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ABSTRACT

It is commonly believed that, in a real-world environment, samples can only be
drawn from observational and interventional distributions, corresponding to Layers
1 and 2 of the Pearl Causal Hierarchy. Layer 3, representing counterfactual
distributions, is believed to be inaccessible by definition. However, Bareinboim,
Forney, and Pearl (2015) introduced a procedure that allows an agent to sample
directly from a counterfactual distribution, leaving open the question of what other
counterfactual quantities can be estimated directly via physical experimentation.
We resolve this by introducing a formal definition of realizability, the ability to draw
samples from a distribution, and then developing a complete algorithm to determine
whether an arbitrary counterfactual distribution is realizable given fundamental
physical constraints, such as the inability to go back in time and subject the same
unit to a different experimental condition. We illustrate the implications of this
new framework for counterfactual data collection using motivating examples from
causal fairness and causal reinforcement learning. While the baseline approach
in these motivating settings typically follows an interventional or observational
strategy, we show that a counterfactual strategy provably dominates both.

1 INTRODUCTION

The Pearl Causal Hierarchy, or PCH, is an important recent milestone in our understanding of
causality (Pearl & Mackenzie, 2018; Bareinboim et al., 2022). The three layers of the PCH represent
the distinct regimes of seeing, doing, and imagining, with regard to an environment. Consider
an environment involving a decision variable X and an outcome Y . Layer 1 (L1) represents
observational distributions, such as P (Y | x). Layer 2 (L2) represents interventional distributions,
such as P (Y ; do(x)), using the do() operator. Layer 3 (L3) represents counterfactual distributions
dealing with conflicting realities, such as P (Yx | x′, y′): the distribution of Y had X been fixed as x,
given that X,Y were in fact naturally observed to be x′, y′. Higher layers subsume lower ones, but
are underdetermined by them (Ibeling & Icard, 2020; Bareinboim et al., 2022).

Reasoning about L3-quantities plays a vital role in personalized decision-making (Mueller & Pearl,
2023), analysing a causal effect into direct and indirect pathways (Pearl, 2005; Rubin, 2004), and
constructing explanations for decisions, among other topics, in applications such as healthcare
(Mueller & Pearl, forthcoming), economics (Li & Pearl, 2019), epidemiology (Robins & Greenland,
1992) etc. Suppose an economist were interested in estimating P (yx | x′), an important L3-quantity
called the effect of the treatment on the treated, or ETT (Heckman & Robb Jr., 1985; 1986). One
approach to computing such quantities is through identification (Pearl, 2000, §3.2.4): leveraging
causal knowledge about the environment, typically a causal graph or parametric assumptions, to
infer the higher-layer quantity using lower-layer data. This approach fails when the quantity is
nonidentifiable, e.g. ETT in the general setting (Shpitser & Pearl, 2009; Correa et al., 2021).

However, another approach uses physical experimentation to attempt to directly draw samples from
the relevant distribution, P (Yx, X) in the case of ETT, and then uses statistical methods to estimate
P (Yx = y,X = x′). This approach is only possible if there is some sequence of physical actions
by which an agent can measure these random variables simultaneously for a single unit. It is
generally believed to be feasible to draw samples only from L1- and L2-distributions, the latter by
interventions like randomized controlled trials (RCT), à la Fisher (Fisher, 1935), and the former by
simply observing the natural behaviour of the system. L3-distributions like P (Yx, X) are deemed
non-realizable in general, as the potential response Yx and natural decision X belong to different
”worlds”. Once a unit naturally adopts decision X = x′, Yx cannot be evaluated in the do(x) regime
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for the same unit.1 However, Bareinboim, Forney & Pearl have shown it is feasible to draw samples
from the ETT distribution P (Yx, X) through a counterfactual randomization procedure (Bareinboim
et al., 2015; Forney et al., 2017). This leaves open the possibility that other L3-distributions, say
perhaps P (Yx, X, Y ), are also realizable through clever experimental setups, allowing one to estimate
important quantities like the probability of sufficiency, P (yx | y′, x′) (Pearl, 1999).

This brings us to the central question motivating this work: from which L3-distributions is it possible
to draw samples given fundamental physical constraints like the inability to travel back in time and
subject the original unit to a different experimental condition? We resolve this open question with a
rigorous formal treatment of the realizability of an L3-distribution (Def. 3.4).

Our main contributions in this work are as follows:

• In Sec. 2 we introduce a physical procedure called counterfactual randomization (Def. 2.3) by
which an agent can gather counterfactual data, subsuming previous similar notions.

• In Sec. 3 we develop the CTF-REALIZE algorithm (Algo. 1) to determine whether an L3-
distribution is physically realizable. We prove the algorithm is complete (Thm. 3.5), and derive
important corollaries characterizing realizable distributions (Cors. 3.7,3.8). For instance, we show
that our main result generalizes an influential notion in the causal inference literature, known as
the fundamental problem of causal inference (Holland, 1986).

• In Sec. 4 we discuss important practical implications of counterfactual realizability. The tradi-
tional route of computing L3-quantities through identification often fails. Our work suggests
opportunities for novel experiment-design ideas to directly estimate these quantities, as illustrated
through Examples 1,2 and 3. More concretely,

– In Sec. 4.1, we describe an application in causal fairness, where the naive approach of
constraining a classifier using an interventional (L2) fairness metric fails to prevent disparities
in outcomes across groups, but where a counterfactual (L3) approach works.

– In Sec. 4.2, we show how counterfactual randomization can be used to improve RL algo-
rithms. The baseline approach in a multi-arm bandit setting is to use allocation procedures
(e.g., UCB, EXP3, Thompson Sampling) to discover which arm x optimizes the expected
outcome E[Y ; do(x)], which is an interventional (L2) strategy (Sutton & Barto, 1998; Latti-
more & Szepesvári, 2020). It turns out there are provably superior strategies (w.r.t expected
outcome) based on directly optimizing counterfactual (L3) objectives, as we demonstrate in
Example 3. We prove optimality of our proposed strategy in a bandit setting with a generic
causal template (Thm. F.2, Cor. F.3).

Finally, Sec. 5 discusses important themes, future directions, and the limitations of our work. Proofs
and details of simulations are included in Appendices.

Preliminaries. We denote variables by capital letters, X , and values by small letters, x. Bold
letters, X, are sets of variables and x sets of values. P (x) is shorthand for P (X = x). 1[.] is the
indicator function. We use Structural Causal Models (SCM) to describe the generative process
for a system of interest (Bareinboim et al., 2022, Def. 1)(Pearl, 2000). An SCM M is a tuple
⟨V,U,F , P (u)⟩. V is the set of observable variables. U is the set of unobservable variables
exogenous to the system, distributed according to PM(U). F = {fV } is a set of functions s.t.
each fV causally generates the value of V ∈ V as V ← fV (UV ,PaV ), where UV ⊆ U and
PaV ∈ V \ V . EachM induces a causal diagram G (Bareinboim et al., 2022, Def. 13), which
is a graph containing a vertex for each V ∈ V, a directed edge from each node in PaV to V ,
and a bidirected edge between V, V ′ if UV ,UV ′ are not independent. Given a graph G, GXW is
the result of removing edges coming into variables in X, and edges coming out of W. We use
standard terminology like parents, descendants of a node (see App. A). Our treatment is limited to
recursive SCMs, which implies acyclic diagrams, with finite discrete domains over V. The do(x)
operator indexes a sub-modelMx where the functions generating variables X are replaced with
constant values x. A variable Y ̸∈ X evaluated in this regime is called a potential response, denoted
Yx. (W⋆ = w) denotes an arbitrary counterfactual event, e.g. (Yx = y ∧ Yx′ = y′ ∧ X = x′′).

1E.g., ”The problem with counterfactuals like [P (Yx | x′)] is [that] . . . we simply cannot perform an
experiment where the same person is both given and not given treatment.” (Shpitser & Pearl, 2007) Also,
”By definition, one can never observe [counterfactuals], nor assess empirically the validity of any modeling
assumptions made about them...” (Dawid, 2000)
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The probability of such an event is given by the L3-valuation (Bareinboim et al., 2022, Def. 7):

PM(W⋆ = w) =
∑

u

(∏
Wt∈W⋆

1[Wt(u) = w]

)
PM(u), with w taken from w.

2 DATA-COLLECTION PROCEDURES

In this section, we define a procedure, counterfactual randomization, that extends the scope of
traditional Fisherian experimentation (discussed below). Consider a system of interest modeled by
unknown SCMM. Interventions and counterfactual events are typically defined in terms of symbolic
operations onM. To conceptually separate this from the physical constraints experienced by an
agent (natural or artificial), we define the following physical actions that an agent can perform in the
system. These are simply the physical counterparts to symbolic procedures.

We call each discrete episode of the system’s behaviour a unit. Examples of units are patients in a
clinical trial, neighbourhoods in a social science experiment, rounds played on a slot machine etc.
We index units WLOG by i = 1, 2, 3..., which constitute a target population in the system.

Definition 2.1 (Physical actions). (1) SELECT(i): randomly choosing, without replacement, a unit i
from the target population, to observe in the system; (2) READ(V )(i): measuring the realized feature
V (i) of unit i, produced by a causal mechanism fV ∈ F operating on i; (3) RAND(X)(i): erasing
and replacing i’s natural mechanism fX for a decision variable X with an enforced value drawn from
a randomizing device having support over Domain(X). ■

READ(V )(i) = v and RAND(X)(i) = x are also overloaded to refer to the values read and enforced,
respectively. RAND(X)(i) is the standard Fisherian randomization of a decision variable X , corre-
sponding to the symbolic procedure of a stochastic intervention on X (Correa & Bareinboim, 2020).2

As RAND(X)(i) erases the unit i’s natural decision, READ(X)(i) will yield the value randomly
assigned to unit i. The discovery of this procedure marked an important achievement in the history of
science and experiment-design (Fisher, 1925; 1935). Since the use of a randomizing device eliminates
by design any confounding between the assigned decision and the unit’s latent attributes U(i), it
allows researchers to estimate causal effects.

X Y

X
x

Y

Figure 1: (Top) Causal dia-
gram with decision variable
X; (Bottom) Procedure of
randomizing the actual de-
cision without erasing the
unit’s natural decision.

It is evident that the actions in Def. 2.1 are sufficient for an agent to
physically draw samples from any L1- or L2-distribution, as discussed
in App. C.3. Until recently, it was generally presumed these were
the only physical actions possible on units in a system. However, we
discuss some important extensions of experimental capabilities next.

Counterfactual data-collection procedures. In an early work from
the causal reinforcement learning literature, Bareinboim, Forney &
Pearl describe an experimental setting in which it is possible to both
randomize a unit’s actual decision, and also record the natural decision
the unit would have normally taken (Bareinboim et al., 2015; Forney
et al., 2017). Subsequently, this procedure has been used to establish
benchmarks in counterfactual decision making (Zhang & Bareinboim, 2022). These settings involve
an agent introspecting to gauge their natural choice, or otherwise revealing their natural choice by
some indication, e.g. physical gestures prior to decision-time. Importantly, this form of randomization
does not erase the unit’s natural choice of decision variable X , as schematically illustrated in Fig. 1.

Building on the idea, we formalize this into a more general extension of the agent’s capabilities: the
ability to intervene on a variable X’s value as perceived by its causal children. To illustrate this,
consider the L3-quantity known as natural direct effect, or NDE, which is used in mediation analysis
to measure the effect of X on Y via a ”direct” path, as opposed to an ”indirect” path via a mediator
Z (Pearl, 2001) – highly relevant in several fields, as discussed in Sec. 1. The NDE is generally
considered as identifiable from experimental data only under certain conditions (Pearl, 2005; Correa
et al., 2021). The following example details an experiment design where it is possible to compute the
NDE even when these identification conditions are not met, by randomizing the perception of X .

2If the device used for enforcing the value of X is a constant function, this action simply becomes WRITE(X :

x)(i), corresponding to the atomic intervention do(x). See Preliminaries in Sec. 1.
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Example 1 (Mediation analysis). A computer vision company’s tool is being evaluated for an
automated speeding ticket system that uses footage from traffic cameras. But the government’s
audit team has a concern: it is possible the model is trained on footage with a strong correlation
between the color of the car and speeding (perhaps due to color preference of different socioeconomic
neighbourhoods), and unfairly penalizes certain car colors.

This amounts to a hypothesis that X (car’s color) affects Y (AI decision to issue a ticket) via a
direct path as opposed to the indirect path via Z (speeding). The indirect path describes the causal
effects of, say, how pedestrians and other drivers react to a red car and affect its speeding. This
hypothesis is true iff NDE is measured to be non-0, where NDE is defined as the following expression:
NDEx,x′(y) = P (yx′Zx

) − P (yx) (Pearl, 2001). The second term, P (yx), can be estimated from
a Fisherian randomization of X (say, an experiment recruiting drivers and assigning them random
cars). Inconveniently, the first term, P (yx′Zx

), is nonidentifiable for Fig. 2(a), even using RCT data.
So it is unclear how to make progress with this hypothesis test.

X
W

Z

Y

X

Z

Y
x

Figure 2: (a) ”Expanded” dia-
gram for Example 1, where W
is counterfactual mediator for
X; (b) Randomizing the value
of X as perceived by Y .

However, the audit team recognizes there exists a special mediator,
viz. the features W in the video which reveal the car’s color to the
model (say, RGB values of pixels in the video frames). They use
standard video-editing tools to randomly swap the color of the car in
the footage. By randomly assigning a particular car W ← red, they
are able to affect the mechanism fY ’s perception of X:

P (YW=red | X = blue) est. from L2 data (1)
=P (YW=red,Z | X = blue) Z : natural value (2)
=P (YW=red,ZX=blue | X = blue) consistency property (3)
=P (YX=red,ZX=blue | X = blue) Def. 2.2, X ≡W (4)
=P (YX=red,ZX=blue) d-separation (5)

Eq. 4 is justified because W controls Y ’s perception of X given a
fixed z (formalized in Lemma D.4). Thus, they are able to directly
sample from the L3-distribution P (Yx′Zx

, X) via a physical procedure, and use identification rules
to obtain P (yx′Zx

). Using the formula for NDE, they can evaluate whether a car’s color has a direct
effect on the odds of getting a speeding ticket. ■

Here, one is able to randomize X as perceived by one of its children, by leveraging the variable
W (RGB values) that fully encodes information about X (color) and mediates its effect on Y . We
capture this intuition with the following (informal) definition.
Definition 2.2 (Counterfactual mediator (informal)). We call W a counterfactual mediator of X
w.r.t Y ∈ Ch(X) if the value of X can be retrieved from W by the mechanism generating Y . ■

Other examples of interventions on perceived attributes via counterfactual mediators include changing
details on a job application (name, pronouns, keywords) to simulate a perceived alternate demographic
identity (Bertrand & Mullainathan, 2003), or editing specific portions of text input to a language
model (Feder et al., 2022). Randomizing perception has been discussed in Pearl et al. (2016, §4.4.4).
For a detailed discussion of the causal semantics of intervening on perceptions, and the related
literature, see (Plecko & Bareinboim, 2024, App. D.1). For the interested reader, we provide a
rigorous treatment in App. D, including a formal Def. D.2 of a counterfactual mediator.

This important extension to experimental capabilities is captured in the following definition of a new
physical action that an agent might be able to perform in an environment.
Definition 2.3 (Counterfactual (ctf-) randomization). CTF-RAND(X → C)(i): fixing the value of X
as an input to the mechanisms generating C ⊆ Ch(X)G using a randomizing device having support
over Domain(X), for unit i, given causal diagram G. ■

The key differences between the Fisherian RAND(X)(i) and CTF-RAND(X → C)(i) are (1)
CTF-RAND does not erase the unit i’s natural decision X(i); and (2) while RAND affects all chil-
dren of X , CTF-RAND does not affect Ch(X) \C. CTF-RAND can only be enacted under certain
structural conditions, viz., either in environments which permit the measurement of a unit’s natural
decision while simultaneously randomizing the actual decision (Bareinboim et al., 2015), or where
counterfactual mediators can be used to alter X as perceived by a subset of children. Whether the
agent is indeed able to perform this action thus depends on the specific experimental setting.
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Note: Def. 2.3 implies that it is possible to physically perform multiple randomizations involving
the same variable X on a single unit i, with each intervention affecting a different subset of children.
Further, CTF-RAND may only be performed w.r.t a graphical child variable; it is not possible to
bypass a child and directly affect a descendant’s perception of X .

