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ABSTRACT

Energy minimization problems are highly non-convex problems at the heart of
physical sciences. These problems often suffer from slow convergence due to
sharply falling potentials, leading to small gradients. To make them tractable, we
often resort to coarse-graining (CG), a type of lossy compression. We introduce
a new way to perform CG using reparametrization, which can avoid some of the
costly steps of traditional CG, such as force-matching and back-mapping. We fo-
cus on improving the slow dynamics by using CG to projecting onto slow modes.
We show that in many physical systems slow modes can remain robust under
dynamics and hence can be pre-computed from the Hessian of random configura-
tions. We show the advantage of our CG method on some difficult synthetic prob-
lems inspired by molecular dynamics (MD). We also test our method on molecular
dynamics for folding of small proteins, showing modest improvements. We ob-
serve that our method either reaches lower energies or runs in shorter time than
the baseline non-CG simulations.

In statistical physics we are interested in knowing in the most likely states the system will be in,
given a set of exogenous factors (e.g. finding protein conformations at different temperatures, pH
levels, etc) (Landau & Lifshitz, 1980). The negative log-likelihood function, or “free energy”, is
based on physical laws, with more likely states having lower free energies. These systems generally
have a large number of degrees of freedom (DOF) with complex interactions, making the free energy
landscape high dimensional and highly non-convex. One way to make these problems tractable is
to compress the DOF via coarse-graining (CG) (Saunders & Voth, 2013; Noid, 2013). CG aims to
reduce the degrees of freedom (DOF) in the system and replace them with clustered or collective
modes. CG methods have proven very successful (Pak & Voth, 2018) in many fields such as molec-
ular dynamics (MD) (Hollingsworth & Dror, 2018). Yet, they also involve costly steps, such as
“back-mapping”, a one-to-many map to fine-grained (FG) modes, and “force-matching” (Jin et al.,
2022), i.e. finding the effective forces experienced by CG modes during dynamics.

In this paper we introduce a new approach to CG where instead of FG modes being replaced by
CG modes, we reparametrize the FG modes as functions of the CG modes. The idea of this
reparametrization is similar to Deep Image Priors (Ulyanov et al., 2018), as the CG modes can
become parameters of a neural network whose output is the FG representation of the system. This
approach allows us to both have access to FG modes at all times (avoiding back-mapping) and
to compute forces without requiring force-matching. We choose our CG modes to be the “slow
modes”, which are collective modes that evolve very slowly. Slow modes are the main cause of slow
convergence of many problems, including MD. While slow modes may change during optimization,
we show that in many physical systems, there exist robust slow modes, which change very little
during optimization. We use these slow modes for our CG reparametrization. This allows us to first
do the hard and slow part of the optimization without interference from fast modes. In the end, we
allow all FG modes to relax, including the fast modes, to further optimize the solution. We show
experimental results for synthetic force systems with Lennard-Jones potentials and MD simulations,
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where we find the reparametrized models achieve deeper energy levels or converge in shorter times,
or both. In summary, our contributions are:

1. CG via reparametrization: a new method avoiding force-matching and back-mapping.

2. Robust slow modes: we devise a method for finding these modes in many systems.

3. MD simulations: we show the benefits of our method in protein MD simulations.

4. Data-free: our method modifies the optimization process and requires no training data.

Unlike optimization problems encountered in deep neural networks, these physics-based models are
“shallow” by construction and usually do not have any input output data. The trainable “weights”
are the physical DOF that need to be optimized, and the loss function is the free energy, which
encodes all the nonlinear interactions of the weights. Usually, the interactions have multiple scales
of strength. For instance, in MD covalent bonds are very strong, modeled as quadratic potentials
∥r − r0∥2, while van der Waals forces between neutral atoms are extremely weak, falling sharply
and modeled as Lennard-Jones (LJ) potentials c(r−12 − r−6). The hierarchy of forces makes the
energy minimization quite challenging, including slow convergence of gradient-based methods. To
accelerate such free energy minimization problems we need to address the slow convergence of
these slow modes. Two commonly taken approaches to address this issue are: 1) preconditioning
(e.g. adaptive gradient or quasi-Newton method); 2) Coarse-graining (truncating the DOF to remove
some fast modes). We focus on the second option here.

1 COARSE-GRAINING BY REPARAMETRIZATION

Let X ∈ X ≃ Rn×d be a set of DOF, e.g. particle positions, bond angles, etc. Let L : X → R be a
loss function, which we will call the energy or potential. Our goal is either to simulate the dynamics
of the system based on L , or to find high likelihood configurationsX∗, which are deep local minima
of L . Usually n is large and L is a very steep non-convex function, making computations slow.
Traditional CG involves mapping to a reduced space of CG variables, Z ∼ Rk×d with k ≪ n. But
to run the dynamics using CG modes we need to figure out forces between CG modes, or “force-
matching”, and how to go back to X , or “back-mapping”.

Force-matching. The microscopic energy function is L : X → R. However, as CG replaces the
DOF, we need to find an approximate potential LCG : Z → R such that for X ∈ X we have

CG: ϕ :X → Z, LCG(ϕ(X)) ≈ L (X). (1)

The process of finding LCG is called force-matching. Traditional force-matching methods involve
analytically solving and approximating LCG Jin et al. (2022). Recently, machine learning (ML)
has been used to do force-matching for MD with good results Majewski et al. (2023); Krämer et al.
(2023). Next, the dynamics is run using LCG instead of L .

Back-mapping. After the dynamics is run, we need to map back from Z to X . However, the map
ρ : Z → X is not unique, as generally many different X can be compressed to a given CG mode
Z. Also, when going from Z to a possible X , some X may not be allowed (e.g. have overlapping
atoms) or have large energies. Therefore, back-mapping usually involves sampling or optimization
to find the allowedX . This can be challenging when there are manyX mapping to the same Z. For
instance, in protein dynamics most CG methods replace all atoms in each side chains with a single
bead at their center of mass.

1.1 CG USING REPARAMETRIZATION

Our idea is to change the DOF X to a function of the CG modes, meaning

Reparametrization: X = ρ(Z), ρ : Z → X (2)

which is the reverse of what traditional CG does. The advantages of this approach are:

1. No back-mapping: we have direct access to the fine-grained modes as X = ρ(Z).

2. No force-matching: The energy for CG modes is LCG(Z) = L (X) = L (ρ(Z)).
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ρ may be parametrized as a neural network. In this case, Z represents the parameters of the neural
network. In the simplest case, these parameters may just be linear coefficients of the CG modes (see
below). But, in general, ρ may be a deep neural network (DNN), similar to the approach taken in
Deep Image Priors (Ulyanov et al., 2018). We want this DNN to use the CG modes in a central
way to improve upon the original FG optimization. We discuss below how this can be achieved by
defining a special graph neural network.

