

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FORMATTING INSTRUCTIONS FOR ICLR 2026 CONFERENCE SUBMISSIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Existing methods for debate generation often struggle to provide convincing proof, lacking critical persuasiveness. More challengingly, directly fine-tuning or using RLHF on large language models (LLMs) can decrease the persuasiveness of the generated text, making it difficult to leverage advancements from state-of-the-art LLMs. We identify two key biases underlying this issue: reward hacking and reward sparsity. Reward hacking blurs the model’s training objectives, causing the model to focus more on linguistic style and rhetoric while neglecting the essential logical reasoning and value shaping. Reward sparsity reduces the generalization and robustness of the reward model. To address these two problems, we propose a novel persuasiveness enhancement training method: P³. Firstly, we introduce Persuasive reward estimation and modeling by separating persuasiveness scores from surface cues, addressing the reward hacking problem. Secondly, we solve the reward sparsity issue by employing Persuasive sample mining to extract persuasive annotation information from weakly supervised labels. Lastly, we design a new DPO algorithm tailored for Persuasiveness generation optimization, which modifying the objective function to mitigate the divergence problem on debate generation task. Extensive experimental results demonstrate that P³ effectively alleviates the aforementioned issues, significantly enhancing the model’s performance in debate and persuasion tasks, surpassing state-of-the-art closed-source commercial models, such as Gemini and Claude, in both automatic and human evaluations.

1 INTRODUCTION

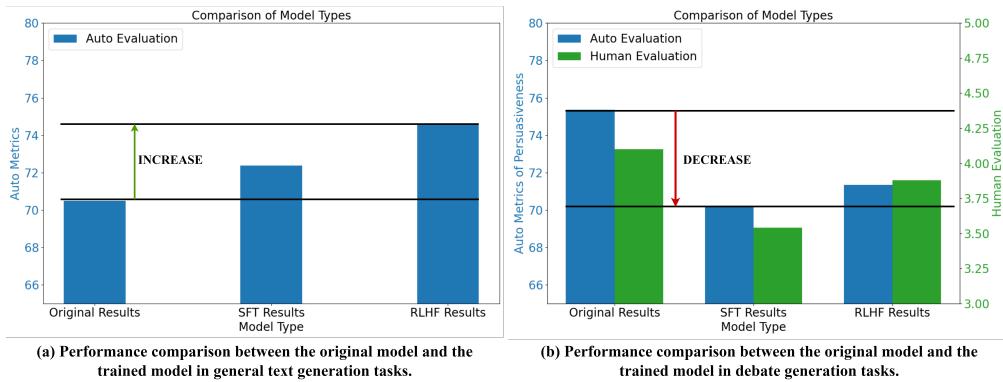


Figure 1: Comparison of model performance before and after training in debate generation tasks and general text generation tasks. Unlike general text generation tasks, the performance of debate generation tasks decreases after applying SFT or RLHF.

Persuading someone to change their viewpoint is a common goal across various applications, from political campaigns and marketing to competitive debates. The task of debate and persuasion generation aims to create text that convinces a specific audience. This task is prominent and has been the focus of substantial research efforts (Cialdini & Cialdini, 2007; Petty & Cacioppo, 2012). However, existing methods, while capable of producing meaningful viewpoints, often struggle to

054 provide convincing proof (Xiao et al., 2024). Generated articles may present contradictory evidence or
 055 fail to combine assertions into a logical flow, resulting in text that lacks persuasiveness. Additionally,
 056 whether fine-tuning large language models (LLMs) directly or using reinforcement learning with
 057 human feedback (RLHF), the persuasiveness of the generated text tends to decline, making it
 058 challenging to leverage advancements in state-of-the-art LLM technologies for this task (refer to
 059 Figure 1).

060 Through further analysis of error samples, we identified that the decline in model performance
 061 post-training is due to two critical issues: reward hacking and reward sparsity.
 062

063 Reward hacking arises from a significant deviation between training objectives and actual persuasiveness.
 064 As shown in Figure 2(a), text similarity metrics (such as BLEU and ROUGE) and the
 065 trained reward model diverge considerably from the persuasiveness scores given by human annotators.
 066 Linguistic research indicates that persuasive arguments rely on well-defined claims, sound reasoning,
 067 and credible evidence, reinforced through rhetoric (Hubbart, 2025). However, our analysis reveals
 068 that existing training objectives emphasize superficial cues such as language structure and style, while
 069 neglecting deep semantic elements like logical validity, leading to inaccurate persuasiveness score
 070 feedback. For example, in Figure 2(b), generated text using phrases like "For instance" to provide
 071 an example is deemed persuasive, even if the example contradicts the core thesis. Consequently,
 072 both SFT methods (with the training objective being similarity to ground truth) and RLHF methods
 073 (with the training objective being maximization of reward scores) fail to optimize for persuasiveness
 074 correctly. This results in models disproportionately learning debate language style and rhetorical
 075 techniques, while overlooking crucial logical reasoning and value shaping.

076 Reward sparsity arises from the scarcity of persuasive data. Most natural language processing tasks
 077 and standard evaluation sets lack the process of claim-challenging-persuading the audience. Typically,
 078 tasks only contain a question and a standard answer, failing to capture debate and persuasion dynamics.
 079 Technical reports on large language models such as LLaMA (Touvron et al. (2023a;b)) indicating
 080 that over 90% of supervised fine-tuning (SFT) data consists of a single stance or answer. Even in the
 081 few available online debate and persuasion datasets, persuasiveness labels are sparse. For example,
 082 in the ChangeMyView (CMV) dataset (Tan et al., 2016), less than 1% of the training samples have
 083 accurate persuasiveness labels (Δ). The lack of sufficient data leads to inadequate training of the
 084 reward model, making it challenging to effectively evaluate new responses generated by the model
 085 during RLHF processes.