3 COUNTERFACTUAL REALIZABILITY

Given the possibility of performing ctf-randomization (Def. 2.3), we are interested in knowing
which L3-distributions can be accessed directly by experimentation. In this section, we discuss the
constraints imposed by nature on an agent. We then formally define realizability and develop a
complete algorithm to determine whether an L3-distribution is realizable.

The most basic constraints experienced by the agent (natural or artificial) are physical. Each mecha-
nism fV ∈ F represents some physical process that transforms a unit i according to the laws of nature.
For instance, taking a drug, X , produces a side effect in the patient, Y , by a biochemical reaction
fY (X,UY ), which depends on the drug and the patient’s latent health condition, UY . Once patient i
has been subjected to mechanism fY under X = x, there appears to be no way to go back in time and
subject the same patient to mechanism fY under X = x′. Even if technologically feasible to reverse
the process (e.g., by taking an antidote to the drug), the latent factors U = u might have changed
after the experiment (e.g., the patient could have developed tolerance to the drug). Repeating the
experiment on this patient is tantamount to testing a new unit with unknown latent features U = u′.3
This observation is made more formal through the following assumption.
Assumption 3.1 (Fundamental constraint of experimentation (FCE)). A unit i in the target population
can physically undergo a causal mechanism fV ∈ F at most once. ■

Remark 3.2. The FCE assumption entails that a unit i can only be submitted to a particular mechanism
fV (PaV ,UV ) under a single set of experimental conditions, received as input to fV . By implication,
the physical actions in Defs. 2.1, 2.3 can only be performed at most once per unit i. ■

Once unit i has been subjected to fV , it is not possible to re-run fV with differently fixed inputs.
READ(V )(i) thus only yields one value for i. Although ctf-randomization permits multiple interven-
tions involving the same variable X , each such intervention can only be performed once, since it
impacts different child mechanisms that can each only occur once for unit i. We also assume that the
agent can only perform the physical actions in Defs. 2.1, 2.3, up to isomorphism.
Definition 3.3 (I.i.d sample). Given an L3-distribution Q = P (W⋆) and a sequence of physical
actions A(i) performed on unit i in an environment modeled by SCMM, producing a vector of
realized values W(i)

⋆ = w for the variables in W⋆, the vector is said to be an i.i.d sample from Q if
PC(W

(i)
⋆ = w | A(i)) = PM(W⋆ = w),∀w, where PC is the probability measure over the beliefs

of the acting agent C, and the l.h.s is the probability of physical actions A(i) producing the vector w
when performed on some unit i. ■

Definition 3.4 (Realizability). Given a causal diagram G and the set of physical actions A, an
L3-distribution P (W⋆) is realizable given A and G iff there exists a sequence of actions A from
A by which an agent can draw an i.i.d sample (Def. 3.3) from PM(W⋆), for anyM∈M(G), the
class of SCMs compatible with G. ■

We emphasize the distinction between realizability and identifiability. Identifiability (Pearl, 2000,
Def. 3.2.3) from G states that a distribution (say, P (v; do(x))) can be uniquely computed from the
available data (say, P (v)) for any SCM compatible with the assumptions in G. Realizability of a
distribution states that it is physically possible for an agent to actually gather data samples according
to this distribution.

We next develop an algorithm to decide whether a distribution is realizable. As an intuition pump,
suppose that an agent is able to perform CTF-RAND(V → C),∀V,C ∈ Ch(V ), w.r.t an input causal
diagram, and wants to obtain samples from P (Zx,Wt). Consider the diagram G2 in Fig. 3. By
performing CTF-RAND(T →W ) and CTF-RAND(X → Z), the distribution is realizable. However,
suppose the input diagram is G1. A necessary condition to measure Zx for a unit is for mechanism fA

3In the philosophy of science literature, similar ideas have been discussed under the topic of the temporal
asymmetry of causation (Reichenbach, 1956, §III-IV).
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Algorithm 1 CTF-REALIZE

1: Input: L3-distribution Q = P (W⋆); causal
diagram G; action set A

2: Output: I.i.d sample W
(i)
⋆ from Q; FAIL if

Q is not realizable given G,A
3: Fix a topological ordering Top(G)
4: SELECT(i) for a new unit i
5: for V in order Top(G) do
6: INTV ← ∅ {Interventions for V }
7: OUTPUTV ← ∅ {Index in output vector}
8: for each term Wt in expression W⋆ do
9: if V ∈ An(W )GT

and V ̸= W then
10: Call COMPATIBLE(V,Wt) 2
11: end if
12: if V = W then
13: Add {Wt} to OUTPUTV

14: end if
15: end for

16: for each {action : tag} ∈ INTV do
17: Perform the randomization on unit i
18: If the random-generated value ̸= tag,

discard the unit and return to Line 4
19: end for
20: for each Wt ∈ OUTPUTV do
21: if {RAND(V ) : .} ∈ INTV then
22: Return FAIL
23: else
24: Perform READ(V )(i) = v′

25: Assign v′ to each index W
(i)
t in out-

put vector W(i)
⋆ = w

26: end if
27: end for

28: end for

29: Return i.i.d sample W
(i)
⋆ = w

to receive the natural value of T , illustrated in green. While a necessary condition to simultaneously
measure Wt is for fW to receive At, which in turn requires fA to receive a fixed t, shown in red. This
conflict in necessary conditions renders the query non-realizable.4

T

t nat.

A

X

W Z

T

t nat.

X

W Z

Figure 3: Testing realizability of
P (Zx,Wt) for G1 (left) and G2 (right).
G1 yields conflicting requirements.

This ”edge-coloring” intuition is formalized in Algo. 1.
The algorithm CTF-REALIZE takes as input an L3-
distribution P (W⋆), a graph G, and a set of physical ac-
tions A the agent is able to perform in the environment
(viz., the RAND and CTF-RAND actions which are possi-
ble in the environment). It returns an i.i.d sample if the
distribution is realizable, and FAIL otherwise.

The algorithm works as follows (a more detailed walk-
through is presented in App. B.2): going over each node
V in topological order, the inner loops gather the necessary
and sufficient conditions needed w.r.t V for realizing each
Wt in the input query W⋆. If there is a conflict in the necessary conditions for evaluating two terms
(as we saw for P (Zx,Wt) in Fig. 3, G1), the query is non-realizable. The algorithm is fully general
and does not make assumptions about the ability to perform any particular interventions. If the agent
cannot perform any counterfactual randomization, the algorithm returns FAIL for non-L2 queries. If
the agent cannot perform any interventions at all, the algorithm returns FAIL for non-L1 queries (we
assume the ability to READ all variables). Details about the time and space complexity of Algo. 1 are
provided in App. B.3, for the interested reader.
Theorem 3.5 (Correctness and Completeness). An L3-distribution Q = P (W⋆) is realizable given
action set A and causal diagram G iff the algorithm CTF-REALIZE(Q,G,A) returns a sample. ■

A further question we may ask is which L3-distributions are realizable if we assume maximum
experimental capabilities, notably, the ability to perform separate ctf-randomization for each child of
each variable. Given a causal diagram G, we define the maximal feasible action set A†(G) as the set
containing all of the following actions: SELECT(i), READ(V )(i) ,∀V , and CTF-RAND(X → C)(i)

,∀X and C ∈ Ch(X). A†(G) thus gives the agent the most granular interventional capabilities.
Definition 3.6 (Ancestors of a counterfactual (Correa et al., 2021)). Given a causal diagram G and a
potential response Yx, the set of (counterfactual) ancestors of Yx, denoted An(Yx), consists of each

4To be clear, the input to the algorithm is a graph and an accurate set of actions the agent can perform in
the environment. If the graph is per G1 in Fig. 3, then CTF-RAND(T → Z) is not possible in this environment.
Marginalizing out A and providing graph G2 as input does not help.
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P (Y )
P (X,Y )

P (Y ; do(x))

P (X,Y ; do(z))

P (Yx, X)

Cor. 3.7: An(W⋆) has
same variable twice

P (Yx, X, Y )

P (U)

Layer 1
(realizable)

P (V): Lem. C.8

Layer 2
(realizable)

P (V; do(x)): Lem. C.10

Layer 3
(partially realizable)

SCM
(unknown)

Figure 4: Pearl Causal Hierarchy (PCH) induced by an unknown SCMM. An L3-distribution is
realizable given a graph G and the maximal feasible action set A†(G) iff the ancestor set An(W⋆)
does not contain the same variable under different regimes.

Wz s.t. W ∈ An(Y )GX
, and z = x ∩An(W )GX

. For a set W⋆, An(W⋆) is defined to be the union
of the ancestors of each potential response in the set. ■

Corollary 3.7. An L3-distribution Q = P (W⋆) is realizable given causal diagram G and action
set A†(G) iff the ancestor set An(W⋆) does not contain a pair of potential responses Wt,Ws of the
same variable W under different regimes. ■

For instance, if W⋆ = {Zx,Wt} w.r.t graph G1 in Fig. 3, then An(W⋆) = {Zx, A, T,Wt, At},
which contains both A,At. Thus, P (W⋆) is not realizable even with maximal experimentation
capabilities. In App. B.4, we provide further examples of using the CTF-REALIZE algorithm,
and the graphical criterion, to demonstrate the realizability of the ETT distribution P (Yx, X), the
non-realizability of the probability of sufficiency distribution P (Yx, X, Y ).

We believe this is an important contribution to causal inference. Cor. 3.7 provides a graphical criterion
to delineate how far up the PCH an agent can go via experimental methods, in principle. Often,
counterfactuals have been criticized as being hypothetical, untestable, or unscientific assumptions.
Our analysis counters this claim, as summarized in Fig. 4.

Corollary 3.8 (Fundamental problem of causal inference (FPCI) (Holland, 1986)). The distribution
Q = P (Yx, Yx′) is not realizable given maximal feasible action set A†(G), for any causal diagram
G, and any variables X,Y ∈ Desc(X). ■

The FPCI is an influential notion in the literature, and is often taken as a primitive, or in an axiomatic
fashion. We show that it is rather a specific consequence of the more general FCE assumption 3.1,
and follows from Thm. 3.5 and Cor. 3.7. By itself, the FPCI does not translate to an operational
criterion for determining which L3-distributions are realizable (Def. 3.4). For instance, it does not
clarify that a distribution with potential responses under conflicting regimes like P (Yx, Zx′) may
indeed be realizable via counterfactual randomization, as we show in Example 2. It also does not tell
us that P (Zx,Wt) may be realizable given causal diagram G2 in Fig. 3, but not realizable given G1.

4 APPLICATIONS: COUNTERFACTUAL DECISION-MAKING AND FAIRNESS

Next, we highlight the practical relevance of our results with some concrete use-cases. We already
discussed in Example 1 how realizability can be used to design experiments for performing mediation
analysis of direct/indirect effects, an important task in several fields. We now discuss applications in
causal fairness analysis and causal reinforcement learning (RL). Our goal is to underscore that the
standard/baseline approaches in these areas, even among approaches that incorporate counterfactual
reasoning, typically use observational (L1) or interventional (L2) data only, whereas a counterfactual
(L3) data-collection approach can lead to demonstrably better results. Due to space constraints, we
include in App. E the full specification of SCMs used and algorithms implemented.

4.1 CAUSAL FAIRNESS - USING COUNTERFACTUAL DATA FOR FAIRER DECISIONS

Causal fairness analysis is a burgeoning field and a full survey is beyond the scope of this paper
(see, e.g., Plecko & Bareinboim (2024) for a review of related works). We limit our discussion to an
example where counterfactual realizability is directly relevant.
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A common concern is that models trained to make automated decisions often reveal problematic
biases (Angwin et al., 2016; Kodiyan, 2019, e.g.). The causal approach to address this is typically
to constrain a classifier to obey some causally-sensitive fairness measure, µ (Plecko & Bareinboim,
2024, Def. 3.3). Some measures in the literature involve L3-quantities, and thus face the familiar
issue of nonidentifiability (Kusner et al., 2017; Imai & Jiang, 2023). Other approaches acknowledge
this limitation and try to construct interventional fairness measures that solely use L2-quantities
(Salimi et al., 2019). We present next an example where relying only on L2-data can misleadingly
approve a classifier as fair, but where a realizable L3 fairness measure actually ensures fairness. This
scenario is inspired by a classic experiment in labor economics (Bertrand & Mullainathan, 2003).

Example 2 (Causal fairness). A college is developing an automated system to screen candidates
in the first round of college applications, receiving as input a standardized CV per candidate. The
system contains two models: model 1 outputs Y and model 2 outputs Z, which are binary decisions
of whether the applicant cleared the first review stage for admission and for financial scholarship,
respectively. The two models are respectively trained using data from previous years where an
admissions team and a separate scholarship team reviewed applications manually. The college wants
to ensure fairness w.r.t X , a candidate’s race (a binary variable, for simplicity). In particular, they
want to ensure equitable financial access to education for all qualified candidates: a candidate of race
X = 1 who cleared the admissions screening (Y = 1) but was rejected for financial aid (Z = 0)
should still receive Z = 0 had they been of race X = 0. The causal diagram is in Fig. 5(a), where
the models’ decisions Y, Z might reflect the unconscious race bias of the two committees in previous
years (including possibly shared biases, represented by the latent confounder).

Figure 5: (a) Causal diagram
for Example 2; (b) P (Yx, Zx′)
is realizable using the interven-
tions CTF-RAND(X → Y ) and
CTF-RAND(X → Z); (c) His-
togram of 1000 classifiers trained
on L2 (blue) and L3 (orange) fair-
ness measures. L2 classifiers show
statisically significant discrimina-
tion (µctf > 0.05).

The L3 fairness measure they ought to minimize is thus

µctf = |P (Yx1
= 1, Zx1

= 0)− P (Yx1
= 1, Zx0

= 0)| (6)

But the second term P (yx, z
′
x′) is nonidentifiable from the

causal diagram in 5(a). So the college instead uses the following
L2 measures, as an approximation for the fairness condition:

µint1 =|P (Y = 1; do(x1)).P (Z = 0; do(x1)) (7)
− P (Y = 1; do(x1)).P (Z = 0; do(x0))|

µint2 =|P (Y = 1, Z = 0; do(x1)) (8)
− P (Y = 1, Z = 0; do(x0))|

They train the models, adding µint1 + µint2 as a penalty in the
objective. µint1, µint2 are estimated using a holdout set of fake
CVs, with the intervention do(x) being enacted by randomly
choosing an applicant name from an equivalence class which
stereotypically indicates one unique race group X = x, e.g.
names like Lakisha and Jamal for Blacks, or last names like
Nguyen or Xi for Asians (cf. Bertrand & Mullainathan (2003)).
Since the holdout set’s CV body is independent of X , any
effect of X on Y and Z is solely via the perception of race
from the candidate name. We show in 5(c) simulations of such
an optimization. In blue is the distribution of the true score
µctf , when the models are trained using µint1, µint2. Out of
1000 simulations of classifiers, we see µctf > 5% for nearly
half the L2 simulations, indicating statistically significant discrimination roughly 50% the time.

However, the distribution P (Yx, Zx′) is indeed realizable (Def. 3.4) via the interventions
CTF-RAND(X → Y ), CTF-RAND(X → Z). The data science team notices that they can sepa-
rately and simultaneously randomize the candidate name as an input to the respective models, and
enact these interventions, as shown in 5(b). Thus, they are able to directly use the counterfactual
measure µctf as a fairness constraint in training. Results from 1000 simulations show that the
classifiers trained directly using µctf (shown in orange) nearly always meet the fairness requirement.

Details of the implementation are in App. E.2. Note: as in the original experiment, this example
requires the structural assumption of race being revealed at the screening stage only by candidate
name, which may be more defensible in highly standardized and controlled application processes. ■
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4.2 CAUSAL RL - COUNTERFACTUAL POLICIES FOR OPTIMAL DECISION-MAKING

Table 1: Performance of differ-
ent strategies in Example 3.

