
5th Symposium on Advances in Approximate Bayesian Inference, 2023 1–21

Automatically Marginalized MCMC in Probabilistic
Programming

Jinlin Lai jinlinlai@cs.umass.edu

Javier Burroni jburroni@cs.umass.edu

Hui Guan huiguan@cs.umass.edu

Daniel Sheldon sheldon@cs.umass.edu

University of Massachusetts Amherst

Abstract

Hamiltonian Monte Carlo (HMC) is a powerful algorithm to sample latent variables from
Bayesian models. The advent of probabilistic programming languages (PPLs) frees users
from writing inference algorithms and lets users focus on modeling. However, many models
are difficult for HMC to solve directly, which often require tricks like model reparameteri-
zation. We propose to use automatic marginalization as part of the sampling process using
HMC in a graphical model extracted from a PPL, which substantially improves sampling
from real-world hierarchical models.

1. Introduction

Probabilistic programming languages (PPLs) promise to automate the inference in Bayesian
reasoning for users. We focus on a setting of PPLs that has had large impact in practice,
where a model is compiled to a differentiable log-density function for inference by a variant
of Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 1996). Our methods would
likely benefit other Markov chain Monte Carlo (MCMC) inference approaches as well. We
focus in particular on generative PPLs that correspond to a (directed) graphical model,
which means that random variables are defined according to a fixed sequence of conditional
distributions. This includes most applied statistical models written in generative PPLs such
as Pyro (Bingham et al., 2018), NumPyro (Phan et al., 2019), PyMC (Patil et al., 2010),
Edward (Tran et al., 2017) and TensorFlow Probability (Piponi et al., 2020). It does not
directly include Stan programs, which do not always specify a sampling procedure, though
most can be converted to do so (Baudart et al., 2021).

Despite their promise, the barrier between users and inference in PPLs is often blurred.
There may be different ways to write a model, with inference performance depending crit-
ically on the specific choice, such that users again need specialized knowledge. One issue
is: it is often possible to reformulate a generative model so that some latent variables are
generated after all observed variables, which allows them to be dropped during MCMC and
then reconstructed afterward. We refer to this as marginalization, because the variables
are marginalized while running MCMC. By reducing the number of variables for MCMC,
marginalization can lead to substantial performance gains. However, it places a significant
burden on the user to reformulate the model.

We develop a method to automatically marginalize variables in a user-specified proba-
bilistic program for inference with HMC. Our work builds on prior research on automatic
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Figure 1: Formulas and graphical models of the original and reformulated eight schools
models. (a), (b): original model; (c), (d): reformulated model.

marginalization (see Section 4) and shares technical underpinnings with work to automati-
cally Rao-Blackwellize particle filters for evaluation-based PPLs (Murray et al., 2018; Atkin-
son et al., 2022). The difference is we focus on graphical models and HMC, which leads to
different technical considerations. Although most HMC-based PPLs compile directly to a
log-density, we use the program-tracing features of JAX (Bradbury et al., 2018) to extract
a graphical-model representation of programs written in NumPyro. In the graphical model,
we identify conjugacy relationships and manipulate the graphical model to marginalize some
variables. HMC is run on the reduced model, and the marginalized variables are recovered
by direct sampling conditional on the samples from HMC. Importantly, the interface be-
tween the user and the PPL does not change.

2. Motivating examples

We first present an example model where marginalization can significantly benefit HMC-
based inference. The eight schools model (Gelman et al., 1995) is an important demon-
stration model for PPLs (Gorinova, 2022) and reparameterization (Papaspiliopoulos et al.,
2007). It is a hierarchical model to study the effect of coaching on SAT performance in
eight schools. Mathematically, the model is in Figure 1 (a), where i ∈ {1, . . . , 8} and
(σ1:8, y1:8) are given as data. We want to reason about all latent variables, µ, τ and x1:8.
A PPL will compile the model code to a log joint density log p(µ, τ, x1:8, y1:8) and then
run HMC over the latent variables µ, τ and x1:8.

1 However, there is another reformu-
lated model with the same joint density shown in Figure 1 (c). Both models are shown
as graphical models in Figure 1 (b) and (d): they have different causal interpretations but
identical joint distributions and are therefore the same for performing inference. Impor-
tantly, since only y1:8 are observed, it is possible to marginalize x1:8 to obtain the reduced
model p(µ, τ, y1:8) = p(µ)p(τ)

∏8
i=1 p(yi |µ, τ). We can sample µ and τ by running HMC on

the reduced model then sample x1:8 directly from p(x1:8 |µ, τ, y1:8) given µ and τ . With this
strategy, HMC samples 2 variables instead of 10, which significantly speeds up inference.

The principle that allows us to transform the model is conjugacy. In a Bayesian model
p(x, y) = p(x)p(y |x) the prior p(x) is conjugate to the likelihood p(y |x) if the posterior
p(x | y) is in the same parametric family as p(x) for all y. For our working definition, we
assume the parametric families of the prior and likelihood have a tractable density function
and sampling procedure and that there is an analytical formula for the parameters of the
posterior in terms of y. Given these assumptions, it is also possible to sample from the

1. In practice, latent variables are transformed to have real support (Kucukelbir et al., 2017).
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marginal p(y) and compute its density efficiently.2 Conjugacy is formally a property of
distribution families, but we will also say “x is conjugate to y” when the meaning is clear
from context. In the eight schools model, xi is conjugate to yi given µ and τ , which leads to
analytical expressions for the distributions p(xi |µ, τ, yi) and p(yi |µ, τ) in the reformulated
model and ensures they have tractable densities and samplers. We wish to automate this
procedure so users only write the original model and our framework reformulates it.