086 To address the aforementioned issues, we propose a novel persuasiveness-enhanced training method:
 087 P^3 , which consists of three comprehensive stages: (1) Persuasiveness Reward Estimation and
 088 Modeling: This stage primarily addresses the reward hacking problem. We model the debate
 089 persuasion process as a Markov decision process and use action-value functions to estimate accurate
 090 persuasiveness and superficial cues scores. This approach guides the model to focus on core elements
 091 of persuasiveness. (2) Persuasiveness Sample Mining: This stage tackles the reward sparsity issue.
 092 We use the difference between upvotes and downvotes as weak supervision labels to address the
 093 lack of precise persuasiveness labels (Δ) in datasets like CMV. To avoid introducing noise, we
 094 use the persuasiveness scores extracted in stage (1) to identify high-quality debate response. (3)
 095 Persuasiveness Strategy Optimization: In this stage, we design a new offline DPO algorithm named
 096 PAPO. The algorithm optimizes the objective function to ensure the model focuses on the accurate
 097 persuasiveness scores, and avoids overfitting to noise in the weak supervision labels.

098 Experimental results on the CMV dataset demonstrate that P^3 significantly enhances the persuasiveness-
 099 performance of the base model on both automated and human evaluation metrics. Moreover,
 100 using a smaller base model (13B parameters), P^3 surpasses state-of-the-art closed-source commercial
 101 models such as Gemini and Claude.

102 In summary, our method offers the following contributions:
 103

- 104 • We model the debate persuasion process as a Markov decision process and use action-value
 105 functions to accurately separate persuasive elements from superficial cues, addressing the
 106 reward hacking problem in debate generation.
- 107 • We use weak supervision labels for persuasiveness sample mining, tackling the issue of
 108 insufficient precise persuasiveness labels and alleviating the reward sparsity problem.

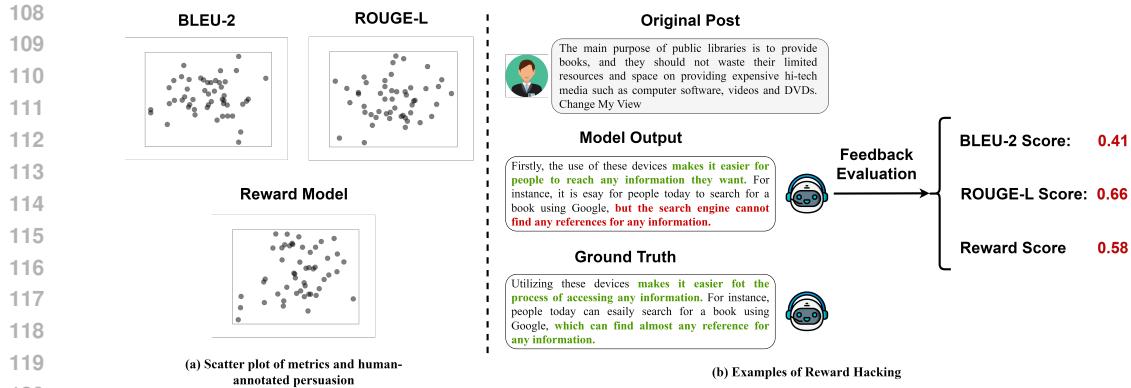


Figure 2: The provided examples illustrate the impact of reward hacking. The scatterplot and examples indicates a significant deviation between training objectives and actual persuasiveness.

- We design a novel PAPO algorithm, modifying the DPO objective function specifically for the debate generation scenario. Experimental results show that our method, using a smaller base model, outperforms state-of-the-art closed-source commercial models.

2 METHOD

2.1 OVERVIEW

To address the issues of reward hacking and reward sparsity, we designed three main components. Firstly, Persuasiveness Reward Estimation and Modeling uses maximum likelihood and the EM algorithm to separate accurate persuasiveness scores from surface cue scores, addressing reward hacking issues. Subsequently, Persuasiveness Sample Mining extracts samples dominated by persuasive elements from crowdsourced weakly supervised data, resolving the sparsity problem of human annotated Δ persuasiveness labels. Finally, the improved PAPO algorithm ensures that the model focuses on precise persuasiveness scores and avoids overfitting to the noise present in weakly supervised labels, overcoming the drawbacks of the original DPO algorithm.

2.2 TASK DEFINITION

The debate generation task can be formally defined as follows: Given an original post x_p that ends with 'Please Change My View,' indicating that the OP is inviting other users to debate and reach a persuasive conclusion, the task involves training a model to generate persuasive debate text. Within the discussion thread of this post, some users have already engaged in historical discussions with the OP, defined as x_h . The goal of debate generation is to train a model $\mathcal{M}_\theta(x_p, x_h)$ to generate persuasive debate text Y based on the original post and historical discussions, i.e., $\mathcal{M}_\theta(x_p, x_h) = Y$.

