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ABSTRACT

Causal opacity denotes the difficulty in understanding the “hidden” causal structure
underlying the decisions of deep neural network (DNN) models. This leads to
the inability to rely on and verify state-of-the-art DNN-based systems, especially
in high-stakes scenarios. For this reason, circumventing causal opacity in DNNs
represents a key open challenge at the intersection of deep learning, interpretability,
and causality. This work addresses this gap by introducing Causal Concept Graph
Models (Causal CGMs), a class of interpretable models whose decision-making
process is causally transparent by design. Our experiments show that Causal CGMs
can: (i) match the generalisation performance of causally opaque models, (ii)
enable human-in-the-loop corrections to mispredicted intermediate reasoning steps,
boosting not just downstream accuracy after corrections but also the reliability
of the explanations provided for specific instances, and (iii) support the analysis
of interventional and counterfactual scenarios, thereby improving the model’s
causal interpretability and supporting the effective verification of its reliability and
fairness.

1 INTRODUCTION

Causal opacity refers to the difficulty in understanding a model’s decision-making mechanisms
(Termine & Primiero, 2024). Like causal discovery, causal opacity, can be assessed through Pearl’s
framework of causality (Pearl, 1995), categorizing an agent’s causal understanding based on its
ability to answer three types of questions: observational queries (“what is the relationship between
the feature x and the model’s output?”), interventional queries (“what happens if I fix the feature
x to a value k?”), and counterfactual queries (“what would the model’s prediction had been if
feature x had taken value k′ instead of k?”). Unlike causal discovery, causal opacity concerns the
decision-making process of a DNN model. Whether a DNN is causally opaque (or transparent)
depends on whether users can answer interventional and counterfactual questions that concern the
model’s inferential behaviour. In this regard, notice that (i) the problem of causal opacity is distinct
from the problem of causal discovery, which involves detecting causal mechanisms in the real world,
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Figure 1: (a) Standard DL models are black boxes in the sense that the causal structure of their
mapping from raw input features (e.g., pixels of an image) to the target remains opaque. (b) In Concept
Bottleneck Models (CBM), high-level human-interpretable concepts are first extracted through an
encoder g and then used to predict the target. Although CBMs are semantically transparent, the
causal structure of the model’s inference assumes a straightforward causal structure where concepts
are causally independent and are all direct causes of the target. (c) In Causal Concept Graph Models
(Causal CGMs), both the concepts’ semantics and the inference’s causal structure are transparent.

rather than understanding the causal structure of a model’s internal reasoning; and (ii) causal opacity
(and the related form of causal understanding) neither implies nor requires discovering the “true”
causal structure of the data-generating process. For example, a model might effectively predict
heart attacks based on the rule heart_attack← smoking← lung_cancer, even though the
actual biological mechanism is that smoking causes lung cancer, not the reverse. Further details on
the distinction between causal opacity and causal discovery are discussed in App. A.

Deep Learning (DL) models (Fig. 1a) are causally opaque when applied to unstructured data like
images, as interventions on low-level features, such as pixels, are not meaningful (Rudin, 2019;
Ghorbani et al., 2019) and therefore do not enable us to easily answer any of these sorts of questions.
For example, asking “what happens if I fix the intensity of the pixel xi to k?” does little to reveal
whether a DNN is exploiting protected attributes like “gender” or “race” when classifying an image
of a person as a “doctor”. Yet, understanding when these sorts of high-level attributes are misused to
make predictions is crucial for the proper verification and vetting of models (Kusner et al., 2017),
particularly in high-impact real-world tasks (e.g., medical admission recommendations).

To address this issue, Concept Bottleneck Models (CBMs) (Koh et al., 2020) have been designed to
support interventions on high-level interpretable features known as “concepts” (Kim et al., 2018).
These concepts, whose semantics are aligned with units of information experts would use to solve the
same task, allow for more intuitive interventions and counterfactual analysis (Wachter et al., 2017;
Abid et al., 2021). This is because CBMs shift from reasoning based on raw features to explicitly
operating on interpretable variables such as “age”, “income”, “gender”, or “BMI”.

Although CBMs are semantically transparent (Kim et al., 2018; Facchini & Termine, 2021)1, we
argue they still rely on two unrealistic assumptions (visualised in Fig. 1b). First, they assume
that concepts are causally independent, an assumption that breaks in most real-world tasks. For
instance, CBMs might treat “smoking” and other health conditions as independent predictors of
an insurance premium, ignoring how intervening on smoking affects health. Second, and more
importantly, CBMs assume concepts are the direct causes of model predictions. These assumptions
oversimplify and constrain the model’s inference structure, preventing the model from using more
complex and effective concept dependencies (Beckers, 2022). As a result, the problem of causal
opacity still represents a key open challenge at the intersection of DL, causality, and XAI.

Contributions In response to this challenge, we introduce Causal Concept Graph Models (Causal
CGMs, see Figure 1c). Causal CGMs are a new concept-based architecture whose decision-making
process is causally transparent by design, avoiding the unrealistic assumption that concepts must
be causally independent and direct causes of class prediction. The results of our experiments show
that Causal CGMs can: (i) match the generalisation performance of state-of-the-art causally-opaque
models, (ii) enable human-in-the-loop corrections of mispredicted intermediate reasoning steps,

1Here by semantic transparent we mean a model that focuses on features that are meaningful and under-
standable by human experts in the model’s application domain.
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boosting both downstream accuracy and explanation correctness, and (iii) support the analysis of both
interventional and counterfactual questions, improving causal interpretability and enabling effective
verification of reliability and fairness. The code related to this paper is publicly available 2.

2 BACKGROUND

Causal Models A causal model (CM) is a mathematical representation of the rules or laws that
explain how different variables of a given target-system causally influence each other. In computer
science and statistics, Structural Causal Models (SCM) proposed by Pearl (2009) are a key framework
for causal modelling. Formally, an SCMM is a triplet (U ,V,Fθ) where: U is a set of exogenous
variables representing latent factors with a causal influence on the modelled target-system; V is
a set of endogenous variables representing observable and measurable variables; Fθ is a set of
functions (or structural equations) parametrised by θ describing the causal mechanisms, which
determine the values of each endogenous variable vi ∈ V by computing the conditional probability
p(vi|ui, pa(vi); θ), where ui ∈ U and pa(vi) are, respectively, the set of exogenous and endogenous
variables causally affecting vi ∈ V . Every SCM corresponds to a directed acyclic graph (DAG) whose
nodes represent variables and edges represent direct causal connections. Hard interventions in SCMs
are modelled through the do-operator (Pearl, 1995; 2009), which modifies the model’s structure by
fixing an endogenous variable to a value κ ∈ R, breaking its original causal dependencies. Formally,
applying do(vi = κ) to a modelM results in a new modelMvi=κ which is identical toM except
that the equation for vi is replaced with a constant value κ, removing all arrows into vi in the DAG.

Concept-based models Concept-based models (Kim et al., 2018; Chen et al., 2020; Yeh et al., 2020;
Kim et al., 2023; Barbiero et al., 2023; Oikarinen et al., 2023) are interpretable architectures that
explain predictions using high-level information units (i.e., “concepts”). Most follow the Concept
Bottleneck Model (CBM) (Koh et al., 2020) approach. Given a sample’s raw features x ∈ X ⊆ Rd

(e.g., an image’s pixels), a set of r concepts ci ∈ C ⊆ {0, 1}r (e.g., “red”, “round”), and a set of l
class labels yj ∈ Y ⊆ {0, 1}l (e.g., labels “apple” or “tomato”), a CBM estimates the conditional
distribution

∏
j p(yj | pa(yj) = c1, . . . , cr; θf )

∏
i p(ci | x; θg) where p(ci | x; θg) is a set of

independent Bernoulli distributions. This formulation relies on two key CBMs’ assumptions: i)
concepts directly cause class predictions, and ii) concepts are conditionally independent of one
another. Usually, concept-based models represent a concept ci using its predicted probability
ĉi ∈ [0, 1]. However, this may degrade task accuracy when concepts are incomplete (Mahinpei et al.,
2021). To address this, Concept Embedding Models (CEMs) (Espinosa Zarlenga et al., 2022) use
high-dimensional embeddings ĉi ∈ Rz to represent concepts alongside their truth degrees ĉi ∈ [0, 1].

3 CAUSAL CONCEPT GRAPH MODELS

Problem: This work addresses causal opacity, the challenge of uncovering a DL model’s hidden
causal structure. Research question: To overcome this, we aim to design DL models where each
prediction can be traced back to a chain of semantically meaningful causes. Challenged assumptions:
In pursuing this goal, we challenge two key assumptions of Concept Bottleneck Models (CBMs):
i) humans know a priori which interpretable variables (concepts) are direct causes of a class label
(and datasets embed this prior knowledge), and ii) all interpretable variables used for explanations
(i.e., concepts) are conditionally independent. Solution: We introduce Causal Concept Graph
Models (Causal CGMs), a class of models making class predictions through cause-effect chains
of interpretable variables. We first introduce Causal CGMs, then show how their decision-making
process is causally transparent and conclude by describing their learning process.

3.1 BLUEPRINT

Dropping the assumptions of CBMs—that concepts are independent and direct causes of class
labels—requires a model able to capture all possible dependencies3 between interpretable variables

2https://github.com/gabriele-dominici/CausalCGM
3This naive formulation leads to a cyclic probabilistic model, making computation intractable due to the

difficulty of handling cycles. Causal Concept Graph Models address this by ensuring efficient learning and
producing simple explanations by design (see Sec. 3.3).
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(i.e., any classification label). To model such dependencies, Concept Graph Models duplicate the
layer of interpretable variables V by introducing an additional layer of identical copies V ′4. Using
this additional layer, Causal CGMs make predictions of each vi ∈ V using as possible inputs all
v′j ∈ V ′ for all j ̸= i. This inference structure enables CGMs to trace each prediction in V back to a
set of interpretable variables in V ′. As a result, the set of copies V ′ in a Causal CGM play the role
of “explaining variables”, akin to a CBM’s concepts, while the set of variables V play the role of
“explained variables”, akin to a CBM’s tasks.