3. Automatically marginalized MCMC

Given a program written by a user, our method will construct a graphical model and then
manipulate it into a reformulated model for which MCMC samples fewer variables. The
key operation will be reversing certain edges (based on conjugacy) to create unobserved
leaf nodes that can be marginalized. For example, in the eight schools model of Figure 1,
the edge from xi to yi is reversed, after which xi is a leaf. In this section, we develop the
algorithm assuming a suitable graphical model representation.

3.1. Graphical model representation

Assume there are M random variables x1, x2, . . . , xM . For a set of indices A, we write
xA = (xi)i∈A. A graphical model G is defined by specifying a distribution family for each
node together with a mapping from parents to parameters. Specifically, for node i, let Di

represent its distribution family from a finite set of options (e.g., “Normal”, “Beta”, etc.),
let pa(i) ⊆ {1, . . . ,M} be its parents, and let fi : Xpa(i) → Θi be a mapping such that xi has
distribution Di(θi) with parameters θi = f(xpa(i)). With this representation, given concrete

values of all variables, the log density can be computed easily as
∑M

i=1 log pi
(
xi | fi(xpa(i))

)
,

assuming nodes are ordered topologically. Generating a joint sample is similar: iterate
through nodes and sample xi ∼ hi

(
· | fi(xpa(i))

)
.

3.2. Marginalizing unobserved leaf nodes

As a first useful transformation of the graphical model, we consider how to improve HMC if
there is an unobserved leaf node. Without loss of generality, assume the leaf is numbered M .
Then we can factor the joint distribution as p(x1:M ) = p(x1:M−1)p(xM |x1:M−1) and run
HMC on the marginalized model p(x1:M−1), then sample xM directly from p(xM |x1:M−1) by
executing hM ( · | fM (xpa(M))). Importantly, the marginal p(x1:M−1) =

∏M−1
i=1 pi(xi | fi(xpa(i)))

is simply the original graphical model with the leaf node deleted, so it is tractable. More
generally, the argument is easily extended by repeatedly stripping leaves to marginalize all
variables with no path to an observed variable for HMC, then to reconstruct those variables
by ancestral sampling from the graphical model (Koller and Friedman, 2009).

3.3. Marginalizing non-leaf nodes by edge reversals

Generative models such as the eight schools model do not have unobserved leaf nodes in
their original forms. Instead, our goal will be to transform the model by a sequence of
edge reversals to create unobserved leaf nodes. Each edge reversal will preserve the joint

2. To sample, draw x ∼ p(x), y ∼ p(y |x) and ignore x; for the density, use p(y) = p(x0)p(y | x0)
p(x0 | y) for any x0.
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distribution of the graphical model, so it is the same for performing inference. However, it
will not preserve the causal semantics of the data-generating process (which is not required
for inference), so it is reasonable for the transformed model to have unobserved leaf nodes.

pv

v

pc

c

pv

v

pc

c

Figure 2: Reversing edge v → c.

Reversing a single edge. The process of re-
versing a single parent-child edge v → c is illustrated
in Figure 2. There must be no other path from v to
c; otherwise reversing the edge would create a cycle.
In the example, there is no other path because v has
only one child. Let us define the “local distribution”
of xv and xc as the product of the conditional distri-
butions of those two variables given their parents, which is p(xv |xpa(v))p(xc |xv,xpa(c)\{v}).
If these distributions satisfy the appropriate conjugacy relationship, we can derive replace-
ment factors p(xc |xU )p(xv |xc,xU ), where U = pa(v) ∪ pa(c) \ {v}, to “reverse” the v → c
edge while preserving the local distribution.

It is easy to show that edge reversal yields a graphical model with the same joint
distribution as the original. To understand the utility of this operation, observe in Figure 2
that node v becomes a leaf and can be marginalized after reversing v → c. In principle, any
edge can be reversed, but it is only tractable when one can derive the replacement factors.
We can do so if the distributions are locally conjugate:

Definition 1 (Local conjugacy):
Let G be a graphical model where node v is a parent of c. We say the distribution of
xv is locally conjugate to the distribution of xc if p̂(xv) := p(xv |xpa(v)) is conjugate to
p̂(xc |xv) := p(xc |xv,xpa(c)\{v}) for all values of xpa(v) and xpa(c)\{v}.

The details of edge reversal using our graphical model representation and specific conjugate
pairs of distribution families will be discussed in Appendix B.

Creating a leaf by reversing all outgoing edges of a node. We next consider how,
if possible, to convert an arbitrary node v to a leaf by reversing all of its outgoing edges.
Suppose v has H children c1, . . . , cH . If c is minimal among c1, . . . , cH in a topological
ordering of G, then there can be no other v → c path, so it is safe to reverse v → c.
Further, after reversing the edge, v will move in the topological ordering to appear after c
but before the other children, without changing the relative ordering of the other children.
Then another child will be minimal in the topological ordering. Therefore, if it is possible
to convert v to a leaf, we should reverse the edges from v to each of its children following
their topological ordering. The formal version of this reasoning is proved in Appendix C.