One disadvantage of this reparametrization approach is that we still use X to compute LCG(Z).
Thus, unlike traditional CG, CG reparametrization makes every step of the CG optimization more
expensive than FG. Nevertheless, if the CG leads to fewer optimization steps overall, or allows us
to find deeper minima more efficiently, the benefits can outweigh the costs. Additionally, this cost
could be reduced if LCG(Z) could be learned from L (X). We will not do so in this work, but
discuss this as a future direction. Next we discuss the reparametrization function ρ.

Choice of reparametrization. As mentioned above and elaborated in sec. D, a major bottleneck
is energy minimization are the “slow modes”. If we ignore fast modes in early stages of the opti-
mization, we could traverse much larger time intervals. Therefore, we choose our reparametrization
ρ to be simply a linear projection onto slow modes.
Slow mode projection:

X = ρ(Z) = ZTΨSlow ≡
∑

i∈Slow

ZTi ψi (3)

where Ψ = (ψi)i∈Slow form a basis for Slow, the subspace spanned by slow modes.

Graph Neural Networks (GNN): In a recent work Both et al. (2023) showed that in optimiza-
tion problems over graphs, using a GNN to reparametrize the node states can lead to significant
improvements, reaching both lower losses as well as faster convergence. Inspired by this, we also
experimented with GNN reparametrizationX = GNN(Z). The idea is that the Hessian “backbone”,
described below, can serve as a weighted graph adjacency matrix and used for message passing. In
this case, Z consists of the GCN weights, the MLP weights, and an n × h0 matrix of random h0
dimensional features for each node which are also optimized. The details of our GNN architecture
are described in the sec. 2.

1.2 THE HESSIAN BACKBONE AND ROBUST SLOW MODES

As we show in sec. E, the slow modes are Hessian eigenvectors with eigenvalues close to zero.
But since the Hessian H(X) = ∇∇L (X) depends on X , the slow modes can change during the
dynamics. Nevertheless, we show that many physical energies, including in MD, have a special
structure which allows us to find a set of robust slow modes (app. E). These slow modes should
remain reliable for a long interval during optimization.

Aggregating sampled Hessians. To find a set of robust, approximate slow modes, we first compute
the Hessian for a few perturbed configurations Samples(X) = {X ′ = X + δX}, where X is the
current state and δXµ

i ∼ N (0, σ) is sampled from Gaussian (i is the particle index and µ the spatial
dimension). We want to extract a set of slow modes from the sampled Hessians H(X ′). We then
compute a backbone from these Hessians of the form

Backbone: Hij =
∑

X′∈Sample(X)

∥Hij(X
′)∥2 (4)

Here i, j ∈ Zn are the particle indices and the Frobenius norm ∥Hij∥2 =
∑
µ,ν(H

µν
ij )2 sums over

the feature indices (note that Xµ
i has a particle index i and a feature index µ ∈ {1, . . . d}). Then,

we extract the slow modes of the backbone, by doing a spectral expansion H =
∑
i λiψiψ

T
i and

picking ψi with |λi| < ε2 maxj [λj ], for some small ε < 1. The intuition behind equation 4 is to
identify the components in the sampled Hessians which have consistently high magnitudes.

2 EXPERIMENTS

We apply our method to protein folding using classical MD forces.
Settings: We use gradient descent to minimize L (X). All experiments (both CG and baseline) use
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Figure 1: Synthetic loop folding (n = 1000). In Bond+LJ (left), a quadratic potential
∑
i(rii+1 −

1)2 attracts nodes i and i+ 1. A weak LJ potential attracts nodes i and i+ 10 to form loops. In LJ
loop (right) both the backbone i, i + 1 and the 10x weaker loop are LJ. Orange crosses denote the
baseline GD, green is GNN and blue is CG. The dots are different hyperparameter settings (LR, Nr.
CG modes, stopping criteria, etc.) with error bars over 5 runs. In Bond+LJ, CG yields slightly better
energies but takes longer, while GNN can converge faster to GD energies. In pure LJ, using CG and
GNN can yield significantly better energies.
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Figure 2: (a) time vs. energy of CG runs relative to the baseline. The symbol sizes encode different
numbers of eigenvectors in CG. The different colors and symbols correspond to different proteins:
5AWL, 1PLW, 2JOF, and 2MGO. (b) The angle and (d) bond length distribution of 1PLW protein
acquired from the data and calculated by using the baseline and CG (70%) methods. (c) The native
structure (data) of the 2JOF protein, and the layouts obtained from the baseline and CG method.

the Adam optimizer with a learning rate 10−2 and early stopping with |δL | = 10−6 tolerance and
5 steps patience. We run each experiment four times.
Baseline: we use gradient descent (GD) with Adam optimizer on the MD energy as baseline.
CG model: We use four different choices for the fraction of the eigenvectors to use in CG equa-
tion 3: 3× (#AminoAcids), 30%, 50%, and 70%. We use a two stage process. First, we use CG as
in equation 3 X = ρ(Z) = ZTΨSlow and minimize LCG(Z) = L (ρ(Z)) over Z. After conver-
gence to X0 = ρ(Z0), we add δX to X0 and optimize the fine-grained δX , starting with δX = 0.
GNN model: We use a GNN consisting of a graph convolution (GCN) layer with self-loops and one
node-wise MLP layer, projecting the GNN output to 3D to get particle positions. The GCN takes
Zh0

∈ Rn×h0 as input, with h0 > 3 and has weights WG ∈ Rh0×h1 . Then, GCN output gets a Tanh
activation and is passed to the MLP layer to yield X . The CG parameters in this case are Zh,WG

and the weights and biases of the MLP.
Synthetic coil: We use quadratic and LJ potentials to make synthetic systems whose minimum en-
ergy state should be a coil (looping every 10 nodes), inspired by MD potentials. Figure 1 shows many
experiments using GD, CG and GNN. In the quadratic Bond+LJ case GNN yields good speedup,
while CG yields better energies. The benfits of CG and GNN become more apparent in the harder
pure LJ problem, where GD fails to find good energies, while CG finds very much deeper energies,
followed by GNN (Fig. 3).
Protein folding with classical MD: We implement a simplified force-field with implicit solvent
(i.e. water molecules are not modeled and appear as hydrogen-bonding and hydrophobicity terms;
app. B). In protein folding our energy function consists of five potential energies for: bond length
Ebond, bond anglesEangle, Van der WaalsEvdW , hydrophobicEhp and hydrogen bondingEH Ceci
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et al. (2007). Figure 4 shows an example of these coupling matrices for the Enkephalin (1PLW) pro-
tein. To evaluate the effect of our CG model, we run experiments on four small proteins: Chignolin
(5AWL), Trp-Cage (2JOF), Cyclotide (2MGO) and Enkephalin (1PLW).