2.3 PERSUASIVENESS REWARD ESTIMATION AND MODELING

2.3.1 PERSUASIVENESS MODELING

To address the scarcity of precise persuasiveness labels (Δ) in the CMV dataset (Tan et al., 2016), we use "scores" (s) as a weak supervision signal to reflect each post's persuasiveness level. This metric is defined as the difference between the number of upvotes and downvotes for each post. It serves as a crowdsourced annotation of post quality by Reddit users and reflects the persuasiveness of the post in relation to the OP's viewpoint. However, these scores contain substantial information unrelated to persuasiveness. Users might be influenced by the literal quality of the text, such as vocabulary richness and sentence structure, causing a high score to be attributed either to high logical persuasiveness or superior literal quality. This leads to significant reward hacking issues when directly using the score to train a reward model, making it difficult to provide meaningful guidance for model

optimization. To clarify the reasons behind each post's score, this paper models each post's score using a Bernoulli distribution and separately calculates persuasiveness scores and literal scores.

Each post is assigned two scores: a persuasiveness score and a literal score. The literal score s_s is based solely on the text's intrinsic features, such as vocabulary and grammar, independent of the debate logic between the parties. Thus, the literal score s_s is defined as a function of the generated debate text \hat{y} :

$$s_s = f_s(\hat{y}) \quad (1)$$

In contrast, the persuasiveness score s_d is determined by the logical interaction between the texts of both parties and the current environment, making it a ternary function:

$$s_d = f_d(\hat{y}, x_p, x_h) \quad (2)$$

where x_p is the post of the OP, \hat{y} is the generated debate post, and x_h is the historical speech of other users.

Given the varying focus points of the scoring human audience, the observed score s might depend on either the persuasiveness score or the literal score, following a Bernoulli distribution:

$$p(s | \hat{y}, x_p, x_h) = \begin{cases} \alpha, & s = f_d(\hat{y}, x_p, x_h) \\ 1 - \alpha, & s = f_s(x) - f_s(x_p) \end{cases} \quad (3)$$

where α is the prior probability that the human audience emphasizes the persuasiveness score.

Inspired by Du et al. (2024) and Du et al. (2023), in order to derive the calculation methods for each score from a dataset annotated by humans, we use two MLPs (Multi-Layer Perceptrons) to fit the persuasiveness score and the literal score, respectively:

$$f_d(\hat{y}, x_p, x_h) = f_d(\hat{y}, x_p, x_h; \theta_d) \quad (4)$$

$$f_s(x) = f_s(x; \theta_s) \quad (5)$$

where θ_d and θ_s are the parameters of the neural networks.

After defining the hybrid debate score model, relative action-value function estimation is employed to train the model, resulting in the accurate calculation of both scores for each post.

2.3.2 PERSUASIVENESS REWARD ESTIMATION

To ensure the practical significance of the score, this paper models posts, historical posts, posting actions, and the upvote-minus-downvote count of each post as the environment, action, and reward in a Markov Decision Process (MDP), respectively. We then use the action-value function to describe the persuasiveness score s_d .

However, it is impossible to use temporal-difference (TD) (Sutton, 1988) or Monte Carlo methods (Metropolis & Ulam, 1949) to directly fit the action-value function within the hybrid debate score model. First, since the score s is sampled from both the literal score and the persuasiveness score, any TD or mean squared error (MSE) calculated using s would be non-differentiable, making optimization of model parameters infeasible. Second, due to the varying popularity of topics, posts on popular topics receive significantly more upvotes than those on less popular ones, meaning the reward value does not directly indicate persuasiveness. Only the relative reward size within the same topic can accurately describe persuasiveness strength. Therefore, we indirectly fit the persuasiveness score by approximating the win rate defined by the Bradley-Terry model Bradley & Terry (1952).

Specifically, the win rate of post $\hat{y}^{(1)}$ over $\hat{y}^{(2)}$ in the same context depends on the difference in their scores, represented as $\sigma(s^{(1)} - s^{(2)})$. Assuming that whether each post's score is based on persuasiveness is independent, the event y that post $\hat{y}^{(1)}$ wins follows a mixed Bernoulli distribution:

$$\begin{aligned} p(y) &= \sum_{s^{(1)} \in \{s_d^{(1)}, s_s^{(1)}\}} \sum_{s^{(2)} \in \{s_d^{(2)}, s_s^{(2)}\}} p(s^{(1)}, s^{(2)}) \sigma(s^{(1)} - s^{(2)}) \\ &= \alpha^2 \sigma(s_d^{(1)} - s_d^{(2)}) + \alpha(1 - \alpha)(\sigma(s_d^{(1)} - s_s^{(2)})) + \alpha(1 - \alpha)(\sigma(s_s^{(1)} - s_d^{(2)})) \\ &\quad + (1 - \alpha)^2 \sigma(s_s^{(1)} - s_s^{(2)}) \end{aligned} \quad (6)$$

In the aforementioned model, the observed win rate is a probabilistic parameter model containing hidden variables s_s (persuasiveness score) and s_d (literal score). This can be solved using the EM algorithm and maximum likelihood estimation (MLE) (Dempster et al., 1977). In the E-step of each iteration, the distribution q represents the posterior distribution of the scores for both posts:

$$q(s^{(1)}, s^{(2)}) = p(s^{(1)}, s^{(2)}|y) = \frac{p(s^{(1)}, s^{(2)})\sigma(s^{(1)} - s^{(2)})}{p(y)} \quad (7)$$

In the M-step, the goal is to maximize the following objective function:

$$L(s^{(1)} > s^{(2)}) = \sum_{s^{(1)} \in \{s_d^{(1)}, s_s^{(1)}\}} \sum_{s^{(2)} \in \{s_d^{(2)}, s_s^{(2)}\}} q(s^{(1)}, s^{(2)}) \log \left(p(s^{(1)}, s^{(2)})\sigma(s^{(1)} - s^{(2)}) \right) \quad (8)$$

where $s^{(1)}$ is the winner among each pair of posts.