Definition 3.1 (Causal Concept Graph Model). Given an observed feature vector x, a set of k ∈ N
latent factors ui ∈ U each associated with a pair of identical high-level interpretable variables vi ∈ V
and v′i ∈ V ′ with vi = v′i, ∀i ∈ {1, . . . , k}, a Causal Concept Graph Model Γ = (N , E ,Fθ) with

• nodes N = {x} ∪ U ∪ V ′ ∪ V ,

• edges E =
{
(x, ui) | ui ∈ U

}
∪
{
(ui, v

′
i) | i ∈ {1, · · · , k}

}
∪
{
(ui, vi) | i ∈ {1, · · · , k}

}
∪

{(v′i, vj) | v′i ∈ V ′, vj ∈ V, i ̸= j},
• and mechanisms Fθ = {ζ, s, f},

represents the joint conditional distribution:

p(v1 . . . , vk, v
′
1, . . . , v

′
k, u1, . . . , uk | x; θ) =

k∏
i=1

endogenous predictor︷ ︸︸ ︷
p(vi | paV′(vi), ui; θf )

∏
j ̸=i

copies predictor︷ ︸︸ ︷
p(v′j | uj ; θs)

exogenous encoder︷ ︸︸ ︷
p(uj | x; θζ)

x

u1

u2

. . .

uk

v′1

v′2

. . .

v′k

v1

v2

. . .

vk

(1)

3.2 CAUSAL TRANSPARENCY IN CONCEPT GRAPH MODELS

Notice how the distribution p(vi | paV′(vi), ui; θf ) can be associated with a structural causal model
MCGM = ({ui},V ′ ∪{vi}, {fi}) with causal mechanism fi where ui ∈ U is an exogenous variable
representing latent, uninterpretable information (e.g., noise), vi ∈ V is an endogenous variable
representing interpretable, symbolic information, and fi : U × V → V is a function describing the
causal mechanism that determines the value of vi given its parents paV′(vi). Such dependencies
are captured by a graph G′ = (V ∪ V ′, {(v′i, vj) | v′i ∈ V ′, vj ∈ V, v′i ̸= vj}), representing all
direct causal dependencies between endogenous variables. By modelling such dependencies, and
considering that by Def. 3.1 the variables vi and v′i are identical copies of the same interpretable
variable, Causal CGMs allow any endogenous variable vi to be expressed in terms of its parents in
V , denoted as paV(vi), rather than in terms of its parents in V ′, i.e., paV′(vi), as formalised in the
following theorem (proof in App. C).

Theorem 3.2. Given a Causal Concept Graph Model Γ = (N , E ,Fθ), let the set of endogenous
root nodes be defined as: roots(G′) = {v′i ∈ V ′ | ∄(v′j , vi) ∈ EG′}, and the set of children of root
nodes as: ch(roots(G′)) = {vi ∈ V | ∃(v′j , vi) ∈ EG′ , v′j ∈ roots(G′)}. Then, for all nodes in the set
V \ {roots(G′) ∪ ch(roots(G′))}, i.e., for all nodes that are neither root nodes nor children of root
nodes, the following holds:

p(vi | paV′(vi), ui; θf ) = p(vi | paV(vi), ui; θf )

The above theorem shows that CGM’s bipartite graph G′ between nodes V ′ and V can efficiently
represent arbitrary long cause-effect chains among interpretable variables (example in Fig. 2). While
during training, CGMs exploit the efficient bipartite representation, at test time CGMs can be unfolded
following the graph as described in Theorem 3.2 (Sec. 3.3 describes how to learn sparse and acyclic
dependencies to make the test time unfolding more efficient and interpretable; we provide more

4A detailed analysis of this transformation, including the “unfolding” of the original cyclic model, is provided
in App. B and a neural parametrization in App. D.
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Figure 2: p(v1 | v′k, u1; θf ) is equivalent to p(v1 | vk, u1; θf ) as they both represent the same query
on the same conditional probability table.

details in App. H.6). This property makes CGMs causally transparent by design, as they can make
class predictions through cause-effect chains of endogenous variables, allowing humans to trace
each prediction back to its underlying causes within an interpretable parental subgraph. Notice
how—unlike CBMs—Causal CGMs do not require to know in advance cause (concept)-effect (task)
relationships, nor require that all causes (concepts) are independent from each other, as cause-effect
dependencies among interpretable variables are not given, but learnt during training.
Remark 3.3. Causal CGMs are designed to address the problem of causal opacity, not causal discovery.
Causal opacity—the problem of understanding a model’s decision-making process— neither implies
nor requires causal discovery—the problem of identifying the rules governing the world or the data-
generating mechanism. Indeed, the causal structure of a model’s decision-making process does not
necessarily mirror the causal structure of the world (Boge, 2022). We report in appendices extended
discussions on CGM’s relations with causal discovery (App. J) and causal representation learning
(App. K), and on CGM’s identifiability (App. L).

3.3 TRAINING CAUSAL CGMS

Learning sparse, directed, and acyclic structures In order to construct simple explanations, we can
make Causal CGMs’ graphs sparse and acyclic. To this end, we parametrise the bipartite graph G′
with an adjacency matrix of learnable weights M ∈ Rk×k. We initialise the weights mij ∈M based
on the conditional entropy between labels vi and vj to account for asymmetric concept dependencies
(for other initialisation strategies, see App. F). These weights are then fine-tuned through an end-to-
end learning process within the Causal CGM framework following common causal priors, where
causal graphs are assumed to be sparse, directed, and acyclic (forming a Directed Acyclic Graph or
DAG). We introduce a parameter γ ∈ R to eliminate less significant dependencies and a loss function,
as described by Yang et al. (2020), to enforce the sparsity and acyclicity of the causal graph, ensuring
that the adjacency matrix A effectively represents a DAG:

(initialisation) aij = −
∑

b∈{0,1}

∑
c∈{0,1}

p(vi = b, vj = c) log p(vi = b | vj = c) (2)

(sparsity) A =M · 1M≥γ (3)

(acyclicity) L2(A) = Tr
((

I +
β

k
A ·A

)k
)
− k (4)

where k is the number of endogenous, 1 an indicator function, and β > 0 a scaling hyperparameter.

Optimisation problem We can now state the general learning objective for Causal CGMs. Given
(1) a set of entities represented by their feature vectors x ∈ X ⊆ X (i.e. the input) and (2) a set of
annotations for each exogenous variable v ∈ V ⊆ V (i.e. the labels), we wish to find functions ζ, s,
f , together with the adjacency matrix A, that maximise the log-likelihood of v, v′, while observing x
(or equivalently u = ζ(x)):

L =

endogenous copies’ prediction︷ ︸︸ ︷
Eu,v′∼p(u,v′)[− log p(v′ | u)] +λ1

endogenous variables’ prediction︷ ︸︸ ︷
Ev∼p(v|do(v′=v),u)[− log p(v | do(v′ = v), u)] +λ2

graph priors︷ ︸︸ ︷
L2(A)

where λ1,2 are hyperparameters balancing optimisation objectives (see related ablation studies in
App. H.3). Notice that we use the do-operator replacing v̂′j with labels vj to reduce leakage and
provide better gradients to the endogenous predictor f . This enables Causal CGM to be aware of
do-operations during training, making it effective in responding to do-interventions once deployed.
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Figure 3: (a) A 5-variable causal graph. (b) A ground-truth intervention fixes the error of the
prediction v̂3 to the ground-truth label v3. (c) A do-intervention sets the value of the second variable
to a constant i.e., v2 = 0. The intervention impacts v2’s effects i.e., v3,5, but does not alter v2’s causes
i.e., v1. This operation can override ground-truth interventions. (d) A do-intervention on v3 blocks
the causal effects of v2 on v5. As a result, intervening on v2 cannot alter v5 anymore.

3.4 HIGH-DIMENSIONAL ENDOGENOUS REPRESENTATION

As observed by Mahinpei et al. (2021), using scalar representations for concepts (corresponding
to endogenous copies in our context) can significantly degrade predictive performance in realistic
settings. To address this issue, and inspired by Espinosa Zarlenga et al. (2022), Causal CGMs employ
high-dimensional representations for endogenous copies v′

j . For each endogenous copy, Causal
CGMs learn a mixture of two embeddings with explicit semantics, representing the variable’s state.
This design enables the model to construct evidence both in favour of and against a variable’s state
and supports simple concept interventions, as it allows switching between the two embedding states
during interventions. Specifically, we represent the context of each variable with two embeddings:
[c+j , c

−
j ] = uj = ζ(x), c+j , c

−
j ∈ Rm. Each embedding carries specific semantics: c+j represents

the active state of the variable, while c−j represents the inactive state. Once these semantic embeddings
are computed, the final endogenous embedding v′

j for vj is constructed as a mixture of c+j and c−j ,
weighted by the endogenous state:

v′
j = v′jc

+
j + (1− v′j)c−j (5)

This formulation serves two primary purposes: (i) it forces the model to rely exclusively on c+j when
the j-th endogenous variable is active (v′j = 1) and on c−j when inactive, thereby creating two distinct
and semantically meaningful latent spaces; (ii) it enables a straightforward intervention strategy,
where one can switch between embedding states to correct a mispredicted endogenous variable.

3.5 CAUSAL REASONING AND VERIFICATION WITH CAUSAL CGM

CGMs support two kinds of interventions: ground-truth interventions, as in CBMs, and do-
interventions, as in causal models. In what follows, we first highlight how CGM’s design makes
ground-truth interventions more effective and then we describe how do-interventions can be applied
in Causal CGMs to verify properties of the model’s decision-making process.

Ground-truth interventions Causal CGMs support “ground-truth interventions” (see Figure 3b).
Ground-truth interventions are one of the core motivations behind CBMs (Koh et al., 2020). Through
ground-truth interventions, concept bottleneck models allow experts to improve a CBM’s task perfor-
mance by rectifying mispredicted concepts at test time, thus significantly improving task performance
within a human-in-the-loop setting. In Causal CGMs, however, ground-truth interventions have a
potential impact on all endogenous variables descendant of an intervened node, which may include
not only nodes corresponding to downstream tasks but also nodes corresponding to a CBM’s interme-
diate concepts. This enables a single concept ground-truth intervention to potentially improve the
prediction of intermediate concepts as well as downstream tasks.