Protein results: Denoting the final energy and run time of the CG model by ECG and tCG,
and baseline by E0 and t0, we compute the normalized differences δÊ = (ECG − E0)/E0 and
δt̂ = (tCG − t0)/t0, to plot different proteins together. Figure 2a shows the mean of δÊ vs δt̂ over
the 4 runs for each CG setting (errorbars are 1 STD). Overall we find that all CG models outperform
the baseline either in terms of run time or energy, or both.

DISCUSSION

We Showed preliminary evidence that CG through reparametrization can yield some improvements
over non-CG baseline in protein folding, both in terms of run time as well as energy. This method has
the advantage that it does not require force-matching or back-mapping. However, more experiments
are needed to compare it against traditional CG methods. In fact, using ML to learn force-matching
might provide further advantage by removing the need to evaluate LCG(Z) = L (X) via the fine-
grained modes X . Also, while our canonical slow modes are derived for physical Hessians, the
reparametrization approach to CG is general and could be applied to other ML problems.
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A FINDING EFFECTIVE DOF

We want to see if the Hessian can help us find effective dof like the ϕ, ψ angles in alanine dipeptide.
The core idea is to look for symmetries of the Hessian CG modes. Assume we are close to a
minimum x∗ in the energy landscape. Using a Taylor expansion and the fact that ∇E(x∗) = 0, the
energy can be approximately be written as

E(x∗ + x) ≈ E(x∗) + Tr
{
xTHx

}
+O(x3) (5)

Here, x are usually expected to be small vibrational modes. However, if the system has symmetries,
x can be quite large and still keep the system in the basin of the same minimum. For example, when
the energy is translation invariant, x can be translated arbitrarily to x′ = x+δxwithout changing the
energy. We are interested in finding such large transformations that go beyond small oscillations. In
MD, the energies are generally invariant under a global SE(3). But the energy near a minimum may
have other, “local” invariances. For instance, in alanine dipeptide, the two peptides can be rotated
around the backbone without incurring a large energy cost. The rotations can also be arbitrarily
large. This type of large modes is what we are concerned with here.

We want to see if there are ways that the conformation can change without costing much energy.
We can also frame this as a question of symmetries of the Hessian H . Suppose that we construct x
using a small linear transformation U = I + εL on x, meaning

x′ = Ux = x+ εLx = x+ δx (6)

where ε ≪ 1 is a small number and L is a linear transformation of unit Frobenius norm. The
condition that x does not change the energy yields

E(x∗ + x) ≈ E(x∗ + x′)

⇒ Tr
{
xTHx

}
≈ Tr

{
xTUTHUx

}
= Tr

{
xTHx

}
+ εTr

{
xT
(
LTH +HL

)
x
}
+O(ε2) (7)

To satisfy this relation for an arbitrary vibration x, we need to find L such that

xT
(
LTH +HL

)
x = xT

(
HT +H

)
Lx = O(ε) (8)

Any L that satisfies equation 8 for arbitrary x is a symmetry of the Hessian. This is equivalent to
restricting the operator norm of (HT + H)L to be O(ϵ). We establish the following result, that
shows that the slow modes of the Hessian form the most dominant modes of the symmetry.

Theorem A.1. For a given symmetric matrix A with max∥x∥=1 ∥Ax∥ ≤ 1, with eigen-
decomposition given as

A = V ΛV T = VϵΛϵV
T
ϵ + V1Λ1V

T
1

with slow modes given by Vϵ with corresponding eigenvalues Λϵ, (|λϵi | = O(ϵ)) and fast modes given
as V1 with eigenvalues Λ1,

(∣∣λ1i ∣∣ = Ω(1)
)

we see that for any unit Frobenius norm approximate
symmetry generator matrix B satisfying,

∥AB∥op ≤ min
∥M∥F=1

∥AM∥op +O(ϵ)

we have that for all vectors x ∥∥B (V1V
T
1 x
)∥∥

2
≤ O(ϵ)∥x∥2 (9)

Considering a given value of H+HT , there are many linear transformations L that satisfy equation
equation 8 . We restrict our attention to only transformations of the form :

LP =

N∑
i=1

λi · vivTi ⊗Li with
∑
i

λ2i = 1 (10)

where Li’s are distance preserving transformation matrices in the spatial dimensions. In this formu-
lation, the vi vectors give directions of partial symmetry for the N -particle system and the condition
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over λi ensures that the Frobenius norm of LP is 1. Using equation 9 we see that it suffices to only
restrict our attention to the slow modes of the Hessian, Vϵ.

xT
(
LTPH +HLP

)
x = O(ε)

xT
(
LTPH +HLP

)
x =

(
N∑
i=1

λici · vi ⊗ (Lir
x
i )

)T (
HT +H

)( N∑
i=1

ci · vi ⊗ rxi

)
=
∑
i,j

λicicj · (vi ⊗ Lir
x
i )
T (

HT +H
) (
vj ⊗ rxj

)
=
∑
i,j

λicicj · (Lirxi )
T (
vTi H

T vj + vTi Hvj
)
rxj

≤
√∑

i,j

λicicj ·
∥∥vTi (HT +H) vj

∥∥2
F

(11)

where for the last inequality we use the fact that the Frobenius norm is larger than the operator norm
and Li are distance preserving matrices which also preserves the Frobenius norm.

B PROTEIN FOLDING WITH CLASSICAL MD

In protein folding our energy function consists of five potential energies for: bond length Ebond,
bond angles Eangle, Van der Waals EvdW , hydrophobic Ehp and hydrogen bonding EH Ceci et al.
(2007). Note that we are ignoring the solvent (e.g. water) and writing using potentials, or force fields.
To calculate the force field, we use distance, r, and angle-based, Θ, potentials. For each amino acid,
we use the rdkit Landrum et al. (2020) package to acquire bond length, r0, and bond angle, θ0 (every
triplet of atoms defining the bond), information that we use to define quadratic energies Ebond and
Eangle. We use Lennard-Jones (LJ) potentials, Vp,q(r) = r−p−r−q , to approximateEvdW between
all pairs of atoms,EH between atoms prone to form a hydrogen bond (certainH andO, in our case),
Ehp between atoms in hydrophobic residues, yielding

L (X) =Ebond + Eangle + EvdW + EH + Ehp

=kbond(r − r0)
2 + kangle(θ − θ0)

2

+ ϵvdWV12,6

(
r

σvdW

)
+ ϵHV6,4

(
r

σH

)
+ ϵhpV6,4

(
r

σhp

)
(12)

Here the coupling matrix [σvdW ]ij = ai+aj where ai is the vdW radius of atom i. For atoms which
form H-bonds, [σH ]ij = (bi · bj)1.5Å (hydrogen bonding radius) with bi = 1 if i forms an H-bond,
and bi = 0 otherwise. [σhp]ij = ci + cj where ci = 2Å if atom i is in a hydrophobic residue and
ci = 0 otherwise.

