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Abstract

Normalizing flows are invertible neural networks with tractable change-of-volume
terms, which allow optimization of their parameters to be efficiently performed via
maximum likelihood. However, data of interest are typically assumed to live in
some (often unknown) low-dimensional manifold embedded in a high-dimensional
ambient space. The result is a modelling mismatch since – by construction – the
invertibility requirement implies high-dimensional support of the learned distri-
bution. Injective flows, mappings from low- to high-dimensional spaces, aim
to fix this discrepancy by learning distributions on manifolds, but the resulting
volume-change term becomes more challenging to evaluate. Current approaches
either avoid computing this term entirely using various heuristics, or assume the
manifold is known beforehand and therefore are not widely applicable. Instead, we
propose two methods to tractably calculate the gradient of this term with respect to
the parameters of the model, relying on careful use of automatic differentiation and
techniques from numerical linear algebra. Both approaches perform end-to-end
nonlinear manifold learning and density estimation for data projected onto this
manifold. We study the trade-offs between our proposed methods, empirically
verify that we outperform approaches ignoring the volume-change term by more
accurately learning manifolds and the corresponding distributions on them, and
show promising results on out-of-distribution detection. Our code is available at
https://github.com/layer6ai-labs/rectangular-flows.

1 Introduction

In recent years, Normalizing Flows (NFs) have become a staple of generative modelling, being
widely used for density estimation [14, 15, 45, 28, 16], variational inference [52, 30], maximum
entropy modelling [37], and more [46, 31]. In density estimation, we typically have access to a set
of points living in some high-dimensional space RD. NFs model the corresponding data-generating
distribution as the pushforward of a simple distribution on RD – often a Gaussian – through a smooth
bijective mapping. Clever construction of these bijections allows for tractable density evaluation and
thus maximum likelihood estimation of the parameters. However, as an immediate consequence of
this choice, the learned distribution has support homeomorphic to RD; in particular, the resulting
distribution is supported on a set of dimension D. This is not a realistic assumption in practice –
especially for density estimation – as it directly contradicts the manifold hypothesis [6] which states
that high-dimensional data lives on a lower-dimensional manifold embedded in ambient space.
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A natural idea to circumvent this misspecification is to consider injective instead of bijective flows,
which now push forward a random variable on Rd with d < D to obtain a distribution on some
d-dimensional manifold embedded in RD. These mappings admit a change-of-variable formula
bearing resemblance to that of bijective flows, but unfortunately the volume-change term becomes
computationally prohibitive, which then impacts the tractability of maximum likelihood. While there
have been recent efforts towards training flows where the resulting distribution is supported on a
low-dimensional manifold [18, 53, 8, 35, 40, 12], these approaches either assume that the manifold is
known beforehand or propose various heuristics to avoid the change-of-variable computation. Both
of these are undesirable, because, while we should expect most high-dimensional data of interest to
exhibit low-dimensional structure, this structure is almost always unknown. On the other hand, we
argue that avoiding the volume-change term may result in learning a manifold to which it is difficult
to properly assign density, and this approach further results in methods which do not take advantage
of density evaluation, undermining the main motivation for using NFs in the first place.

We show that density estimation for injective flows based on maximum likelihood can be made
tractable. By carefully leveraging forward- and backward-mode automatic differentiation [3], we
propose two methods that allow backpropagating through the volume term arising from the injective
change-of-variable formula. The first method involves exact evaluation of this term and its gradient
which incurs a higher memory cost; the second uses conjugate gradients [43] and Hutchinson’s trace
estimator [23] to obtain unbiased stochastic gradient estimates. Unlike previous work, our methods
do not need the data manifold to be specified beforehand, but instead simultaneously estimate this
manifold along with the distribution on it end-to-end, thus enabling maximum likelihood training
to occur. To the best of our knowledge, ours are the first methods to scale backpropagation through
the injective volume-change term to ambient dimensions D close to 3,000. We study the trade-off
between memory and variance introduced by our methods and show empirical improvements over
injective flow baselines for density estimation. We also show that injective flows obtain state-of-the-art
performance for likelihood-based Out-of-Distribution (OoD) detection, assigning higher likelihoods
to Fashion-MNIST (FMNIST) [57] than to MNIST [36] with a model trained on the former.