Causal reasoning and verification: do-interventions, counterfactuals, and blocking Causal
CGMs can answer interventional and counterfactual queries related to the model’s decision-making
process using the do-operator on the unfolded SCM. Do-interventions enable manipulation of a
Causal CGM’s decision-making process by changing the value of a specific endogenous variable and
observing how it affects other variables’ distributions (see Figure 3c). In Causal CGMs, the effect
of the do-intervention is analysed through the interventional distribution, denoted as p(vi|do(vj =
κ), pa(vi)), which describes the distribution of the outcome variable vi after the intervention do(vj =
κ) has been performed. In particular, in Causal CGMs, the do-operation fixes the value of the
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intervened variable vi to a fixed constant κ ∈ {0, 1} and removes all causal dependencies from parent
variables by zeroing all values of the i-th column of the adjacency matrix:

do(vj = κ) :=

{
vj := κ, κ ∈ {0, 1}
a[:,j] = 0, (implies that: pa(vj) = ∅)

(6)

Causal CGMs also enable to answer counterfactual queries such as “What would the value of the
i-th variable have been, had the j-th variable been κ, given that we observed vi and vj?” (extended
motivation in App I). Answering these queries involves three steps (Pearl, 1995): 1) Abduction: Infer
a realisation of exogenous variables that is consistent with the observed vi and vj in the actual causal
model. 2) Action: Modify the architecture of the Causal CGMM intoMvj=κ by replacing the
structural equation for vj with κ, to simulate the intervention. 3) Prediction: Compute the value of vi
in the modified modelMκ, representing the counterfactual outcome:

(abduction) ûj = p(uj | x; θζ) (7)

(action) do(vj = κ) :=

{
vj := κ

a[:,j] = 0
(8)

(prediction) v̂i = p(v̂i | paV(vi), ui; θf ) ∀i ̸= j (9)

This formalism allows us to not only estimate the effects of hypothetical interventions but also to
explore the implications of alternative scenarios on individual outcomes, providing a powerful tool
for analysing the model’s decision-making based on interpretable causal structures.

Model verification and blocking Causal analysis enables the verification of properties of Causal
CGMs before deployment. For instance, using only the learnt causal graph, it is possible to prove
that an endogenous variable vi is independent of the variable vj by verifying that vj is not among
the ancestors of vi. Another form of formal verification, which we call “blocking”, employs the
do-intervention (see Figure 3d). Blocking allows one to formally verify the independence of a pair of
variables given a sequence of do-operations. Given a pair of variables vj and vi such that vj is an
ancestor of vi, we perform a blocking verification as follows: 1) Block: perform a do-intervention on
all child nodes of vj , 2) Verify: perform a do-operation on vj itself and observe the impact on vi. We
can easily verify that the first step makes vj and vi completely independent by observing that the
do-operation on vj no longer alters the distribution of vj .

4 EXPERIMENTS

Our experiments aim to answer the following questions:

• Concept-based performance and interpretability: Can Causal CGMs match the generali-
sation performance of equivalent black-box models and existing CBMs? Can Causal CGMs
enable more effective ground-truth interventions w.r.t. existing CBMs?

• Causal Interpretability: Are Causal CGMs causally interpretable? Can Causal CGMs
effectively block the causal effect of two causally related endogenous variables?

To answer these questions, we use four datasets: (i) Checkmark, a synthetic dataset composed of
four endogenous variables; (ii) dSprites, where endogenous variables correspond to object types
together with their position, colour, and shape; (iii) CelebA, a facial recognition dataset where
endogenous variables represent facial attributes; (iv) CIFAR10, an animal classification dataset
where the endogenous variables are extracted automatically following Oikarinen et al. (2023). Using
these datasets, we compare the proposed approach with a black box baseline and state-of-the-art
concept-based architectures: Concept Bottleneck Models (CBM) (Koh et al., 2020), and Concept
Embedding Models (CEM) (Espinosa Zarlenga et al., 2022). We also compare a version of the
proposed method (Causal CGM) where the causal graph is learnt end-to-end w.r.t. with a version
(Causal CGM+CD) where the causal graph is extracted from ground-truth labels using a causal
discovery algorithm (Lam et al., 2022) and injected into the model fixing the matrix A. Due to the
prohibitive computational complexity of the causal discovery method, this was not feasible for the
CIFAR-10 dataset We provide further details on our experimental setup and baselines in App. G.
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A comprehensive set of experiments is detailed in App. H, where the experiments presented in this
section for a subset of the datasets are extended to include all datasets. We also report an analysis of
Causal CGMs’ scalability and computational complexity in App. H.5.

We remark that, following the CBM literature, the goal of Causal CGMs is not to increase
performance but interpretability. Therefore, the experiments aim to show that our Causal CGMs’
classification performance is competitive against existing black-box models and state-of-the-art
concept-based approaches (e.g., within one percentage point) while enabling better visibility and
manipulation of its reasoning process.

4.1 KEY FINDINGS

Causal CGMs match the performance of causally opaque models. (Table 1) Causal CGMs
demonstrate robust generalisation across all datasets, yielding a predictive performance close to that
of black-box architectures with an equivalent capacity. Causal CGMs using a pre-trained causal
graph (Causal CGM+CD) tend to have slightly better label accuracy with respect to Causal CGMs
where the causal graph is learned end-to-end (Causal CGM). Causal CGMs’s low variance suggests
a consistent robustness with respect to weight initialisations over multiple training runs. Thanks to
concept embeddings, concept incompleteness settings do not have a strong impact on Causal CGMs’
performance (results in App. H.4).

Table 1: Label accuracy (↑) is computed on all endogenous variables (concepts and task).

CHECKMARK DSPRITES CELEBA CIFAR10 SEMANTIC TRANSPARENCY CAUSAL TRANSPARENCY
Black box 90.15±1.30 99.53±0.05 79.55±0.14 94.85±0.03 ✗ ✗
CBM 90.34±0.55 99.55±0.07 79.00±0.18 92.17±0.11 ✓ ✗
CEM 89.09±1.98 99.48±0.07 79.17±0.26 92.04±0.06 ✓ ✗
Causal CGM+CD 89.43±0.93 99.40±0.15 78.42±0.42 N/A ✓ ✓
Causal CGM 88.24±1.30 99.44±0.11 78.23±0.45 93.32±0.03 ✓ ✓

Ground-truth interventions on Causal CGMs improve both concept and task accuracy as
opposed to CBMs (Figures 4, 5) In Causal CGM, the causal graph induces a natural strategy for
ground-truth interventions. Indeed, the causal graph narrows down the set of variables to intervene
upon: for any given node, we can just fix mispredicted labels of the node’s ancestors as intervening
on other nodes will not have any impact. This property significantly decreases the required number of
interventions to achieve a desired outcome (e.g., to increase a downstream task accuracy), as shown in
App. H. Another advantage of Causal CGM consists in the hierarchical nature of inference that allows
ground-truth interventions to impact all endogenous variables descendant of an intervened node.
In particular, ground-truth interventions may affect not only nodes corresponding to downstream
tasks (as in CBM and CEM), but also nodes corresponding to a CBM’s intermediate concepts. We
experimentally verify this property and its impact by calculating—for nodes that were not intervened
upon (including both concepts and tasks)—the change in accuracy before and after ground-truth
interventions were applied on their ancestors. Our results (Figure 4 and App. H.1) show that Causal
CGM improves nodes accuracy by ∼ 15 percentage points after only 7 ground-truth interventions
on CelebA. CBM and CEM, instead, achieve a similar performance only after intervening on all
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Figure 4: Impact of ground-truth interventions
on non-intervened nodes (↑). Intervention on
Causal CGM improves both concept and task
accuracy.
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concepts as their architecture assumes all concepts to be mutually independent. Focusing solely on
concept-level analysis, Causal CGM enhances concept accuracy by up to ∼ 25 percentage points,
compared to CBM and CEM, where a concept intervention does not impact the accuracy of other
concepts (Figure 5). Causal CGM’s advantage increases with the number of concepts and connections,
as a single intervention can impact a higher number of nodes in the causal graph.

Causal CGMs’ endogenous predictors are causally interpretable (Figures 6a, 6b) In Causal
CGM the decision-making process is causally interpretable and can be analysed by visualising the
learnt causal graph and structural equations as in a structural causal model, as shown in Figure 6a
for CelebA and in Figure 6b for Cifar10 (more results in App. H.2). The first image shows how
Causal CGM exploited known biases in CelebA to infer facial attributes. For instance, Causal CGM
predicts the attribute “wearing lipstick” directly from the attribute “attractive” and indirectly from
attributes such as “smiling” or “high cheek”, all attributes that are known to be strongly correlated
with each other in CelebA (Ramaswamy et al., 2021; Wang & Russakovsky, 2023). Similarly, in
the CIFAR-10 dataset, where concepts are automatically extracted, the model learns meaningful
relationships between concepts (Figure 6b), such as the presence of a “port” implying the presence
of a “dock”, or the connection between a “beak” and a “bird”. We can also quantify the strength of
the causal dependency between two nodes by computing the probability of necessity and sufficiency
(PNS) (Pearl, 2022). In the figure, we represent the PNS w.r.t. the leaf node by colouring each node
with a different shade of orange (more PNS of the other datasets in App. I). This shows how, for
Causal CGM, the attribute “heavy makeup” has the strongest impact on the leaf node. This high
degree of causal transparency allows users to interpret Causal CGM’s inference and can be eventually
exploited to identify potential biases, thereby supporting the assessment of the model’s counterfactual
fairness (an example of generated counterfactuals in Table 2). As a result, users can intervene directly
on the causal structure of the decision-making process and remove biases using do-interventions, as
shown in the next paragraph.

Smiling High Cheek

Heavy Makeup

Attractive

Wearing Lipstick

0.0

1.0

PN
S

(a) CelebA

Port

DockBeak

0.0

PN
S

Bird

1.0

(b) Cifar10

Figure 6: Portion of the learnt causal graph and structural equations in CelebA (on the left) and
Cifar10 (on the right). A node’s colour in the causal graph is proportional to the probability of
necessity and sufficiency w.r.t. to the child nodes.

Table 2: Examples of counterfactuals generated on CelebA obtained via do-interventions (intervened
variables are marked in red, changed variables are underlined).

Endogenous variables’ activations

Initial Predicted State Smiling, Not Attractive, Mouth Slig, High Cheek, Not Wearing Li, Not Heavy Make,
Not Wavy Hair, Not Big Lips, Not Oval Face, Not Makeup, Not Fem Model

What if I would wear lipstick? Smiling, Attractive, Mouth Slig, High Cheek, Wearing Li, Heavy Make,
Not Wavy Hair, Not Big Lips, Not Oval Face, Not Makeup, Not Fem Model

What if I would wear lipstick and also makeup? Smiling, Attractive, Mouth Slig, High Cheek, Wearing Li, Heavy Make,
Not Wavy Hair, Big Lips, Not Oval Face, Makeup, Fem Model

Causal CGMs can make two causally-related variables causally independent by blocking all
paths between these variables (Table 3) The causal transparency of the proposed approach allows
users to modify the model’s decision-making process (e.g., to de-bias the model’s inference) by
using do-interventions. In particular, we can make two causally-related variables i and j causally
independent by blocking all paths between the cause i and the effect j. We experimentally verify this
property and its impact by computing the Residual Concept Causal Effect i.e., the ratio between the
Concept Causal Effect (CaCE) (Goyal et al., 2020) obtained after and before blocking. The optimal
value of this metric is zero, corresponding to perfect causal independence between i and j (i.e., the
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optimal value for a de-biasing operation). The experimental procedure is reported in App. H.7. The
results show that, in Causal CGMs, blocking a variable in the causal graph always yields a perfect
Residual Concept Causal Effect of zero across all datasets. In contrast, applying the same procedure
in CBMs leads only to a negligible reduction in the average causal effect to 3 percentage points.
CEMs not only fail to reduce the causal effect to zero but, in some cases, even increase the causal
influence. These results underscore how Causal CGMs transparency enable users to manipulate the
model’s decision-making process to achieve desired outcomes, as opposed to existing CBMs.