Marginalizing many non-leaf nodes. The previous part describes how to modify a
graphical model, while preserving the joint distribution, to convert one non-leaf node to a
leaf so it can be marginalized. We now wish to use this operation to marginalize as many
nodes as possible. The MARGINALIZE function in Algorithm 1 presents our heuristic for
doing so: it simply applies the operation of marginalizing one node to attempt to marginalize
every node v in reverse topological order. This is convenient because it automatically strips
all nodes with no path to an observed variable at the same time. If v can be marginalized,
the reversal operations are executed and v is removed from G and pushed onto a stack S that
determines the recovery order. The implementations of CONJUGATE and REVERSE are
discussed in Appendix B.
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Algorithm 1 Marginalize and recover unobserved nodes

1: function MARGINALIZE (G)
2: Initialize stack S and sort nodes so they are numbered in topological order
3: for each unobserved node v in descending order do
4: if CONJUGATE(G, v, c) for all children c then
5: for each child c in ascending order do
6: G = REVERSE(G, v, c) // Marginalize v by reversing edges
7: Remove v from G and add v to top of S
8: return G, S

4. Related work

Conjugacy and marginalization have long been important topics in probabilistic program-
ming. Related works include Hakaru (Narayanan et al., 2016), PSI (Gehr et al., 2016, 2020),
Autoconj (Hoffman et al., 2018), delayed sampling, and semi-symbolic inference (Atkinson
et al., 2022). Please refer to Appendix D for a detailed discussion of these works.

5. Experiments

We use NumPyro’s no-U-turn sampler (NUTS) (Hoffman and Gelman, 2014) in all experi-
ments, denoted HMC hereafter. Our approach is “HMC with marginalization” (HMC-M).
For all experiments, we use 10,000 warm up samples to tune the sampler, 100,000 samples
for evaluation, and evaluate performance via effective sample size (ESS) and time (inclusive
of JAX compilation time).

5.1. Hierarchical partial pooling models

A hierarchical partial pooling (HPP) model (Gelman et al., 1995) has the form p(θ, z1:n, y1:n) =
p(θ)

∏n
i=1 p(zi | θ)p(yi | θ, zi, xi), where (xi, yi) are observed covariate and response values for

the ith data point, zi is a local latent variable, and θ is a global latent variable to model
shared dependence. One application of HPPs is repeated binary trials, where we observe
the number of successes yi out of Ki trials for each unit i, and assume a partially shared
structure for the success probabilities, such as (Carpenter et al., 2017):

m ∼ Uniform(0, 1), κ ∼ Pareto(1, 1.5), θi ∼ Beta(mκ, (1−m)κ), yi ∼ Binomial(Ki, θi).

Applications include the rat tumors dataset (Tarone, 1982), the baseball hits 1970 dataset (Efron
and Morris, 1975) and the baseball hit 1996 AL dataset (Carpenter et al., 2017). This model
is difficult for HMC due to a funnel relationship between κ and θi (Carpenter et al., 2017).
Suggested remedies are to model κ with an exponential distribution (Patil et al., 2010) or
rewrite the model to one where reparameterization is applicable (Carpenter et al., 2017).

We observe that, since θi (Beta) is locally conjugate to yi (Bernoulli), marginalization
is a better strategy. In the marginalized model, yi is a beta-binomial random variable,
HMC samples only m and κ, and each θi is sampled afterward from p(θi |m,κ, yi), a beta
distribution. The funnel problem is eliminated and the HMC dimension is reduced from
n+ 2 to 2. Our methods achieve this automatically.
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Table 1: Evaluation metrics for HMC and HMC-M on the repeated binary trials model.
Mean and std over 5 independent runs are reported.

Dataset Algorithm Min ESS Time (s) Min ESS/s

Baseball hits 1970 (n = 18)
HMC 1384.1 (1156.7) 94.5 (5.7) 14.8 (12.7)

HMC-M 39001.8 (20030.4) 110.5 (89.2) 592.3 (304.2)

Rat tumors (n = 71)
HMC 24632.3 (1494.5) 654.8 (43.9) 37.7 (2.1)

HMC-M 77644.5 (9570.8) 72.4 (0.3) 1072.7 (134.0)

Baseball hits 1996 AL (n = 308)
HMC 9592.3 (260.1) 2746.1 (107.6) 3.5 (0.2)

HMC-M 61109.0 (3344.9) 130.9 (1.4) 467.0 (29.5)

µi ∼ N (0, 1), aj ∼ N (100µgp[j], 1),

bi ∼ N (0, 1002), log σi ∼ N (0, 1),

yk ∼ N (apk + tkbgk , σ
2
gk

). 0 20 40 60 80 100
component

100
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Figure 3: Expressions and component-wise ESS/s (ordered) for the electric company model.
HMC-M is compared against HMC and HMC with reparameterization (HMC-R).

Table 1 shows the results. Sampling κ is known to be difficult in this model, but HMC-
M achieves an ESS with similar magnitude to the number of samples. The HMC problem
dimension is also reduced, which leads to faster running time. These factors combined lead
to more than 100x ESS/s improvement on the baseball hit 1996 AL data set.