2 Background

2.1 Square Normalizing Flows

A normalizing flow [52, 15] is a diffeomorphism f̃✓ : RD
! RD parametrized by ✓, that is, a

differentiable bijection with differentiable inverse. Starting with a random variable Z ⇠ pZ for a
simple density pZ supported on RD, e.g. a standard Gaussian, the change-of-variable formula states
that the random variable X := f̃✓(Z) has density pX on RD given by:

pX(x) = pZ
⇣
f̃�1
✓ (x)

⌘ ���detJ
h
f̃✓
i ⇣

f̃�1
✓ (x)

⌘���
�1

, (1)

where J[·] is the differentiation operator, so that J[f̃✓](f̃�1
✓ (x)) 2 RD⇥D is the Jacobian of f̃✓ (with

respect to the inputs and not ✓) evaluated at f̃�1
✓ (x). We refer to this now standard setup as square

flows since the Jacobian is a square matrix. The change-of-variable formula is often written in terms
of the Jacobian of f̃�1

✓ , but we use the form of (1) as it is more applicable for the next section. NFs
are typically constructed in such a way that not only ensures bijectivity, but also so that the Jacobian
determinant in (1) can be efficiently evaluated. When provided with a dataset {xi}

n
i=1 ⇢ RD, an NF

models its generating distribution as the pushforward of pZ through f̃✓, and thus the parameters can
be estimated via maximum likelhood as ✓⇤ := argmax✓

Pn
i=1 log pX(xi).

2.2 Rectangular Normalizing Flows

As previously mentioned, square NFs unrealistically result in the learned density pX having D-
dimensional support. We follow the injective flow construction of Brehmer and Cranmer [8], where a
smooth and injective mapping g� : Rd

! RD with d < D is constructed. In this setting, Z 2 Rd

is the low-dimensional variable used to model the data as X := g�(Z). A well-known result from
differential geometry [32] provides an applicable change-of-variable formula:

pX(x) = pZ
⇣
g�1
� (x)

⌘ ���detJ[g�]>
⇣
g�1
� (x)

⌘
J[g�]

⇣
g�1
� (x)

⌘���
�1/2

1(x 2M�), (2)
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where M� := {g�(z) : z 2 Rd
}. The Jacobian-transpose-Jacobian determinant now characterizes

the change in volume from Z to X . We make several relevant observations: (i) The Jacobian matrix
J[g�](g

�1
� (x)) 2 RD⇥d is no longer a square matrix, and we thus refer to these flows as rectangular.

(ii) Note that g�1
� : M� ! Rd is only properly defined on M� and not RD, and pX is now supported

on the d-dimensional manifold M�. (iii) We write the indicator 1(x 2M�) explicitly to highlight
the fact that this density is not a density with respect to the Lebesgue measure; rather, the dominating
measure is a Riemannian measure on the manifold M� [48]. (iv) One can clearly verify as a sanity
check that when d = D, equation (2) reduces to (1).

Since data points x will almost surely not lie exactly on M�, we use a left inverse g†� : RD
! Rd in

place of g�1
� such that g†�(g�(z)) = z for all z 2 Rd, which exists because g� is injective. This is

properly defined on RD, unlike g�1
� which only exists over M�. Equation (2) then becomes:

pX(x) = pZ
⇣
g†�(x)

⌘ ���detJ[g�]>
⇣
g†�(x)

⌘
J[g�]

⇣
g†�(x)

⌘���
�1/2

. (3)

Note that (3) is equivalent to projecting x onto M� as x  g�(g
†
�(x)), and then evaluating the

density from (2) at the projected point.

Now, g� is injectively constructed as follows:

g� = f̃✓ � pad � h⌘ and g†� = h�1
⌘ � pad

†
� f̃�1

✓ , (4)

where f̃✓ : RD
! RD and h⌘ : Rd

! Rd are both square flows, � := (✓, ⌘), and pad : Rd
! RD

and pad† : RD
! Rd are defined as pad(z) = (z,0) and pad†(z, z0) = z, where 0, z0 2 RD�d.

Now, M� depends only on ✓ and not ⌘, so we write it as M✓ from now on. Applying (3) yields:

pX(x) = pZ
⇣
g†�(x)

⌘ ���detJ[h⌘]
⇣
g†�(x)

⌘���
�1 ���detJ[f✓]>

⇣
f†
✓ (x)

⌘
J[f✓]

⇣
f†
✓ (x)

⌘���
�1/2

, (5)

where f✓ = f̃✓ � pad and f†
✓ = pad† � f̃�1

✓ . We include a derivation of (5) in Appendix A, along
with a note on why injective transformations cannot be stacked as naturally as bijective ones.