Table 3: Residual Concept Causal Effect (↓) between causally-related variables having blocked all
paths between the two variables with do-interventions on the causal graph. The optimal value is zero
corresponding to perfect causal independence. (see App. H.7 for further clarification)Values above
100% mean that the causal effect increased instead of decreasing.

CHECKMARK DSPRITES CELEBA CIFAR10
Black box N/A N/A N/A N/A
CBM 97.99±5.64 100.00±0.70 97.84±2.13 100.00±0.00

CEM 102.58±12.95 100.00±4.62 106.00±0.50 100.00±0.00

Causal CGM+CD 0.00±0.00 0.00±0.00 0.00±0.00 N/A
Causal CGM 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

5 DISCUSSION

Related works Causal CGMs present substantial advantages compared to the state of the art. Com-
pared to most causal feature-attribution methods (e.g., (Chattopadhyay et al., 2019)), Causal CGMs
focus on high-level human-interpretable concepts. Causal CGMs differ from existing CBMs in
their approach to intervention and causal relationships. Unlike vanilla CBMs, where concepts are
direct, independent causes of the target, Causal CGMs incorporate richer causal structures. This
enables human-in-the-loop corrections to mispredicted reasoning steps, improving both downstream
accuracy and explanation fidelity. Causal CGMs are also more flexible than existing relational
CBMs (Barbiero et al., 2024) where concept relations are assumed to be provided a priori. The
closest methods to Causal CGMs are post-hoc causal concept-based explainability techniques, like
DiConStruct (de Oliveira Moreira et al., 2024) and conceptual counterfactual explanations (Abid
et al., 2021). These use surrogate causal models to emulate a black box’s predictions. However,
as Rudin (2019) notes, matching predictive behaviour does not guarantee structural similarity in
decision-making, making surrogate models unreliable explanatory proxies. Causally interpretable
by-design architectures, such as Causal CGMs, do not suffer from this issue.

Limitations and future works Our method’s limitations stem from those of CBMs and causal
reasoning. The quality of learnt causal graphs depends on dataset quality and annotations; missing or
noisy labels may lead to suboptimal graphs. Like generalised PGMs, Causal CGMs unfold easily
when the final graph is acyclic. Cyclic variables remain inferable but require special unfolding
techniques, which future work may explore. Finally, a Causal CGM’s learnt graph represents the
model’s inference, not necessarily the data-generating process, making it suitable for verification and
control but not for understanding the dataset’s distribution.

6 CONCLUSION

Causal opacity represents a key open challenge at the intersection of deep learning, interpretability,
and causality. Causal CGMs address this challenge by employing an architecture which makes
the decision-making process causally transparent by design. This makes Causal CGMs reliable
and verifiable compared to both usual DL architectures and standard (non-causal) CBMs. The
results of our experiments show that Causal CGMs support the analysis of interventional and
counterfactual scenarios—thereby improving the model’s causal interpretability and supporting the
effective verification of its reliability and fairness—and enable human-in-the-loop corrections to
mispredicted intermediate reasoning steps, boosting not just downstream accuracy after corrections,
but also accuracy of the explanation provided for a specific instance. As a result, advancing this
research line could significantly improve the reliability and verifiability of concept-based deep
learning models, thus supporting their deployment in real-world applications.
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A CAUSAL EXPLAINABILITY, CAUSAL OPACITY, AND CAUSAL DISCOVERY

Deep Learning (DL) models have a pervasive impact on many areas of contemporary research and
society (Baldi, 2021). Despite this success, there is growing concern about the widespread real-world
application of DL, particularly in sensitive domains (Dignum, 2019). This is partly due to lack of
causal explainability of these models, which undermine their robustness, fairness and generalisability
in out-of-distribution context (Schölkopf et al., 2021). Causal explainability, in particular, is a multi-
faced issue, which includes a variety of different, albeit related, problems (Termine & Primiero, 2024).
One such problem is that of causal discovery and concerns the possibility of using a model to detect
and understand the causal mechanisms of the data generating process (Pearl & Mackenzie, 2018;
Pearl, 2019; Schölkopf et al., 2021; Kaddour et al., 2022). An equally important but distinct problem
is that of causal opacity, which denotes the difficulty of users to grasp and understand the “hidden”
causal structure that underlines the predictions delivered by a given model (see Figure 1a). This
problem can be better understood in the light of Pearl’s framework of causality (Pearl, 2009; 2019),
which relates causal understanding to the ability of an agent to answer what-if type of questions. In
particular, Pearl identifies three different kinds of what-if questions organised in a hierarchy of levels.
At the bottom level we have observational questions, which concern the actual state of affairs one
can observe in data. At the intermediate level we find interventional questions, which concern the
effects of intervening on the actual state of affairs and fix the value of some variable to a pre-defined
one. Finally, the top level encompasses counterfactual questions, which concern an hypothetical
state of affairs that could have been occured but it is not the actual one. The three levels provide a
measure of the causal understanding that an agent has of a given target-system. Agents that answer
only observational questions do not possess any causal understanding of the target system; agents
with an intermediate level of causal understanding can answer interventional questions, whereas a
complete causal understanding is required for counterfactual questions.

In this paper, we propose to involve Pearl’s hierarchy to define and measure the causal opac-
ity/transparency of a DNN model based on the ability of its users to answer interventional and
counterfactual questions concerning the structure of its inferential behaviour (e.g., “what happens if I
fix the feature age to a value greater than 50?” or “what the model’s prediction would have been if the
feature age had taken a value greater than 50 instead of lower then or equals to 50?”). In this regard,
complete causal transparency require that users can answer both interventional and counterfactual
questions concerning the model’s inferential behaviour, whereas if only observational questions can
be addressed (i.e., questions regarding the input-output associations of the model), then the model
results completely causally opaque: this is notably the case of the majority of DNNs considered in
contemporary AI research.

Notice that causal opacity is fundamentally distinct from the problem of causal discovery, which
concerns the causal structure of the world and not that of a model’s inference. To clarify this point,
consider a simple rules-based model as the one described in Fig. 7.

Figure 7: Rules-based Model M1

This model is causally transparent as users can easily compute interventional and counterfactual
questions concerning its inferential behaviour (e.g., “what if the age of the patient would had been
≥ 50 instead of < 50”?). However, causal transparency does not imply that the causal structure of
the model’s inference (Fig.8a) resemble the causal structure of the world (Fig. 8b), which remains a
very distinct animal.

To ensure that a model is causally transparent and matches the causal structure of the world, indeed,
a suitable combination of causal transparency and causal discovery techniques is usually required.
However, causal transparency per-sé is a fundamental requirement and sufficient for a variety of tasks,
such as establishing the model’s fairness (especially within the popular framework of counterfactual
fairness (Kusner et al., 2017)). Consider the model in Fig. 9, which is a slightly modified version of
the model depicted in Fig. 7. The causal transparency of the model makes it easy for users to verify
the un-fairness of its inferential behaviour (stemming from the fact that the model uses the variable
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Risk of Hearth Attack
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Risk of Hearth Attack
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Figure 8: A graphical representation of the causal structure of M1’s inferential behaviour (a) as
opposed to the real causal structure of the world (b). As M1 uses the variable Income as a predictor of
the variable Risk of Hearth Attack, a causal edge is present between the two variables in a. This edge
is not present in b as no direct causal connection exists between the two variables in the real world.

(a)

Age Income

Risk of Hearth Attack

Gender

(b)

Figure 9: (a) Slightly modified version of M1, and (b) a graphical representation of the causal
structure of its inferential behaviour.

gender to predict the variable income), and implement suitable corrections (e.g. remove the causal
link between gender and income).

B DERIVATION OF CAUSAL CGMS

In the absence of causal priors, Causal CGMs need to learn causal dependencies between high-level
features that lead to the model becoming more effective in solving its designated task. As a result, we
can formally describe Causal CGMs using a generalised probabilistic graphical model (PGM) that
extends a traditional PGM by allowing cycles:

Definition B.1 (Generalised Causal Concept Graph Model). Given an observed input feature x, a
set of k ∈ N latent factors ui ∈ U each associated with a high level interpretable variable vi ∈ V , a
Generalised Causal Concept Graph Model is the generalised probabilistic graphical model (PGM)
G = (N , E) with nodes N = {x} ∪ U ∪ V and edges E =

{
(x, ui) | ui ∈ U

}
∪
{
(ui, vi) | i ∈

{1, · · · , k}
}
∪ {(vi, vj) | vi, vj ∈ V, vi ̸= vj} which represents the joint conditional distribution

p(v, u | x):

x

u1

u2

. . .

uk

v1

v2

. . .

vk (10)

The cyclical nature of Causal CGMs comes from the necessity to model all possible dependencies
among variables vi. Notice that the model is uniquely identified by the set of all conditional probability
distributions corresponding to the arrows in the graph. Unfortunately, in generalised PGMs, the model
does not easily factorise in terms of such distributions due to the cycles. To deal with cycles while
maintaining the independencies induced by the graph structure, we can use an unfolding semantics
for cyclical PGMs (Baier et al., 2022). This semantics is based on the choice of a “cutset” i.e., a
specific set of nodes Q ⊆ N in the PGM such that every cycle in the PGM contains at least one
node in Q. Intuitively, by unfolding the nodes in the cutset, all cycles are broken leaving us with a
standard acyclical PGM. The consistency between the semantics of the original cyclical PGM and the
unfolded acyclical PGM is only valid in the limit of infinite unfolding (Baier et al., 2022). However,
when computing the likelihood of an observed complete set of variables vi ∈ V , modelling one
single unfolding (i.e., a single transition) suffices for learning the conditional probability distributions

15



Published as a conference paper at ICLR 2025

among the variables in V , as all the variables become conditionally independent on each other. As
a result, we can define a Dissected Causal CGM as the one-step unfolding of the Causal CGM in
Definition B.1:

Definition B.2 (Dissected Causal CGM). Given a Causal CGM, let V ′ = V be the cutset. Then,
the dissected Causal CGM G = (N ∪ V ′, EV′) is an acyclic PGM obtained by extending the
generalised PGM by (i) adding a copy of all cutset nodes V ′ = {vi | vi ∈ V}, (ii) adding a
new set of edges directed from parents of cutset’s nodes to the generated copies V ′ i.e., EV′ =
{(a, b) | (a, b) ∈ E , b ∈ V ′} ∪ {(a, b) | (a, b) ∈ E , b /∈ V ′}, and (iii) defining an initial probability
distribution for the new copies p(v′|u) given the latent variables. The resulting PGM, factorised as
p(v, v′, u | x) = p(v | v′, u)p(v′ | u)p(u | x), is:

x

u1

u2

. . .

uk

v′1

v′2

. . .

v′k

v1

v2

. . .

vk

(11)

C PROOF OF THEOREM 3.2

Proof. Let us consider the graph G∗ = (V ∪ roots(G′), {(vi, vj) | vi, vj ∈ V, (vi, vj) ∈ EG′} ∪
(v′i, vj)|v′i ∈ roots(G′)). We will first prove that this graph is isomorphic to G′ for all nodes V and
then that the conditional probabilities are equivalent.