To determine the winner within each pair in the dataset, the Bradley-Terry model is used again. The win rate is derived from their discounted cumulative rewards, and the expected loss when each post wins is computed based on the win rate, forming the final objective function:

$$E_D \left[\sigma(g^{(1)} - g^{(2)})L(s^{(1)} > s^{(2)}) + \sigma(g^{(2)} - g^{(1)})L(s^{(2)} > s^{(1)}) \right] \quad (9)$$

where D is the dataset, and $g^{(1)}$ and $g^{(2)}$ are the discounted cumulative rewards of the two posts.

After training the hybrid debate score model using relative action-value function estimation, we can obtain both scores for each post, allowing us to filter out samples dominated by literal scores and retain those led by persuasiveness scores.

2.4 PERSUASIVENESS SAMPLE MINING

The LLM has already undergone extensive training on literal scores during the SFT stage, making further training with samples dominated by literal scores from the persuasiveness dataset unnecessary. Therefore, for subsequent persuasiveness-enhancement training, we will only select samples dominated by persuasiveness scores s_d .

Given that the hybrid debate score model may include some errors, directly using the persuasiveness scores of all samples for training could introduce noise. To avoid this, we will select the longest sequence L in each scenario where the order of original scores (s) matches the order of persuasiveness scores (s_d), and use these as the persuasive samples for later training:

$$L = \operatorname{argmax}_D |D| \quad \text{s.t.} \quad \forall i, j \in D, \quad \operatorname{sign}(s^{(i)} - s^{(j)}) = \operatorname{sign}(s_d^{(i)} - s_d^{(j)}) \quad (10)$$

The selection is solved using a dynamic programming algorithm, with the specific process shown in Algorithm 1 (refer to Appendix A). The time complexity is $O(n \log n)$.

2.5 PERSUASIVENESS STRATEGY OPTIMIZATION

Due to the absence of real-time human audience for scoring debates, we utilized an offline DPO algorithm to enhance the persuasiveness of the LLM. However, traditional DPO (Rafailov et al., 2023) may cause the LLM strategy to diverge when used on small sample datasets. For instance, when the dataset contains only one preference pair. To simplify the notation, we define:

$$r(y) = \frac{\pi(y|x_p, x_h)}{\pi_0(y|x_p, x_h)} \quad (11)$$

the DPO loss

$$E_D \left[\log \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) \right] \quad (12)$$

270 results in a constant positive gradient for the probability of the winner's post $\pi(\hat{y}^{(1)}|x_p, x_h)$:
 271

$$273 \quad \beta \left(1 - \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) \right) \frac{1}{\pi(\hat{y}^{(1)}|x_p, x_h)} \quad (13)$$

276 Consequently, $\pi(\hat{y}^{(1)}|x_p, x_h)$ will eventually approach 1, leading to overfitting. To address this issue,
 277 we introduced Persuasion Augment Policy Optimization (PAPO), adding a smoothing term coefficient
 278 based on the persuasiveness scores into DPO loss. The improved training objective can be defined as:
 279

$$280 \quad E_D \left[\sigma \left(s_d^{(1)} - s_d^{(2)} \right) \log \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) + \sigma \left(s_d^{(2)} - s_d^{(1)} \right) \log \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) \right] \quad (14)$$

284 This approach effectively prevents the DPO divergence issue on small sample datasets compared to
 285 directly using persuasiveness scores to generate preference pairs, followed by DPO. The gradient of
 286 our method is:
 287

$$289 \quad \sigma \left(s_d^{(1)} - s_d^{(2)} \right) \beta \left(1 - \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) \right) \frac{1}{\pi(\hat{y}^{(1)}|x_p, x_h)} \quad (15)$$

$$291 \quad -\sigma \left(s_d^{(2)} - s_d^{(1)} \right) \beta \left(1 - \sigma \left(\beta \log \left(\frac{r(\hat{y}^{(1)})}{r(\hat{y}^{(2)})} \right) \right) \right) \frac{1}{\pi(\hat{y}^{(1)}|x_p, x_h)}$$

294 The sign is not constant, ensuring that $\pi(\hat{y}^{(1)}|x_p, x_h)$ does not diverge. Additionally, by finding the
 295 stationary point of the objective function, our method ensures that the LLM strategy converges to the
 296 optimal PPO (Proximal Policy Optimization) solution,
 297

$$299 \quad \pi(\hat{y}|x_p, x_h) \propto \pi_0(\hat{y}|x_p, x_h) \exp \left(\frac{1}{\beta} s_d \right) \quad (16)$$

301 thus providing good interpretability.
 302

3 EXPERIMENTAL SETTING

3.1 DATASET

308 The ChangeMyView (CMV) dataset is derived from the /r/ChangeMyView subreddit, which boasts
 309 over 211,000 users. In this forum, an original poster (OP) shares their viewpoint on a specific topic
 310 and invites users to respond in an attempt to change their perspective, known as a "Change My View"
 311 request. If a user successfully persuades the OP, they receive a mark (Δ) indicating the OP has been
 312 convinced. The forum is dedicated to civil discourse, with moderators and administrators enforcing
 313 rules to ensure thorough expression of perspectives during debates. The CMV dataset contains over
 314 1,000,000 discussion nodes and 60,000 unique users, with detailed statistics and examples available in
 315 Appendix B. Due to its large volume of data and high-quality persuasive debates, the ChangeMyView
 316 dataset has become a benchmark for debate and persuasion generation tasks.
 317