Evaluating likelihoods is seemingly intractable since constructing flows with a closed-form volume-
change term is significantly more challenging than in the square case, even if the relevant matrix is
now d⇥ d instead of D ⇥D. Brehmer and Cranmer [8] thus propose a two-step training procedure
to promote tractability wherein f✓ and h⌘ are trained separately. After observing that there is no term
encouraging x 2M✓, and that x 2M✓ () x = g�(g

†
�(x)) () x = f✓(f

†
✓ (x)), they decide to

simply train f✓ by minimizing the reconstruction error to encourage the observed data to lie on M✓:

✓⇤ = argmin
✓

nX

i=1

���
���xi � f✓

⇣
f†
✓ (xi)

⌘���
���
2

2
. (6)

Note that the above requires computing both f✓ and f†
✓ , so that f̃✓ should be chosen as a flow allowing

fast evaluation of both f̃✓ and f̃�1
✓ . Architectures such as the Real NVP [15] or follow-up work

[28, 16] are thus natural choices for f̃✓, while architectures with an autoregressive component [45, 30]
should be avoided. Then, since h⌘ does not appear in the challenging determinant term in (5), h⌘ can
be chosen as any normalizing flow, and optimization – for a fixed ✓ – can be tractably achieved by
maximum likelihood over the lower-dimensional space:

⌘⇤ = argmax
⌘

nX

i=1

n
log pZ

⇣
g†�(xi)

⌘
� log

���detJ[h⌘]
⇣
g†�(xi)

⌘���
o
. (7)

In practice, gradient steps in ✓ and ⌘ are alternated. This entire procedure circumvents evaluation of
the Jacobian-transpose-Jacobian determinant term in (5), but as we show in section 3, avoiding this
term by separately learning the manifold and the density on it comes with its downsides. We then
show how to tractably estimate this term in section 4.
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3 Related Work and Motivation

Low-dimensional and topological pathologies The mismatch between the dimension of the mod-
elled support and that of the data-generating distribution has been observed throughout the literature
in various ways. Dai and Wipf [13] show, in the context of variational autoencoders [29], that using
flexible distributional approximators supported on RD to model data living in a low-dimensional
manifold results in pathological behavior where the manifold itself is learned, but not the distribution
on it. Cornish et al. [11] demonstrate the drawbacks of normalizing flows for estimating the density
of topologically-complex data, and provide a new numerically stable method for learning NFs when
the support is not homeomorphic to RD. However, this approach still models the support as being
D-dimensional. Behrmann et al. [5] show instabilities associated with NFs – particularly a lack of
numerical invertibility, as also explained theoretically by Cornish et al. [11]. This is not too surprising,
as attempting to learn a smooth invertible function mapping RD to some low-dimensional manifold is
an intrinsically ill-posed problem. This body of work strongly motivates the development of models
whose support has matching topology – including dimension – to that of the true data distribution.

Manifold flows A challenge to overcome for obtaining NFs on manifolds is the Jacobian-transpose-
Jacobian determinant computation. Current approaches for NFs on manifolds approach this challenge
in one of two ways. The first assumes the manifold is known beforehand [18, 53, 40], severely
limiting applicability to low-dimensional data where the true manifold can realistically be known.
The second group circumvents the computation of the Jacobian-transpose-Jacobian entirely through
various heuristics. Kumar et al. [35] use a potentially loose lower bound of the log-likelihood, and
do not explicitly enforce injectivity, resulting in a method for which the change-of-variables almost
surely does not hold. Cunningham et al. [12] propose to convolve the manifold distribution with
Gaussian noise, which results in the model having high-dimensional support. Finally, Brehmer and
Cranmer [8] propose the method we described in subsection 2.2, where manifold learning and density
estimation are done separately in order to avoid the log determinant computation. Concurrently to
our work, Ross and Cresswell [54] proposed a rectangular flow construction which sacrifices some
expressiveness but allows for exact likelihood evaluation.

Why optimize the volume-change term? Learning f✓ and h⌘ separately without the Jacobian
of f✓ is concerning: even if f✓ maps to the correct manifold, it might unnecessarily expand and
contract volume in such a way that makes correctly learning h⌘ much more difficult than it needs
to be. Looking ahead to our experiments, Figure 1 exemplifies this issue: the top-middle panel
shows the ground truth density on a 1-dimensional circle in R2, and the top-right panel shows the
distribution recovered by the two-step method of Brehmer and Cranmer [8]. We can see that, while
the manifold is correctly recovered, the distribution on it is not. The bottom-right panel shows the
speed at which f✓⇤ maps R to M✓⇤ : the top of the circle, which should have large densities, also
has high speeds. Indeed, there is nothing in the objective discouraging f✓ to learn this behaviour,
which implies that the corresponding low-dimensional distribution must be concentrated in a small
region and thus making it harder to learn. The bottom-middle panel confirms this explanation: the
learned low-dimensional distribution (dark red) does not match what it should (i.e. the distribution
of {f†

✓⇤(xi)}ni=1, in light red). This failure could have been avoided by learning the manifold in a
density-aware fashion by including the Jacobian-transpose-Jacobian determinant in the objective.