The graph G′ is defined with nodes V ∪ V ′, where V represents the endogenous variables and V ′

represents copies of the same high-level variables. Hence, the set of nodes V is the same for both
graphs by definition. In G′, the edge set EG′ consists of edges (v′i, vj) between nodes in V ′ and V .
Specifically, each v′i ∈ V ′ is connected to vj ∈ V , where v′i ̸= vj . In G∗, the edge set EG∗ consists of:

• edges (vi, vj) between nodes in V , which are present if (vi, vj) ∈ EG′ ,

• edges (v′i, vj) where v′i ∈ roots(G′), representing connections between the root nodes and
their corresponding child nodes.

which represent a one-to-one correspondence between the edges in EG′ and EG∗ . Thus, the two graphs
are isomorphic.

Now, we prove that for all nodes vi ∈ V \ (roots(G′) ∪ ch(roots(G′))), the conditional probabilities
are equivalent: p(vi | paV′(vi), ui; θf ) = p(vi | paV(vi), ui; θf ). In G′, the conditional distribution
of a node vi ∈ V depends on its parents paV′(vi), which are nodes in V ′, as well as the latent
factors ui. Since V = V ′ by Def. 3.1 and the graphs G′ and G∗ are isomorphic for all V nodes,
the parent set paV′(vi) in V ′ corresponds directly to the parent set paV(vi) in V , up to the bijection
between the two sets. Under full observability (the training conditions of CGMs), conditional queries
of the form p(v| all but v) are just inspections of the conditional probability table. As a result,
p(vi | paV′(vi), ui; θf ) and p(vi | paV(vi), ui; θf ) correspond to repeating the same query on the
same conditional probability table. Therefore, for all nodes vi ∈ V \ (roots(G′) ∪ ch(roots(G′))), we
can write: p(vi | paV′(vi), ui; θf ) = p(vi | paV(vi), ui; θf ).

D NEURAL PARAMETRIZATION OF CONCEPT GRAPH MODELS

We can interpret the factors of a dissected Causal CGM as follows: p(uj | x; θζ) is the exogenous
encoder, i.e., a deterministic distribution that is parametrised by a neural network ζ : X → U . In
CBMs, this function represents the input encoder. In causal CGMs we use the exogenous encoder
to predict the value of exogenous variables as we consider that the observed input (e.g., an image’s
pixels) holds most of the contextual variability required to infer exogenous variables. For instance,
an image provides information about background, lighting conditions, and object locations. All this
information is used to anchor the endogenous predictor to a specific context and to correctly infer
the values of the exogenous variables and the endogenous roots of the causal graph. The exogenous
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encoder ζ generates exogenous variables ui ∈ U mapping raw input features x (e.g., an image’s
pixels) to latent embeddings ûi ∈ Rq, q ∈ N. In practice, this process mirrors the generation of
context vectors in Concept Embedding Models to avoid information bottlenecks which may negatively
affect the model’s accuracy (Espinosa Zarlenga et al., 2022). First, the encoder ψ : X → H maps
raw features to a latent code h ∈ H . Then, a pair of neural networks {ϕ+i , ϕ−i } map the latent code
into two different embeddings whose concatenation [ϕ+i (h), ϕ

−
i (h)]

T corresponds to the exogenous
variable Ui of the i-th concept:

(exogenous variables) ûi = ζ(x) = [ϕ+i (ψ(x)), ϕ
−
i (ψ(x))]

T . (12)

In contrast, p(v′j | uj ; θs) is the copies predictor. This is the product of k independent Bernoulli
distributions whose logits are parameterised by a neural network s : U → V . In CBMs, the
composition of the exogenous encoder and the concept predictor is often called concept encoder g =
ζ ◦s. In causal methods, this function represents a (supervised) causal feature learner (Kaddour et al.,
2022). The copies predictor s generates endogenous copies v′i ∈ V from latent embeddings ûi. This
is obtained using a neural network classifier s : U → V as a scoring function as in (Espinosa Zarlenga
et al., 2022):

(endogenous copies) v̂′i = s(ûi) = σ
(
Wsûi + bs

)
(13)

Finally, p(vi | paV′(vi), ui; θf ) is the endogenous predictor. This distribution is the product of k
independent Bernoulli distributions whose logits are parameterised by a neural network f : V k×U →
V . The input to this function paV′(vi) (representing direct causal dependencies) is weighted by a
learnable adjacency matrix M ⊆ Rk×k, where each learnable weight aij models the strength of
the dependency of vi from its parents v′j . In CBMs this function is called a task predictor (Koh
et al., 2020) and intuitively represents the analogous of the structural equations that model causal
mechanisms in SCMs (Kaddour et al., 2022). The endogenous predictor generates the endogenous
variables v̂i ∈ V by considering exogenous variables ûj and copies v̂′j with j ̸= i. First, the function
ω : V × U → Rz generates endogenous embeddings v̂′

j using exogenous variables ûj and copies v̂′j ,
following (Espinosa Zarlenga et al., 2022). Then, all endogenous embeddings are weighted by the
strength of the dependency aij and aggregated using a deepset-like neural network fi : Rz×k → [0, 1]
which maps endogenous embeddings to endogenous predictions:

(endogenous embeddings) v̂′
j = ω(v̂′j , ûj) = v̂′jϕ

+
j (ψ(x)) + (1− v̂′j)ϕ−j (ψ(x)) (14)

(endogenous variables) v̂i = fi
(
{aijv̂′

j}j∈{1,...,k}
)
. (15)

In order to learn explicit structural equations, existing logic-based aggregation methods can be used
from the concept literature (Barbiero et al., 2022; 2023; Debot et al., 2024). App. F describes in more
detail their adaptation in Causal CGM.

E UNFOLDING CGMS

Notice how learning a DAG together with Definition B.2 allows to unfold a Causal CGM’s endogenous
predictor applying a directed message passing on the associated structural causal modelM, ensuring
that the values of endogenous variables are derived solely from the nodes that are their ancestors on
the causal graph (see Figure 10). As a first step, we compute the exogenous variables for all nodes.
We then predict the values of endogenous variables in root nodes in the learned DAG from their
corresponding exogenous variables. Following this, we can generate the endogenous embeddings for
root nodes and aggregate endogenous embeddings to compute the value of endogenous variables of
each child node. We repeat this process until all leaf nodes of the graph are reached. We can obtain
this by replacing in Eq. 14 the endogenous copies v̂′j with the parents of the endogenous variable vi:

(unfolding) v̂i = fi ({aijω(v̂j , ûj)}) , ∀i, j ∈ V (16)

Note that this causal unrolling guarantees two key properties (see Figure 3a and Fig. 10): (1)
modifying the value of a cause (parent node) will impact the effect (child node) in our model, (2)
conversely, intervening upon an effect does not alter the cause. This is because, in our model,
information flows sequentially following the graph, mirroring the fundamental nature of causal
effects. Consequently, this layer not only facilitates the computation of task predictions but also
enables the exploration of causal relationships through do-interventions and counterfactual analysis.
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Figure 10: Unfolded Causal CGM’s endogenous predictor.

In App. H.6 we explain why 1-step unfolding of the causal graph during training is equivalent to any
k-step (k > 1) and empirically show related results.

In rare cases, some edges with very small weights may still make the adjacency matrix A cyclic. At
inference time, we address this by iteratively removing the edges with the smallest weights from the
cycles until the graph becomes a DAG.

F ARCHITECTURE

Initialisation of adjacency matrix Causal CGM provides versatile initialisation options for the
adjacency matrix A, tailored to specific scenarios. In certain instances, weights can be derived from
domain expertise or provided along with training data and labels. Without such information, weights
can be directly inferred from training labels through causal structural learning algorithms (Kaddour
et al., 2022) as a preliminary step. These approaches guide the model towards a predetermined
decision-making pathway. Alternatively, weights can be learnt concurrently during the Causal CGM
training phase, as outlined in Section 3.3. These weights may be initialised either randomly or based
on the conditional entropy between labels, providing a better starting point. Additionally, a hybrid
approach is feasible, where certain elements inA are fixed while others remain trainable. For instance,
a causal structural learning algorithm might yield a Partial Ancestral Graph (PAG) with undirected
edges, allowing for the definition of directed edges and learning the direction for others to avoid cycle
formation.

Causal mechanisms In Causal CGM, the function fi corresponds to a causal mechanism in a SCM.
Such mechanisms are typically formalised via structural equations. For instance, linear models
are a common choice for label predictors in Concept Bottleneck Models (Koh et al., 2020) where
endogenous embeddings are aggregated using a permutation invariant aggregator function ⊕ (such as
the element-wise maximum, or sum):

v̂i = σ

Wi

⊕
j∈{1,...,k}

aijv̂j + bi

 (17)

However, other options are also available to increase the expressiveness and interpretability of the
decision-making process, such as Deep Concept Reasoning (Barbiero et al., 2023) class predictors,
which build logic-based formulae to obtain class label predictions using endogenous embeddings:

v̂i ←
∨

x∈Xtrain

∧
j∈{1,...,k}

lj(x) =
∨

x∈Xtrain

∧
j∈{1,...,k}

(ρij(aijv̂j) ⇐⇒ v̂′j) (18)

where lj denotes the literal of relevant v̂′j representing the variable’s sign or “polarity” in the logic
rule (i.e., either vj or ¬vj). For example, given three variables v1, v2, v3, v4, DCR can predict the
endogenous variable v2 using the rule v2 ← (v1 ∧¬v3)∨ (¬v1 ∧ v3) which highlights the underlying
causal mechanism linking v1, v3, v4 to v2 (notice how DCR can also learn to remove irrelevant
variables such as v4).
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Compositional generalisation The training procedure of Causal CGMs is highly parallelizable and
modular as only direct connections need to be trained together (e.g., a → b and b → c), while the
model takes care of distant connections in an indirect way. For instance, the connection a→ b→ c
can be obtained as a composition of two different independent training procedures for a → b and
b→ c. As a result, it is trivial for a Causal CGM to make the causal graph grow even at test time (see
Figure 11). This can be done by composing two different graphs obtained by independent training
procedures, encoders, datasets, or data types. We note that this is not possible in standard CBMs,
which need to re-train the task predictor from scratch whenever new concepts or tasks are added to
the mix. Moreover, this modularity enables a form of out-of-distribution compositional generalisation
as it creates new distant connections between variables that were never part of the same training
procedure (e.g., a and c in the previous example).