Strategy E[Y ]

Behavioral pol-
icy (L1)

0.65

Naive randomiza-
tion (L2)

0.7

ETT baseline
strategy (L3)

0.75

Optimal L3 strat-
egy (this work)

0.80

Consider a multi-arm bandit problem in which X represents the
choice of bandit arm and Y the outcome. The default online
learning approach is for the agent to adopt an algorithm like
EXP3, UCB or Thompson Sampling to converge to some arm
x⋆ := argmaxx E[Y ; do(x)] (Lattimore & Szepesvári, 2020; Sutton
& Barto, 1998). Even in methods that explicitly incorporate causal
knowledge, the common approach is to use a combination of offline
(L1) and online (L2) data to converge more efficiently to the L2 opti-
mization target argmaxx E[Y ; do(x)] (Zhang & Bareinboim, 2017,
e.g.). It was already shown in (Bareinboim et al., 2015; Forney et al.,
2017) that it is possible to perform better by deploying a counterfac-
tual strategy based on sampling each unit’s natural choice X = x′

and randomizing actual choice in the same round, thus seeking to
converge to argmaxx E[Yx | x′],∀x′, as we discussed in Sec. 2. We
call this the ETT baseline strategy, as it relies on drawing samples
from the L3 ETT distribution, P (Yx, X), mentioned in Sec. 1.

Figure 6: (a) Causal diagram for
Example 3; (b) P (Yx, X,Dx′′)
is realizable using the interven-
tions CTF-RAND(X → Y ) and
CTF-RAND(X → D); (c) Cumulative
Regret (CR) for L1 strategy (blue)
and Thompson Sampling algorithms
implementing naive L2 (yellow, green),
ETT baseline (red), and optimal L3

strategy (purple); (d) Optimal Arm
Probability (OAP) for all algorithms.

We improve on this baseline by showing how an agent
can leverage the realizability (Def. 3.4) of more nuanced
counterfactuals like P (Yx, X,Dx′′) to construct superior
counterfactual strategies. The following scenario involves
an agent faced with adversarial latent confounding.

Example 3 (Counterfactual bandit policies). Consider
a user of a social media platform which uses surveillance
and predictions to increase user engagement through ad-
dictive notifications and recommendations (Zuboff, 2018).
The user chooses every evening whether to use the plat-
form via desktop (X = 0) or mobile (X = 1). Y is
a binary indicator of whether she stays within her self-
determined social media usage limit per day. She also
notices that she receives ads when she logs in each evening
as D (0: streaming service, 1: food delivery ads). The
usage type X affects D,Y , as shown in Fig. 6(a).

On average, the user experiences E[Y ] = 0.65 from the
observational (L1) policy of following her natural incli-
nation each day. She suspects that the company could
be tracking and exploiting her latent preferences, so she
decides to randomize her daily choice and pick the best
”arm”. Sure enough, this naive L2 strategy breaks the adversarial confounding, and incurs a bet-
ter avg. performance of E[Y ; do(x)] = 0.7,∀x. She then decides to test the ETT-based strategy
(L3) described earlier, by recording what she naturally feels like doing each day (X = x′), and
subsequently randomizing her actual choice on the same day to optimize E[Yx | x′], getting an
avg. performance of 0.75. However, at this point, she notices that she can do even better. The
L3-distribution P (Yx, X,Dx′′) is realizable (Def. 3.4), since she can perform another counterfactual
randomization, by sampling her natural choice (X = x′), randomly logging in to just see what ads
she gets (Dx′′ = d), and again randomizing how she actually uses the platform that day to get Yx.
This strategy seeks an optimal x⋆ = argmaxx E[Yx | x′, dx′′ ], which performs best as shown in
Table 1. Details of the SCM, latent confounders, and the optimal L3-strategy are in App. E.3.

Simulations in the online setting corroborate this finding. Fig. 6(c,d) shows the cumulative regret
(CR) and optimal arm probability (OAP) over 2000 iterations averaged over 200 epochs (CI=95%).
We adapt Thompson Sampling to implement the strategies in Table 1. Details of implementation are
in App. E.3.1. The optimal L3 strategy (purple) performs best, improving on the performance of the
baseline ETT-based strategy (red). Naive randomizations, the standard L2 bandit strategy, are shown
in yellow and green. All other algorithms fail to improve in OAP after 2000 iterations. ■
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We make two remarks. First, the optimal counterfactual strategy is not simply a contextual Thompson
Sampling, where X,Dx′′ are used ”merely” as extra context variables per round; indeed, treating this
merely as a contextual bandit problem is one of the naive L2-strategies that we test (green plot in Fig.
6(c-d)), which ignores the counterfactual relationship between these variables and incurs dramatically
higher regret, as we discuss in App. E.3.1.

Second, an interesting follow-up is whether we can guarantee that our strategy based on maximizing
E[Yx | x′, dx′′ ] is optimal in this problem. Perhaps there are more refined L3-distributions like
P (Yx, X,Dx, Dx′′) etc. that could yield better algorithms? It turns that this is indeed optimal, since
most other L3-distributions are not realizable (Def. 3.4). As a bonus, we prove this claim for all
bandit problems that fit a specific causal template in App. F. Thereby, we avoid having to conduct an
intractable search over the space of all possible L3-strategies, trying to assess their realizability.

5 DISCUSSION

Finally, we discuss some important implications, future directions, and limitations of our work.

Identification and bounding. Much work has been done in the area of L3 identification and estima-
tion (Shpitser, 2008; Correa et al., 2021; Geneletti & Dawid, 2011). A natural extension to our work is
to investigate the relationship between realizability and identification: which additional L3-quantities
now become identifiable if the environment permits even some counterfactual randomization? This
warrants an update to existing identification algorithms to allow (some) L3-data as input. Another
fascinating research question involves ”partial identification”, where an input query is tightly bounded
within a range that can be computed from available data (Zhang et al., 2022): how would the new
L3-data further tighten the bounds for nonidentifiable L3-quantities?

Experiment design. One of the goals of this paper is to instigate new experiment design ideas that
leverage ctf-randomization (Def. 2.3) and go beyond the standard RCT methodology, as in Examples
1-2. For instance, the increasingly automated HR pipeline in companies suggests opportunities for
targeted interventions to randomize demographic details in virtual interviews, in standardized aptitude
tests, or in performance-evaluation systems for remote workers, to track fairness metrics.

Causal reinforcement learning (CRL). While counterfactual strategies have been studied in CRL,
the literature currently focuses on ETT-related strategies based on optimizing E[Yx | x′] (Bareinboim
et al., 2015; Forney et al., 2017; Zhang & Bareinboim, 2022)(Richardson & Robins, 2013, §5.1).
We presented an important extension by formalizing ctf-randomization (Def. 2.3) via counterfactual
mediators (Def. 2.2), subsuming the previous approach. An ETT-based approach only allows one
randomization of a variable X , affecting all downstream mechanisms. Our approach recognizes
the possibility of isolating specific causal pathways and randomizing X multiple times per unit,
demonstrably surpassing the ETT baseline in Example 3. We proved in App. F an optimality
guarantee for our proposed strategy in bandit problems following a causal template. Generalizing this
to sequential decision-making settings with arbitrary graphs is an important, non-trivial extension.

Limitations. The first obvious limitation of our framework is that it requires causal knowledge in
the form of a graph (or equivalent). This is a standard assumption, needed to make progress in several
areas of causal machine learning. Subsequent work could accommodate partial knowledge or model
misspecification. Second, it may not always be feasible to perform counterfactual randomization
(Def. 2.3) in a given setting. This is why Algo. 1 and Thm. 3.5 are general and do not assume this
capability a priori. But where it is possible, even in principle, our work pinpoints opportunities for
novel experiment design, as discussed above.

6 CONCLUSION

In this paper, we tackle the open question of which counterfactual distributions are directly accessible
by experimental methods - what we define as the realizability of a distribution. Countering prevalent
belief, we provide a complete algorithm and a graphical criterion for when a counterfactual can indeed
be physically sampled from (Fig. 4). We demonstrate the practical relevance of this new framework
with examples from causal fairness and causal RL, highlighting that ignoring this possibility could
lead to poor outcomes. We believe that switching from an interventional to a counterfactual mindset
could help researchers spot opportunities for counterfactual randomization that permit exciting new
types of experiments, and improved, more personalized decisions.
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APPENDICES

Appendix A: Graphical terminology

Appendix B: Details on the CTF-REALIZE algorithm

Appendix C: Assumptions and realizability proofs

Appendix D: Details on counterfactual randomization

Appendix E: Details on examples

Appendix F: Optimality result and proof

A GRAPHICAL TERMINOLOGY

Structural Causal Models (SCM) and causal diagrams are described in the preliminaries in Sec. 1.
See (Bareinboim et al., 2022) for full treatment. We use the following graphical kinship nomenclature
w.r.t causal diagram G:

• Parent(s) of V , denoted PaV : the set of variables {V ′} s.t. there is a direct edge V ′ → V
in G. PaV does not include V .

• Children of V , denoted Ch(V ): the set of variables {V ′} s.t. there is a direct edge V → V ′

in G. Ch(V ) does not include V .
• Ancestors of V , denoted An(V ): the set of variables {V ′} s.t. there is a path (possibly

length 0) from V ′ to V consisting only of edges pointing toward V , V ′ → ...→ V . An(V )
is defined to include V .

• Descendants of V , denoted Desc(V ): the set of variables {V ′} s.t. there is a path (possibly
length 0) from V to V ′ consisting only of edges pointing toward V ′, V → ... → V ′.
Desc(V ) is defined to include V .

• Non-descendants of V , denoted NDesc(V ): the set V \Desc(V ). NDesc(V ) does not
include V .

Given a graph G, GXW is the result of removing edges coming into variables in X, and edges coming
out of W.

14
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B DETAILS ON THE CTF-REALIZE ALGORITHM

B.1 SUB-ROUTINE OF CTF-REALIZE ALGORITHM (ALGO. 1)

Algorithm 2 COMPATIBLE (sub-routine)

1: Input: V ∈ V of G; Wt ∈W⋆ of Q
2: for each C ∈ Ch(V ) do
3: if C ∈ An(W ) then
4: if V ∈ T then
5: Let v := value of V in subscript t
6: Find smallest C ∋ C s.t.

CTF-RAND(V → C) ∈ A
7: if {CTF-RAND(V → C) : .} ∈

INTV and its label is not ”v” then
8: Return FAIL
9: else

10: Add {CTF-RAND(V → C) : v}
to INTV , with the label ”v”

11: end if
12: if no such C ∋ C s.t.

CTF-RAND(V → C) ∈ A then
13: if {RAND(V ) : .} ∈ INTV and its

label is not ”v” then
14: Return FAIL
15: else if RAND(V ) ̸∈ A then
16: Return FAIL
17: else
18: Add {RAND(V ) : v} to INTV ,

with the label ”v”
19: end if

20: end if
21: end if
22: if V ̸∈ T then
23: for each C ∋ C s.t.

CTF-RAND(V → C) ∈ A do
24: if {CTF-RAND(V → C) : .} ∈

INTV and its label is not ”Natural”
then

25: Return FAIL
26: else
27: Add {CTF-RAND(V → C) :

Natural} to INTV , with the la-
bel ”Natural”

28: end if
29: end for
30: if {RAND(V ) : .} ∈ INTV and its

label is not ”Natural” then
31: Return FAIL
32: else if RAND(V ) ∈ A then
33: Add {RAND(V ) : Natural} to

INTV , with the label ”Natural”
34: end if
35: end if
36: end if
37: end for

B.2 WALK-THROUGH OF THE CTF-REALIZE ALGORITHM (ALGO. 1)

General strategy. For each variable V in the input graph, we check what are the necessary and
sufficient interventions (or lack of interventions) we need to perform w.r.t each term Wt in the input
query W⋆. This is what the inner loops and subroutine COMPATIBLE are doing - accumulating
correct and complete conditions in topological order. If there is no conflict across these conditions
collectively, and if the feasible action set contains the necessary actions, the query is realizable.
Otherwise not.

Walk-through for Algo. 1 CTF-REALIZE:

i. Lines 5-7: go over each node V in the input graph, in topological order; maintain a tracker
of interventions (and lack of interventions) needed for V ; also check whether V needs to be
added to the final output vector.

ii. Line 10: for each Wt in the input query W⋆, check if there is any conflict in necessary and
sufficient conditions w.r.t V for realizing Wt, by calling COMPATIBLE(V,Wt). This only
needs to be done if V ∈ An(W ); otherwise it has no effect on W .

iii. Line 13: if V = W , the value of V needs to be added to the output vector w.

iv. Lines 17-18: perform all the interventions (if any) that are needed for V . Step [ii] has
already checked whether these actions are present in the input feasible action set.

– Note on rejection sampling: since we framed our actions as randomizations, in order
to enact an intervention like do(x), we draw a random value and reject if the draw is not
x. This is for clarity of presentation, aligned with the rest of the paper. We could easily
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introduce deterministic actions, or add some concentration guarantees of drawing x
within finite samples etc. but this is well-understood and would be a distraction.

v. Lines 21-25: add V to output, if required; if it is part of the output, the set of necessary
actions cannot involve a Fisherian RAND of V (because unlike CTF-RAND, Fisherian RAND
overrides the mechanism fV generating V ).

vi. Line 29: if the above steps have been completed w.r.t V for each Wt, there will be no further
conflicts arising w.r.t V and all nodes topologically prior to V , regardless of conditions
needed w.r.t subsequent nodes (by an induction argument). If this is can be completed for
all V , then the query is realizable and we output the vector w.

Walk-through for sub-routine Algo. 2 COMPATIBLE called in Step [ii]:

ii.a. Lines 2-3: The necessary and sufficient conditions w.r.t V for Wt involve how the children
Ch(V ) receive the value of V as an input. We only care about the children that belong in
An(W ) for this sub-routine call; if a child is not in An(W ) it wouldn’t affect Wt.

ii.b. Lines 4-19: if V ∈ T, this means the potential response Wt involves an intervention on
V . We find the minimal interventions needed to achieve this (CTF-RAND for the smallest
subset of children possible, and failing this, a Fisherian RAND); and we update our tracker
of necessary actions for V .

ii.c. Lines 22-34: if V ̸∈ T, this means the potential response Wt requires that V be received
without intervention (i.e. ”naturally”) by the relevant child nodes; we also add this necessary
condition to our tracker.

– Important: Steps [ii.b] and [ii.c] check if there are any conflicts in the necessary and
sufficient conditions w.r.t V for realizing Wt. If a child node C ∈ Ch(V ) needs to
receive the value of V fixed to be v in this loop, but a previous loop already tagged that
C needs to receive the value fixed to be v′ (or needs to receive it ”naturally”), the query
W⋆ cannot be realized. Return FAIL.

– Important: Step [ii.b] also checks that if any randomization needs to be done, it
chooses the minimal intervention needed from the feasible action set for the agent. If
the action set does not contain any of the needed randomizations, the query cannot be
realized. Return FAIL.

B.3 COMPLEXITY ANALYSIS OF CTF-REALIZE ALGORITHM (ALGO. 1)

The time complexity of Algorithm 1 is O(kn2), where k is the number of terms in the input query Q,
and n is the number of variables in the input graph G.

k depends on the domain size of the variables. That is, k ≤ n.
∏

V

(
|Domain(V )|+1

)
= O(mn),

where m is the domain size of the variable with the most possible categorical values.

The space complexity is the same, as the algorithm needs to store up to all intermediate steps before
terminating.

B.4 EXAMPLES USING THE CTF-REALIZE ALGORITHM

Example B.1. (ETT realizability)

Query, Q = P (Yx, X)

Graph, G : Fig. 7

X Y

Figure 7: Graph for Example B.1

Suppose action set A = A†(G) := {CTF-RAND(X → Y )}
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CTF-REALIZE(Q,G,A†(G)) trace:

• Start with X (first in topological order)

• For the first term in W⋆: Yx

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Yx)

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ∈ subscript of Yx

* CTF-RAND(X → Y ) ∈ A†(G)
* INTX ← {CTF-RAND(X → Y ) : x}

• For the second term in W⋆: X

– OUTPUTX ← {X}

• Moving to Y (next in topological order)

• For the first term in W⋆: Yx

– OUTPUTY ← {Yx}

• Perform interventions in INTX , followed by READ, and assign output vector based on
OUTPUTX ,OUTPUTY

• Return i.i.d sample

For simplicity, we don’t show the steps SELECT(i) and the rejection sampling involving in the
randomization procedure (steps 17-18 of Algo. 1).

Thus, Q is realizable given G,A†. This is validated by the ancestor set An(Yx, X)G = {Yx, X},
which doesn’t repeat any variables. This is also illustrated in Fig. 8.

fX X

u

fY Yx

u x

CTF-RAND(X → Y )
= x

READ

Figure 8: P (Yx, X) is realizable given the graph in Fig. 7 and A†(G).

However, suppose the agent’s action set is

A = {RAND(X)}, i.e., does not permit any counterfactual randomization procedures.