4 Maximum Likelihood for Rectangular Flows: Taming the Gradient

4.1 Our Optimization Objective

We have argued that including the Jacobian-transpose-Jacobian in the optimization objective is
sensible. However, as we previously mentioned, (5) corresponds to the density of the projection of x
onto M✓. Thus, simply optimizing the likelihood would not result in learning M✓ in such a way
that observed data lies on it, only encouraging projected data points to have high likelihood. We thus
maximize the log-likelihood subject to the constraint that the reconstruction error should be smaller
than some threshold, i.e. �⇤ = argmax�

Pn
i=1 log pX(xi) subject to

Pn
i=1 ||xi�f✓(f

†
✓ (xi))||22  .
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In practice, we use the KKT conditions [26, 34] and maximize the Lagrangian [7] instead:

�⇤= argmax
�

nX

i=1

⇢
log pZ

⇣
g†�(xi)

⌘
� log

���detJ[h⌘]
⇣
g†�(xi)

⌘����
1

2
log det J>

✓ (xi)J✓(xi) (8)

��
���
���xi � f✓

⇣
f†
✓ (xi)

⌘���
���
2

2

�
,

where we treat � > 0 as a hyperparameter rather than , and denote J[f✓](f
†
✓ (xi)) as J✓(xi) for

simplicity. We have dropped the absolute value since J>
✓ (xi)J✓(xi) is always symmetric positive

definite, since J✓(xi) has full rank by injectivity of f✓. We now make a technical but relevant
observation about our objective: since our likelihoods are Radon-Nikodym derivatives with respect to
a Riemannian measure on M✓, different values of ✓ will result in different supports and dominating
measures. One should thus be careful to compare likelihoods for models with different values of
✓. However, thanks to the smoothness of the objective over ✓, we should expect likelihoods for
values of ✓ which are “close enough” to be comparable for practical purposes. In other words,
comparisons remain reasonable locally, and the gradient of the volume-change term should contain
relevant information to learn M✓ in such a way that also facilitates learning h⌘ on the pulled-back
dataset {f†

✓ (xi)}ni=1.

4.2 Optimizing our Objective: Stochastic Gradients

Note that all the terms in (8) are straightforward to evaluate and backpropagate through except for
the third one; in this section we show how to obtain unbiased stochastic estimates of its gradient. In
what follows we drop the dependence of the Jacobian on xi from our notation and write J✓, with the
understanding that the end computation will be parallelized over a batch of xis. We assume access
to an efficient matrix-vector product routine, i.e. computing J>

✓ J✓✏ can be quickly achieved for any
✏ 2 Rd. We elaborate on how we obtain these matrix-vector products in the next section. It is a well
known fact from matrix calculus [49] that:

@

@✓j
log det J>

✓ J✓ = tr

✓
(J>

✓ J✓)
�1 @

@✓j
J>
✓ J✓

◆
, (9)

where tr denotes the trace operator and ✓j is the j-th element of ✓. Next, we can use Hutchinson’s
trace estimator [23], which states that for any matrix M 2 Rd⇥d, tr(M) = E✏[✏>M✏] for any
Rd-valued random variable ✏ with zero mean and identity covariance matrix. We can thus obtain an
unbiased stochastic estimate of our gradient as:

@

@✓j
log det J>

✓ J✓ ⇡
1

K

KX

k=1

✏>k (J
>
✓ J✓)

�1 @

@✓j
J>
✓ J✓✏k, (10)

where ✏1, . . . , ✏K are typically sampled either from standard Gaussian or Rademacher distributions.
Naïve computation of the above estimate remains intractable without explicitly constructing J>

✓ J✓.
Fortunately, the J>

✓ J✓✏ terms can be trivially obtained using the given matrix-vector product routine,
avoiding the construction of J>

✓ J✓, and then @/@✓jJ>
✓ J✓✏ follows by taking the gradient w.r.t. ✓.