Figure 11: Compositional generalisation in Causal CGMs: two different Causal CGMs architectures
are trained independently and then composed only at test time, thus creating a larger graph and
allowing out-of-distribution causal inference.

G EXPERIMENTAL SETUP

G.1 DATASETS

In our experiments we use three different datasets:

• Checkmark — The dataset consists of tabular data with three features, each ranging from
−1 to 1 (denoted as a, b, and c). The target variable d can be either 0 or 1. Each feature is
annotated with a concept that indicates whether it is positive or negative. The dataset also
incorporates causal relationships among the features. For example, feature c is defined as
the inverse of feature b. The target d is set to 1 when both features a and b are positive. This
data set is used to test our hypothesis in a straightforward and controlled setting.

• dSprites (Matthey et al., 2017) — The dataset comprises images featuring one of three
objects (square, heart) in various positions and sizes. The defined concepts include: (1)
object shape (square or heart), (2) object size (small or large), (3) vertical position (top or
bottom), (4) horizontal position (left or right), (5) object colour (red or blue). Based on
these, causal relationships and a binary classification task are established: if the object is a
heart on the right side, it is large; if a heart is at the top of the image, it is red; the label is
positive if the object is both red and large.

• CelebA (Liu et al., 2015) — The CelebA dataset features celebrity images annotated with
various attributes, including lipstick presence, gender, facial shape, and hair type. Gender is
used as the classification label. This dataset is chosen for the presence of correlations and
biases, such as the association between wearing lipstick and being identified as female.

• CIFAR-10 (Krizhevsky, 2009) — The CIFAR-10 dataset consists of 60,000 colour images
in 10 different classes, such as cats, dogs, and cars, with no pre-defined concepts. To extract
concepts, we follow the Label-Free Concept approach described in Oikarinen et al. (2023),
where the concept set is extracted using auxiliary Vision Language Models (VLS), which are
then used to establish causal relationships and perform classification tasks. This dataset is
used to test our model’s ability to handle complex visual features in a setting where concepts
are not obtained through human annotations.

G.2 BASELINES

We evaluated our approach against three established baselines:
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• Black Box: This model employs a single predictor that processes the input to simultaneously
predict the task label and all relevant concepts. It lacks interpretability and does not
differentiate between the importance of task labels and concepts.

• Concept Bottleneck Model (CBM) (Koh et al., 2020): This model first uses a concept
predictor to infer concepts from the initial input, followed by a task label prediction based
on these concepts. It is designed to be interpretable and treats concepts as significant
informational to predict the task label.

• Concept Embedding Model (CEM) (Espinosa Zarlenga et al., 2022): Comprising n
context encoders, one for each concept, this model predicts each concept based on its
respective context before predicting the final task label. It treats concepts and task labels in
the same way as CBM.

In our experiments, all baselines are trained using a joint training technique commonly used in
CBMs (Koh et al., 2020). In joint training, the model is trained end-to-end with the task predictor
directly taking the concept encoder’s outputs as input, enabling simultaneous optimization of both
concept and task predictions.

G.3 EXPERIMENTS

In our experiments, we evaluate our approach by examining four key dimensions: (i) performance
accuracy, (ii) influence of ground-truth interventions, (iii) identification of causal structures, and (iv)
blocking for the influence of one variable on another.

To evaluate the first dimension, we conducted a comparative analysis of our approach (using both
a learned and a predefined graph) against Black Box, CBM and CEM. This was to determine if
graph-based inference would decrease model performance. For this assessment, we calculated the
model’s accuracy in predicting all concepts and the task. Typically, these metrics are calculated
independently; however, in our study, we treated tasks and concepts equivalently, considering them
collectively as labels.

In the second aspect, we evaluate our approach by comparing it against CBM and CEM in terms of
response to ground-truth interventions. Enhancing the impact of interventions in the Concept-Based
Model is crucial for improving the role of humans in the loop. In our experiments, we initially
perturbed the inputs to reduce label prediction accuracy, following methodologies established in
prior research (Espinosa Zarlenga et al., 2022). Subsequently, we implemented interventions on the
most inaccurately predicted concepts in CEM and CBM. This intervention strategy is considered
highly effective, as noted in (Shin et al., 2023). For the Causal CGM, interventions began with
concepts that have a higher number of descendant nodes in the model’s graph, aiming to maximise
the intervention’s effectiveness. To assess this dimension, we measured the change in accuracy for
non-intervened labels before and after the interventions on n concepts (Delta Label Accuracy).

In the third aspect, we visualise the DAG utilised during the inference stage by Casual CEM and
derive the corresponding logic equations. We generate Sum of Product logic rules from a table that
lists all possible combinations of input concept values alongside the most frequent prediction for
each combination derived from the training set, similarly to what done by (Ciravegna et al., 2023).
It is crucial to note that while these logic rules are general for the model decision-making process,
exogenous information may alter predictions for particular instances.

In the final dimension of our analysis, we compare Causal CGM, which operates on a specified
graph, against CBM and CEM in terms of their efficacy in mitigating a variable’s influence on the
task. Specifically, we perturb the prediction of a concept and then, following the graph structure
utilised by Causal CGM, we intervene with the ground truth label on all descendant nodes (blocking).
Consequently, in Causal CGM, all links between the altered concepts and the labels are deleted, a feat
unachievable in CBM and CEM. To assess this characteristic, we calculated the Residual Concept
Causal Effect, ratio of the Concept Causal Effect (Goyal et al., 2020) post- and pre-application of
the blocking techniques. Ideally, this ratio should be zero, indicating that after blocking, the altered
node’s value no longer influences the outcome of the task.
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G.4 IMPLEMENTATION DETAILS

Additional details To maximise the efficacy of interventions in Causal CGM, the second term of the
loss can be regularised to maximise the average Causal Concept Effect (CaCE) (Goyal et al., 2020)
as follows:

LCaCE =
1

n

n∑
i=0

|p(vi|do(vi,r = 1)− p(vi|do(vi,r = 0)|

Here, r represents a randomly chosen index for each sample, which is used to select one of the
concepts following Espinosa Zarlenga et al. (2022). This regularisation can be weighted using an
hyperparameter, λ3. Moreover, for all the experiments where the graph is learnt end-to-end, we
initialise the learnable adjacency matrix with the conditional entropy between each pair of values,
extracted from the training set.

Hyperparameters All baseline and proposed models were trained for varying epochs across different
datasets: 500 for Checkmark, 200 for dSprites, 30 for CelebA and 25 CIFAR10. The optimal epoch
for each was determined based on label accuracy on the validation set. A uniform learning rate of
0.01 was applied across all models and datasets. For the CBM and CEM models, both concept and
task losses were equally weighted at 1. This weighting scheme was also applied to the loss terms for
endogenous copies’ prediction, endogenous variables’ prediction (λ1), and graph priors (λ2). The
weight assigned to the loss terms in our models to maximise CaCE is 0.05. Additionally, γ was
treated as a learnable parameter, initialised at 0.1, and β was set to 1. All experiments were conducted
using five different seeds (1, 2, 3, 4, 5).

Code, licenses and hardware For our experiments, we implement all baselines and methods in
Python 3.9 and relied upon open-source libraries such as PyTorch 2.0 (Paszke et al., 2019) (BSD
license), PytorchLightning v2.1.2 (Apache Licence 2.0), Sklearn 1.2 (Pedregosa et al., 2011) (BSD
license). In addition, we used Matplotlib (Hunter, 2007) 3.7 (BSD license) to produce the plots
shown in this paper. Two datasets we used are freely available on the web with licenses: dSprites
(Apache 2.0) and CelebA, which is released for non-commercial use research purposes only. We also
introduce the Checkmark dataset and we described it in this section. We will publicly release the code
with all the details used to reproduce all the experiments under an MIT license. All the experiments
except the CIFAR10 ones were performed on a device equipped with an M3 Max and 36GB of RAM,
without the use of a GPU. The CIFAR10 experimentswere conducted on a workstation equipped
with an NVIDIA RTX A6000 GPU, two AMD EPYC 7513 32-Core processors, and 512 GB of
RAM.Approximately 60 hours of computational time were utilised from the start of the project,
whereas reproducing the experiments detailed here requires only 8 hours.

H ADDITIONAL RESULTS

In this section, we include all the experiments shown in Section 4 for the four datasets in more detail
and an ablation study on the value of λ3.

H.1 GROUND-TRUTH INTERVENTIONS

Figure 12 illustrates the performance comparison among Causal CGM (using both the provided
and learnt graphs), CBM, and CEM regarding the effects of interventions. Delta Label Accuracy,
which quantifies the change in label accuracy before and after interventions on a growing number
of concepts, is calculated solely for the concepts not directly intervened upon. In particular, Causal
CGM demonstrates superior performance when interventions involve fewer concepts. This superior
performance is attributed to the propagation of intervention effects through all descendant nodes
in Causal CGM, unlike CBM and CEM, where the impact is confined to the final task without
adjustments to other concepts. The most significant performance gain, approximately 15 percentage
points, is observed in CelebA after seven interventions. This effect is particularly pronounced in
scenarios with multiple concepts, such as in CIFAR10 and CelebA. In contrast, for simpler tasks
with fewer concepts, like Checkmark, the benefits of our approach are less pronounced. The gap
observed in CIFAR-10 between CBM and Causal CGM after all interventions is partly due to our
evaluation setup: when perturbing the input prior to intervention, we occasionally generate out-of-
distribution (OOD) concept embeddings, which only affected the CIFAR10 experiment. This reduces
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the effectiveness of interventions for embedding-based models, while scalar-based interventions in
CBMs remain unaffected. Despite this challenge, our model still achieved approximately 15% higher
accuracy overall, with fewer required interventions. Furthermore, when focusing solely on the effects
of interventions on the task label, the causal graph utilised by Causal CGM allows us to identify
beforehand the specific subset of concepts influencing the task prediction. This pre-identification
significantly decreases the required number of interventions to achieve the desired outcome. Figure
13 demonstrates that Causal CGM attains comparable improvements in task performance but after
interventions on only three or four concepts, in contrast to the ten and eleven concepts required
by CEM and CBM, respectively. The elevated standard error observed in Causal CGM with the
learnt graph is attributed to the variability of the graph structure, which significantly influences the
outcomes of interventions.