5.2. Hierarchical linear regression

Similar to partial pooling, hierarchy can be introduced in linear regression models. The
electric company model (Gelman and Hill, 2006) studies the effect of an educational TV
program on children’s reading abilities. There are C = 192 classes in G = 4 grades divided
into P = 96 treatment-control pairs. Class k is represented by (gk, pk, tk, yk) where gk is
the grade, pk is the index of pair, tk ∈ {0, 1} is the treatment variable and yk is the average
score. The classes in pair j belong to grade gp[j]. The full model is in Figure 3 left, where
i ∈ {1, . . . , G}, j ∈ {1, . . . , P} and k ∈ {1, . . . , C}. Observe that µi, aj , bi and yk are all
normally distributed with affine dependencies. Therefore, it is possible to marginalize µi,
aj and bi from the HMC process.

We observed that marginalization of µi led to very high JAX compilation times even
though the computation graph for the log-density was not much larger than the one before
marginalization (14606 primitive operations vs. 9186). We attribute this to a current JAX
limitation. See Appendix F for experimental evidence. As a workaround, we manually
prevented µi from being marginalized. Figure 3 right shows the results. In this model, HMC
performs poorly, but reparameterizing the aj variables is very helpful: HMC-R achieves
excellent ESS (comparable to the number of samples). However, HMC-R does not reduce the
dimension and solves a 3G+P = 108 dimension problem, while automatic marginalization
reduces the problem dimension to 8 and results in an additional 4x speed up.
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Appendix A. Difficulty of manual reformulation

Hierarchical linear regression. The eight schools model is very simple, but already
requires user effort to reformulate. To emphasize the complexity of reformulating larger
models, here we present a simplified version of the electric company model (Gelman and
Hill, 2006). The full model appears in Section 5.2. The original model is

log σ ∼ N (0, 1), µa ∼ N (0, 1), a ∼ N (100µa, 1), b1:2 ∼ N (0, 1002), yi ∼ N (a+ biti, σ
2).

And the observed variables are y1 and y2. One can guess that the model can be reformulated
because, conditioned on σ, all variables are normal with means that are affine functions of
other variables. However, the calculations are complex: some variables of the reformulated
model will be

a ∼ N
(

100µaσ
2 + y1 + y2 − b1t1 − b2t2

2 + σ2
,

σ2

2 + σ2

)
,

b1 ∼ N
(

1002t1(y1 − 100µa)

1 + 1002t21 + σ2
,

1002 + 1002σ2

1 + 1002t21 + σ2

)
,

b2 ∼ N
(

1002t2(y2 + σ2y2 − y1 − 100σ2µa + b1t1)

1002t22 + 1002σ2t22 + 2σ2 + σ4
,

2 ∗ 1002σ2 + 1002σ4

1002t22 + 1002σ2t22 + 2σ2 + σ4

)
.

In this version, HMC is run to sample µa and σ (distributions not shown) conditioned on y1
and y2. Then a, b1, and b2 are reconstructed conditioned on µa, σ, y1, y2 by sampling from
the shown distributions. By reducing the number of variables from 5 to 2, HMC inference
can be accelerated. However, it is extremely cumbersome for the user to derive the new
model, which no longer corresponds to the originally conceived data generating process.

Appendix B. Details of automatically marginalized MCMC

B.1. Computation graph representation

Our operations to transform the graphical model will require examining and manipulating
the functions fi(xpa(i)) mapping parents to distribution parameters. For example, in the
simplified electric company model, we need to detect from the symbolic expression y2 ∼
N (a + b2t2, σ

2) that the mean parameter is an affine function of b2, which is required to
reverse the edge b2 → y2. Similarly, we must manipulate symbolic expressions to obtain ones
like those in the reformulated model. For this purpose we assume functions are represented
as computation graphs.

Consider an arbitrary function f(xi1 , xi2 , . . . , xik) for i1, . . . , ik ∈ {1, . . . ,m}. We as-
sume the computation graph of f is specified as a sequence of Nf primitive operations that
each write one value (Griewank and Walther, 2008), which is similar to the JAX expres-
sion (Jaxpr) representation we can obtain from JAX. Specifically, the sequence of values
w1, w2, w3, . . . , wk+Nf

are computed as follows: (1) the first k values are the inputs to the
function, i.e., wj = xij for j = 1 to k, and (2) each subsequent value is computed from
the preceding ones as wj = φj(wpred(j)), where φj is a primitive operation (e.g., “ADD”,
“MUL”, “SQUARE”) on values wpred(j) and pred(j) ⊆ {1, . . . , j− 1} is the set of predeces-
sors of j. The predecessor relationship defines a DAG for the variables in a computation
graph.

11
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Table 2: Patterns of conjugacy. If conditions of a row are satisfied, then the distribution of
xa is locally conjugate to the distribution of xb.

Distribution of xa Distribution of xb Condition 1 Condition 2

N (µa, σ
2
a) N (µb, σ

2
b ) AFFINE(µb, xa) not DEPENDENT(σb, xa)

Γ(αa, βa) Γ(αb, βb) LINEAR(βb, xa) not DEPENDENT(αb, xa)
Γ(αa, βa) Exponential(λb) LINEAR(λb, xa) -

Beta(αa, βa) Binomial(nb, pb) pb = xa not DEPENDENT(nb, xa)
Beta(αa, βa) Bernoulli(λb) λb = xa -

We will also need to algorithmically manipulate computation graphs. In the text, we will
denote manipulations symbolically as follows. Suppose f(xA) and g(xB) are two functions
represented by computation graphs with potentially overlapping sets of input variables. We
use expressions such as f ∗ g or f + g to mean the new computation graph representing
this symbolic expression. For example the computation graph for f + g has input variables
xA∪B and consists of the graphs for f and g together with one additional node (primitive
operation) for the final addition.