There is however still the issue of computing ✏>(J>
✓ J✓)�1 = [(J>

✓ J✓)�1✏]>. We use conjugate
gradients (CG) [43] in order to achieve this. CG is an iterative method to solve problems of the form
Au = ✏ for given A 2 Rd⇥d (in our case A = J>

✓ J✓) and ✏ 2 Rd; we include the CG algorithm in
Appendix B for completeness. CG has several important properties. First, it is known to recover the
solution (assuming exact arithmetic) after at most d steps, which means we can evaluate A�1✏. The
solution converges exponentially (in the number of iterations ⌧ ) to the true value [55], so often ⌧ ⌧ d
iterations are sufficient for accuracy to many decimal places. In practice, if we can tolerate a certain
amount of bias, we can further increase computational speed by stopping iterations early. Second, CG
only requires a method to compute matrix-vector products against A, and does not require access to A
itself. One such product is performed at each iteration, and CG thus requires at most d matrix-vector
products, though again in practice ⌧ ⌧ d products usually suffice. This results in O(⌧d2) solve
complexity—less than the O(d3) required by direct inversion methods. We denote A�1✏ computed
with conjugate gradients as CG(A; ✏). We can then compute the estimator from (10) as:

@

@✓j
log det J>

✓ J✓ ⇡
1

K

KX

k=1

CG
�
J>
✓ J✓; ✏k

�> @

@✓j
J>
✓ J✓✏k. (11)
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In practice, we implement this term by noting that CG(J>
✓ J✓; ✏)>@/@✓jJ>

✓ J✓✏ =
@/@✓jstop_gradient(CG(J>

✓ J✓; ✏)>)J>
✓ J✓✏, thereby taking advantage of the stop_gradient

operation from Automatic Differentiation (AD) libraries and allowing us to avoid implementing a
custom backward pass. We thus compute the contribution of a point x to the training objective as:

log pZ
⇣
g†�(x)

⌘
� log

���detJ[h⌘]
⇣
g†�(x)

⌘���� �
���
���x� f✓

⇣
f†
✓ (x)

⌘���
���
2

2
(12)

�
1

2K

KX

k=1

stop_gradient
⇣
CG

�
J>
✓ J✓; ✏k

�>⌘
J>
✓ J✓✏k

which gives the correct gradient estimate when taking the derivative with respect to �.

Linear solvers for Jacobian terms We note that linear solvers like CG have been used before
to backpropagate through log determinant computations in the context of Gaussian processes [17],
and more recently for square NFs with flexible architectures which do not allow for straightforward
Jacobian determinant computations [22, 39]. However, none of these methods require the Jacobian-
transpose-Jacobian-vector product routine that we derive in the next section, and to the best of our
knowledge, these techniques have not been previously applied for training rectangular NFs. We also
point out that recently Oktay et al. [44] proposed a method to efficiently obtain stochastic estimates
of J✓✏. While their method cannot be used as a drop-in replacement within our framework as it would
result in a biased CG output, we believe this could be an interesting direction for future work. Finally,
we note that CG has recently been combined with the Russian roulette estimator [25] to avoid having
to always iterate d times while maintaining unbiasedness, again in the context of Gaussian processes
[50]. We also leave the exploration of this estimator within our method for future work.

4.3 AD Considerations: The Exact Method and the Forward-Backward AD Trick

In this section we derive the aforementioned routine for vector products against J>
✓ J✓, as well as an

exact method that avoids the need for stochastic gradients (for a given x) at the price of increased
memory requirements. But first, let us ask: why are these methods needed in the first place? There is
work using power series to obtain stochastic estimates of log determinants [20, 9], and one might
consider using them in our setting. However, these series require knowledge of the singular values of
J>
✓ J✓, to which we do not have access (constructing J>

✓ J✓ to obtain its singular values would defeat
the purpose of using the power series in the first place), and we would thus not have a guarantee that
the series are valid. Additionally, they have to be truncated and thus result in biased estimators, and
using Russian roulette estimators to avoid bias [9] can result in infinite variance [11]. Finally, these
series compute and backpropagate (w.r.t. ✓) through products of the form ✏>(J>

✓ J✓)m✏ for different
values of m, which can easily require more matrix-vector products than our methods. Behrmann et al.
[4] address some of the issues with power series approximations as the result of controlling Lipschitz
constants, although their estimates remain biased and potentially expensive.