H.2 CAUSAL STRUCTURES

Figure 14 illustrates the adjacency matrices corresponding to the DAGs used by Causal CGM for
inference in the first three datasets. On the other hand, Tables 4, 5, and 6 present the logic rules derived
from the adjacency matrices depicted in the aforementioned figure. Notably, in the Checkmark dataset,
both configurations successfully identified the ground truth graph and the correct logic rules. In the
case of dSprites, the DAG identified through causal structural learning (GRaSP (Lam et al., 2022))
accurately discovers the causal graph and associated logic rules. Although the end-to-end model
accurately identifies the correct relationships between concepts and tasks, it proposes alternative
methods for concept prediction. It is important to note that even though the model did not identify
the correct causal graph, the model was still capable of performing causal inference with the existing
graph. In the CelebA data set, where there is no ground truth for either the graph or logic rules,
the findings by GRaSP and the end-to-end model appear plausible and reveal biases inherent in the
dataset, such as the strong correlation between makeup use and gender or potential causal links like
smiling and a slightly open mouth. This scenario underscores the benefits of employing Causal CGM,
particularly in demonstrating how specific concepts are used to predict other concepts and tasks.

H.3 ABLATION STUDY

In Tables 7, 8, and 9, we present the outcomes of varying the hyperparameter λ3, which weights
the loss term designed to enhance the CaCE effect. The results indicate that optimising this loss
term contributes to improved CaCE scores, thereby augmenting the efficacy of the interventions.
Nonetheless, excessively high values of λ3 may lead to diminished model performance, as it tends to
prioritise boosting the CaCE score at the expense of accurate predictions.

Table 4: Logic rules extracted for the Checkmark dataset from Causal CGM+CD with a given DAG
and from Causal CGM with a learnt DAG. A term which refers to an exogenous variable is omitted
for simplicity.

METHOD CHECKMARK

Causal CGM

a← ϵ0
b← ϵ1

c←∼ b
d← a ∧ c

Causal CGM+CD

a← ϵ0
b← ϵ1
c←∼ b
d← a ∧ c
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Figure 12: Impact of ground-truth interventions on concepts across four datasets. This figure
illustrates the variations in accuracy for non-intervened labels, comparing performance before and
after interventions on specific nodes.
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Figure 13: Impact on the task accuracy of ground-truth interventions performed on CelebA concepts.
Causal CGM+CD has received in input a causal graph, discovered with a causal structural learning
algorithm (GRaSP (Lam et al., 2022)), while Causal CGM learns it end-to-end.
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Figure 14: Adjaciency matrices representing the DAG used by Causal CGM during inference on the
three datasets. On the left side, the matrices represent the DAG learnt end-to-end by the model, while
on the right the DAG discovered with GRaSP (Lam et al., 2022). It provides a PAG starting from the
training data.
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Table 5: Logic rules extracted for the Dsprites dataset from Causal CGM+CD with a given DAG and
from Causal CGM with a learnt DAG. A term which refers to an exogenous variable is omitted for
simplicity.

METHOD DSPRITES

Causal CGM

Shape← Size
Size← ϵ1

PosY← ϵ2
PosX← ϵ3
Color← Shape
Label← Size ∧ Color

Causal CGM+CD

Shape← ϵ0

Size← Shape ∧ PosX
PosY← ϵ2
PosX← ϵ3

Color← Shape ∧ PosY
Label← Size ∧ Color

Table 6: Logic rules extracted for the Celeba dataset from Causal CGM+CD with a given DAG and
from Causal CGM with a learnt DAG. A term which refers to an exogenous variable is omitted for
simplicity.

METHOD CELEBA

Causal CGM

Smiling (S)← ϵ0
Attractive (A)← Heavy_Make

Mouth_Slig (MS)← False
High_Cheek (HC)← ϵ3
Wearing_Li (WL)← Attractive

Heavy_Make (HM)← Smiling ∧ High_Cheek
Male←∼Wearing_Li∧ ∼ Heavy_Make

Wavy_Hair (WH)← (HC ∧WL∧ ∼ Male) ∨ (HC ∧WL∧ ∼ OF)
Big_Lips (BL)← Smiling ∧ High_Cheek∧ ∼ Male∧ ∼ Oval_Face

Oval_Face (OF)← False
Makeup (M)← False
Fem_Model← (M∧ ∼ S) ∨ (M∧ ∼ Male) ∨ (M ∧ HC∧ ∼WH) ∨ (WL ∧WH ∧ BL∧ ∼ S∧ ∼ HC)

Causal CGM+CD

Smiling← Mouth_Slig
Attractive←Wearing_Li

Mouth_Slig← ϵ2

High_Cheek← Smiling
Wearing_Li← ϵ4

Heavy_Make← (Attractive ∧Wearing_Li) ∨ (Wearing_Li ∧ Oval_Face)
Male←∼Wearing_Li∧ ∼ Heavy_Make

Wavy_Hair← Makeup ∨ (Attractive ∧Wearing_Li∧ ∼ Male)
Big_Lips← Makeup

Oval_Face← Smiling ∧ Attractive ∧Wearing_Li∧ ∼ Big_Lips
Makeup← False

Fem_Model← Makeup
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Table 7: Ablation study regarding λ3 on the Checkmark dataset.

λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block
Black Box 90.15± 0.14

CBM 90.34± 0.55 4.09± 0.80 0.00± 0.00 9.45± 1.86 28.36± 5.58 27.79± 5.64
CEM 89.09± 1.98 1.75± 1.66 0.00± 0.00 4.45± 3.78 11.59± 12.76 11.89± 12.95

Causal CGM 0.05 88.24± 1.30 14.47± 2.86 0.00± 0.00 44.37± 5.58 16.15± 11.25 0.00± 0.00
Causal CGM + CE 0.05 89.43± 0.93 13.15± 2.31 0.00± 0.00 39.53± 3.62 20.99± 8.19 0.00± 0.00

Causal CGM 0.2 85.88± 3.31 11.64± 3.21 0.00± 0.00 37.55± 8.77 16.32± 15.36 0.00± 0.00
Causal CGM + CE 0.2 85.09± 2.78 16.39± 5.00 0.00± 0.00 39.69± 10.97 31.15± 19.48 0.00± 0.00

Causal CGM 0 87.86± 1.66 6.98± 2.95 0.00± 0.00 18.16± 8.29 7.39± 4.10 0.00± 0.00
Causal CGM + CE 0 87.04± 2.72 12.16± 2.92 0.00± 0.00 33.15± 9.97 14.52± 14.29 0.00± 0.00

Table 8: Ablation study regarding λ3 on the dSprites dataset.

λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block
BlackBox 99.53± 0.05
CBM 99.55± 0.07 2.77± 0.30 0.00± 0.00 8.51± 1.03 0.64± 0.70 0.64± 0.70
CEM 99.48± 0.07 0.46± 0.29 0.00± 0.00 2.45± 1.67 2.43± 4.62 2.43± 4.62
CausalCEM 0.05 99.44± 0.11 17.53± 3.26 0.00± 0.00 44.47± 10.16 34.13± 19.46 0.00± 0.00
Causal CGM + CE 0.05 99.40± 0.15 12.85± 0.59 0.00± 0.00 27.72± 3.66 28.95± 13.50 0.00± 0.00
Causal CGM 0.2 98.80± 1.24 14.13± 3.39 0.00± 0.00 37.59± 14.20 17.52± 13.41 0.00± 0.00
Causal CGM + CE 0.2 99.30± 0.13 12.90± 0.51 0.00± 0.00 34.01± 6.99 16.84± 6.79 0.00± 0.00
Causal CGM 0 99.58± 0.12 6.89± 1.55 0.00± 0.00 18.51± 5.14 12.11± 13.01 0.00± 0.00
Causal CGM + CE 0 99.51± 0.05 5.67± 1.21 0.00± 0.00 12.41± 1.82 15.15± 4.10 0.00± 0.00

H.4 CONCEPT INCOMPLETENESS AND GENERALISATION WITH A DIFFERENT NUMBER OF
CONCEPTS

Concept incompleteness does not have a strong impact on Causal CGM. As shown in the experiments
with CLIP on CIFAR, we can automatically extract new concepts if the provided ones are insufficient.
However, to quantify the impact of incompleteness on classification performances, we report an
ablation study on a CBM benchmark (Marcinkevičs et al., 2024) specifically designed to assess
concept incompleteness. This benchmark is a synthetic tabular dataset where we can control to what
degree concepts explain the variance in the downstream task (see (Marcinkevičs et al., 2024) for
details). In Figure 15 we observe that, as the concept incompleteness i increases from i = 0, where
all relevant concepts are available, to i = 0.9, where only 10% of relevant concepts are available, the
performance of CBMs drop, while that of black boxes, CEMs, and Causal CGMs do not thanks to
the use of concept embeddings.

H.5 SCALABILITY AND COMPUTATIONAL COMPLEXITY

Causal CGMs pays a small cost (at most quadratic in the number of class labels) to address causal
transparency. In terms of the number of parameters, the endogenous predictor scales linearly with the
number of concepts, as in standard CBMs. Regarding time complexity, the endogenous predictor
scales quadratically (both in train and inference) with the number of concepts. This is because, during
training, we model all concept dependencies, and, during testing, inference is performed on a DAG (a
triangular adjacency matrix in the worst case). This is a small cost in exchange for interpretability
(and not unique to our work). To better communicate our method’s scalability, we report the number
of parameters and training and inference times as we increase the number of class labels on the same
CBM benchmark used to assess incompleteness (Marcinkevičs et al., 2024). In Figure 16 we observe

Table 9: Ablation study regarding λ3 on the CelebA dataset.