In this case,

CTF-REALIZE(Q,G,A) trace:

• Start with X (first in topological order)

• For the first term in W⋆: Yx

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Yx)

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ∈ subscript of Yx
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* RAND(X) ∈ A, and no other ctf-randomization procedure
* INTX ← {RAND(X) : x}

• For the second term in W⋆: X

– OUTPUTX ← {X}

• Moving to Y (next in topological order)

• For the first term in W⋆: Yx

– OUTPUTY ← {Yx}

• OUTPUTX contains X , but the intervention set INTX contains RAND(X)

• FAIL (Line 22 of Algo. 1)

■

Example B.2. (Probability of sufficiency (PS) realizability)

Query, Q = P (Yx, X, Y )

Graph, G : Fig. 9

X Y

Figure 9: Graph for Example B.2

Suppose action set A = A†(G) := {CTF-RAND(X → Y )}
CTF-REALIZE(Q,G,A†(G)) trace:

• Start with X (first in topological order)

• For the first term in W⋆: Yx

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Yx)

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ∈ subscript of Yx

* CTF-RAND(X → Y ) ∈ A†(G)
* INTX ← {CTF-RAND(X → Y ) : x}

• For the second term in W⋆: X

– OUTPUTX ← {X}

• For the third term in W⋆: Y

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Y )

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ̸∈ subscript of Y ; X needs to be received naturally
* But INTX already contains {CTF-RAND(X → Y ) : x} with label x ̸= ”Natural”
* FAIL (Line 25 of Algo. 2)

Thus, Q is not realizable given G,A†. This is validated by the ancestor set An(Yx, X, Y )G =
{Yx, X, Y }, which contains both Yx, Y . This is also illustrated in Fig. 10.

■

Example B.3. Query, Q = P (Wxt, Zx′)

Graph, G : Fig. 11
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fX X

u

fY Yx ̸= Y

u x

CTF-RAND(X → Y )
= x

Figure 10: P (Yx, X, Y ) is not realizable given the graph in Fig. 9 and A†(G).

T X

A

W Z

Figure 11: Graph for Example B.3

Suppose action set A = A†(G) := {CTF-RAND(T → A), CTF-RAND(X → A), CTF-RAND(A →
W ), CTF-RAND(A→ Z)}
CTF-REALIZE(Q,G,A†(G)) trace:

• Start with X (first in topological order)

• For the first term in W⋆: Wxt

– Since X ∈ An(W ), call Algo. 2 COMPATIBLE(X,Wxt)

* A ∈ Ch(X) and A ∈ An(W )

* X ∈ subscript of Wxt

* CTF-RAND(X → A) ∈ A†(G)
* INTX ← {CTF-RAND(X → A) : x}

• For the second term in W⋆: Zx′

– Since X ∈ An(Z), call Algo. 2 COMPATIBLE(X,Zx′)

* A ∈ Ch(X) and A ∈ An(Z)

* X ∈ subscript of Zx′ ; X needs to be fixed as x′

* But INTX already contains {CTF-RAND(X → A) : x} with label x ̸= x′

* FAIL (Line 8 of Algo. 2)

Thus, Q is not realizable given G,A†. This is validated by the ancestor set An(Wxt, Zx′)G =
{Wxt, Axt, Zx′ , Ax′}, which contains both Axt, Ax′ . This is also illustrated in Fig. 12.

■

Example B.4. Query, Q = P (Yx, Zx′ ,Wx′′)

Graph, G : Fig. 13

Suppose action set A = {RAND(X), CTF-RAND(X → {Z,W})}
CTF-REALIZE(Q,G,A) trace:

• Start with X (first in topological order)

• For the first term in W⋆: Yx

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Yx)

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ∈ subscript of Yx

19
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fT T

u

fX X

u

fA Atx

u t x

CTF-RAND(T → A)
= t

CTF-RAND(X → A)
= x

fW Wtx

u Atx

fZ Ztx ̸= Zx′

u Atx

Figure 12: P (Wxt, Zx′) is not realizable given the graph in Fig. 11 and A†(G).

X

Y Z W

Figure 13: Graph for Example B.4

* RAND(X) ∈ A ; no other ctf-randomization procedures affecting Y

* INTX ← {RAND(X) : x}

• For the second term in W⋆: Zx′

– Since X ∈ An(Z), call Algo. 2 COMPATIBLE(X,Zx′)
* Z ∈ Ch(X) and Z ∈ An(Z)

* X ∈ subscript of Zx′

* CTF-RAND(X → {Z,W}) ∈ A ; no smaller ctf-randomization procedures affect-
ing Z

* INTX ← INTX ∪ {CTF-RAND(X → {Z,W}) : x′}

• For the third term in W⋆: Wx′′

– Since X ∈ An(W ), call Algo. 2 COMPATIBLE(X,Wx′′ )
* W ∈ Ch(X) and W ∈ An(W )

* X ∈ subscript of Wx′′ ; X needs to be fixed as x′′

* But INTX already contains {CTF-RAND(X → {Z,W}) : x′} with label x′ ̸= x′′

* No smaller ctf-randomization procedures affecting W

* FAIL (Line 8 of Algo. 2)

Thus, Q is not realizable given G,A.

However, suppose instead that action set A′ = {RAND(X), CTF-RAND(X →
{Z,W}), CTF-RAND(X → Z)}
CTF-REALIZE(Q,G,A′) trace:

• Start with X (first in topological order)
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• For the first term in W⋆: Yx

– Since X ∈ An(Y ), call Algo. 2 COMPATIBLE(X,Yx)

* Y ∈ Ch(X) and Y ∈ An(Y )

* X ∈ subscript of Yx

* RAND(X) ∈ A ; no other ctf-randomization procedures affecting Y

* INTX ← {RAND(X) : x}

• For the second term in W⋆: Zx′

– Since X ∈ An(Z), call Algo. 2 COMPATIBLE(X,Zx′)

* Z ∈ Ch(X) and Z ∈ An(Z)

* X ∈ subscript of Zx′

* CTF-RAND(X → Z) ∈ A
* INTX ← INTX ∪ {CTF-RAND(X → Z) : x′}

• For the third term in W⋆: Wx′′

– Since X ∈ An(W ), call Algo. 2 COMPATIBLE(X,Wx′′ )

* W ∈ Ch(X) and W ∈ An(W )

* X ∈ subscript of Wx′′

* CTF-RAND(X → {Z,W}) ∈ A
* INTX ← INTX ∪ {CTF-RAND(X → {Z,W}) : x′′}

• Moving to Y (next in topological order)

– OUTPUTY ← {Yx}

• Moving to Z (next in topological order)

– OUTPUTZ ← {Zx′}

• Moving to W (next in topological order)

– OUTPUTW ← {Wx′′}

• Perform interventions in INTX , followed by READ, and assign output vector based on
OUTPUTY ,OUTPUTZ ,OUTPUTW

• Return i.i.d sample

Thus, Q is realizable given G,A′.

Lastly, it is evident that Q is realizable given G,A†. This is validated by the ancestor set
An(Yx, Zx′ ,Wx′′)G = {Yx, Zx′ ,Wx′′}, which does not repeat any variables. This is also illus-
trated in Fig. 14.

■
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fX X

u

fY Yx

u x

CTF-RAND(X → Y )
= x

fZ Zx′

u x′

CTF-RAND(X → Z)
= x′

fW Wx′′

u x′′

CTF-RAND(X → W )
= x′′

READ

Figure 14: P (Yx, Zx′ ,Wx′′) is realizable given the graph in Fig. 13 and A†(G).

C ASSUMPTIONS AND REALIZABILITY PROOFS

C.1 ASSUMPTIONS

In this section, we gather together all the structural assumptions we make in this paper, for ease of
reference. We also include related remarks.

Assumption C.1 (Unobservability). An agent deployed in the environment does not know the
underlying SCMM of the environment, and does not know the latent features U(i) of any unit i in
the target population. ■

Assumption C.2 (Feasible actions). Given causal diagram G, the physical actions that an agent can
perform on any unit i in the target population are limited to: SELECT(i), READ(V )(i), RAND(X)(i),
and CTF-RAND(X → C)(i), for some V,X ∈ V and C ⊆ Ch(X)G , per Defs. 2.1,2.3. ■

Assumption 3.1 (Fundamental constraint of experimentation (FCE)). A unit i in the target population
can physically undergo a causal mechanism fV ∈ F at most once. ■

We define the probability measure PC(.) from the perspective of an exogenous agent (i.e., an agent
external to the system) C’s beliefs about the environment, distinguished by superscript from PM(.),
the true unknown distribution.

Remark C.3. Let A(i) be a sequence of actions taken by agent C on unit i that is not conditional on
any data gathered regarding i. The assumption of C behaving exogenously means that PC(U(i) =
u | A(i)) = PM(u). ■

Regarding the structural conditions involving counterfactual randomization (Def. 2.3), we make the
following assumption, mainly as a simplifying step for use in the proofs.

Assumption D.3 (Tree structure). Given a variable X , causal diagram G, and an ”expanded” diagram
G+ (Def. D.1) including the set of all the counterfactual mediators W (Def. D.2) of X in the
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environment, each W ∈ W has only one parent in G+, and each C ∈ Ch(X)G has at most one
W ∈W as a parent in G+. ■

From this assumption, and from the definition of a counterfactual mediator (Def. D.2), we can derive
the following observations:

Remark C.4 (No bypassing children). Given causal diagram G, the procedure CTF-RAND(X → C),
either by eliciting a unit’s natural decision or via a counterfactual mediator, can only be performed
w.r.t C ⊆ Ch(X)G . It cannot by-pass child mechanisms and directly affect a descendant. This is
elaborated in App. D.3, and specifically in Lemma D.7. ■

Remark D.6 (Procedure containment). Assumption D.3 implies that if an agent is capable of perform-
ing both CTF-RAND(X → C)(i) and CTF-RAND(X → C′)(i) s.t. C ̸= C′ and C ∩C′ ̸= ∅, then
either C ⊆ C′ or C′ ⊆ C. ■

Remark D.5 (Superseding action). Given a decision variable X , the action CTF-RAND(X → C′)(i)

can supersede the action CTF-RAND(X → C)(i) if C′ ⊊ C, where supersede means that the
former action CTF-RAND(X → C′)(i) blocks any effect that the latter action has on the variables C′.
Additionally, the action CTF-RAND(X → C)(i) supersedes the action RAND(X)(i). ■

Counterfactual randomization permits multiple randomizations for the same variable X for a single
unit i. But some randomizations block the effects of others. See App. D.2.

C.2 PROOFS FOR SECTION 3

Recall, PC(.) is the probability measure from the perspective of an exogenous agent (i.e., an agent
external to the system) C’s beliefs about the environment, distinguished by superscript from PM(.),
the true unknown distribution.

Since unit selection is randomized, SELECT(i) yields an unbiased sample of a unit with latent features
distributed according to the target population frequency P (u). I.e., PC(U(i) = u | SELECT(i)) =
PM(u).

Lemma C.5 (I.i.d requirement). Consider a sequence of actionsA(i) performed on unit i in the target
population, that yields a vector of realized values W(i)

⋆ . W(i)
⋆ is an i.i.d sample from PM(W⋆), for

arbitraryM iff

i. PC(U(i) = u | A(i)) = PM(U = u); and

ii. 1[W(i)
⋆ = w | A(i),U(i) = u] = 1[W⋆(u) = w].

Proof. Recall from Def. 3.3 that W(i)
⋆ being an i.i.d sample from PM(W⋆) means that

PC(W
(i)
⋆ = w | A(i)) = PM(W⋆ = w),∀w (9)

Reverse direction:

We simply multiply respective l.h.s and r.h.s of conditions [i] and [ii] and sum over all u to get∑
u

PC(U(i) = u | A(i)).1[W
(i)
⋆ = w | A(i),U(i) = u] =

∑
u

PM(U = u).1[W⋆(u) = w]

(10)

= PM(W⋆ = w), (11)

which we get from the Layer 3 valuation formula (see preliminaries in Sec. 1). On the l.h.s, we apply
the chain rule to get the result we need.

PC(W
(i)
⋆ = w | A(i)) = PM(W⋆ = w) (12)
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Forward direction:

Assume Eq. 9.

From Remark C.3, we conclude that condition [i] automatically holds. Since the agent acts exoge-
nously to the system, PC(U(i) = u | A(i)) = PM(U = u),∀u.

Applying the chain rule on both sides of Eq. 9,∑
u

PC(U(i) = u | A(i)).1[W
(i)
⋆ = w | A(i),U(i) = u] =

∑
u

PM(U = u).1[W⋆(u) = w]

(13)

The probability terms are equal, for each u.

Since the probability terms are free parameters, and we need this equation to hold for any arbitrary
probability simplex, it must be the case that the indicator terms are also equal. Thus begetting
condition [ii].

■

Lemma C.6. Given a causal diagram G, for any SCMM compatible with G, the jointly necessary and
sufficient conditions to measure a potential response Wt(u) are [i] T is fixed as t (by intervention) as
an input to all children C ∈ Ch(T) ∩An(W ); [ii] each A ∈ An(W )GT

, A ̸∈ {T,W} is received
”naturally” (i.e., without intervention) by its children C ∈ Ch(A)∩An(W ); and [iii] the mechanism
fW is not erased and overwritten (by a Fisherian intervention).

Proof. Wt is the variable W evaluated in the sub-modelMt, where the equations for T are replaced
by constant values in t.

For any changes to the function for T ∈ T, the function fW is only affected by any effect on the
children of T which are also ancestors of W . Any effect of T on some C ′ ∈ Ch(T ) s.t. C ′ ̸∈ An(W )
has no effect on W .

Further, in the submodelMt there are no interventions on any other ancestors of W in GT, besides
T. Even if there were tnterventions involving some X ̸∈ An(W )GT

, this would have no effect on W
in the sub-modelMt, by Rule 3 of do-calculus.

It is evident that fW evaluated according to the sub-modelMt, and evaluated according to a sub-
model satisfying conditions [i] and [ii] are identical for each u, since the sequence of structural
equations that eventually generate W are the same.

Finally, in order to measure Wt, we need to measure the output of the mechanism fW in the real
world. The mechanism cannot not be erased and overwritten, as per condition [iii]. ■

Lemma C.7. Given a set W⋆ and graph G, where each member Wt ∈ W⋆ has its respective
conditions [i-iii] (per Lemma C.6), suppose these conditions introduce conflicts when combined
across W⋆. Removing X from W⋆ and from all subscripts in W⋆ to get a new set W′

⋆ does not
introduce new conflicts between the terms, if X is first in a topological ordering of G.

Proof. Let us consider the conditions in the necessary-and-sufficient set given in Lemma C.6 for
each Wt ∈W⋆.

Condition [i] add requirements for each t ∈ t of some Wt ∈W⋆. Since X is removed from every
subscript, this no longer applies to any term in W′

⋆.

Condition [ii] requires that if X is an ancestor of some Wt ∈W⋆, and it doesn’t appear in T, then
X must be received without intervention by mediating children. Since X is removed from every
subscript, X not being intervened upon at all meets this condition [ii] for every term W′

⋆, without
conflicting with condition [i], which no longer applies.
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Importantly, even though X is no longer being intervened upon, for each Wt ∈ W⋆, removing
X from T (if it appears) does not add any additional ancestors in GT that need to be tracked for
condition [ii], since X is first in topological order.

Condition [iii] would only apply to X itself, which is not present as a potential response in W′
⋆. ■

Theorem 3.5 :

Let A(i) be a sequence of actions conducted by an exogenous agent to beget a vector of values W(i)
⋆

for a unit i.

By Lemma C.5, if an agent wants W(i)
⋆ to be an i.i.d sample from P (W⋆), then for each possible

U(i) = u, the vector W(i)
⋆ needs to be identical to the W⋆(u) as evaluated according to the SCM.

Essentially, this says that the agent’s actions need to output the same vector W⋆(u) as if it has been
evaluated according to the SCM.

By Lemma C.6, W⋆(u) can be evaluated if and only if the following three conditions are met for
each Wt ∈W⋆ simultaneously:

i T is fixed as t (by intervention) as an input to all children C ∈ Ch(T) ∩An(W );
ii Each A ∈ An(W )GT

, A ̸∈ {T,W} is received ”naturally” (i.e., without intervention) by
its children C ∈ Ch(A) ∩An(W ); and

iii The mechanism fW is not erased and overwritten (by a Fisherian intervention).

Inductive hypothesis (IH):

CTF-REALIZE(P (W⋆),G,A) returns FAIL if and only if conditions [i-iii] are not met simultane-
ously, when combined across all Wt ∈W⋆ w.r.t a causal diagram G having ≤ n nodes

Base case:

Consider an SCM with only one variable V ∈ V. IH is trivially true, since the conditions are always
met, and since CTF-REALIZE will just return the value READ(V ).