Having motivated our approach, we now use commonly-known properties of AD to derive it; we
briefly review these properties in Appendix C, referring the reader to Baydin et al. [3] for more detail.
First, we consider the problem of explicitly constructing J✓. This construction can then be used to
evaluate J>

✓ J✓ and exactly compute its log determinant either for log density evaluation of a trained
model, or to backpropagate (with respect to ✓) through both the log determinant computation and
the matrix construction, thus avoiding having to use stochastic gradients as in the previous section.
We refer to this procedure as the exact method. Naïvely, one might try to explicitly construct J✓
using only backward-mode AD, which would require D vector-Jacobian products (vjps) of the form
v>J✓ – one per basis vector v 2 RD (and then stacking the resulting row vectors vertically). A better
way to explicitly construct J✓ is with forward-mode AD, which only requires d Jacobian-vector
products (jvps) J✓✏, again one per basis vector ✏ 2 Rd (and then stacking the resulting column
vectors horizontally). We use a custom implementation of forward-mode AD in the popular PyTorch
[47] library2 for the exact method, as well as for the forward-backward AD trick described below.

We now explain how to combine forward- and backward-mode AD to obtain efficient matrix-vector
products against J>

✓ J✓ in order to obtain the tractable gradient estimates from the previous section.
2PyTorch has a forward-mode AD implementation which relies on the “double backward” trick, which is

known to be memory-inefficient. See https://j-towns.github.io/2017/06/12/A-new-trick.html for
a description.
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Table 1: Number of jvps and vjps (with respect to inputs) needed for forward and backward passes
(with respect to ✓), along with the corresponding variance of gradient entries.

Method FORWARD BACKWARD VARIANCE

Exact (naïve) D vjps D vjps 0
Exact d jvps d jvps 0
Stochastic K(⌧ + 1)jvps +K(⌧ + 1) vjps Kjvps +Kvjps / 1/K

Note that v := J✓✏ can be computed with a single jvp call, and then J>
✓ J✓✏ = [v>J✓]> can be

efficiently computed using only a vjp call. We refer to this way of computing matrix-vector products
against J>

✓ J✓ as the forward-backward AD trick. We summarize both of our gradient estimators
in Appendix D. Note that (12) requires K(⌧ + 1) such matrix-vector products, which is seemingly
less efficient as it is potentially greater than the d jvps required by the exact method. However, the
stochastic method is much more memory-efficient than its exact counterpart when optimizing over
✓: of the K(⌧ + 1) matrix-vector products needed to evaluate (12), only K require gradients with
respect to ✓. Thus only K jvps and K vjps, along with their intermediate steps, must be stored in
memory over a training step. In contrast, the exact method requires gradients (w.r.t. ✓) for every one
of its d jvp computations, which requires storing these computations along with their intermediate
steps in memory.

Our proposed methods thus offer a memory vs. variance trade-off. Increasing K in the stochastic
method results in larger memory requirements which imply longer training times, as the batch size
must be set to a smaller value. On the other hand, the larger the memory cost, the smaller the variance
of the gradient. This still holds true for the exact method, which results in exact gradients, at the cost
of increased memory requirements (as long as K ⌧ d; if K is large enough the stochastic method
should never be used over the exact one). Table 1 summarizes this trade-off.

5 Experiments

We now compare our methods against the two-step baseline of Brehmer and Cranmer [8], and also
study the memory vs. variance trade-off. We use the real NVP [15] architecture for all flows, except
we do not use batch normalization [24] as it causes issues with vjp computations. We point out that
all comparisons remain fair, and we include a detailed explanation of this phenomenon in Appendix E,
along with all experimental details in Appendix G. Throughout, we use the abbreviations RNFs-ML
for our maximum likelihood training method, RNFs-TS for the two-step method, and RNFs for
rectangular NFs in general. For most runs, we found it useful to anneal the likelihood term(s). That
is, at the beginning of training we optimize only the reconstruction term, and then slowly incorporate
the other terms. This likelihood annealing procedure helped avoid local optima where the manifold is
not recovered (large reconstruction error) but the likelihood of projected data is high.

5.1 Simulated Data

We consider a simulated dataset where we have access to ground truth, which allows us to empirically
verify the deficiencies of RNFs-TS. We use a von Mises distribution, which is supported on the
one-dimensional unit circle in R2. Figure 1 shows this distribution, along with its estimates from
RNFs-ML (exact) and RNFs-TS. As previously observed, RNFs-TS correctly approximate the
manifold, but fail to learn the right distribution on it. In contrast we can see that RNFs-ML, by virtue
of including the Jacobian-transpose-Jacobian term in the optimization, manage to recover both the
manifold and the distribution on it (top left panel), while also resulting in an easier-to-learn low-
dimensional distribution (bottom middle panel) thanks to f✓⇤ mapping to M✓⇤ at a more consistent
speed (bottom left panel). We do point out that, while the results presented here are representative
of usual runs for both methods, we did have runs with different results which we include in Appendix
G for completeness. We finish with the observation that even though the line and the circle are
not homeomorphic and thus RNFs are not perfectly able to recover the support, they manage to
adequately approximate it.
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RNFs-ML (exact) density von Mises ground truth RNFs-TS density