λ3 Label Accuracy Average CaCE min CaCE max CaCE CaCE CaCE block
Black Box 90.15± 1.30

CBM 79.00± 0.18 0.54± 0.03 0.00± 0.00 1.67± 0.15 5.58± 2.36 5.46± 2.13
CEM 79.17± 0.26 0.27± 0.12 0.00± 0.00 1.07± 0.56 1.00± 0.45 1.06± 0.50

Causal CGM 0.05 78.23± 0.45 2.17± 1.44 0.00± 0.00 8.18± 4.38 0.04± 0.07 0.00± 0.00
Causal CGM + CE 0.05 78.42± 0.42 5.48± 0.34 0.00± 0.00 24.17± 1.32 1.24± 0.62 0.00± 0.00

Causal CGM 0.2 77.49± 0.37 1.70± 0.98 0.00± 0.00 8.95± 4.86 0.00± 0.00 0.00± 0.00
Causal CGM + CE 0.2 78.08± 0.39 6.15± 0.31 0.00± 0.00 29.57± 1.03 0.82± 0.46 0.00± 0.00

Causal CGM 0 77.42± 1.09 2.85± 0.44 0.00± 0.00 13.06± 2.65 0.00± 0.00 0.00± 0.00
Causal CGM + CE 0 78.31± 0.36 4.64± 0.13 0.00± 0.00 18.31± 2.61 1.25± 0.68 0.00± 0.00
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Figure 15: Label accuracy for different numbers of concepts with increasing concept incompleteness.
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Figure 16: Number of parameters, train and inference time.

that the impact on the number of parameters is negligible as it is mostly due to the encoder. Here
the encoder is a relatively small network, but it could be a billion-parameter in a Vision-lLanguage
Model (VLM). Training and inference time are slightly higher than baselines, but if training includes
a large encoder, say a VLM, the relative impact of the endogenous predictor would be significantly
reduced (we did not have time to train a VLM from scratch).

H.6 k-UNFOLDING ABLATION

In Causal CBM, 1-step unfolding of the causal graph during training is equivalent to any k-step
(k > 1) unfolding as any step corresponds (theoretically and empirically) to repeating the same query
on the same conditional probability table (CPT). Causal CGM learns the conditional probabilities
of the variables given its parents (i.e. the CPT of the Bayesian network). Under full observability,
conditional queries of the form p(v| all but v) are just inspections of the CPT and do not require
any reasoning on the cyclical model (which alleviates us from setting a complex k-step semantics
to unroll the cyclical model). The key observation is that the cyclical model served the purpose of
templating multiple (any) acyclical graphs jointly without making assumptions on concept relations.
During learning, the probabilities of the CPT (parameterised by NNs) are also subject to an acyclicity
objective. After learning, the resulting graph is acyclic thus inference is performed via standard
message passing along the directed acyclic graph. To show this experimentally, we report the results
on our CBM benchmark using a different number of unfolding steps and considering different levels
of concept completeness in Table 10. As expected, the results show that increasing the number of
steps does not impact Causal CGM’s classification performances.

Incompleteness ratio
0.0 0.1 0.5 0.9

Unfolding K=1 85.00± 0.14 83.70± 1.10 84.49± 0.57 85.51± 0.16
Unfolding K=2 83.78± 0.81 83.72± 0.85 85.26± 0.20 84.96± 0.14
Unfolding K=3 85.00± 0.34 83.10± 0.98 84.30± 0.47 85.32± 0.05

Table 10: Causal CGM’s accuracy with k = {1, 2, 3}-unfolding and higher concept incompleteness.
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H.7 DEBIASING VIA DO-INTERVENTIONS

We can measure the effectiveness of blocking in debiasing Causal CGMs using the following
procedure:

• Selection of Variables i and j: We randomly select a pair of concepts, i (parent) and j
(child), connected in the graph discovered by the CD algorithm or CausalCGM.

• Do-Intervention: A do-intervention is applied to the child node (j) to cut off its dependence
on the parent node (i). In our model, this intervention ensures that all subsequent nodes in
the graph become independent of the parent node, as information flow is blocked by design.

• Measuring the Impact: After the intervention, we modify the value of the parent node (i)
and measure its impact on the final label (leaf node) with i as an ancestor. If no effect is
observed, it indicates successful debiasing, as expected by our model’s design. Cutting the
edge breaks the information flow through the graph—from root to leaf—preventing the
parent node from influencing subsequent nodes.

• Comparison with Baselines: Baselines have no graph constraints, therefore the do-
intervention modifies the value of a concept but does not alter the decision-making process.
As a result, the parent node’s influence cannot be entirely removed. This contrasts our
model’s ability to block the information flow fully.

The results of this experiment are reported in Table 3 using the Residual Concept Causal Effect
(↓) between causally-related variables having blocked all paths between the two variables with
do-interventions on the causal graph. The optimal value is zero corresponding to perfect causal
independence. To explain why the optimal value is zero, consider the following example. Consider
a graph A → B → C. For this graph, the variable A is a cause of the variable C. As a result, we
expect the average causal effect of A on C to be higher than 0. Our experiment aims to show that
intervening on B makes A and C causally independent (cf. with L323-331). To show this, we apply
a do-intervention in B, removing the edge A→ B and generating two disconnected graphs: A and
B → C. Now, we expect that the residual average causal effect of A on C is 0 because there is no
longer a connection between A and C. As a result, 0 is the optimal desirable outcome.

I ANSWERING COUNTERFACTUAL QUERIES WITH CAUSAL CONCEPT GRAPH
MODELS

In our experiments, we use Causal CGMs to compute Pearl’s Probability of Sufficiency and Necessity
(PNS), which is a prototypical example of a counterfactual query (Tian & Pearl, 2000). In general, the
computation of counterfactual queries requires three key ingredients (Pearl, 2009): (i) a causal graph,
(ii) structural rules predicting an endogenous variable given its parents’ values, and (iii) information
about the exogenous variables distribution, which for us is encoded in the embeddings. In causal
CGM, all these three ingredients are available, allowing the computation of both identifiable and
unidentifiable causal queries. For the latter, as is the case of PNS, the result is given in terms of an
interval exactly as it happens in causal inference with structural causal models (with probabilistic
quantification over exogenous variables). Figure 17 illustrates the upper boundaries of the PNS tables
obtained using Causal CGM across the four datasets. Additionally, Table 11 provides an example of
counterfactuals generated on the CelebA dataset, where we first intervene on the lipstick concept,
followed by an intervention on the makeup concept.

Table 11: Examples of counterfactuals generated on CelebA obtained via do-interventions (intervened
variables are marked in red, changed variables are underlined).

Endogenous variables’ activations

Initial Predicted State Smiling, Not Attractive, Mouth Slig, High Cheek, Not Wearing Li, Not Heavy Make,
Not Wavy Hair, Not Big Lips, Not Oval Face, Not Makeup, Not Fem Model

What if I would wear lipstick? Smiling, Attractive, Mouth Slig, High Cheek, Wearing Li, Heavy Make,
Not Wavy Hair, Not Big Lips, Not Oval Face, Not Makeup, Not Fem Model

What if I would wear lipstick and also makeup? Smiling, Attractive, Mouth Slig, High Cheek, Wearing Li, Heavy Make,
Not Wavy Hair, Big Lips, Not Oval Face, Makeup, Fem Model
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Figure 17: The upper boundary of the PNS computed on the Causal CGM models on the four different
datasets. The PNS is computed between each couple of nodes that are directly or indirectly connected
in the graph.
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J CAUSAL CONCEPT GRAPH MODELS ADDRESS “CAUSAL OPACITY”, NOT
“CAUSAL DISCOVERY”

Our work is based on a fundamental yet subtle distinction between causal opacity/transparency and
causal discovery that is poorly understood in the ML literature. Although related, the two problems
are different in nature: Causal opacity/transparency refers to the problem of understanding and
manipulating the causal structure of a model’s decision-making process, and it thus is a specific
instance of what is usually referred to as the opacity or black-box problem. Causal discovery, on
the other hand, is not concerned with how the model is but rather with how the world (Boge, 2022),
i.e., it concerns determining the causal structure of the generating mechanism beyond data. This
distinction applies also to the notion of causal understanding. Indeed, we can distinguish between two
forms of causal understanding depending on whether the object of one’s understanding is the model’s
decision-making process or the world/data-generating mechanism. Notice that causal opacity (and
the related form of causal understanding) neither implies nor requires causal discovery. The causal
structure of the model’s decision-making process does not necessarily mirror the causal structure of
the world. Of course, one could argue that a good model should always resemble the world’s causal
structure, but this is not always true or even wanted (e.g., if the world is biased, we may want to
construct an unbiased model that deviates from the data-generating process of its training data).

K RELATIONS WITH CAUSAL REPRESENTATION LEARNING

If we assume a strict definition of causal representation learning (CLR) as any method that aims at
learning high-level representations of the causal-generating mechanisms of data (Schölkopf et al.,
2021), then Causal CGMs are not an example of CRL. Causal CGMs aims not to discover causal
mechanisms beyond data but to build models whose decision-making processes follow a causal
structure that users can visualize, interpret, and manipulate. This requires the model to use high-level
variables (concepts) that are meaningful for a user (as opposed to, say, an image’s pixels) and to
clearly display the causal relationships between these variables (e.g., via a casual graph).

Regardless, there are similarities between Causal CGMs and CRL. Both rely on Pearl’s formalism of
SCMs and use high-level interpretable variables and causal graphs to model causal dependencies. In
the case of Causal CGMs, however, the learned causal structure may not necessarily mirror the causal
structure of the data-generating mechanism, as it is required for CRL models.

L COMPARING DIFFERENT DECISION MAKING PROCESSES WITH CAUSAL
CONCEPT GRAPH MODELS

Causal CGMs are not identifiable in the sense that we can obtain different causal graphs by training the
model over the same dataset. This is similar to obtaining different parameter values and embeddings
when training standard deep-learning black boxes on the same data. Similarly, the training of causal
CGMs can result in different causal decision-making structures for the same task. The difference is
that in the case of the black box, we cannot compare the different models because they are (causally)
opaque. In the case of Causal CGMs, we can inspect the multiple models obtained and verify them
against desirable properties (e.g., fairness), hence adopting the best one. This distinction impacts
key properties, including identifiability. To further clarify this point, consider the following example.
In the world, there is a single ground truth causal structure (e.g., “smoking causes lung cancer”).
Guaranteeing identifiability is crucial here because it ensures that we can reliably recover the ground
truth causal graph. In contrast, causal opacity deals with DL models, which are systems that can
implement a variety of decision-making mechanisms (e.g., a valid decision mechanism for a DL
model is: “the model predicts that an individual has lung cancer and this causes the model to predict
that the individual has a smoking habit”). These mechanisms may differ even when trained on the
same data, as DL models can learn different representations to predict the same outputs. As a result,
there is no single "ground truth" causal structure to identify—multiple valid causal graphs exist,
each reflecting a different way the model processes information. This inherent variability makes
identifiability irrelevant in the context of causal opacity.
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