Assume IH is true for any SCM with causal diagram having ≤ n nodes.

n+1 case:

Consider an SCM whose causal diagram G has n+ 1 nodes. Let X be the first in some topological
ordering of G. Consider an action set A that the agent can perform in the environment, and an
arbitrary distribution P (W⋆).

WLOG, we can begin the outer loop of CTF-REALIZE(P (W⋆),G,A)) with X (first in topological
order).

• The inner loop calls COMPATIBLE(X,Wt) for each W ∈ Desc(X), X ̸= W .
• It maintains a tracker INTX of the smallest counterfactual interventions needed to satisfy

condition [i] for each Wt, resorting to Fisherian intervention if needed. Note (per Remark
D.6), interventions follow a tree-like structure, so conflicts can be tracked by tagging the
smallest available intervention that is needed for each Wt w.r.t each child of X .

• Note also (per Remark D.5) that if there are two simultaneous interventions added to INTX ,
CTF-RAND(X → C), CTF-RAND(X → C′), where C′ ⊆ C, then the set C′ is unaffected
by the first procedure.

• This inner loop exactly checks if there are any conflicts in conditions [i-ii] among W⋆

w.r.t X , by ”tagging” each procedure with the fixed value x needed for that intervention
(including the requirement of no intervention).

• Finally the outer loop in Line 20 of Algo. 1 checks if X appears as a potential response
anywhere in W⋆. If so, INTX cannot contain the requirement of Fisherian RAND(X), since
this violates condition [iii] w.r.t X .

• X does not appear anywhere else in subsequent algorithm iterations.
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Thus, we conclude that CTF-REALIZE(P (W⋆),G,A)) does not return FAIL on the outer loops
evaluated for X , if and only if there are no conflicts in the conditions [i-iii] for W⋆ w.r.t X . In other
words, all conflicts w.r.t X , in the conditions [i-iii] combined across the terms in W⋆, are identified
in the algorithm steps that involve X .

Next, define the new set W′
⋆ by dropping x from the subscript (if it appears) for each Wt ∈W⋆, and

dropping X from W⋆ (if it appears). Since X is first in topological order of G, this does not add any
new conflicts across conditions [i-iii] induced by each term in W′

⋆ (by Lemma C.7).

It is also clear that if there are conflicts not involving X , that are induced by conditions [i-iii]
across the terms in W⋆, then these conflicts are also induced by W′

⋆. Suppose there are two terms
Wt, Yh ∈W⋆ s.t. T \X needs to be received as t \X by mediating children (condition [i]) for Wt,
and this conflicts with the requirement that T \X needs to be received as t′ \X (or naturally) by the
same mediating children, for Yh. Removing X does not affect this conflict, since X is topologically
prior.

Next, define the graph G′ as the projection of G that marginalizes out X (and adds bidi-
rected edges if needed). G′ has ≤ n nodes. Therefore, from the IH, we conclude that CTF-
REALIZE(P (W′

⋆),G′,A) does not return FAIL if and only if there are no conflicts induced by
conditions [i-iii], combined across terms in W′

⋆.

Now, we note that CTF-REALIZE(P (W⋆),G,A) is merely CTF-REALIZE(P (W′
⋆),G′,A), plus

all the steps involving X that we discussed earlier (can be verified from inspecting the algorithm -
the former has an outer loop involving X and then contains the same steps as the latter). Therefore,
all conflicts induced by conditions [i-iii] that involve X and do not involve X are identified in the
algorithm steps when run on G and W⋆.

Thus, we show that CTF-REALIZE(P (W⋆),G,A) returns FAIL if and only if conditions [i-iii] are
not met simultaneously, when combined across all Wt ∈W⋆ w.r.t a causal diagram having ≤ n+ 1
nodes. The IH stands proved.

By Lemma C.6, we know that conditions [i-iii] are necessary and sufficient to evaluate each term
in W⋆(u) simultaneously, for any SCM compatible with G. By Lemma C.5, we know that this is
equivalent to drawing an i.i.d sample from P (W⋆). This gives us the proof of the theorem.

Note: we don’t discuss the rejection sampling steps involved steps 17-18 of Algo. 1 as this is trivially
equivalent to intervening using a fixed value. ■

Corollary 3.7 :

The proof intuition is as follows: given a graph G and a potential response Yx, the set of (counterfac-
tual) ancestors of Yx (Correa et al., 2021) lists each ancestor of Y and what regime it must be realized
in, in order for Yx to be evaluated. In other words An(Yx) tracks the regimes necessary and sufficient
for its ancestors to be evaluated under to beget Yx.

For instance, in graph G1 in Fig. 3, in order to evaluate Wt, we need At to be evaluated in the regime
Mt. In order to evaluate Zx, we need A, T to both be evaluated naturally. This reveals a conflict at
the bottleneck fA, which renders the distribution non-realizable.

Thus, Corollary 3.7 provides a sufficient condition to conclude that a distribution is non-realizable,
if An(W⋆) contains two potential responses of the same variable under different regimes. It also
becomes a necessary condition for non-realizability, if the agent can perform CTF-RAND(X → C),
separately for each C ∈ Ch(X), for all X . I.e., if the action set is A†(G).
The proof steps are similar to Theorem 3.5.

Inductive Hypothesis (IH):

Given a graph G with ≤ n nodes, and an arbitrary distribution W⋆, CTF-
REALIZE(P (W⋆),G,A†(G)) if and only if An(W⋆) does not contain a pair of potential
responses Wt,Ws of the same variable W under different regimes.

Base case:
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For a graph containing only one variable Y , this is trivially true. An(Y ) = Y , and the distribution
P (Y ) is realizable.

Assume IH is true for a graph of ≤ n nodes.

n+1 case:

Consider an SCM whose causal diagram G has n+ 1 nodes. Let X be the first in some topological
ordering of G. The agent can perform A† in the environment, and the distribution is some arbitrary
P (W⋆). WLOG, we can begin the outer loop of CTF-REALIZE(P (W⋆),G,A)) with X (first in
topological order).

From Lemmas C.6 and C.5, we know that conditions [i-iii] for each Wt ∈W⋆, combined across W⋆

form a necessary and sufficient set to realize P (W⋆).

Note that condition [iii] is always satisfied because the agent need never perform a Fisherian RAND(V )
for any V . It can get the same effect by performing CTF-RAND(V → C) for each C ∈ Ch(V ). Step
12 of the sub-routine, Algo. 2 would never be invoked.

From Theorem 3.5, we know that CTF-REALIZE(P (W⋆),G,A†(G)) returns FAIL if and only if
there are conflicts in conditions [i-ii] when combined across all the terms W⋆.

Define the new set W′
⋆ by dropping x from the subscript (if it appears) for each Wt ∈ W⋆, and

dropping X from W⋆ (if it appears). Since X is first in topological order of G, this does not add any
new conflicts across conditions [i-ii] induced by each term in W′

⋆ (by Lemma C.7). It also doesn’t
remove any conflicts that are not related to X , as argued in the proof of Theorem 3.5, since X comes
topologically first.

Define the graph G′ as the projection of G that marginalizes out X (and adds bidirected edges if
needed). G′ has ≤ n nodes. From the IH, we conclude that CTF-REALIZE(P (W′

⋆),G′,A†(G′))
does not return FAIL if and only if An(W′

⋆) does not contain two potential responses Wt,Ws of the
same variable under different regimes.

However, note that (as discussed in the proof of Theorem 3.5, and from inspecting
the algorithm), the only difference between CTF-REALIZE(P (W⋆),G,A†(G)) and CTF-
REALIZE(P (W′

⋆),G′,A†(G′)) is that in the former, the outer loop of CTF-REALIZE first checks
for conflicts in the conditions [i-ii] across W⋆ w.r.t X . After that, the steps for both algorithms are
the identical.

Therefore, any conflicts detected by CTF-REALIZE(P (W⋆),G,A†(G)) that are not detected by
CTF-REALIZE(P (W′

⋆),G′,A†(G′)) must be conflicts w.r.t X . By the IH, these additional conflicts
(unrelated to X) cannot be because of a pair of conflicting potential responses in An(W′

⋆).

We have already established that removing X to make W′
⋆ does not remove or add any conflicting

potential response pairs that don’t involve X . Therefore, our task is to now show that each of
these additional conflicts (involving X) must correspond to at least one conflicting pair of potential
responses in An(W⋆), that are not present in An(W′

⋆). And conversely, we need to show that each
pair of conflicting potential responses in An(W⋆) involving X (i.e., that is not present in An(W′

⋆))
corresponds to at least one conflict detected by CTF-REALIZE(P (W⋆),G,A†(G)) in the outer
loop involving X .

Forward direction:

As discussed in the proof of Theorem 3.5, CTF-REALIZE(P (W⋆),G,A†(G)) returns FAIL in the
outer loop involving X if and only if the input of X to some C ∈ Ch(X) is required to be some x to
satisfy condition [i] w.r.t some Wt ∈W⋆, but also required to be x′ or ”natural” to satisfy condition
[i/ii] w.r.t some Yh ∈W⋆.

Note that the action set is A†(G). Therefore step 6 of sub-routine Algo. 2 would always pick only
the procedure CTF-RAND(X → C) whenever C needs to receive a fixed value. The interventions
affecting other C ′ ∈ Ch(X) would not affect C.

In this case, it is easy to see that the set An(Wt) must contain Cx... per Def. 3.6, and An(Yh)
must contain Cx′... or a potential response of C without X in the subscript. Thus, if CTF-
REALIZE(P (W⋆),G,A†(G)) returns FAIL in the outer loop involving X , there must be a pair of
conflicting potential responses in An(W⋆).
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Reverse direction:

Assume there exists a conflicting pair of potential responses At, As ∈ An(W⋆) where x ∈ t and s
contains some x′ or does not contain X at all.

This means there is some Wh ∈W⋆ s.t. A ∈ An(W )GX
and some Yj ∈W⋆ s.t. A ∈ An(Y )GX

.
I.e., A mediates the effect of X on W,Y . Further, from Def. 3.6, it means that A needs to be realized
in conflicting regimes w.r.t X .

From Lemma C.6, such conflict happens because for At, condition [i] requires that X is fixed by
intervention to be x for all children C ∈ Ch(X) ∩ An(A). Whereas, for As, condition [i] or [ii]
requires that each child C ∈ Ch(X) ∩ An(A) receives X either fixed as x′, or naturally (as the
case may be, for s). For any such C ∈ Ch(X) ∩An(A), it is clear from the proof of Theorem 3.5
that this conflict will trigger a FAIL from CTF-REALIZE(P (W⋆),G,A†(G)) in the first outer loop
involving X .

Thus, we have shown that the IH holds for any W⋆ involving a graph with n+ 1 nodes.

Since Theorem 3.5 shows CTF-REALIZE is complete, we have thus proved that W⋆ is realizable
given G and A†(G) if and only if An(W⋆) does not contain a pair of conflicting potential responses
for the same variable under different regimes.

■

Corollary 3.8 :

This follows from Corollary 3.7. For any causal diagram, the ancestral set of {Yx, Yx′} would include
both these potential responses.

Thus, the query is not realizable.

■

C.3 REALIZABILITY OF L1- AND L2-DISTRIBUTIONS

It is widely known and acknowledged that it is possible to draw samples fromL1- andL2-distributions:
the former by simply observing a system’s natural behaviour, and the latter by intervening in the
system through interventions like Fisherian randomization.

Still, we find it educational to derive these proofs from first principles. This sub-section is not strictly
needed to follow the main contributions in Secs. 2 and 3.

We define the probability measure PC(.) from the perspective of an exogenous agent (i.e., an agent
external to the system) C’s beliefs about the environment, distinguished by superscript from PM(.),
the true unknown distribution.

Since unit selection is randomized, SELECT(i) yields an unbiased sample of a unit with latent features
distributed according to the target population frequency P (u). I.e., PC(U(i) = u | SELECT(i)) =

PM(u). We also assume that target population size is large enough that SELECT(i) does not
significantly change the distribution of the remaining population.

Further, we assume that the actions READ(V )(i) and RAND(V )(i) do not disrupt any other mechanism
fV ′ for unit i.

Lemma C.8 (Observational sample). An agent C can draw an i.i.d sample distributed according to
the L1 query P (V) associated with an SCMM, by the following actions:

i. SELECT(i)

ii. READ(V)(i) = v ∼ P (V)
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Given N i.i.d samples, the consistent unbiased estimate of P (v) is

P̂ (v) :=
1

N

∑
i

∏
v∈v

1[READ(V )(i) = v] (14)

Proof. This follows directly from the definitions of the actions. SELECT(i) chooses a unit at random
from the population. By Remark C.3, PC(U(i) = u | SELECT(i)) = PM(u). For randomly selected
unit i,

PC(READ(V)(i) = v | SELECT(i)) (15)

=
∑
u

PC(U(i) = u | SELECT(i)). (16)

PC(READ(V)(i) = v | U(i) = u, SELECT(i)) Chain rule

=
∑
u

PC(U(i) = u | SELECT(i)).1M[V(u) = v] Def. 2.1(ii) (17)

=
∑
u

PM(u).1M[V(u) = v] Rem. C.3 (18)

= PM(v) Definition (19)

I.e., this record is an i.i.d. sample from PM(V). Now consider the estimator below.

P̂ (v) :=
1

N

∑
n

∏
v∈v

1
C[READ(V )(i) = v] (20)

=
1

N

∑
n

∑
u

∏
v∈v

1
M[U(i) = u].1M[V (u) = v] (21)

Un-biasedness is established by taking expectation on either side, w.r.t the agent C’s actions (choice
of units to observe):

EC[P̂ (v)] = EC

[
1

N

∑
n

∑
u

∏
v∈v

1
M[U(i) = u].1M[V (u) = v]

]
(22)

=
∑
u

1

N
EC

[∑
n

1
M[U(i) = u]

∏
v∈v

.1M[V (u) = v]

]
Linearity of expectation (23)

=
∑
u

1

N
EC

[∑
n

1
M[U(i) = u]

] ∏
v∈v

1
M[V (u) = v] V (u) constant wrt C (24)

=
∑
u

1

N

[
N.PM(u)

] ∏
v∈v

IM[V (u) = v] Def. 2.1(i), Rem. C.3 (25)

= PM(v) Definition (26)

Consistency is established by the fact that as N (target population size)→∞, and N (sample size)
→∞,

1

N

∑
n

IM[U(i) = u]→ PM(u) (27)

■

Lemma C.9. The L2 distribution of an atomic intervention is equivalent to the L2 distribution of the
corresponding conditional stochastic intervention.

PM(v; do(x)) = PM(v|x;σX) (28)

=
∑
u

1[VσX
(u) = v | XσX

= x]︸ ︷︷ ︸
1⃝

. P (u)︸ ︷︷ ︸
2⃝

(29)
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Proof. The step from the r.h.s of Eq. 28 to Eq. 29 is derived as follows: in the submodelMσX
, if we

are given that X has been randomly assigned x, then the remaining variables are deterministically
generated as a function of u and x via their respective equations. The probability mass is collected
over all the u which produce the output v over all these equations.

PM(v|x;σX) =
∑
u

I[VσX
(u) = v | XσX

= x].PM(u) (30)

Notice: if v is incompatible with x, the indicator in the r.h.s evaluates to 0. Next, we prove. Eq. 28.

InMσX, as defined, X is assigned according to an independent random vector. Notate this vector as
XσX

and let the distribution of this vector be PσX
(X), defined by the assignment frequency over the

target population.

MσX is defined such that the target population is split into groups, each assigned (XσX
= x) for

some x. Note, the assignment vector XσX
is independent of the latent features U across the target

population iff each finite group assigned (XσX
= x) has the same distribution of latent features

P (U) as in the overall target population.

The above discussion handles the finite size of the target population. Starting with the r.h.s of Eq. 28,

PM(v|x;σX) =
P (v,x;σX)

P (x;σX)
=

{
P (v;σX)/P (x;σX) if v compatible with x

0 otherwise
(31)

Evaluating for when v is compatible with x:

P (v;σX)

P (x;σX)
=

P (v;σX)

PσX
(x)

(32)

=

∑
u

(
P (u)

∏
Vi∈V\X P (vi | pai,ui).PσX

(x)

)
PσX

(x)
Truncated factorization product

(33)

=
∑
u

P (u)
∏

Vi∈V\X

P (vi | pai,ui) (34)

= PM(v; do(x)) Truncated factorization product
(35)

Eq. 33 uses the fact that each sub-group assigned (XσX
= x), by independence, has the same

frequency of latent features P (u). ■

Lemma C.10 (Interventional sample). An agent C can draw an i.i.d sample distributed according to
the L2 query P (V; do(x)) associated with an SCMM, by the following actions:

i. SELECT(i)

ii. RAND(X)(i)

iii. If RAND(X)(i) = x, then READ(V)(i) = v ∼ P (V; do(x)), else repeat i-iii.