3.2 EVALUATION METRICS

319 **Automated Evaluation Metrics.** As indicated in Section 1 and Figure 1, traditional word overlap-
 320 based automated evaluation metrics (e.g., BLEU, Rouge) significantly diverge from the true per-
 321 suasiveness scores. Although closed-source commercial models such as OpenAI opt for human
 322 evaluation for the CMV task (Jaech et al., 2024), financial constraints prevent us from performing
 323 manual evaluation over the entire test set. Multiple studies have demonstrated that using GPT-4 for
 open-domain text generation evaluation greatly enhances the consistency between automated metrics

324
 325 Table 1: The results of comparison of baselines on automatic metrics and human evaluation metrics.
 326 For automatic evaluation metrics, we perform non-replacement sampling 3 times on the test set, each
 327 time sampling 10%, and report the average results. For human evaluation metrics, we sample 100
 328 instances for assessment. \dagger means statistically significant difference (2-tailed t-test, $p < 0.05$). **Bold**
 329 numbers denote the best performance among all methods.

Method	Base Model Type	#Params	o1-score	Human Evaluation
Qwen2-13B	Community	13B	73.57	4.10
Qwen2-72B	Community	72B	75.73	4.32
Gemini1.5 Flash	Commercial	175B	77.01	4.60
Claude3 Haiku	Commercial	175B	77.85	4.58
Ours	Community	13B	78.29\dagger	4.62\dagger

330
 331 and human evaluation (Hu et al., 2023; Liu et al., 2023; Fu et al., 2023). Therefore, we employ
 332 GPT4-o1 to simulate human-like persuasiveness scoring, referred to as o1-score. Further analysis
 333 (refer to Figure 3) shows that this automated metric has a high Pearson correlation coefficient (0.67)
 334 with human evaluation scores, accurately reflecting the level of text persuasiveness. The specific
 335 prompts and settings used for the evaluation are detailed in Figure 3.

336
 337 **Human Evaluation Metrics.** Based on the evaluation approach outlined in OpenAI’s GPT4-o1
 338 technical report for the CMV task (Jaech et al., 2024), we conducted sampled human evaluation of
 339 the dataset. Specifically, we recruited three proficient English speakers with debate backgrounds to
 340 manually evaluate the generated outcomes. We established the following two evaluation tasks:
 341

342 (i) *Scoring the persuasiveness of the generated text.* Similar to o1-score, annotators scored the extent
 343 to which the generated text persuaded them on a scale of 0-5.
 344 (ii) *Comparing the results to baselines.* Annotators compared the outputs of our proposed method
 345 against all baseline results, providing a *Win*, *Loss*, or *Tie* judgment for each pair of test samples.
 346

347 3.3 IMPLEMENTATION DETAILS
 348

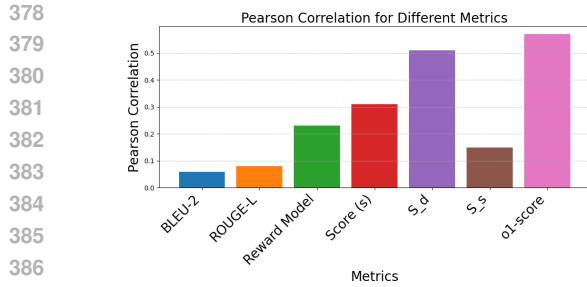
349 We train the base model with the help of huggingface, DeepSpeed and trlx. The base model of our
 350 approach is Qwen2-13B. We train the model in 5 epochs. The batch size per device is set to 8. All
 351 experiments are conducted with NVIDIA Tesla A100 GPU.
 352

353 4 RESULTS AND ANALYSIS
 354

355 4.1 MAIN RESULTS
 356

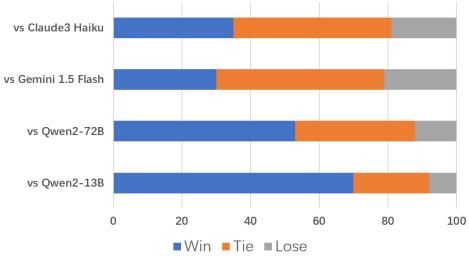
357
 358 **Performance on Automatic Evaluations.** As shown in Table 1, the automatic evaluation results
 359 indicate that our method mitigates reward hacking and reward sparsity during training, significantly
 360 enhancing the persuasiveness of model-generated texts. Specifically, compared to mainstream open-
 361 source models (Qwen2-13B, Qwen2-72B), our method increases the o1-score by an average of 3.6
 362 points. Additionally, when compared to closed-source commercial models, our approach achieves
 363 better persuasiveness with fewer parameters and training epochs, increasing the o1-score by an
 364 average of 0.9 points.
 365

366
 367 **Performance on Human Evaluations.** Table 1 and Figure 4 present the human evaluation metrics.
 368 As shown in Table 2, human evaluation results demonstrate that our method produces texts that are
 369 more persuasive to human reviewers compared to various strong baseline methods. Specifically,
 370 our method improves human evaluation metrics by an average of 0.40 points over open-source
 371 models. When compared to closed-source commercial models, the generated texts remain competitive,
 372 showing an improvement of 0.03 points on average. Figure 2 illustrates the direct comparison results
 373 between our method and various strong baselines. The results indicate that our method significantly
 374 outperforms mainstream open-source models, with 64% of the generated results surpassing baseline
 375 models on average. Compared to closed-source commercial models, our approach also shows a
 376 notable advantage, with 34% of the results surpassing baseline models and 80% being comparable
 377



389
390
391
392
393

Figure 3: Figure illustrating the Pearson correlation coefficients between various evaluation metrics and human-annotated persuasiveness. Here, S_d represents the persuasiveness score, and S_s represents the superficial cue score.