We note that our choices for ϵH , ϵvdW , ϵhp and kbond, kangle, can be a source of error. Additionally,
we “softened” the LJ potential to Vp,q = 1/(rp+ ζ)− 1/(rq + ζ) with ζ = 0.65, which is large and
significantly reduces the penalty for overlapping atoms and may reduce accuracy.

C ADDITIONAL FIGURES

D ENERGY MINIMIZATION

LetX ∈ X ≃ Rn×d be a set of degrees of freedom (e.g. particle positions, bond angles, etc.) and let
L : X → R be the energy (loss) function. We are interested in finding configurations X∗ which are
local minima of L . We can find such X∗ using a gradient descent (GD), or its continuous variant,
gradient flow (GF)

dX

dt
= −ε∇L (X) (13)

where ε is the matrix of learning rates (LR). In simple GD where ε = cI is a single constant times
identity, GD evolves at different rates in different directions, with some being much slower than
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GD CG CG+FG

GD CG+FG

Pure LJ loop

Bond+LJ loop

Figure 3: Example runs of the synthetic loop experiments with n = 400 nodes. Top row is the
Bond+LJ and bottom the pure LJ experiments. In Bond+LJ, GD already finds good energies and the
configuration is reasonably close to a loop, though flattened. When using CG, the initial CG stage
yields very good coil fragments, but has some overlaps. The final fine-graining (CG+FG) resolves
these crossings. The pure LJ case is much more tricky. But in most runs, GD completely fails to
get close to a deep energy minimum and is stuck at very high energy states, with no sign of the loop
forming. Using CG+FG, however, yields much better results, with small loop fragments forming.
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a b

Figure 4: Enkephalin (1PLW). a) The peptide chain is built by stacking amino acids on each other
using the peptide bond length from the literature, 1.32Å. b) Van der Waals, hydrogen bond, and
hydrophobic interaction matrix, that we use in the energy optimization.
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Figure 5: Comparison of performance of CG Hessian versus baseline MD. Point sizes correspond
to the number of CG modes used.

others. At a given X , these “slow modes” are the eigenvectors of the Hessian H(X) = ∇∇L (X)
with eigenvalues closest to zero, as we review below. We will first define fast and slow modes in the
simple quadratic case and then generalize them to non-convex cases in the next section.

Fast and slow modes for quadratic Loss. Consider the case where L (X) = 1
2 Tr

{
XTHX

}
.

Here H is a Hermitian matrix and the Hessian of L , with a spectral expansion given by H =∑
i λiψiψ

T
i , λi ∈ R and ψi ∈ Rn. In this basis we have X(t) =

∑
i ci(t)ψi with ci : R → Rd.

Projecting equation 13 onto one of the eigenmodes we get

dci
dt

= ψT
dX

dt
= −ελiψTX = −ελici (14)

where we assumed dψi/dt = 0. From equation 14 we see that the decay/growth rate along mode ψi
is |ελi|. Hence, modes with λi close to zero are the “slow modes”, evolving very slowly, and large
|λi| defines the “fast modes”. Since ci(t) = ci(0) exp[−t/τi] with time scale τi = 1/(ελi), the
fast modes evolve exponentially faster than slow modes. This disparity in the rates results in slow

10
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Figure 6: The folded structures of the 2JOF protein by using the CG and baseline method. The num-
bers in front of the rows are the numbers of eigenvectors used in the CG reparametrization. Dashed
frames show the minimum energy embedding in each case, while the thick line frame highlights the
absolute minimum layout.

convergence, because the fast modes force us to choose smaller ε to avoid numerical instabilities.
Two potential ways to fix the issue with disparity in time scales are: 1) make rates isotropic (second-
order methods and adaptive gradients); 2) mode truncation or compression (CG). We will briefly
review the former here.

Adaptive gradient and second-order methods. Newton’s method uses ε = ηH(X)−1 which
makes GD isotropic along all modes, but it is expensive (O((3n)3) in our case). Quasi-Newton
methods, e.g. BFGS Fletcher (2013), approximate H−1 iteratively, but are generally also slow. An-
other, more efficient approach is adaptive gradient methods, such as AdaGrad Duchi et al. (2011) and
Adam Kingma & Ba (2014) which approximateH by

√
gtgTt + η where gt =

∑k
i=1 γ

i∇L (X(t−
i)) is some discounted average over past gradients and η a small constant. For efficiency, in practice
we only use the diagonal part of this matrix to approximate H−1. As we will see in experiments,
this approximation, while being far superior to GD with constant LR, is still very slow for MD tasks.

Most second-order methods are designed to work for generic problem and don’t make strong as-
sumptions about the spectrum of the Hessian. Recent second-order methods such as K-FAC Martens
& Grosse (2015) and Shampoo Gupta et al. (2018) work with block diagonal approximations of the
Hessian (or the Fisher information matrix), which usually emerges in deep learning models due to
model architecture. Instead, we will exploit the spectral properties of the Hessian in physics prob-
lems. Fast and slow modes generally arise in physics due to vastly different strengths in forces (e.g.
weak van der Waals vs strong chemical bonds).

D.1 GENERALIZED FAST AND SLOW MODES

The notion of fast and slow modes is helpful for the analysis of any time slice of the dynamics
during which the Hessian is not changing dramatically. Consider a configuration X(t) and let δt be
a small time interval. We are looking for modes which are almost stationary over δt. To identify
these modes, we can for instance find perturbations δX which would have almost zero dynamics.
concretely we find the dynamics of X + δX as

d

dt
(X + δX) = −ε∇L (X + δX) ≈ −ε∇L (X)− εHδX +O(δX)2 (15)

meaning, a small δX adds εHδX to the dynamics.

11
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Thus if δX is a zero mode of the Hessian, HδX = 0, it won’t change the dynamics of X . To
define slow modes, we can slightly relax this and look for normalized modes ψ = δX/∥δX∥ whose
associated time scale is much longer than a desired time scale δt

τ = |εψTHψ| = |ελ| ≫ δt (16)

which just means that we need to find the approximate zero modes of the Hessian H(X).