Given Nx i.i.d samples, the consistent unbiased estimate of Eq. 29 is given by

P̂ (v; do(x)) =

1

Nx

∑
i︸ ︷︷ ︸

2⃝

1[READ(V)(i) = v, RAND(X)(i) = x]︸ ︷︷ ︸
1⃝

, (36)

Proof. The proof steps are similar to the ones used for the Observational i.i.d sample case. Note that
Remark C.3 still hold since even though the agent is conditioning on the value randomly assigned to
a particular unit i, this value is independent of the unit’s latent features U(i). ■
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D DETAILS ON COUNTERFACTUAL RANDOMIZATION

In this appendix, we provide a formal account for the procedure we define in Sec. 2, called
CTF-RAND(X → C) (Def. 2.3). This appendix is intended for the interested reader, and de-
tails some useful remarks to be used in the proofs of our results in Appendix C. These details are not
strictly needed to follow the results presented in the main body of the paper.

• In Sec. D.1, we lay out the structural conditions under which it is possible to perform this
procedure, and we provide an algorithm (Algorithm 3) by which an agent can translate the
structural conditions in the environment into a list of CTF-RAND procedures that it is able
to perform in the given setting.

• In Sec. D.2, we emphasize that it is possible for an agent to enact multiple randomization
procedures involving the same variable X for a single unit i, and illustrate this with an
example.

• In Sec. D.3, we discuss the constraints implied by the assumptions we make. In particular,
we discuss why CTF-RAND(X → C) can only be performed on some C ⊆ Ch(X), and
not by-pass children to directly affect some distant descendants of X .

D.1 STRUCTURAL CONDITIONS REQUIRED FOR COUNTERFACTUAL RANDOMIZATION

Counterfactual randomization (Def. 2.3) can be performed under two circumstances:

i. CTF-RAND(X → Ch(X)) can be performed by eliciting a unit’s natural decision X , while
simultaneously randomizing its actual enforced decision. Thus, the agent can affect the
value of the decision X as received by all the children of X , whilst also recording the natural
realization of X . As discussed in Sec. 2, this was established in (Bareinboim et al., 2015;
Forney et al., 2017; Zhang & Bareinboim, 2022).

ii. CTF-RAND(X → C) can also be performed for some C ⊆ Ch(X) if there is a special
counterfactual mediator (defined below) by which the mechanisms generating C perceive
the value of X . This counterfactual mediator then allows the agent to intervene on the value
of X as perceived by C, thus mimicking an actual intervention on X .

Definition D.1 (Expanded SCM). Given an SCMM containing observable variables V, we define
an expanded SCMM+ of the same environment to be a model containing a bigger set of observable
variables V+ ⊃ V, and which relaxes the positivity requirement. I.e., it is possible that PM+

(v+) =
0, for some v+ in L1. We call the causal diagram ofM+ an expanded causal diagram G+. ■

Definition D.2 (Counterfactual mediator (formal)). Given a variable X in a causal diagram G, we
call any variable W ̸∈ V a counterfactual mediator of X w.r.t Y ∈ Ch(X)G if

i. In an ”expanded” SCM of the environment M+ (Def. D.1), W is generated according to an
invertible mechanism W ← fW (X,UW ) with UW possibly empty, s.t. f−1

W (W ) = X;

ii. It is physically possible to perform RAND(W )(i) (Def. 2.1); and

iii. In M+, Y is generated by the mechanism Y ← fY (f
−1
W (W ),A,UY ), where A is the set

PaY \X in G. ■

The intuition behind Def. D.2 is that a counterfactual mediator is a real variable in the environment
which fully encodes information about the variable X , and which mediates how Y perceives the
value of X via the ”direct” causal path. For instance, in Example 1 (Mediation analysis), the RGB
values of the video frames W are a counterfactual mediator for the mechanism fY (decision to issue
a speeding ticket) to perceive the car’s color X via the ”direct” path, not via the actual speeding of
the car).

Condition [i] of Def. D.2 divides the domain of W into equivalence classes s.t. each value w belongs
to an equivalence class {w′ : f−1

W (w) = x} for some value x.

Condition [iii] of Def. D.2 essentially says that the mechanism fY only cares about which equivalence
class W belongs to. I.e., Y only cares about what W reveals about X .
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Note: these conditions does not require an agent to have full knowledge of the SCM. They are rather
structural assumptions about the underlying mechanisms which can be verified in a given setting. In
Example 1, treating W as counterfactual mediator means the assumption that (1) the video features
W uniquely map back to the actual color of the car in the footage; and (2) the computer vision system
only cares W reveals about X , and is indifferent to any stochasticity within some equivalence class
{w′ : f−1

W (w) = x}.

Assumption D.3. (Tree structure) Given a variable X , causal diagram G, and an ”expanded” diagram
G+ (Def. D.1) including the set of all the counterfactual mediators W (Def. D.2) of X in the
environment, each W ∈ W has only one parent in G+, and each C ∈ Ch(X)G has at most one
W ∈W as a parent in G+. ■

Assumption D.3 enforces that each child of X perceives X through at most one proxy pathway. This
assumption rules out possible structures like Fig. 15(a) where a child perceives X through multiple
proxy pathways.

This assumption is general enough to allow most cases of interest. If X is a construct like gender
identity, then it is possible that a child perceives X via a cluster of personal attributes W which
indicate X . In this case, no single attribute solely satisfies Def. D.2 of a counterfactual mediator.
However, the cluster of attributes W could be collapsed into a single variable having domain equal to
the cartesian product of the sub-domains (Anand et al., 2023; Xia & Bareinboim, 2024). This single
node W would indeed satisfy the definition of a counterfactual mediator and would comply with the
tree structure in Assumption D.3. For a comprehensive discussion of the semantics of interventions
on the perception of a compound attribute such as race or gender identity, see (Plecko & Bareinboim,
2024, App. D.1). The following Lemma is the key property that enables path-specific randomization.

Lemma D.4. Given a causal diagram G containing variables X and Y ∈ Ch(X)G . Let W be a
counterfactual mediator of X w.r.t Y (Def. D.2). For any value x, we have

Ywa(u) = Yxa(u), ∀u,∀w ∈ {w′ : f−1
W (w) = x}, (37)

where A := PaY \X in G.

Proof. This follows from Def. D.2. Suppose we are given values (w, x) where f−1
W (w) = x. Let

A := PaY \X in G.

The variable Wx(u) = Wxa(u) = fW (x,u), in the enhanced submodelM+
xa. Adding a to the

subscript does not matter - by Assumption D.3 and Lemma D.7, A cannot be an ancestor of W in
M+.

Since fW is invertible by condition [i] in M+, it is also invertible in submodel submodel M+
xa.

Therefore, we have f−1
W (Wxa(u)) = x.

Ywa(u) = fY (f
−1
W (w), a,u)

= fY (x, a,u)

YWxaa(u) = fY (f
−1
W (Wxa(u)), a,u)

= fY (x, a,u)

The r.h.s is identical, giving us Ywa = YWxaa. Finally, we argue that YWxaa = Yxa.

The counterfactual Yxa is evaluated in a submodel of M+, where fW receives input x and this
value of Wx is an input to fY , while A is fixed to be a. Structurally, this is identical to how the
counterfactual YWxaa = YWxa is evaluated. Therefore, it is evident that YWxa = Yxa. ■

Given a variable X , the way an agent actually performs the action CTF-RAND is as follows:

i. Performing CTF-RAND by eliciting natural decision: The agent can perform
CTF-RAND(X → Ch(X))(i) by randomizing the unit’s decision. The agent can further
perform READ(X)(i) to elicit the unit’s natural decision, which has not been erased. This is
described in in (Bareinboim et al., 2015; Forney et al., 2017; Zhang & Bareinboim, 2022).
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Figure 15: ”Expanded” causal diagrams, where counterfactual mediators (labeled Wi) of X have
been marked in red. (a) is not permitted by Assumption D.3. Assume the environment in diagram (b)
permits the agent to elicit the unit’s natural decision X even when randomizing the actual decision.

ii. Performing CTF-RAND using counterfactual mediators: If X has a counterfactual
mediator W in the environment, and C ⊆ Ch(X) are the children which perceive X via
W , then the agent can perform CTF-RAND(X → C)(i) by randomizing W . Each value w
mimics randomizing X as perceived by C, per Lemma D.4. The agent can still perform
READ(X)(i) by measuring X(i) to get the unit’s natural decision, which has not been erased.

Having described the structural conditions that permit counterfactual randomization, we want to
abstract away the mediators and succinctly describe the agent’s physical actions via the definition of
CTF-RAND. Given a variable X , and assumptions/knowledge about X in the environment stated in
points [i] and [ii] above, we translate this knowledge into a set of counterfactual randomizations that
the agent is physically able to perform in the environment, using Algorithm 3.

Algorithm 3 CTF-PROCEDURES

1: Input: Causal diagram G with decision variable X; ”expanded” diagram G+ (Def. D.1) including
the counterfactual mediators of X in the environment

2: Output: AX - the set of CTF-RAND actions that can be performed involving X

3: AX ← ∅
4: if environment allows eliciting natural decision X even when randomizing actual decision then
5: if X can be randomized then
6: AX ← AX ∪ {CTF-RAND(X → Ch(X)G)}
7: end if
8: end if
9: for each counterfactual mediator W of X do

10: Let C := {C | C ∈ Ch(X)G and perceives X via W}
11: AX ← AX ∪ {CTF-RAND(X → C)}
12: end for
13: Return AX

Consider Fig. 15(a-d). (a) is not permitted by Assumption D.3. We assume that in the environment
represented by (b) X can be randomized for a unit in the target population without erasing the unit’s
natural decision, satisfying condition [i] mentioned earlier. Thus, when applying Algorithm 3 to
diagrams (b-d), we get the following resulting set of counterfactual randomization procedures which
are permitted by the structural assumptions made (unit superscript i is omitted for legibility):

(b) {CTF-RAND(X → {Y,Z})}
(c) {CTF-RAND(X → Y ), CTF-RAND(X → {Z, T})}
(d) {CTF-RAND(X → {Y,Z, T}, CTF-RAND(X → {Z, T})}

D.2 MULTIPLE SIMULTANEOUS RANDOMIZATIONS ARE POSSIBLE, FOR A SINGLE UNIT

For a particular decision variable X , there could be multiple randomization procedures which an
agent can perform. Consider the example in Fig. 16. The ”expanded” diagram on the left shows
two counterfactual mediators, W1,W2 in a causal structure which permit an agent to perform all
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of the following randomization procedures: RAND(X)(i), CTF-RAND(X → {Z, T,B})(i) and
CTF-RAND(X → {T,B})(i) for the same unit i.

However, if all three actions are performed in parallel, randomizing W1 to enact CTF-RAND(X →
{Z, T,B})(i) will only affect variable Z. This is since the action of randomizing W2 to further
enact CTF-RAND(X → {T,B})(i) blocks any effect on T,B from the previous action. Similarly,
RAND(X)(i) ends up affecting only variable Y , because CTF-RAND(X → {Z, T,B})(i) blocks any
effect from the previous action on Z, T,B. We formalize this observation in Remark D.5.

Remark D.5 (Superseding action). Given a decision variable X , the action CTF-RAND(X → C′)(i)

can supersede the action CTF-RAND(X → C)(i) if C′ ⊊ C, where supersede means that the
former action CTF-RAND(X → C′)(i) blocks any effect that the latter action has on the variables C′.
Additionally, the action CTF-RAND(X → C)(i) supersedes the action RAND(X)(i). ■

X

W1

W2

Y Z T B

x

x′

x′′

Y Z T B

Figure 16: (Left) ”Expanded” causal diagram
showing counterfactual mediators W1,W2

of X; (Right) Agent performing actions
RAND(X)(i), CTF-RAND(X → {Z, T,B})(i)
and CTF-RAND(X → {T,B})(i) all together on
the single unit i.

Further, Assumption D.3 ensures that all such
procedures follow a ”nested” structure. I.e.,
given any two randomization procedures involv-
ing the same variable, the sets of children af-
fected by one will be a subset of the set affected
by the other, as shown in Fig. 16.

Remark D.6. (Procedure containment) Assump-
tion D.3 implies that if an agent is capable of
performing both CTF-RAND(X → C)(i) and
CTF-RAND(X → C′)(i) s.t. C ̸= C′ and
C∩C′ ̸= ∅, then either C ⊆ C′ or C′ ⊆ C. ■

D.3 COUNTERFACTUAL
RANDOMIZATION IS ONLY
POSSIBLE FOR DIRECT CHILDREN OF X

Our definition of CTF-RAND(X → C)(i), is
only valid for some C ⊆ Ch(X) in the causal
diagram (Def. 2.3). This action essentially randomizes the value of decision variable X as an input
to the mechanisms generating its causal children C, while leaving open the possibility of measuring
the unit i’s natural decision (what it would have normally decided in the L1 regime), and also the
possibility of separately and in parallel randomizing the value of X as an input to other causal
children C′ = Ch(X) \C.

However, the notion of ”child” is an abstraction w.r.t a specific diagram of the environment under
study. Consider Fig. 17(a-Left), where G1 is the diagram of some environment. Assume there exists
a counterfactual mediator W1 of X (Def. D.2) as shown in Fig. 17(a-Middle), which means an agent
is able to perform the physical action CTF-RAND(X → A)(i), while still being able to measure the
natural value of X for unit i.

Now consider the diagram G2 shown in Fig. 17(b-Left). G2 is a valid projection of G1 obtained by
marginalizing out variable A, and is thus also a valid causal diagram of the environment.

Suppose that there exists a counterfactual mediator W2 as shown in 17(b-Middle). This means that the
agent can also perform CTF-RAND(X → Z)(i) in the same environment. However, since we are re-
ferring to the same environment, this means that the agent is able to perform CTF-RAND(X → Z)(i)

w.r.t the diagram G1, where Z is not a child node of X! This would translate to even greater experimen-
tal power w.r.t graph G1, where an agent is able to perform counterfactual randomization of X w.r.t
further descendants like Z and draw i.i.d samples from queries like P (Ax, Zx′) by simultaneously
performing both counterfactual randomizations (i.e. by randomizing W1,W2 simultaneously).

However, this scenario is not possible. Essentially, this would require an ”expanded” causal diagram
(Def. D.1) like shown in Fig. 18, where W2 is a counterfactual mediator of X w.r.t Z that comes
after another variable A. If A satisfies positivity w.r.t X , i.e., if PM(x, a) > 0,∀x, a in L1, then W2

cannot be a counterfactual mediator since it cannot be uniquely mapped back to X .
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(a) : (Left) Graph G1; (Middle) enhanced diagram showing counterfactual mediator of X;
(Right) agent performing CTF-RAND(X → A)(i) using W1

X

Y Z

X

W2

Y Z

X

x′

Y Z

Not

(b) : (Left) Graph G2; (Middle) enhanced diagram showing counterfactual mediator of X;
(Right) agent performing CTF-RAND(X → Z)(i) using W2

Figure 17: Given a causal diagram G1 of the environment, G2 is a valid projection of G1 (marginalizing
A). If A satisfies positivity w.r.t X , then there cannot be a counterfactual mediator W2 as shown in
(b-Middle). Which means an agent cannot perform CTF-RAND(X → Z)(i) as shown in (b-Right).

Lemma D.7. Given a causal diagram G of a true SCMM with a variable X and A ∈ Desc(X)G
where P (x, a) > 0,∀x, a. There cannot be a variable W in an ”expanded” SCM M+ of the
environment (Def. D.1) s.t.

• W ∈ Desc(A)G+ , where G+ is the ”expanded” causal diagram ofM+; and

• W is invertible to X , i.e. exists f−1
W s.t. f−1

W (W ) = X . □

Proof. If A satisfies positivity w.r.t X , then a given value w cannot be mapped back to a unique x,
even if we marginalize out A from the SCM.

Note that, by Assumption D.3, a counterfactual mediator has only one parent in the ”expanded”
causal diagram (Def. D.1). I.e., if it were a descendant of A, its perception of X is fully mediated by
A.