394
395
396
397
398
399
400
401

Figure 4: P^3 compared to other baselines. Human raters compared different model generations and scored them accordingly.

Table 2: The results of ablation experiments. **Bold** numbers denote the best performance.

Method	o1-score	Human Evaluation
Ours	78.29	4.62
-w/o Persuasiveness Reward Estimation	72.19	4.02
-w/o Persuasiveness Strategy Optimization	75.03	4.40

402
403
404
405 to them. Overall, these experimental and human evaluation results suggest that our method not
406 only significantly outperforms open-source community models with similar parameter sizes but also
407 competes effectively with closed-source models that have larger parameter counts.

408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045<br

432
433

434 4.3 CASE STUDY

435
436
437
438
439
440
441
442
443

In Appendix C, we present a complete sample including outputs from all baselines and our model. In this example, the original post (OP) was frustrated by the prevalent use of milk bags in Ontario instead of cartons and wanted to be persuaded. As seen, both our model and the closed-source commercial models can provide appropriate arguments and a complete reasoning process. However, our model's arguments and reasoning more directly address the OP's original post, while the outputs from Gemini and Claude contain many generalized or unproven arguments, such as "the prevalence of milk bags in Eastern Canada suggests a successful, albeit different, system established through consumer preference or logistical efficiencies over time", "While milk bags may not be as widely recycled, they generally have a lower environmental impact than cartons", which weaken the persuasiveness of the generated results.

444

445
446

5 RELATED WORK

447
448

5.1 DEBATE AND PERSUASION GENERATION

449
450
451
452
453
454
455
456
457

The task of debate and persuasion generation aims to produce persuasive debate texts for a given topic. With the advancement of large-scale pretrained language models, recent studies often directly leverage LLMs to generate argumentative content. Schiller et al. (2021) proposed a controllable viewpoint generation model capable of generating sentence-level arguments based on a given topic, position, and aspect. Al Khatib et al. (2021) developed three argumentation knowledge graphs and extracted knowledge from them to formulate prompts for training end-to-end viewpoint generation models. Bao et al. (2022) constructed a large-scale argumentative essay generation dataset, ArgEssay. Xiao et al. (2024) introduced the concept of proving principles into LLM planning generation to enhance the persuasiveness of generated texts.

458
459

5.2 COUNTER ARGUMENT GENERATION

460
461
462
463
464
465
466
467

Unlike debate generation, the goal of counter argument generation is to oppose a specific topic or post. Many existing works employ multi-agent frameworks, leveraging conflicts, fusion, and compromises among multiple LLM agents to generate rebuttal sentences (Hu et al., 2023; Xiong et al., 2023; Wang et al., 2023). Other works utilize LLMs' prominent self-reflection capabilities and employ long CoT (Chain of Thought) paradigms to analyze logical flaws in the content to be rebutted, providing stronger counterarguments (Verma et al., 2024; Hu et al., 2023). Some studies are concerned with the impact of using AI tools to aid rebuttal generation on the discussion environment of online debate communities (Zeng et al., 2025).

468
469
470

6 LIMITATION

471
472
473
474
475

Since our approach relies on crowdsourced annotation data scores, it may not be directly applicable to certain offline debate scenarios. However, thanks to the development of LLM Agent methods (Park et al., 2023), using agent-base user simulators to calculate the number of likes and dislikes for posts and subsequently estimating scores presents a viable alternative solution.

476
477
478

7 CONCLUSION

479
480
481
482
483
484
485

In this paper, we propose a novel training framework, P^3 , for debate and persuasive text generation tasks to address the shortcomings of LLM training in debating scenarios. This framework focuses on mitigating reward hacking and reward sparsity during model training and optimizes the DPO algorithm's training objectives specific to debate generation. Extensive experiments on the CMV dataset demonstrate that P^3 significantly alleviates reward hacking and reward sparsity, substantially improving the persuasiveness of the generated texts. Both automatic evaluation metrics and human assessments show that our method not only surpasses mainstream open-source models but also outperforms state-of-the-art closed-source commercial models such as Gemini and Claude.

486 REFERENCES
487

488 Khalid Al Khatib, Lukas Trautner, Henning Wachsmuth, Yufang Hou, and Benno Stein. Employing
489 argumentation knowledge graphs for neural argument generation. In *Proceedings of the 59th*
490 *Annual Meeting of the Association for Computational Linguistics and the 11th International Joint*
491 *Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 4744–4754, Online,
492 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.366.
493 URL <https://aclanthology.org/2021.acl-long.366>.

494 Jianzhu Bao, Yasheng Wang, Yitong Li, Fei Mi, and Ruiqiang Xu. AEG: Argumentative essay
495 generation via a dual-decoder model with content planning. In *Proceedings of the 2022 Conference*
496 *on Empirical Methods in Natural Language Processing*, pp. 5134–5148, Abu Dhabi, United
497 Arab Emirates, December 2022. Association for Computational Linguistics. URL <https://aclanthology.org/2022.emnlp-main.343>.

498

499 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
500 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

501

502 Robert B Cialdini and Robert B Cialdini. *Influence: The psychology of persuasion*, volume 55.
503 Collins New York, 2007.

504

505 Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
506 via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1):
507 1–22, 1977.

508

509 Li Du, Zhouhao Sun, Xiao Ding, Yixuan Ma, Yang Zhao, Kaitao Qiu, Ting Liu, and Bing Qin. Causal-
510 guided active learning for debiasing large language models. *arXiv preprint arXiv:2408.12942*,
511 2024.

512

513 Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving factual-
514 ity and reasoning in language models through multiagent debate. *arXiv preprint arXiv:2305.14325*,
515 2023.