CG by projecting to the slow manifold. Because the dynamics of the modes above is very slow
over δt, we can safely increase the time scale and run their dynamics over much longer periods
∆t ≫ δt. The essence of our algorithm is to ignore fast modes and project and evolve the system
on the “slow manifold” spanned by the slow modes of the Hessian. However, the main challenge is
how to deal with the fact that the Hessian is not constant and depends on the configuration X . We
address this point next. We show that for a large class of physical potentials one can find a reliable
set of approximate slow modes.

E PROPERTIES OF PHYSICAL HESSIANS

Invariant potentials. In systems of interacting particles in physics, most of the leading interac-
tions are pairwise and involve relative features, rij ≡ Xi − Xj (distance vector, relative angle,
etc). Moreover, they are often invariant under certain global symmetries, such as Euclidean sym-
metries (translation and rotation) or Lorentz symmetry (relativistic particles). These symmetries
keep some 2-norm of vectors, v2 = ∥v∥η ≡ vT ηv invariant. Here η may be the Euclidean metric
η = diag(1, 1, 1) or the Minkowski metric η = diag(−1, 1, 1, 1) for relativistic problems, etc. For
example, the Euclidean norm vTv in d dimensions is invariant under rotations v → gv, where
g ∈ SO(d), and the Minkowski norm is invariant under the Lorentz group SO(1, d− 1).

Let r denote the matrix of distances with rij = ∥rij∥η . Any function of rij is invariant under
symmetries that keep ∥ · ∥η invariant. A general invariant energy function can combine rij for
different i, j in arbitrary ways. Usually in physical systems each pair contributes an additive term in
to the total energy. Assuming additivity, the energy has a form

L (X) =
∑
ij

fij(rij) (17)

where fij(z) = fji(z) (symmetric under i ↔ j). For example, when particle i has electric charge
qi, the Coulomb potential between i, j can be written as in equation 17 using fij(z) = kqiqj/z.
Similarly, weak van der Waals (vdW) forces in molecular systems, which are modeled as Lennard-
Jones potential, are also of the form in equation 17 with

van der Waals: fij(rij) = Vp,q

(
rij
σij

)
, Vp,q(r) =

1

rp
− 1

rq
. (18)

Here σij = ai + aj , where ai is the vdW radius of particle i, and vdW uses p = 12, q = 6. Next,
we show that the Hessian of equation 17 has an important property which aids in finding its slow
modes.

E.0.1 HESSIAN OF INVARIANT POTENTIALS

The Hessian of potentials of the form equation 17 has the special property that it is the graph Lapla-
cian of a weighted graph which depends on X , as we show now (see appendix F for details). This
will play a crucial role in our argument about canonical slow modes.

Hessian as a graph Laplacian. Let ∂i ≡ ∂/∂Xi and let r̂ = ηr/r be the dual unit vector of r.
First, observe that ∂irjk = r̂jk(δij−δik) where r̂jk is the unit vector of rjk and δij is the Kronecker
delta (1 if i = j, 0 otherwise). Let Hes[g] denote the Hessian of a function g. We find that (app. F)

Hes[L ](X)ij = ∂i∂jL (X) =
∑
k

(δij − δjk)Hik(X) (19)

12
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where Hik(X) = Hes[fik](rik) and given by

Hik(X) =

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(20)

Note that H has four indices, with components Hµν
ij , having two particle indices i, j and two

spatial indices µ, ν. Recall the Laplacian of an undirected graph with adjacency matrix A is defined
as L = Lap(A) = D − A, where D is the degree matrix with elements Dij = δij

∑
k Aik. The

components of Laplacian can also be written as Lij =
∑
k Aik(δij − δjk). Thus, we see that the

Hessian of L is indeed the Laplacian of H

Hes[L ](X)ij =
∑
k

(δij − δjk)Hik = Lap(H)ij (21)

where for every pair of spatial indices the Hessian is a Laplacian over particle indices. The Hessian
being Laplacian has an important effect on its null eigenvectors. To show this we make use of the
incidence matrix.

E.1 CANONICAL BACKBONE FOR THE HESSIAN

As the Hessian depends on X , it is not clear whether slow modes found at a given X would be
applicable to other X . We need some guarantee that a set of modes exist which are approximately
slow modes for the Hessian at a range of differentX . We could use multiple perturbed configurations
X + δX with random δX ∼ N (0, T ) to get an ensemble of Hessians H = {H(X + δX)} and find
the overlap of the slow modes of the Hessians in H. However, this is expensive, roughly O(mkn2)
for m = |H| and k slow modes. We cannot recompute the Hessian slow modes often. We also want
a method which is more efficient than quasi-Newton methods such as BFGS. Our solution is to
find a backbone for the sampled Hessians whose slow modes are guaranteed to be approximate slow
modes of the actual Hessians. The key observation is that the Hessian in equation 21 is a Laplacian
of a weighted graph. We show that the slow modes of weighted Laplacians overlap significantly
with their unweighted counterparts.

We want to extract a set of slow modes from the sampled Hessians H(X ′). We then compute a
backbone from these Hessians of the form

Backbone: Hij =
∑

X′∈Sample(X)

∥Hij(X
′)∥2 (22)

Here i, j ∈ Zn are the particle indices and the Frobenius norm ∥Hij∥2 =
∑
µ,ν(H

µν
ij )2 sums over

the feature indices (note that Xµ
i has a particle index i and a feature index µ ∈ {1, . . . d}). Then,

we extract the slow modes of the backbone, by doing a spectral expansion H =
∑
i λiψiψ

T
i and

picking ψi with |λi| < ε2 maxj [λj ], for some small ε < 1.

The intuition behind equation 22 is to identify the components in the sampled Hessians which have
consistently high magnitudes. If we had taken a simple mean we could get very small values,
because the components can fluctuate randomly. Also, if we had taken the variance instead of the
norm, we would get zero for quadratic L , where H is constant and has no variance. However, these
intuitions do not show that there would be any connection between the modes of the backbone H and
the actual Hessians H(X ′). Importantly, entries in H(X ′) have signs, which affects the spectrum,
whereas all entries in H are positive. So why should the spectra of H and H be related? This is
where the structure of L comes into play. Indeed, as we show below, for many physical L , the
slow modes of the backbone H approximate the slow modes of sampled H(X ′) up to O(ε2) errors.