If f ′
W (X,U) is invertible from W to X , then so is fW ◦ fA(X,U). It is evident that f

′−1
W is well

defined iff f−1
A ◦ f−1

W is well defined.

f−1
A is not defined. The positivity condition entails that a given value a could have been generated by

any value x (when unit is unknown).

Since f ′
W is not invertible, W cannot be a counterfactual mediator. ■

Lemma D.7 leads to some important conclusions.

Remark D.8. There cannot be an ”expanded” causal diagram (such as in Fig. 18), with a counterfactual
mediator that bypasses a child-node and directly fixes a descendent-node’s perception of X . I.e., an
agent cannot perform CTF-RAND(X → D)(i) for some D ∈ Desc(X) \ Ch(X) ∪ {X}. ■
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Figure 18: ”Expanded” diagram that is needed to sample directly from P (Ax, Zx′). This is not
possible, per Lemma D.7.

Remark D.9. Conversely, given a graph like G2 in Fig. 17(b), if we are told that the agent can perform
the action CTF-RAND(X → Z)(i), then G2 cannot be a projection of G1 (Fig. 17(a)) for the same
environment. ■

The upshot of this discussion is that, in general (i.e. without making further assumptions), counterfac-
tual randomization can only be done via counterfactual mediators (Def. D.2) of a decision variable
X , and it can only be performed on the children-nodes of X in the general case.
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E DETAILS ON EXAMPLES

E.1 EXAMPLE 1 (MEDIATION ANALYSIS) - FURTHER DISCUSSION

For the interested reader who wants to track the formal definition of a counterfactual mediator (Def.
D.2), we provide below a discussion of how these structural assumptions may be verified in a field
experiment setting.

This discussion is not strictly needed for following the main contributions in Secs. 2 and 3.

Verification of structural assumptions: In order for W to be a counterfactual mediator of X w.r.t
Y , it needs to satisfy 3 conditions in Def. D.2.

Condition [i] says that each w (say, a specific RGB range of pixels) belongs to an equivalence class
that maps back uniquely to a car color x. This can be verified using the RCT data. Condition [ii] is
satisfies since they can do a targeted randomization of W . Condition [iii] stipulates that fY is not
affected by any artefacts introduced by the color-editing tool: this can be verified, for instance, by
swapping a car’s color from x to x′ and then swap it back from x′ to x, to ensure that the model’s
decision Y does not change, thus verifying that the mechanism fY only cares about what the color
features W reveal about X , and not about any image artefacts that may be introduced by editing.

E.2 EXAMPLE 2 (CAUSAL FAIRNESS)

E.2.1 SIMULATIONS

The details for the simulations shown in Fig. 5(c) are as follows. We first parameterize the space of
SCMs that are compatible with the causal diagram in Fig. 5(a) using canonical parameters (Zhang
et al., 2022, Def. 1, Thm. 1).

These parameters essentially discretize the domain of the latent confounder between Y and Z where
each value of the confounder represents a joint mapping in (X → Y )× (X → Z). I.e., 22×22 = 16
values. We then set up a constrained optimization program to draw samples from the space of all
SCMs (i.e., from the space of all trained models in Example 2) which satisfy either

• L2 fairness measure µint1 + µint2 being penalized; or

• L3 fairness measure µctf being penalized

Drawing 1000 samples from each gives us the chart in Fig. 5(c).

E.2.2 SCM SPECIFICATION

Just to give intuition for how this disparity can arise, we present below an instantiation of an SCM
using canonical parameters, showing how L2 measures misleadingly suggest no discrimination,
whereas the L3 measure actually detects unfairness.

For simplicity, we assume X is binary (0 indicates Race A, 1 indicates Race B). Y,Z are binary
outcomes indicating, respectively, the CV passing through the 1st stage of screening for college
admission, and for receiving a financial scholarship.

UX is the random assignment of applicant race in the CV, in the absence of intervention.

The mechanisms fY and fZ represent the decisions of the trained classifiers used by the college data
science team, which have been trained using data from previous years’ decisions of committees for
CV screening and financial aid.
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SCMM⋆

X ← UX ∼ Bernoulli(0.5)

Y ←


1, if Y-type = always-approve
X, if Y-type = approve iff x1

1−X, if Y-type = approve iff x0

0, if Y-type = always-reject

Z ←


1, if Z-type = always-approve
X, if Z-type = approve iff x1

1−X, if Z-type = approve iff x0

0, if Z-type = always-reject

Y-type Z-type P (UY Z)

Always-approve Always-approve 0.040

Always-approve Approve iff x1 0.175

Always-approve Approve iff x0 0.160

Always-approve Always-reject 0.010

Approve iff x1 Always-approve 0.040

Approve iff x1 Approve iff x1 0.055

Approve iff x1 Approve iff x0 0.170

Approve iff x1 Always-reject 0.010

Approve iff x0 Always-approve 0.040

Approve iff x0 Approve iff x1 0.140

Approve iff x0 Approve iff x0 0.025

Approve iff x0 Always-reject 0.025

Always-reject Always-approve 0.050

Always-reject Approve iff x1 0.010

Always-reject Approve iff x0 0.025

Always-reject Always-reject 0.025

The CV bodies of fake applicants used in the holdout set are divided into ”canonical types” such
that each type elicits an approval/reject response from the models fY and fZ . Factors influencing
this decision could be the prejudice of the committees, the accomplishments listed on the CV etc.
(since those preferences went into building the model). UY Z represents of the distribution of these
CV types. There are 16 such types, based on the 4 types each per model, as shown above.

For instance, row 1 of the probability table indicates a CV body such that both fY and fZ would
approve such a candidate regardless of the perceived race. Row 2 indicates a CV body such that fY
would always approve such a candidate, but fZ is biased to only approve such a candidate if they
belonged to Race B.

We want to track whether, given a candidate of Race B who passed the CV screening but was rejected
for financial aid, this candidate would still be denied financial aid had they been of Race A. In
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particular, they care about the fairness metric µctf , defined as follows.

µctf := P (Yx1 = 1, Zx1 = 0)− P (Yx1 = 1, Zx0 = 0) = P (yx, z
′
x)− P (yx, z

′
x′) = 10% (38)

The actual value of this measure can be computed from the probabilities in the SCM above. In
practice, µctf can be directly estimated using the counterfactual randomization procedure illustrated
above in Fig. 5(b).

If the college data scientists instead follow the standard procedure of using only L2-data from a
Fisherian RCT, they can only estimate L2 fairness metrics, such as µint1, µint2 defined below.

µint1 := P (yx).P (z′x)− P (yx).P (z′x′) = 0 (39)

µint2 := P (y, z′; do(x))− P (y, z′; do(x′)) = 0 (40)

The L2-metrics µint1, µint2 show no issues with fairness, and thus fail to capture the insight obtained
from the L3-metric µctf = 10%. This counterfactual insight helps the college to quantitatively
characterize the financial hurdles faced by different racial groups in accessing college education, and
to prevent unfair disparities.

E.3 EXAMPLE 3 (COUNTERFACTUAL BANDIT POLICIES)

The SCM used in this hypothetical scenario to generate data is as follows:

U1 ∼ Bernoulli(0.5)

U2 ∼ Bernoulli(0.5)

U3 ∼ Bernoulli(0.5)

X ← U1 ⊕ U2 (⊕ is the XOR function)
D ← X ⊕ U3

Since Y is a function of X , the average outcome is shown below for different realizations of the
latents

i. Avg. Y , when U3 = 0

U3 = 0
U1 = 0 U1 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1
do(x0) 0.6 0.9 0.8 0.5
do(x1) 0.9 0.6 0.5 0.8

Natural choice of X marked bold

ii. Avg. Y , when U3 = 1

U3 = 1
U1 = 0 U1 = 1

U2 = 0 U2 = 1 U2 = 0 U2 = 1
do(x0) 0.8 0.7 0.6 0.7
do(x1) 0.7 0.8 0.7 0.6

iii. Avg. Y , with U3 marginalized (consolidating i. and ii.)

U1 = 0 U1 = 1
U2 = 0 U2 = 1 U2 = 0 U2 = 1

do(x0) 0.7 0.8 0.7 0.6
do(x1) 0.8 0.7 0.6 0.7
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Let us call the social media user Alice, for ease of reference. U1, U2, U3 are latent attributes affecting
Alice’s decisions each evening. In particular, U1 indicates whether she is tired, U2 indicates whether
she had a busy day and is distracted, U3 indicates whether she is hungry, on any given evening.

If Alice is either tired but mentally relaxed (X = 1⊕0), or if she is physically energetic but distracted
(X = 0⊕ 1), Alice decides to take a walk and use social media via mobile app. If Alice is neither
tired nor distracted, she prefers to continue working on her desktop and uses social media via desktop
app during breaks (X = 0⊕ 0). If she is both tired and distracted, she also decides to use the social
media app on her desktop because she has no energy to take a walk (X = 1⊕ 1).

There are so many possible factors affecting her decisions, Alice is unaware that these are the specific
unconscious causes of her natural choices. However, the social media company’s unscrupulous data
scientists surveil U1, U2, U3 (perhaps by tracking Alice’s wearable health monitor and calendar)
and predict her natural choice. The company then uses behavioural insights to ping Alice with the
precise notifications and content to maximize her time spent on the platform for each realization of
U1, U2, U3.

D is the type of ads Alice sees when she logs in to the social media app for the day.

The detailed causal diagram is shown in Fig. 19.

X

D

Y

U3

U1, U2

Figure 19: Causal diagram for Example 3. X : app usage type; D : advertisement-type received; Y :
compliance with app usage time-limit; U1 : agent tiredness; U2 : agent busyness earlier in the day;
U3 : indicator of whether the agent is hungry.

L1-regime: The observational data is contained in Table (iii) in the SCM above, where the bold
values correspond to Alice’s natural choices. Given that all combinations of latents happen with
equal probability, it is easy to see that the expected reward in the observational regime is E[Y ] =
(0.25)(0.7 + 0.7 + 0.6 + 0.6) = 0.65.

E[Y ; do(x)]
do(x0) 0.7
do(x1) 0.7

Table 2: Expected outcome E[Yx] com-
puted under the interventional regime.

L2-regime: Applying the interventions
do(x0), do(x1), we can compute the expected
outcome from the SCM as shown in Table 2. This is
simply the average of all the values in Table (iii) of the
SCM above.

An interventional strategy of randomizing ones actions
(or fixing a constant action) outperforms the observa-
tional L1 regime of allowing one’s actions to be deter-
mined by natural inclination.

L3-regime - ETT: By counterfactual randomization Alice can sample from the L3 distribution
P (Yx, X). She records her natural choice X = x′ on a particular evening (what she would have
normally done) and randomizes the choice of X that she actually undertakes, during the explore
phase. Using this distribution, she then performs the following action, for the natural X = x′ that she
observes in the exploit phase:

do(X = argmax
x

E[Yx | x′])

We can compute this from Table (iii) of the SCM. Alice simply chooses to do the opposite of what
she naturally feels like doing (corresponding to the the non-bold cells of the Table). This ”ETT” L3
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strategy yields an expected outcome of∑
x′

P (x′).max
x

E[Yx | x′] = (0.5)[0.7 + 0.8] = 0.75,

outperforming both L1 and L2 strategies.

Of course, the explore-exploit phases are combined adaptively in a bandit algorithm like Thompson
Sampling.

L3-regime - Optimal: Finally, Alice leverages her ability to perform path-specific randomization
to sample from the distribution P (Yx, X,Dx′). She then adapts a bandit algorithm to performs the
following actions in the exploit phase:

READ(X) = x′

CTF-WRITE(x′′ → D), where x′′ = argmax
x′′

(
max

x
E[Yx | x′, Dx′′ ]

)
; READ(D) = d

CTF-WRITE(x→ Y ), where x = argmax
x

E[Yx | x′, dx′′ ]

,

where CTF-WRITE is simply the deterministic equivalent of CTF-RAND.

In words, during the explore phase, Alice gathers data on which arm x optimizes E[Yx | x′, dx′′ ], for
all x′, , x′′, d. Then, during the exploit phase, Alice first observes Dx′′ = d and X = x′, and then
performs the action x which maximizes her outcome Yx. Performing another optimization over the
x′′ gives her the best global optimum of E[Yx | x′, dx′′ ].

Again, the explore-exploit phases are not separated in a bandit algorithm like Thompson Sampling,
but incorporated adaptively.

Computing this from the SCM, suppose Alice chooses to record Dx0
= 0⊕ U3 = U3.

• When Dx0
= U3 = 0, Alice sees according to Table (i) of the SCM that the optimal strategy

is to choose the opposite of what she naturally feels like doing (the values not in bold),
giving the expected outcome E[Yx | x′, Dx0

= 0], where x ̸= x′, as (0.5)[0.9+0.8] = 0.85

• When Dx0
= U3 = 1, Alice sees according to Table (ii) of the SCM that the optimal

strategy is to go with her natural inclination (the values in bold), giving the expected
outcome E[Yx′ | x′, Dx0

= 0] = (0.5)[0.8 + 0.7] = 0.75

• Overall, since both values of Dx0
are equally likely, this strategy yields an expected outcome

of 0.5[0.85 + 0.75] = 0.8, which outperforms L1, L2 and L3-ETT strategies.

This walk-through can be repeated identically from the SCM had Alice chosen to measure Dx1

instead.

E.3.1 SIMULATIONS

Figure 20: Example 3: Cumulative Regret (CR) and Optimal Arm Probability (OAP) for all strategies
tested via Thompson Sampling.

The simulation compares the performance of four algorithms
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• TS is the conventional Thompson Sampling algorithm that optimizes the L2 learning
objective E[Y ; do(x)];

• TSaug is a contextual Thompson Sampling algorithm that treats {X = x′, Dx′′ = d} as
merely some extra context variables in each round, and ignoring the L3 significance of these
variables;

• TSett is given in Algorithm 5, implementing the ETT baseline strategy described earlier;
• TSopt is given in Algorithm 4, implementing the L3-optimal strategy described earlier.

Importantly, TSopt doesn’t treat {X = x′, Dx′′ = d} merely as extra context variables. Rather, the
counterfactual significance of these variables is leveraged via the consistency property

E[Yx | x, dx] = E[Y | x, d] (41)

This means that for several arms being explored, the r.h.s allows us to hot-start the Thompson
Sampling using offline (L1) data, as implemented in Line 18 of Algorithm 4. This allows for a
dramatically faster convergence of the purple vs. green plot in Fig. 20.

Simulations were run for 2000 iterations, 200 epochs (Confidence Interval = 95%).
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Algorithm 4 TSopt: Thompson Sampling OPTIMAL (Bernoulli-Beta case)

1: Input: No. of timesteps, T ; Observational data, P (v)

2: for x′′ ∈ Domain(X) do
3: for x′ ∈ Domain(X) do
4: αD[x′′][x′]← 1
5: βD[x′′][x′]← 1 {Initializing D-priors}
6: end for
7: end for
8: for i ∈ Domain(X) do
9: for j ∈ Domain(X) do

10: for d ∈ Domain(D) do
11: for k ∈ Domain(X) do
12: αY [xi][xj ][d][xk]← 1
13: βY [xi][xj ][d][xk]← 1 {Initializing Y -priors}
14: end for
15: end for
16: end for
17: end for
18: t = 1
19: while t <= T do
20: Perform READ(X) = x′, for unit
21: for j ∈ Domain(X) do
22: µD

i ∼ Beta(αD[x′′][xj ], βD[x′′][xj ])
23: end for
24: Perform CTF-WRITE(x′ → D) for x′ = xj ; j := argmaxj′ µ

D
j′

25: Perform READ(D) = d, for unit {Get value of Dx′′}
26: for k ∈ Domain(X) do
27: if xk = x′ = x′′ then
28: µY

k ← E[Y | x′′, d] {Hot-start using obs. data}
29: else
30: µY

k ∼ Beta(αY [x
′′][x′][d][xk], βY [x

′′][x′][d][xk])
31: end if
32: end for
33: Perform CTF-WRITE(x→ Y ) for x = xk; k := argmaxk′ µY

k′

34: Perform READ(Y ) = y, for unit {Get value of Yx}
35: αD[x′′][x′]← αD[x′′][x′] + y
36: βD[x′′][x′]← βD[x′′][x′] + 1− y {Update D-priors}
37: if ¬(x = x′ = x′′) then
38: αY [x

′′][x′][d][x]← αY [x
′′][x′][d][x] + y

39: βY [x
′′][x′][d][x]← βY [x

′′][x′][d][x] + 1− y {Update Y-priors}
40: end if
41: t← t+ 1
42: end while
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Algorithm 5 TSett: Thompson Sampling ETT (Bernoulli-Beta case)

1: Input: No. of timesteps, T ; Observational data, P (v)

2: for z ∈ Domain(Z) do
3: for x′ ∈ Domain(X) do
4: α[z][x′]← 1
5: β[z][x′]← 1 {Initializing priors}
6: end for
7: end for
8: t = 1
9: while t <= T do

10: Perform READ(Z) = z, for unit
11: Perform READ(X) = x′, for unit
12: for i ∈ Domain(X) do
13: if xi = x′ then
14: µi ← E[Y | x′, z] {Hot-start using obs. data}
15: else
16: µi ∼ Beta(α[z][xi], β[z][xi])
17: end if
18: end for
19: Perform CTF-WRITE(x→ Y ) where x = xi s.t. i := argmaxi′ µi′

20: Perform READ(Y ) = y, for unit {Get value of Yx}
21: if x ̸= x′ then
22: α[z][x′]← α[z][x′] + y
23: β[z][x′]← β[z][x′] + 1− y {Update priors}
24: end if
25: t← t+ 1
26: end while
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F OPTIMALITY RESULT AND PROOF

X

Z

D

Y

Figure 21: MAB template.