B.2. Conjugacy detection

Detecting when xa is locally conjugate to xb uses the patterns listed in Table 2, where (1)
AFFINE(u, v) means that u can be written as u = pv + q for expressions p and q that
do not contain v, (2) DEPENDENT(u, v) means that there exists a path from v to u in
the computation graph, and (3) LINEAR(u, v) means that u can be written as u = pv,
for an expression p that does not contain v. For example, the pattern in the first matches
the case when xa and xb both have normal distributions, in which case we can extract
expressions (computation graphs) for the parameters µb and σ2b as the two outputs of
the expression fb(xpa(b)). The pattern further implies that if AFFINE(µb, xa) is true and
DEPENDENT(σ2b , xa) is false, then xa is locally conjugate to xb. The functions AFFINE,
LINEAR and DEPENDENT require examining computation graphs.

Conjugacy detection requires looking into the computation graph of functions. In the
following part, we introduce how conjugacy detection is performed on a computation graph.
During the tracing of a program, the procedure of computation is compiled into intermediate
representations consisting of basic operations. For example, the function

def f(x, y):

m = x - y

n = x + y

p = m ** 2

q = n ** 2

return p + q

could be represented as

12
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Algorithm 2 Determining dependency of a variable on an input. x1:M is the set of all
random variables.
1: function DEPENDENT (wj , x)
2: if wj = x then
3: return True
4: if wj ∈ x1:M then
5: return False
6: for p ∈ pred(j) do
7: if DEPENDENT(wp, x) then
8: return True
9: return False

INPUTS: a, b

c = SUB a b

d = SQUARE c

e = ADD a b

f = SQUARE e

g = ADD d f

OUTPUTS: g

By looking at the intermediate representations, it is possible to reason about the relationship
between outputs and inputs. We have reduced conjugacy detection to affinity, linearity and
dependency detections. We first introduce the details of dependency detection with the
above definition in Section B.1.

Given a function with a computation graph, we may want to determine whether a
variable wj depends on an input xa. We define the result to be DEPENDENT(wj , xa),
which could be obtained recursively through the equations shown in Algorithm 2. Note
that in this paper, the inputs of functions are always random variables in x1:M . For
DEPENDENT(wj , xa), if wj is a random variable in x1:M , then it must be an input of
the function. Then DEPENDENT would return whether wj is xa. If wj is the result of a
basic operator, it would enumerate the inputs of that operator. If any of those inputs are
dependent on xa, then the result is true. The recursive algorithm could be of exponential
complexity in some special cases. We store intermediate results in a dictionary and refer
to it before recursion to avoid redundant computation. Then the complexity is linear with
respect to the number of variables involved.

Affinity and linearity can be included in the same framework. In addition to determining
whether wj is affine to xa, we further return whether the slope and intercept are non-
zero. If affinity is detected with zero intercept, the relationship is then linear. We define
AFFINE ALL(wj , xa) to be a tuple of three bool variables - whether wj is affine on xa,
whether the slope is non-zero and whether the intercept is non-zero. Then LINEAR and
AFFINE could be obtained from AFFINE ALL(wj , xa). Our algorithm of affinity detection
is adapted from Atkinson et al. (2022) with slight modification to setting that has no
concrete values. The pseudocodes are in Algorithm 3. The result of AFFINE ALL(wj , xa)
could be obtained by enumeration of cases of φj and induction in the structure of the

13
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Algorithm 3 Determining affinity and linearity of a variable on an input. x1:M is the set
of all random variables.
1: function AFFINE ALL (wj , x)
2: if wj = x then
3: return True, True, False
4: if wj ∈ x1:M then
5: return True, False, True
6: if φj ∈ {ADD,SUB} and pred(j) = {p1, p2} then
7: r1, s2, t1 = AFFINE ALL(wp1 , x)
8: r2, s2, t2 = AFFINE ALL(wp2 , x)
9: return r1 and r2, s1 or s2, t1 or t2

10: if φj = MUL and pred(j) = {p1, p2} then
11: r1, s2, t1 = AFFINE ALL(wp1 , x)
12: r2, s2, t2 = AFFINE ALL(wp2 , x)
13: if not s1 then
14: return r1 and r2, t1 and s2, t1 and t2
15: if not s2 then
16: return r1 and r2, s1 and t2, t1 and t2
17: return False, False, False
18: if φj = DIV and pred(j) = {p1, p2} then
19: r1, s2, t1 = AFFINE ALL(wp1 , x)
20: r2, s2, t2 = AFFINE ALL(wp2 , x)
21: if not s2 then
22: return r1 and r2, s1, t1
23: return False, False, False
24: for p ∈ pred(j) do
25: r, s, t = AFFINE ALL(wp, x)
26: if not r or s then
27: return False, False, False
28: return True, False, True
29:

30: function AFFINE (wj , x)
31: r, s, t = AFFINE ALL(wj , x)
32: return r
33:

34: function LINEAR (wj , x)
35: r, s, t = AFFINE ALL(wj , x)
36: return r and not t

computation graph. For example, if we know wj = ADD(wp1 , wp2), and r1, s1, t1 =
AFFINE ALL(wp1 , xa) and r2, s2, t2 = AFFINE ALL(wp2 , xa), then wj is affine to xa if
both of wp1 and wp2 are affine to x1, which means (r1 and r2). The slope is non-zero if
any of the slope of p1 or p2 is non-zero, so the second return value is (s1 or s2). The same
applies to whether the intercept is non-zero, which is (t1 or t2).