RNFs-ML (exact) speed Distribution of f†
✓⇤ (X) RNFs-TS speed

Figure 1: Top row: RNFs-ML (exact) (left), von Mises ground truth (middle), and RNF-TS (right).
Bottom row: Speed at which f✓⇤ maps to M✓⇤ (measured as l2 distance between uniformly spaced
consecutive points in R mapped through f✓⇤) for RNFs-ML (exact) (left), RNFs-TS (right), and
distribution h⌘ has to learn in order to recover the ground truth, fixing ✓⇤ (middle). See text for
discussion.

Table 2: FID-like metric for tabular data (lower is better). Bolded runs are the best or overlap with it.
Method POWER GAS HEPMASS MINIBOONE

RNFs-ML (exact) 0.067± 0.016 0.138± 0.023 0.486± 0.032 0.978± 0.082
RNFs-ML (K = 1) 0.083± 0.015 0.110± 0.021 0.779± 0.191 1.001± 0.051
RNFs-ML (K = 10) 0.113± 0.037 0.140± 0.013 0.495± 0.055 0.878± 0.083
RNFs-TS 0.178± 0.024 0.161± 0.016 0.649± 0.081 1.085± 0.062

5.2 Tabular Data

We now turn our attention to the tabular datasets used by Papamakarios et al. [45], now a common
benchmark for NFs as well. As previously mentioned, one should be careful when comparing models
with different supports, as we cannot rely on test likelihoods as a metric. We take inspiration from the
FID score [21], which is commonly used to evaluate quality of generated images when likelihoods
are not available. The FID score compares the first and second moments of a well-chosen statistic –
taken in practice to be the values of the last hidden layer of a pre-trained inception network [56] –
from the model and data distributions using the squared Wasserstein-2 metric (between Gaussians).
Here, we take the statistic to be the data itself instead of the final hidden units of a pre-trained
classifier: in other words, our metric compares the mean and covariance of generated data against
those of observed data with the same squared Wasserstein-2 metric. We include the mathematical
formulas for computing both FID and our modified version for tabular data in Appendix F. We use
early stopping with our FID-like score across all models. Our results are summarized in Table 2,
where we can see that RNFs-ML consistently do a better job at recovering the underlying distribution.
Once again, these results emphasize the benefits of including the Jacobian-transpose-Jacobian in the
objective. Interestingly, except for HEPMASS, the results from our stochastic version with K = 1
are not significantly exceeded by the exact version or using a larger value of K, suggesting that the
added variance does not result in decreased empirical performance. We highlight that no tuning
was done (except on GAS for which we changed d from 4 to 2), RNFs-ML outperformed RNFs-TS
out-of-the-box here (details are in Appendix G). We report training times in Appendix G, and observe
that RNFs-ML take a similar amount of time as RNFs-TS to train for datasets with lower values of D,
and while we do take longer to train for the other datasets, our training times remain reasonable and
we often require fewer epochs to converge.
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Table 3: FID scores (lower is better) and decision stump OoD accuracy (higher is better).

Method
FID OoD ACCURACY

CIFAR-10 MNIST FMNIST MNIST ! FMNIST FMNIST ! MNIST

RNFs-ML (exact) 643.31 36.09 296.01 92% 91%
RNFs-ML (K = 1) 830.94 33.98 288.39 97% 78%
RNFs-ML (K = 4) - 42.90 342.91 77% 89%
RNFs-TS 731.46 35.52 318.59 98% 96%

5.3 Image Data and Out-of-Distribution Detection

We also compare RNFs-ML to RNFs-TS for image modelling on MNIST and FMNIST. We point
out that these datasets have ambient dimension D = 784, and being able to fit RNFs-ML is in itself
noteworthy: to the best of our knowledge no previous method has scaled optimizing the Jacobian-
transpose-Jacobian term to these dimensions. We use FID scores both for comparing models and
for early stopping during training. We also used likelihood annealing, with all experimental details
again given in Appendix G. We report FID scores in Table 3, where we can see that we outperform
RNFs-TS. Our RNFs-ML (K = 1) variant also outperforms its decreased-variance counterparts.
This initially puzzling behaviour is partially explained by the fact that we used the K = 1 variant
to tune the model (being the cheapest one to train), and then used the tuned hyperparameters for a
single run of the other two variants. Nonetheless, once again these results suggest that the variance
induced by our stochastic method is not empirically harmful, and that while using the exact method
should be the default whenever feasible, using K = 1 otherwise is sensible. We also report training
times where we can see the computational benefits of our stochastic method, as well as visualizations
of samples, in Appendix G.