516

517 Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei Liu. Gptscore: Evaluate as you desire, 2023.

518

519 Zhe Hu, Hou Pong Chan, and Yu Yin. Americano: Argument generation with discourse-driven
520 decomposition and agent interaction, 2023.

521

522 Jason A Hubbard. Why we must argue: A critique of the essence, purpose, and craftsmanship of
523 argumentation. *Open Journal of Social Sciences*, 13(3):231–250, 2025.

524

525 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
526 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv preprint*
527 *arXiv:2412.16720*, 2024.

528

529 Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: Nlg
530 evaluation using gpt-4 with better human alignment, 2023.

531

532 Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. *Journal of the American*
533 *statistical association*, 44(247):335–341, 1949.

534

535 Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S
536 Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings of the 36th*
537 *annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

538

539 Richard E Petty and John T Cacioppo. *Communication and persuasion: Central and peripheral*
540 *routes to attitude change*. Springer Science & Business Media, 2012.

541

542 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
543 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances*
544 *in Neural Information Processing Systems*, 36:53728–53741, 2023.

540 Benjamin Schiller, Johannes Daxenberger, and Iryna Gurevych. Aspect-controlled neural argument
 541 generation. In *Proceedings of the 2021 Conference of the North American Chapter of the Association
 542 for Computational Linguistics: Human Language Technologies*, pp. 380–396, Online, June
 543 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.34. URL
 544 <https://aclanthology.org/2021.naacl-main.34>.

545 Richard S Sutton. Learning to predict by the methods of temporal differences. *Machine learning*, 3:
 546 9–44, 1988.

548 Chenhao Tan, Vlad Niculae, Cristian Danescu-Niculescu-Mizil, and Lillian Lee. Winning arguments:
 549 Interaction dynamics and persuasion strategies in good-faith online discussions. In *Proceedings of
 550 the 25th international conference on world wide web*, pp. 613–624, 2016.

551 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 552 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
 553 Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
 554 models, 2023a.

555 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 556 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 557 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

559 Preetika Verma, Kokil Jaidka, and Svetlana Churina. Auditing counterfire: Evaluating advanced
 560 counterargument generation with evidence and style. *arXiv preprint arXiv:2402.08498*, 2024.

561 562 Boshi Wang, Xiang Yue, and Huan Sun. Can chatgpt defend its belief in truth? evaluating llm
 563 reasoning via debate. *arXiv preprint arXiv:2305.13160*, 2023.

564 Ruiyu Xiao, Lei Wu, Yuhang Gou, Weinan Zhang, and Ting Liu. Prove your point!: Bringing
 565 proof-enhancement principles to argumentative essay generation. In *Proceedings of the 2024
 566 Conference on Empirical Methods in Natural Language Processing*, pp. 18995–19008, 2024.

567 568 Kai Xiong, Xiao Ding, Yixin Cao, Ting Liu, and Bing Qin. Examining inter-consistency of large
 569 language models collaboration: An in-depth analysis via debate. *arXiv preprint arXiv:2305.11595*,
 570 2023.

571 Yuhang Zeng, Yingxuan Shi, Xuehan Huang, Fiona Nah, and RAY LC. "ronaldo's a poser!": How the
 572 use of generative ai shapes debates in online forums. In *Proceedings of the 2025 CHI Conference
 573 on Human Factors in Computing Systems*, pp. 1–22, 2025.

576 A ALGORITHM FOR PERSUASIVENESS SAMPLE MINING

578 **Algorithm 1** Persuasiveness Sample Mining

579 **Require:** Dataset $D = \{s, s_d\}_{i=1}^{|D|}$, where s represents weak supervised label 'scores' and s_d represents
 580 persuasiveness scores for All Posts
 581 **Ensure:** Selected Sequence L

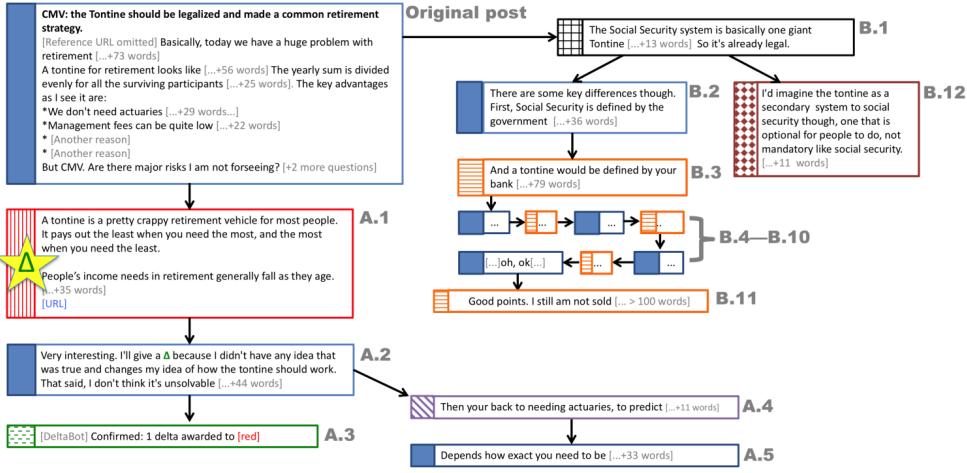
582 1: Sort the dataset D in descending order by s_d value, and by s value if s_d values are the same
 583 2: Initialize an empty array L to store the longest sequence
 584 3: **for** each element d in the sorted dataset D **do**
 585 4: Use binary search to find the first element in L that is greater than $d.s$
 586 5: **if** such position exists **then**
 587 6: Replace the value at that position with $d.s$
 588 7: **else**
 589 8: Append $d.s$ to the end of L
 590 9: **end if**
 10: **end for**
 11: **return** L as the longest sequence

594 B DATA EXAMPLES AND STATISTICS OF CMV DATASETS

596 In this section, we present the statistics of the CMV dataset in Table 3, including the number of
 597 discussion trees and the number of discussion nodes, among other metrics. Additionally, we provide
 598 an example of a discussion tree from the classic CMV dataset in Figure 5.