14
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B.3. Edge reversal details

If conjugacy is detected, Algorithm 1 will call the REVERSE operation to reverse an edge.
Algorithm 4 shows the REVERSE algorithm for each case. We emphasize that operations
like +, − and ∗ are symbolic operations on computation graphs. For the normal-normal case,
the algorithm implements well known Gaussian marginalization and conditioning formulas.
Line 5 extracts the symbolic expressions for the parameters of the normal distributions.
Line 6 extracts expressions p and q such that µc = pxv + q; conjugacy detection has already
determined that such expressions exist. Lines 7–12 compute symbolic expressions for pa-
rameters of the marginal p(xc| · · · ) and conditional p(xv|xc, · · · ) and write them to fc and
fv. Finally, Lines 36–37 update the DAG to reflect the new dependencies.

In Algorithm 4 a function AFFINE COEFF is defined to get the coefficients when
affinity is detected. The pseudocode of it is in Algorithm 5, which is similar to AFFINE.
We again emphasize that the computations in Algorithm 5 are fully symbolic. Each variable
corresponds to a sequence of operations which could be regarded as a computation graph.
One issue is we need to define whether some variables are zero (lines 17,19,25). So operations
of zeros should be specially dealt with. For example, if we find a 0 + 0, instead of declaring
an operation that adds two zeros, we should instead use the result 0.

B.4. Implementation

We have assembled the pieces for automatically marginalized HMC. The full pipeline is
to: (1) extract a graphical model G from the user’s program, (2) call the MARGINALIZE
function to get a marginalized model G′ and recovery stack S, (3) run HMC on G′, (4) for
each HMC sample x, call RECOVER(S,x) to sample the marginalized variables.

Our implementation uses JAX (Bradbury et al., 2018) and NumPyro (Bingham et al.,
2018; Phan et al., 2019) to extract a graphical model G. We use JAX tracing utilities to
convert the NumPyro program to a JAX expression (Jaxpr), i.e., computation graph, for
the entire sampling procedure. The NumPyro program must use a thin wrapper around
NumPyro’s sample statement to register the model’s random variables in the Jaxpr. We
extract the distribution families from the NumPyro trace stack and obtain the parameter
functions fi by parsing the Jaxpr to extract the partial computation mapping from parent
random variables to distribution parameters. As stated earlier, our approach is limited to
programs that map to a graphical model, which means they sample from a fixed sequence of
conditional distributions. This closely matches those programs for which NumPyro can cur-
rently perform inference, because the JIT-compilation step of NumPyro inference requires
construction of a static computation graph. NumPyro’s experimental control flow primi-
tives (“scan” and “cond”) are not supported, and it may be difficult to do so. Our current
implementation is limited to Jaxprs with scalar operations and elementwise array opera-
tions, though this restriction is not fundamental. We expect our approach is compatible
with other PPLs that use computation graphs, with similar restrictions on programs.

Appendix C. Formal definition of edge reversal

The operation of edge reversal can be formally defined as follows:
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Algorithm 4 Reversing an edge

1: function REVERSE (G = (Di,pa(i), fi)
M
i=1,v,c)

2: // pa(v), pa(c), fv, fc, Dc updated in place
3: // all variables represent symbolic expressions

4: if Dc is normal and Dv is normal then
5: Let µv and σ2v be the two output expresssions fv, and µc and σ2c be the output

expressions of fc.
6: p, q = AFFINE COEFF(µc, xv)
7: k = σ2vp/(p

2σ2v + σ2c )
8: µ′c = pµv + q
9: σ′2c = p2σ2v + σ2c

10: µ′v = µv + k(xc − µ′c)
11: σ′2v = (1− kp)σ2v
12: fc = (µ′c, σ

′2
c ), fv = (µ′v, σ

′2
v )

13: if Dv is Beta and Dc ∈ {Bernoulli,Binomial} then
14: Let αv and βv be the two output expressions of fv
15: if Dc = Bernoulli then
16: nc = 1
17: pc = λc
18: else
19: Let nc and pc be the two output expressions of fc
20: α′v = αv + xc
21: β′v = βv + nc − xc
22: Dc = BetaBinomial
23: fc = (nc, αv, βv), fv = (α′v, β

′
v)

24: if Dv is Gamma and Dc ∈ {Exponential,Gamma} then
25: Let αv and βv be the two output expressions of fv
26: if Dc = Exponential then
27: αc = 1
28: βc = λc
29: else
30: Let αc and βc be the two output expressions of fc
31: p, q = AFFINE COEFF(βc, xv)
32: α′v = αv + αc

33: β′v = βv + p ∗ xc
34: Dc = CompoundGamma
35: fc = (αc, αv, βv/p), fv = (α′v, β

′
v)

36: pa(c) = (pa(c) \ {v}) ∪ pa(v)
37: pa(v) = pa(v) ∪ {c} ∪ pa(c)
38: return G

Definition 1 (Edge reversal):
Assume G is a graphical model where node v is a parent of c and there is no other path
from v to c. Reversing the v → c edge replaces factors p(xv |xpa(v))p(xc |xv,xpa(c)\{v}) by
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Algorithm 5 Getting the coefficients of affine relationship between a variable wj on an
input x. x1:M is the set of all random variables.

