋−1

)−1

≥ max
{

2σ2

nε , 1
}}

. Therefore G(t̄k) =

δ̄ +G(t̄k−1) = kδ̄ and t̄k = G−1(kδ̄), where δ̄ is defined in (73). Using (74), we get (20).

43

	Introduction
	Problem setup
	Related Work

	Contributions
	Universal Computation Model
	Preliminaries
	Homogeneous Setup
	Optimal algorithm

	Heterogeneous Setup
	Optimal method

	Conclusion
	Proof Techniques
	Proof techniques in the homogeneous setup
	Proof techniques in the heterogeneous setup

	Proof of Theorem 5.3
	Proof of Theorem 6.4
	Proof of Theorem 5.1
	Proof of Theorem 6.1
	Proof of Theorem 6.2
	Auxiliary Lemmas
	Convex Setting
	Homogeneous setup and nonsmooth case
	Homogeneous setup and smooth case
	Heterogeneous setup and nonsmooth case
	Heterogeneous setup and smooth case

	Proof of Examples
	Homogeneous setup
	Heterogeneous setup