600
601 Table 3: The data statistics for the CMV datasets.

Type	# Discussion trees	# Nodes	# OPs	# uniq. participants
Traning	18,363	1,114,533	12,351	69,965
Test	2,263	145,733	1,823	16,923



614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Figure 5: A fragment of a “typical” /r/ChangeMyView discussion tree—typical in the sense that the full discussion tree has an average number of replies (54), although we abbreviate or omit many of them for compactness and readability. Colors indicate distinct users. Of the 17 replies shown (in our terminology, every node except the original post is a reply), the OP explicitly acknowledged only one as having changed their view: the starred reply A.1. The explicit signal is the “ Δ ” character in reply A.2. The figure is cite from Tan et al. (2016)

 648 **C EXAMPLE OF OUTPUTS**
 649
 650

 651 **Original Post:** I moved out to Ontario in 2011 from Alberta, both in Canada, and the first thing I
 652 encountered that pissed me off was milk in bags. In Alberta, milk is sold in cartons, and I find it pretty
 653 convenient to carry milk around in a fixed-shape container. In Ontario, however, milk almost always
 654 comes in a flexible plastic bag. The problems I have with this are:^{*} The shape makes it difficult to store. I
 655 have to not only keep unused bags in the fridge, but whatever bag is open needs its own place in the fridge
 656 too, AND needs a pitcher to contain it^{*} Cartons are resealable, bags aren't. The number of times that my
 657 milk has gone bad since moving here has exploded compared to when I used cartons. The fact that I can't
 658 re-close my milk bag means it expires faster, and I get less money's worth out of it^{*} No other liquids are
 659 sold in bags, so why milk? It seems strange that milk is the only drinkable liquid that comes in a bag here.
 660 Any other drink that's in anything resembling a bag, such as Capri Sun or wine, is packaged specifically to
 661 optimize consumption (wine in a bag in a box; Capri Sun pouch shaped for drinking), but milk? It's just in
 662 a lazy, unresealable, lame-ass bag.^{*} Bags are bad for the environment. These bags can't be re-used, are
 663 often not recycled, and I imagine are a huge waste compared to cartons. I know that plastic gallon jugs
 664 take more plastic than three bags, but I've always known those jugs to be recycled. I've never seen anyone
 665 recycle a milk bag.CMV!

 666 **Gemini:** While the inconvenience of milk bags is understandable, your argument overlooks key economic
 667 and environmental factors. The bag system, while less convenient, likely reflects lower transportation and
 668 manufacturing costs, resulting in a lower overall price for consumers. Furthermore, the environmental
 669 impact isn't solely determined by recyclability; lifecycle assessments comparing bag and carton production,
 670 including energy consumption and transportation emissions, might reveal a different overall environmental
 671 footprint. Finally, the prevalence of milk bags in Eastern Canada suggests a successful, albeit different,
 672 system established through consumer preference or logistical efficiencies over time.

 673 **Claude3:** The blogger's criticism of milk bags in Ontario is understandable, but there are several
 674 compelling reasons why the bag system is preferable to cartons: Milk bags are significantly more cost-
 675 effective for producers and retailers, allowing them to pass on those savings to consumers. The flexible
 676 packaging requires less material and is less expensive to transport, making it a more economical option. The
 677 smaller, flexible bags allow for better portion control and reduced waste compared to larger, fixed-size
 678 cartons. Consumers can easily pour out the exact amount they need without having to store an open
 679 carton. Environmental impact: While milk bags may not be as widely recycled, they generally have a
 680 lower environmental impact than cartons. The production and transportation of bags require less energy
 681 and resources, and the lighter weight of the packaging reduces fuel consumption.

 682 **Ours:** While it's understandable to feel frustrated about the recycling habits in your area, it's important
 683 to recognize that the recyclability of milk bags is a feature of their design, and the issue might lie more
 684 with local recycling infrastructure and consumer behavior rather than the product itself. In many regions,
 685 including parts of Ontario where milk bags are common, there are established systems for recycling
 686 these bags, even if they may not be as visible or widely recognized as those for milk jugs or cartons., the
 687 benefits of milk bags extend beyond just being recyclable—they are indeed more efficient in terms of
 688 material use and transportation. The reduced weight and volume of milk bags mean fewer resources are
 689 needed to produce and transport them, leading to lower overall environmental impact. This includes less
 690 fuel consumption during transportation, which translates into a smaller carbon footprint.your concerns
 691 about practicality, such as storage and reuse, there are ongoing efforts to improve the user experience.
 692 Innovations in refrigerator design, as mentioned, could eventually accommodate milk bags more effectively.
 693 Additionally, using a dedicated, reusable, and sealable container for pouring and storing milk from bags is
 694 a practical workaround that addresses your specific needs.essence, while the transition to milk bags might
 695 require some adjustment, the underlying advantages—both economic and environmental—are significant.
 696 By adopting a solution-oriented approach, we can leverage the benefits of milk bags while mitigating any
 697 inconveniences.

 698 **Table 4:** Output example of different baselines and ours.
 699
 700
 701