1: function AFFINE COEFF(wj , x)
2: if wj = x then
3: return 1, 0
4: if wj ∈ x1:M then
5: return 0, 1
6: if φj = ADD and pred(j) = {p1, p2} then
7: s1, t1 = AFFINE COEFF(wp1 , x)
8: s2, t2 = AFFINE COEFF(wp2 , x)
9: return s1 + s2, t1 + t2

10: if φj = SUB and pred(j) = {p1, p2} then
11: s1, t1 = AFFINE COEFF(wp1 , x)
12: s2, t2 = AFFINE COEFF(wp2 , x)
13: return s1 − s2, t1 − t2
14: if φj = MUL and pred(j) = {p1, p2} then
15: s1, t1 = AFFINE COEFF(wp1 , x)
16: s2, t2 = AFFINE COEFF(wp2 , x)
17: if s1 is zero then
18: return t1 ∗ s2, t1 ∗ t2
19: if s2 is zero then
20: return s1 ∗ t2, t1 ∗ t2
21: raise Error
22: if φj = DIV and pred(j) = {p1, p2} then
23: s1, t1 = AFFINE COEFF(wp1 , x)
24: s2, t2 = AFFINE COEFF(wp2 , x)
25: if s2 is zero then
26: return s1/t2, t1/t2
27: raise Error
28: return 0, wj

p(xc |xU )p(xv |xc,xU ) and updates the parent sets as pa′(c) = U , pa′(v) = U ∪ {c}, where
U = pa(v) ∪ pa(c) \ {v}.

We show that the operation yields a graphical model with the same joint distribution as
the original:

Proof It is enough to show that (1) the graphical model after reversal is still valid; (2) the
joint distribution does not change, which requires

p(xv |xpa(v))p(xc |xv,xpa(c)\{v}) = p(xc |xU )p(xv |xc,xU ).

For (1), we need to show that no cycles could be formed during the process. For any
pv ∈ pa(v), an edge pv → c is added. Because there does not exist a path from c to pv
(otherwise there will be a loop in the original model), this edge will not cause a loop. For
any pc ∈ pa(c) \ {v}, an edge pc → v is introduced. This edge will also not cause a loop;
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otherwise another path from v to c will be found. Finally, the edge v → c is replaced with
c → v, this edge will also not introduce a loop because there are no other paths from v to
c.

Now we show (2). Since there is no other paths from v to c, there is no path from v to
any nodes in xpa(c)\{v}. Conditioned on xpa(v), by conditional independence, we have that
p(xv |xpa(v)) = p(xv |xU ). Also, all paths from nodes in pa(v) to c are blocked either by
v, or by a parent of c, so conditioned on xpa(c)\{v}, by independence, p(xc |xv,xpa(c)\{v}) =
p(xc |xv,xU ). By the properties of conjugacy, we have that

p(xv |xpa(v))p(xc |xv,xpa(c)\{v}) = p(xv |xU )p(xc |xv,xU )

= p(xc |xU )p(xv |xc,xU ).

Next we give the following theorem on how to turn a non-leaf node to a leaf.

Theorem 1 Let G be a graphical model where node v has children c1, . . . , cH . If xv is
locally conjugate to each of xc1 , . . . , xcH , then node v can be turned into a leaf by sorting
c1, . . . , cH by any topological ordering and reversing the edges from v to each child following
this ordering.

Proof Without loss of generality, assume c1, . . . , cH are sorted according to topological
ordering. We prove by induction. Assume for k ∈ {0, . . . ,H}, we have reversed the edges
v → c1, . . . , v → ck, and have the following properties:

(1) The children of v are ck+1, . . . , cH .

(2) ck+1, . . . , cH are ordered topologically;

(3) xv is a local conjugate prior for each of xck+1
, . . . , xcH .

We show that the edge v → ck+1 is reversible and the properties still hold for k + 1
after the reversal. By (1) and (2), ck+1 is minimal among the children of v in topological
order, so there does not exist a path from v to ck+1 other than v → ck+1. By (3), xv
is a local conjugate prior to xck+1

. Then we can apply edge reversal to v → ck+1. Now
we check all the conditions after the replacement. For property (1), the children of v
now become ck+2, . . . , cH . For property (2), the nodes with edges that changed (either
incoming or outgoing) were v, ck+1, and their parents; these nodes all preceded ck+2, . . . , cH
in topological order prior to the reversal and continue to do so afterward, so the relative
ordering of ck+2, . . . , cH does not change. For (3), the distribution family of xv does
not change, and the conditional distribution of each of xck+2

, . . . xcH does not change. So
all conditions of local conjugacy in Table 2 will not change for them, which means the
distribution of xv is still a local conjugate prior for the distributions of each of xck+2

, . . . xcH .