Definition E.1 (weighted graph). Let Ĝ = (V, E) be a graph with vertices V = Zn, edges E ⊆
V × V . Let Â ∈ Rn×n denote the adjacency matrix Âij = 1 if (i, j) ∈ E and 0 otherwise. We
denote a weighted graph as G = (V, E ,W) where W : E → R are the weights of the edges. Let
A denote the adjacency matrix of G, where Aij = W(i, j) or zero if (i, j) ̸∈ E . The Laplacian
L = Lap(A) of an undirected weighted graph is defined analogous to the unweighted graph as
L = D −A with degree matrix elements Dij = δik

∑
k Aik.

Definition E.2 (Slow manifold). Let L be a graph Laplacian (undirected, weighted or unweighted),
with spectral expansion L =

∑n
i=1 λiψiψ

T
i . Let ε ≪ 1 and λmax = max{λi} be the largest

eigenvalue of L. We define the slow manifold as
Slowε[L] = Span

{
ψi
∣∣|λi| < ε2λmax

}
(23)
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Theorem E.1 (Slow modes of weighted Laplacians). Let A be the adjacency matrix of a weighted
graph and Â be its unweighted counterpart. Let L = Lap(A) and L̂ = Lap(Â). Then Slowε[L]

overlaps with Slowε[L̂] up to O(ε2) corrections from the rest of the modes.

To prove this we will make use of the incidence matrix representation of the Laplacian.
Definition E.3 (Incidence matrix). Given a weighted graph G = (V, E ,W), define its incidence
matrix as C : V × E → {±1}, where for any edge e = (i → j) ∈ E , Ci,e = −1 and Cj,e = 1, and
zero for other components.
Lemma E.2 (Laplacian in terms of the incidence matrix). Let w = vec(W(E)) be the vector of all
weights indexed in the same order as the columns of C, with we = Aij , for e = (i, j) and let W
be a diagonal matrix with w on its diagonal. Then, the Laplacian L = Lap(A) can be written as
L = 1

2CWCT (proof in app. F.1).

Because G and Ĝ share the same vertices and edges, their incidence matrix C is the same. From
Lemma E.2, L = 1

2CWCT and L̂ = 1
2CC

T as Ĝ is unweighted. Using SVD, C = USV T and
defining R = US/

√
2 and Q = V TWV , we have

L̂ = RRT L = RQRT . (24)

Note that for a random configuration X the edge weights W will be random, as they arising from
derivatives of fij(rij) in equation 20 (unless fij is quadratic which makes W constant). Therefore,
we will assume Q has a uniform Gaussian distribution. Assuming W is also Gaussian, the spectrum
of such a Q = V TWV is somewhere between the distribution of W (for sparse graphs with |E| ∼
O(|V|)) and a Wigner Semi-circle (for dense graphs with |E| ∼ O(|V|2)). See appendix F.2 for
more discussion. We also assume Q has no particular block structure and that the spectrum of any
diagonal block of Q should also follows a distribution similar to all of Q.

Slow subspace. We now sketch the proof for Theorem E.1. For details, refer to appendix F.4.
From the SVD, C = USV T , the slow subspace is

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(25)

Normalize Ŝ = S/max[S] and make them all positive (e.g. absorb their sign into U ). For some
ε < 1 sort the SV such that Ŝ = diag(Sε, S1) where the diagonal matrices Sε < ε and S1 ≥ ε.
Now, the problem of finding Slowε[L] becomes finding eigenvectors of the matrix M̂ = ŜQŜT

with eigenvalues O(ε2). Using Sε ∼ O(ε) and S1 ∼ O(1), we can pull factors of ε out from M̂ and
write it as

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
, δM =

(
0 B̂

B̂T 0

)
. (26)

where ε̂2 ≡ ε2
√
nA/nC is rescaled so that the random matrices Â ∈ RnA×nA and C ∈ RnC×nC

have a similar range of eigenvalues. Next, using a perturbative ansatz for eigenvectors ψ′ = ψ+ ε̂δψ

and eigenvalues λ′ = λ+ ε̂δλ, we solve M̂ψ′ = λ′ψ′ up to O(ε̂2) corrections.

To find slow modes for L we start from ψ ∈ Slowε[L̂]. Specifically, we start with an eigenvector
ψA of Â and concatenate it with zeros to get ψ = (ψA, 0). We have M0ψ = λψ with λ = ε̂2λA.
Using first-order perturbation theory, we find the corrections δλ to the eigenvalues and eigenvectors
to be

δλ = ψT δMψ = 0, δψ = −(M0 − λ)−1δMψ =

(
0

(C − λ)−1B̂TψA

)
. (27)

Putting all together we find the slow eigenvector ψ′ = ψ + ε̂δψ up to order O(ε2) to be

Slowε[L] ∋ ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂TψA

)
, M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (28)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2). We also observe that slow modes of L are mostly
confined to Slowε[L̂] and only get O(ε) contributions from the fast subspace of L̂.

As a side, it follows that all weighted graphs share the null space of the unweighted Laplacian.

14
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Proposition E.3 (Shared null space). Let Null[M ] = Span{v|v ∈ Rn,Mv = 0} denote the null
space of a matrix M ∈ Rn×n. The null space of the Laplacian L̂ (unweighted) is contained in the
null space of Laplacian L (weighted), meaning Null[L̂] ⊆ Null[L].

Lemma E.4. Null[L̂] = Null[RT ]

Proof. ∀v ∈ Null[L̂], 0 = vT L̂v = ∥RT v∥2 and ∀v ∈ Null[RT ], L̂v = RRT v = 0.

Proof of proposition E.3. ∀v ∈ Null[L̂], Lv = RQRT v = 0 hence, Null[L̂] ⊆ Null[L].

Note that Null[L̂] and ⊆ Null[L] are not necessarily the same because weights can be zero, which
could make the null space of the weighted graph larger than the unweighted one. Next, we present
our method for coarse-graining using a set of canonical slow modes.