In this appendix, we identify a strategy that is provably optimal for
decision-making in multi-arm bandit (MAB) problems. To focus
the discussion, we define a generic MAB template (Fig. 21) that is
generally representative of a broad class of bandit problems in the
literature (the discussion can also be extended to other settings such
as sequential or Markov decision processes in future work). X is the
decision variable, Z is a context variable, Y is the reward, and D is a
descendant of X confounded with Y .
Definition F.1 (Decision strategy). Given a decision problem following the MAB template (Fig. 21),
a decision strategy π is a mapping from a set of variables W⋆ (possibly counterfactual) to a set of
actions A involving decision variable X . The expected reward of following this strategy is notated
µπ := E[YA |W⋆], where YA is the potential response of Y under the actions A.5 ■

Example. The L1 strategy of simply observing the natural behavior of some behavioral agent is
πobs : {} 7→ {}, which incurs the observational reward of µπobs = E[Y ].

Example. As discussed in Sec. 4.2, the typical approach in the RL literature is the L2 strategy
πint : {z} 7→ {WRITE(X : x⋆)}, where x⋆ := argmaxx E[Yx | z]. In words, this strategy involves
observing context Z = z for a each round, and then performing the intervention do(x) that maximizes
the L2 quantity E[Yx | z], also known as the conditional average treatment effect, or CATE.

Example. As discussed in Secs. 2, 4.2, a valid counterfactual strategy would be πett : {x′, z} 7→
{CTF-WRITE(x⋆) → Y }, where x⋆ := argmaxx E[Yx | x′, z].6 In words, this strategy involves
observing context Z = z and the unit’s natural inclination X = x′ for each each round, and then
performing the intervention do(x) that maximizes the L3 quantity E[Yx | x′, z], related to the effect
of the treatment on the treated, or ETT.

In Example 3, we introduced a superior counterfactual strategy

πopt : {X,Z,Dx′′} 7→ {CTF-WRITE(x→ Y ), CTF-WRITE(x′′ → D)}, (42)

where x, x′′ := argmaxx,x′′ E[Yx | Z,X,Dx′′ ].

With minor abuse of notation, this is the strategy that (1) observes Z = z,X = x′ for a round;
(2) maps from {z, x′} 7→ x′′, to perform the counterfactual intervention CTF-WRITE(x′′ → D) to
observe Dx′′ = d; and (3) maps from {z, x′, dx′′} 7→ x, to perform the counterfactual intervention
CTF-WRITE(x→ Y ) that maximizes E[Yx | z, x′, dx′′ ].

For each mapping in (2), (3) yields a local optimum, in expectation over X,Z,Dx′′ . Optimizing over
all choices of x′′ in (2) yields a global optimum. Translating this to practice, we provide a general
algorithm (Algorithm 6) that adapts any standard MAB solver to implement the optimal L3-strategy
πopt. We provide examples using Thompson Sampling in the Appendix E.3.1 (Algorithms 4,5).

The natural question is whether we can keep going higher up in Layer 3 of the PCH. Could we
construct higher order strategies that map from {X,Z,Dx′′ , Dx′′′} by drawing samples from more
refined counterfactuals? Sadly no, because a distribution like P (Yx, X,Dx′′ , Dx′′′) is not realizable
(Def. 3.4), and the machinery we developed in Sec. 3 gives us the tools to reason about this.
Theorem F.2 (Optimality). Given a decision problem following the MAB template (Fig. 21), πopt is
an optimal realizable strategy. I.e., µπopt ≥ µπ,∀π ∈ Π, the space of realizable strategies. ■

The significance of this result is that it averts the need to apply Thm. 3.5 and Cor. 3.7 to search
intractably over the space of all possible L3-distributions for which ones are realizable. Of course,
πopt need not be uniquely optimal.
Corollary F.3 (L3-dominance). Given an MAB decision problem with causal diagram described
by the MAB template (Fig. 21), the optimal L3-strategy πopt dominates the L1-strategy πobs and the
optimal L2-strategy πint. I.e., µπopt ≥ µπobs and µπopt ≥ µπint . ■

5We use strategy interchangeably with policy when the context is clear. However, it should be noted that a
policy is usually defined w.r.t. a certain policy space, mapping from a fixed domain to actions on X . Here, we
consider different domains to map from.

6CTF-WRITE is simply the deterministic equivalent of CTF-RAND (Def. 2.3).
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For decades, the Fisherian RCT methodology used to enact πint was deemed to be the ”gold standard”
for decision-making. We show that the L3-strategy πopt is at least as good (and often better) than L2-
strategies. This means that if MAB solvers UCB, EXP3 etc. were deployed to enact an L2-strategy in
an environment where πopt is better, the agent would incur linear cumulative regret, since the learning
approach comes no closer to discovering the optimal strategy as the number of trials increases.

Algorithm 6 MAB-OPT

1: Input: MAB problem following Fig. 21; MAB solver (e.g. UCB, EXP3, TS); No. of rounds T ;
Obs. data P (v)

2: for each z, x′ do
3: Initialize D-arms x′′

4: end for
5: for each z, x′, x′′, d do
6: Initialize Y -arms x
7: If x = x′ = x′′, hot-start using P (v)
8: end for
9: for t ∈ [T ] do

10: Observe x′, z
11: Draw D-arm x′′ using MAB solver
12: Perform CTF-WRITE(x′′ → D) and get Dx′′ = d
13: Draw Y-arm x using MAB solver
14: Perform CTF-WRITE(x→ Y ) and get Yx = y
15: Update D-arms and Y-arms according to MAB solver rules using y
16: end for

F.1 PROOFS FOR SECTION THEOREM F.2 AND COROLLARY F.3

Remark F.4. In order for an agent to enact a non-trivial decision strategy π : {W⋆ = w} 7→ A, we
observe that (1) the distribution P (YA,W⋆) must be realizable (Def. 3.4); and (2) the agent must be
able to observe W⋆ before performing actions A. We call this a realizable decision strategy, and
notate the space of all realizable strategies in a MAB problem as Π. ■

Corollary F.3 : This result follows immediately from Theorem F.2, by simply recognizing that
πint, πobs ∈ Π, the space of realizable strategies (the agent is presumed capable of performing the
actions RAND(X), WRITE(X : x)).

Therefore, µπctf cannot be less than µπint , µπobs , by Theorem F.2. ■

Theorem F.2 :

From Lemma F.5, all strategies involve mappings, where each mapping maps to one of the following 5
possible action sets: (1) {} (no action); (2) WRITE(X : x), for some x; (3) only CTF-WRITE(x→ Y )
for some x; (4) only CTF-WRITE(x′′ → D) for some x′′; or (5) both CTF-WRITE(x → Y ),
CTF-WRITE(x′′ → D) for some x, x′′.

Define Π5 to be the space of strategies where every mapping of each strategy in Π5 is mapping to a
pair of actions CTF-WRITE(x→ Y ), CTF-WRITE(x′′ → D) for some x, x′′. I.e., all mappings only
involve possibility (5) under these strategies, for all any unit encountered in the decision problem.

Let π5 be an optimal strategy in this space. I.e., π5 ∈ argmaxπ∈Π5
µπ .

By Lemma F.7, π5 is also an optimal strategy in the space of all possible strategies. This means we
only need to consider strategies whose mappings are mappings to a pair of CTF-WRITE procedures.
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Let W⋆ be the context used by π5. If W⋆ does not already contain the natural variables X,Z, we
can always define π′

5 that use context W′
⋆ = W⋆ ∪ {X,Z} s.t. µπ′

5
= µπ5

, where π′
5 simply ignores

the extra context variable in the mapping.

Such a move would not affect the realizability of π′
5 because CTF-WRITE does not override the

natural value of X , and both X,Z can be observed before decision-making.

Combinatorially, there are only 3 possibilities for picking each mapping in π′
5.

1. Mapping from {x′, z} to a pair of actions {CTF-WRITE(x→ Y ), CTF-WRITE(x′′ → D)}
2. Mapping from {x′, z} to some CTF-WRITE(x→ Y ), observing Yx = y, and mapping from
{x′, z, yx} to CTF-WRITE(x′′ → D); or

3. Mapping from {x′, z} to some CTF-WRITE(x′′ → D), observing Dx′′ = d, and mapping
from {x′, z, dx′′} to CTF-WRITE(x→ Y )

We can use similar arguments to Lemma F.7, where we restricted our attention to the space of
strategies Π5 which could mimic all other optimal strategies.

Possibility 2 can be mimicked by some mapping following possibility 1 which maps to a joint pair of
actions. The two are equivalent in terms of outcome, because conditioning on yx to choose x′′ does
not affect the outcome Y . So we can restrict our attention to possibilities 1 and 2.

Each mapping of possibility 1 can be mimicked by possibility 3, where the extra step of conditioning
on dx′′ just ignores the extra information about dx′′ . Thus, we can replace all mappings in the optimal
strategy π′

5 with mappings of possibility 3, to get a strategy π′′
5 that also performs optimally.

Since there are two mappings in π′′
5 , they must be the mappings which maximize the outcome.

This is precisely the definition of the strategy πopt given in Equation 42 and in the description
immediately following it.

■

Lemma F.5. Any decision strategy π for a decision problem having causal structure same as the
MAB template is s.t. each mapping of the strategy maps from domain of the context to one of the
five following possible sets of actions: (1) {} (no action); (2) WRITE(X : x), for some x; (3)
only CTF-WRITE(x → Y ) for some x; (4) only CTF-WRITE(x′′ → D) for some x′′; or (5) both
CTF-WRITE(x→ Y ), CTF-WRITE(x′′ → D) for some x, x′′.

Proof. Since the physical action space only involves doing nothing, WRITE or CTF-WRITE.
Any other combination would be equivalent to one of the 5 above. E.g., WRITE(X : x) and
CTF-WRITE(x′′ → D) is the equivalent to the pair CTF-WRITE(x→ Y ) and CTF-WRITE(x′′ → D)
(see Remark D.5).

We ignore randomized actions for simplicity. From standard results in learning theory, there is an
optimum to be found at a simplex corner so we need only search over the space of hard interventions.

■

Lemma F.6. The context W⋆ used in the strategy π : {W⋆ = w} 7→ A can only possibly contain a
subset of X,Z,D,Dx′′ for some x′′, and at most one potential response of D.

Proof. There are only 4 variables to consider: X,Y, Z,D.

By the definition of a realizable strategy (Remark F.4), we need P (YA,W⋆) to be realizable. By Cor.
3.7 there cannot be two potential responses of the same variable in a realizable distribution. This
rules out any other potential response of Y , and ensures only one each of X,Z,D.

Since the only possible actions are interventions involving X , which do not affect Z and X (natural
variable), these are the only potential responses that could appear involving these variables.

Likewise, with D, D (natural value) and Dx′′ are the only possible potential responses that could
appear, and at most one of them can. ■
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Lemma F.7. If π5 is an optimal strategy in Π5, the set of all strategies which map to a pair of
CTF-WRITE procedures, then π5 is also an optimal strategy in the set of all strategies possible in the
MAB decision problem.

Proof. Let Π1 be the space of all strategies possible in the problem. Note that Π5 ⊆ Π1. Let π1 ̸∈ Π5

be an optimal strategy. I.e. π1 ∈ argmaxπ∈Π1
µπ . If no such π1 the Lemma stands proved.

Let W⋆ be the context used by π1. If W⋆ does not already contain the natural variable X , we can
always define π′

1 that uses context W′
⋆ = W⋆ ∪ {X} s.t. µπ′

1
= µπ1

, where π′
1 simply ignores the

extra context variable in the mapping. For now, it doesn’t matter whether such π′
1 is realizable or not.

Just that it is also an optimal strategy.

Each mapping in the strategy π′
1 maps from the domain of W′

⋆ to one of the five possible action
sets mentioned in Lemma F.5. E.g., for some W′

⋆ = w, the strategy π′
1 maps this to w 7→ {} or

w 7→ WRITE(X).

Consider a mapping in π′
1 from the domain of W′

⋆ = {x′, ...} to possibility (1), empty set of actions
(recall, the context includes natural X). Such a mapping can be mimicked by an equivalent mapping
W′

⋆ = {x′, ...} 7→ {CTF-WRITE(x′ → Y ), CTF-WRITE(x′ → D)}. By the consistency property if
X(u) = x′, then Yx′(u) = Y (u) and Dx′(u) = D(u).

Thus, we can replace all the mappings in π′
1 that involve a mapping to the empty set of actions, with

an equivalent pair of CTF-WRITE using the natural value of X observed in the context. Call this new
strategy π2. π2 is as good as π′

1 because the mappings are all equivalent. Thus, π2 is also optimal in
Π1. Again, it doesn’t matter that π2 may not be realizable, just that it is optimal.

Next, consider a mapping in π2 from the domain of W′
⋆ = {x′, ...} to possibility (2), some action

WRITE(X : x). Such a mapping can be mimicked by an equivalent mapping W′
⋆ = {x′, ...} 7→

{CTF-WRITE(x→ Y ), CTF-WRITE(x→ D)}. The evaluation of fY (x, Z,u) in both scenarios is
the same, with the only difference being that fX is overwritten, which doesn’t affect the outcome Y
for each u. I.e., the outcome Y would be the same for every unit under both strategies.

Thus, we can replace all the mappings in π2 that involve a mapping to some action WRITE(X : x),
with an equivalent pair of CTF-WRITE. Call this new strategy π3. π3 is as good as π2 because the
mappings are all equivalent in terms of outcome. Thus, π3 is also optimal in Π1.

Next, consider a mapping in π3 from the domain of W′
⋆ = {x′, ...} to possibility (3), some

action CTF-WRITE(x → Y ). Such a mapping can be mimicked by an equivalent mapping
W′

⋆ = {x′, ...} 7→ {CTF-WRITE(x → Y ), CTF-WRITE(x′ → D)} for natural value x′. By the
consistency property, if X(u) = x′ then Dx′(u) = D(u).

Thus, we can replace all the mappings in π3 that involve a mapping to some action CTF-WRITE(x→
Y ), with an equivalent pair of CTF-WRITE. Call this new strategy π4. π4 is as good as π3 because
the mappings are all equivalent in terms of outcome. Thus, π4 is also optimal in Π1.

Next, consider a mapping in π4 from the domain of W′
⋆ = {x′, ...} to possibility (4), some

action CTF-WRITE(x → D). Such a mapping can be mimicked by an equivalent mapping
W′

⋆ = {x′, ...} 7→ {CTF-WRITE(x′ → Y ), CTF-WRITE(x → D)} for natural value x′. By the
consistency property, if X(u) = x′ then Yx′(u) = Y (u).

Thus, we can replace all the mappings in π4 that involve a mapping to some action CTF-WRITE(x→
D), with an equivalent pair of CTF-WRITE. Call this new strategy π′

5. π′
5 is as good as π4 because

the mappings are all equivalent in terms of outcome. Thus, π′
5 is also optimal in Π1.

However, note that the only possible mappings in π′
5 are possibility (5) involving a pair of CTF-WRITE

actions. Which means π′
5 ∈ Π.

Thus, we show that all optimal strategies in Π5 are also optimal in the overall space of strategies. ■
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