In summary, the three conditions holds for k = H by induction, which means v can be
converted to a leaf following the said procedure.
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Appendix D. Discussion of related work

In BUGS (Lunn et al., 2000) and JAGS (Hornik et al., 2003), conjugacy was used to
improve automatic Gibbs sampling. Hakaru (Narayanan et al., 2016) and PSI (Gehr et al.,
2016, 2020) use symbolic integrators to perform marginalization for the purposes of exact
inference. We make use of information provided by graphical models to identify certain
patterns, which is more efficient in large scale models. Autoconj (Hoffman et al., 2018)
proposes a term-graph rewriting system that can be used for marginalizing a log joint
density with conjugacy. Our approach is distinct in that we operate on the graphical
model and computation graph for the generative process, as opposed to the log-density.
Gorinova et al. (2021) propose an information flow type system that could be applied to
automatic marginalization of discrete random variables. Following the exploration of more
expressive PPLs, streaming models have attracted much attention. Murray et al. (2018)
proposed delayed sampling, which uses automatic marginalization to improve inference via
the Rao-Blackwellized particle filter (RBPF) (Doucet et al., 2000). Delayed sampling has
been developed in Birch (Murray and Schön, 2018), Pyro (Bingham et al., 2018) with
funsors (Obermeyer et al., 2019a,b), Anglican (Lundén, 2017) and ProbZelus (Baudart
et al., 2020). Atkinson et al. (2022) propose semi-symbolic inference, which further expands
the applicability of delayed sampling to models with arbitrary structure. Our work is
distinct in that we statically analyze a model prior to performing inference for the purpose
of improving MCMC: this makes our approach “fully symbolic” (no concrete values are
available) and leads to different algorithmic considerations, though our Algorithm 1 shares
technical underpinnings with the hoisting algorithm in Atkinson et al. (2022); see Appendix
E for more details.

There are many works that improve HMC inference in PPLs from different perspectives.
Stan (Carpenter et al., 2017) has had tremendous impact using HMC inference for PPLs.
Because Stan programs specify a log-density and not a sampling procedure, our idea does
not directly apply to Stan programs. However, many Stan programs are generative in
spirit, and Baudart et al. (2021) characterize a subset of Stan programs on which the
methods of this paper can be applied directly. Papaspiliopoulos et al. (2007) propose a
general framework for non-centered (re)parameterization in MCMC. Gorinova et al. (2020)
automate the procedure of choosing parameterizations of models using variational inference.
In Parno and Marzouk (2018) and Hoffman et al. (2019), the parameterizations of all
latent variables are learned as normalizing flows (Papamakarios et al., 2021; Rezende and
Mohamed, 2015). In models where some variables are marginalizable, our method works
better than reparameterization: see Section 5.2 for an example. Mak et al. (2022) use the
framework of involutive MCMC (Neklyudov et al., 2020; Cusumano-Towner et al., 2020) to
extend the applicability of MCMC to non-parametric models in PPLs.

Appendix E. Relations to the hoisting algorithm

The hoisting algorithm in Atkinson et al. (2022) is an online algorithm that can be used for
automatically running Rao-Blackwellized particle filters (RBPF) (Doucet et al., 2000). Our
Algorithm 1 is highly related to the hoisting algorithm. Both algorithms can perform con-
jugacy detection and marginalize all possible random variables. One apparent difference is
that Algorithm 1 is written as loops while the hoisting algorithm uses recursions. However,
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Figure 4: Lines of Jaxprs of the gradient of the log density function and JIT compilation
time with respect to N for the simple hierarchical model. With similar lines of
Jaxprs, the compilation time can be hundreds of times slower on the marginalized
model than on the original model.

the main difference between the two algorithms comes from the application. In RBPF, all
non-marginalizable random variables are sampled from the model, allowing the represen-
tations to be semi-symbolic, where non-marginalizable random variables are replaced with
sampled values during the execution of the hoisting algorithm. In HMC, no random vari-
ables are directly sampled, and the same computation graph will be executed many times,
so marginalization should be performed before running with fully symbolic representations.
In the mean time, Theorem 1 allows us to separate the conjugacy detections and the re-
versals in two different loops, which reduces the running time in large scale models. This
improvement is not possible with the hoisting algorithm as an online algorithm, so some
unnecessary reversals are performed. Furthermore, from the perspective of implementation,
the parent node is fixed inside the loop of v in Algorithm 1. So in one iteration, all the calls
to CONJUGATE and REVERSE are with respect to the same v. It is therefore possible
to save the intermediate results of these functions to avoid redundant computation on the
computation graph. So the time complexity of Algorithm 1 is O(M |C|), where |C| is the
size of the computation graph. With the above considerations, we think that Algorithm 1
is an important contribution in the area.

Appendix F. Slow compilation of JAX

In the experiments, we discover that the compilation time of JAX can be slow for some
models. We identify the problem specifically at the structure of marginalized hierarchical
models. To demonstrate, we consider the simple model

x ∼ N (0, 1), log σ ∼ N (0, 1), yi ∼ N (x, σ2),

where i = 1, . . . , N and yi = 0 for all i are provided as pseudo observations. It is possible
to marginalize x by reversing edges to each of yi. However, we found that the JIT compi-
lation time scales super-linear with respect to N for the marginalized model. See Figure 4.
Regardless of the performance, the JIT compilation time for the gradient function of the
marginalized model can be hundreds larger than that of the original model when N is large
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enough, with similar lines of Jaxprs. This is probably because marginalization creates a
chain shaped computation graph for all the observations, and it is difficult for JAX to work
in this case. We do not regard it as a core limitation of our idea.
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