F INVARIANT ADDITIVE DYADIC POTENTIALS

We want to Compute the Hessian of equation 17, L (X) =
∑
ij(rij). Let r̂ = ηr/r be the dual unit

vector of r. First, note that

∂irjk ≡ ∂rjk
∂Xi

= ∂i

√
∥Xj −Xk∥η

= η
rjk
rjk

(δij − δik) = r̂jk(δij − δik) (29)

Then the gradient becomes

∂iL (X) =
∑
j,k

f ′jk(rjk)
∂rjk
∂xi

=
∑
j,k

f ′jk(rjk)ηr̂jk(δij − δik)

= 2
∑
j

f ′ij(rij)ηr̂ij . (30)

where we used r̂jk = −r̂kj to show both terms in (δij − δik) yield the same output. Finally, the
Hessian becomes

[H(X)]ij =∂i∂jL (X) = 2∂j
∑
k

f ′ik(rik)r̂ik

=2
∑
k

[f ′′ik(rik)∂jrik ⊗ r̂ik + f ′ik(rik)∂j r̂ik]

=2
∑
k

[
(δji − δjk)f

′′
ik(rik)r̂ik ⊗ r̂ik

+ f ′ik(rik)

(
η
δji − δjk
rik

− r̂ik
r2ik

∂jrik

)]
=2
∑
k

(δji − δjk)

[
f ′′ik(rik)r̂ik ⊗ r̂ik + f ′ik(rik)

(
η

rik
− r̂ik
r2ik

⊗ r̂ik

)]
=2
∑
k

[
f ′′ik(v)v̂ ⊗ v̂ +

f ′ik(v)

v
(η − v̂ ⊗ v̂)

]
v=rik

(δij − δjk)

=2
∑
k

[(
f ′′ik(v)−

f ′ik(v)

v

)
v̂ ⊗ v̂ +

f ′ik(v)

v
η

]
v=rik

(δij − δjk)

=
∑
k

Hik(x) (δij − δjk) = Lap(H)ij (31)
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This is because the components of Laplacian can be be written

Lij = Lap(A)ij = (D −A)ij

= δij
∑
k

Aik −Aij =
∑
k

Aik(δij − δjk) (32)

F.1 INCIDENCE MATRIX

The LaplacianL = D−A of an undirected graph with adjacencyA can be written asL = CWCT /2
using the incidence matrix C and the edge weights W . This can be shown as follows

[CWCT ]ij =
∑
e

CeiWeeC
e
j

=
∑
k,l

C
(k→l)
i AklC

(k→l)
j

=
∑
k,l

(δil − δik)Akl(δjl − δjk)

=
∑
k,l

(δilδjl − δikδjl − δilδjk + δikδjk)Akl

= 2
∑
k,l

(δilδjl − δikδjl)Akl

= 2
∑
k

δijAkj − 2Aij = 2(D −A)ij = 2Lij (33)

where we assumed Akl = Alk (undirected graph).

So the same derivation of the backbone also holds for this case. The idea is that using the incidence
matrix C and edge weights W (as a diagonal matrix), any Laplacian L can be decomposed as
L = CWCT . Then, doing SVD C = USV T we have

L = USV TWV STUT = UMUT (34)

Where the matrix M = SV TWV ST has an interesting property, namely that its null space includes
the null space of the unweighted Laplacian L0 = CCT . To see this note that L0 = USSTST ,
which means columns Ui are the eigenvectors of L0 with eigenvalues S2

i . The null eigenspace of L0

are the Ui for which Si = 0. This subspace will also be a null subspace for L, because that block is
also zero in M , because Mij =

∑
c SiVikWkkVjkSj . So, whenever Si = 0 or Sj = 0, Mij = 0,

meaning that whole block in M is zero and MUi = 0 ( write it better).

Example: power law. Let f(r) = rp. We have f ′ = prp−1 and f ′′ = p(p− 1)rp−2, yielding the
Hessian

H = ∇∇f(r) = rp−2
[(
p2 − 2p

)
r̂ ⊗ r̂ + pη

]
(35)

Bik = Aikr
p−2
ik

[(
p2 − 2p

)
r̂ik ⊗ r̂ik + pη

]
(36)

Example: Lennard-Jones. This potential has the form

f(r) = 4ε
[(σ
r

)p
−
(σ
r

)q]
(37)

where for classic van-der Waals potential p = 2q = 12. The Hessian for this potential is given by

H(r) = ∇∇f(r) = ε

[(σ
r

)p+2 [(
p2 + 2p

)
r̂ ⊗ r̂ − pη

]
−
(σ
r

)q+2 [(
q2 + 2q

)
r̂ ⊗ r̂ − qη

]]
(38)

and Bik = AikH(rik)
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F.2 STRUCTURE AND SPECTRUM OF OF Q = V TWV

To consider only the relevant subspace of SVD, we have U, S ∈ Rn×n, and V ∈ Rm×n, with
n = |V| and m = |E|. For a connected undirected graph m ≥ 2(n − 1) and V is full rank
(V TV = In). Note the edge weights W come from the forces fij(rij) in equation 20, which for an
arbitrary X will be random. Assuming a Gaussian distribution Wee ∼ N (0, σ) for all edges e, the
matrix Q will also have random Gaussian entries. When m = n, V defines the eigenbasis of Q and
Wee are the eigenvalues of Q. Similarly, in sparse graphs, where m ∼ O(n), V is approximately
the eigenbasis and the spectrum of Q should have a distribution similar to Wee. For dense graphs,
where m ∼ O(n2), every entry of Q will involve a weighted sum over multiple Wee. Then, from
central limit theorem, entries of Q will asymptotically have a Gaussian distribution. From random
matrix theory, we know that such Q will have a spectrum which follows the Wigner-semi-circle law.
In both cases (sparse and dense graphs) the spectrum of Q has a finite variance and sits somewhere
between a Gaussian and a semi-circle.

F.3 GENERALIZATION TO NONZERO BUT SMALL SV

We want to know how much the slow modes of weighted and unweighted graphs to overlaps. With
the spectral expansion L̂ =

∑
i λiψiψ

T
i Define the slow subspace as in equation 23

Slowε[L̂] = Span
{
ψi
∣∣|λi| < ε2λmax(L̂)

}
(39)

where λmax(L̂) = max{λi} = maxψ[ψ
TLψ/∥ψ∥2] is the largest eigenvalue of L and ε ≪ 1. In

terms of the singular values (SV) of the incidence matrix C = USV T , the slow subspace becomes

Slowε[L̂] =
{
i
∣∣Sii < εmax[S]

}
(40)

We will show that the slow modes in weighted L = CWCT are perturbations to the slow modes of
L̂. Define

M = SV TWV ST = SQST (41)

Normalize Ŝ = S/max[S]. Break the space down to the slow and fast subspaces, based on whether
Ŝii < ε or not. First, since L is positive semi-definite, we can make all Sii ≥ 0. Let Ŝ = S/maxS.
We sort the dimensions in Ŝ to have the small SVs appear first. Denote the block in Ŝ where Sii < ε
by Sε. We have

Ŝ2 =

(
S2
ε 0
0 S2

1

)
<

(
ε2 0
0 1

)
(42)