We also compare performance on the CIFAR-10 dataset [33], for which D = 3,072. Once again,
being able to fit RNFs-ML in this setting is in itself remarkable. We do not include RNFs-ML (K = 4)
results because of limited experimentation on CIFAR-10 due to computational cost (experimental
details, including hyperparameters which we tried, are given in Appendix G). We can see that, while
RNFs-TS outperformed RNFs-ML (K = 1) – which we hypothesize might be reversed given more
tuning – our RNFs-ML (exact) version is the best performing model, yet again highlighting the
importance of including the change-of-volume term in the objective.

Trained on FMNIST

Figure 2: OoD detection with
RNFs-ML (exact).

We further evaluate the performance of RNFs for OoD detection.
Nalisnick et al. [41] pointed out that square NFs trained on FMNIST
assign higher likelihoods to MNIST than they do to FMNIST. While
there has been research attempting to fix this puzzling behaviour
[1, 2, 10, 51], to the best of our knowledge no method has managed to
correct it using only likelihoods of trained models. Figure 2 shows
that RNFs remedy this phenomenon, and that models trained on
FMNIST assign higher test likelihoods to FMNIST than to MNIST.
This correction does not come at the cost of strange behaviour now
emerging in the opposite direction (i.e. when training on MNIST,
see Appendix G for a histogram). Table 3 quantifies these results
(arrows point from in-distribution datasets to OoD ones) with the
accuracy of a decision stump using only log-likelihood, and we
can see that the best-performing RNFs models essentially solve this
OoD task. While we leave a formal explanation of this result for
future work, we believe this discovery highlights the importance of
properly specifying models and of ensuring the use of appropriate inductive biases, in this case low
intrinsic dimensionality of the observed data. The strong performance of RNFs-TS here seems to
indicate that this is a property of RNFs rather than of our ML training method specifically, although
our exact approach is still used to compute these log-likelihoods at test time. We include additional
results on OoD detection using reconstruction errors – along with a discussion – in Appendix G,
where we found the opposite unexpected behaviour: FMNIST always has smaller reconstruction
errors, regardless of which dataset was used for training.
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6 Scope and Limitations

In this paper we address the dimensionality-based misspecification of square NFs while properly
using maximum likelihood as the training objective, thus providing an advancement in the training of
RNFs. Our methods however remain topologically misspecified: even though we can better address
dimensionality, we can currently only learn manifolds homeomorphic to Rd. For example, one could
conceive of the MNIST manifold as consisting of 10 connected components (one per digit), which
cannot be learned by f✓. It is nonetheless worth noting that this limitation is shared by other deep
generative modelling approaches, for example GANs [19] result in connected supports (since the
image of a connected set under a continuous function is connected). We observed during training in
image data that the residuals of CG were not close to 0 numerically, even after d steps, indicating poor
conditioning and thus possible numerical non-invertibility of the matrix J>

✓ J✓. We hypothesize that
this phenomenon is caused by topological mismatch, which we also conjecture affects us more than
the baseline as our CG-obtained (or from the exact method) gradients might point in an inaccurate
direction. We thus expect our methods in particular to benefit from improved research on making
flows match the target topology, for example via continuous indexing [11].

Additionally, while we have successfully scaled likelihood-based training of RNFs far beyond current
capabilities, our methods – even the stochastic one – remain computationally expensive for higher
dimensions, and further computational gains remain an open problem. We also attempted OoD
detection on CIFAR-10 against the SVHN dataset [42], and found that neither RNFs-ML nor RNFs-
TS has good performance, although anecdotally we may have at least improved on the situation
outlined by Nalisnick et al. [41]. We hypothesize these results might be either caused by topological
mismatch, or corrected given more tuning.

7 Conclusions and Broader Impact

In this paper we argue for the importance of likelihood-based training of rectangular flows, and
introduce two methods allowing to do so. We study the benefits of our methods, and empirically show
that they are preferable to current alternatives. Given the methodological nature of our contributions,
we do not foresee our work having any negative ethical implications or societal consequences.
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