We know the null space of L̂, where Sii = 0, is shared with L. First, we remove the null space
from L and L̂, calling the remainder L0 and L̂0 and the remaining SVs Ŝ. Then in this remainder
subspace we need to find parts which are O(ε). We sort the dimensions in Ŝ to have the small SVs
appear first. We denote the block in Ŝ where S2

ii < εmax[S2] by Sε. We have

M = max[S]2ŜQŜT =

(
SεQεεSε SεQε1S1

S1Q
T
ε1Sε S1Q11S1

)
=

(
Mεε Mε1

MT
ε1 M11

)
(43)

Because Sε is O(ε) and S1 is O(1), we will factor out the factors of ε from blocks in M and write

M = max[S]2
(
ε2A εB
εBT C

)
(44)

Here A and C are random matrices built from their corresponding blocks in Q and sandwiched
between Sε/ε (forA), and S1 (forC), which haveO(1) values. The spectrum ofQ has a distribution
between a Gaussian with mean zero and a Wigner semi-circle, also centered around zero. We expect
spectra of A and C to be similar to Q. Denote the spectral expansion of Q as

Q = ΨΛΨT , Λ = diag(λi)
n
i=1, Ψ = [ψi]

n
i=1. (45)
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This is because when Qij ∼ N (0, σ) we have (ignoring Bessel’s correction for k ≫ 1).

σ2 = Var(Qij) ≈
1

n
∥Q∥2 =

1

n

∑
i

λ2i = Var(Λ) (46)

where we assumed Tr{Q}/n ≈ mean(Q) = 0. Since a block Qk of size k is k2 entries sampled
from the same distribution as Q, we expect

∥Qk∥2

k2
≈ ∥Ql∥2

l2
⇒ 1

k
Var(Qk) ≈

1

l
Var(Ql) (47)

Thus, rescaling A ∈ RnA×nA and C ∈ RnC×nC we get

Â =
A

√
nA

, Ĉ =
C

√
nC

, Var(Â) ≈ Var(Ĉ) (48)

F.4 APPROXIMATE SLOW MODES OF L

If M did not have the off-diagonal blocks B, then Slowε[L] and Slowε[L̂] would coincide, as the
Sε block and the S1 block would not mix when B = 0. Define M0 as the block matrix of M with
B = 0.

M0 ≡
(
ε2A 0
0 C

)
(49)

Using spectral expansions

A = ΨAΛAΨ
T
A, C = ΨCΛCΨ

T
C (50)

the eigenvectors of M0 consist of

M0

(
ψAi
0

)
= ε2λAi

(
ψAi
0

)
, M0

(
0
ψCi

)
= λCi

(
0
ψCi

)
. (51)

Since we are looking for slow modes, we must also consider the magnitudes of λAi and λCi. Since
A and C entries are random samples from Q, we expect them to have a semi-circle or Gaussian
distribution similar to Q. Thus, we can use the variances of eigenvalues of A and C as a proxy for
the how the magnitudes of λAi and λCi compare. From equation 48 we have

1

nA
E[Λ2

A] ≈
1

nA
Var(A) ≈ 1

nC
E[Λ2

C ] (52)

Based on this we define a rescaled ε̂ such that ε2λAi still has a smaller magnitude than λCi on
average, meaning we want

ε4E[Λ2
A] < E[Λ2

C ] ⇒ ε4nA < nC ⇒ ε̂2 ≡ ε2
√
nA
nC

< 1 (53)

We choose ε such that the condition in equation 53 is satisfied. We can express M in terms of ε̂ by
rescaling A and B to ε̂2Â = ε2A and ε̂B̂ = εB. Now eigenvalues of Â have the same variance as
eigenvalues of C. For brevity, denote M̂ = max[S]2M . We have

M̂ =

(
ε̂2Â ε̂B̂

ε̂B̂T C

)
. (54)

To find how slow modes of M̂ = SQST /max[S]2 differ from slow modes of SST , we break M̂
into a block diagonal part and an O(ε̂) off-diagonal perturbation

M̂ =M0 + ε̂δM, M0 =

(
ε̂2Â 0
0 C

)
δM =

(
0 B̂

B̂T 0

)
. (55)

As in equation 51, eigenvectors of A =
√
nC/nAÂ and C are eigenvectors of M0. Now we want

to find eigenvectors of M̂ with small O(ε2) eigenvalues up to order ε̂ corrections by treating δM as
a perturbation.

(M0 + ε̂δM)(ψ + ε̂δψ) = (λ+ ε̂δλ)(ψ + ε̂δψ)

M0ψ + ε̂(δMψ +M0δψ) +O(ε̂2) = λψ + ε̂(δλψ + λδψ) +O(ε̂2)

⇒ δMψ +M0δψ = δλψ + λδψ (56)
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We only need the components of δψ orthogonal to ψ, so we can assume δψTψ = 0. From this we
have

δλ = ψT δMψ + ψTM0δψ = ψT δMψ, (57)

where we used ψTM0δψ = λψT δψ = 0. Plugging equation 57 into equation 56 we can solve for
δψ by inverting the matrices

(M0 − λ)δψ = (δλ− δM)ψ

⇒ δψ = (M0 − λ+ iη)−1(δλ− δM)ψ (58)

where we added a small η to make the matrix M0 − λ invertible, as λ is one of its eigenvalues.

To find slow modes, we start from slow modes of M0 which are in the A subspace. Let ψA be an
eigenvector of A with ÂψA = λAψA. Concatenating ψA with zeros in the C subspace we have

ψ =

(
ψA
0

)
, M0ψ = ε̂2λAψ. (59)

Using this ψ to compute δλ in equation 57 we have

δλ = ψT δMψ =
(
ψTA 0

)( 0

B̂TψA

)
= 0 (60)

meaning to first order in ε̂ the corrections to eigenvalues of slow modes vanishes. This is desired
because the slow mode eigenvalues are O(ε̂2) and we find that with this ψ ansatz the corrections it
will get are also at least O(ε̂2). Next, we compute the corrections δψ to the eigenvectors. Plugging
ψ into equation 58 with λ = ε̂2λA and δλ = 0 we have

(M0 − λ+ iη)−1 =

(
(ε̂2Â− λ+ iη)−1 0

0 (C − λ)−1

)
δψ = −(M0 − λ+ iη)−1δMψ

=

(
0

(C − λ)−1B̂TψA

)
(61)

where we dropped iη in the lower block because ε̂2λA is unlikely to be also an eigenvalue of C, as
A and C are random matrices.

Using the relation ε̂B̂ = εB with the original ε and putting all together we find the eigenvector
ψ′ = ψ + ε̂δψ up to order O(ε2) to be

ψ′ =

(
ψA

ε̂(C − ε̂2λA)
−1B̂T

)
(62)

M̂ψ′ = ε̂2λψ′ +O(ε̂2) = O(ε̂2) (63)
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