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Abstract

Many controlled complex systems have an inherent network structure, such as
power grids, traffic light systems, or computer networks. Automatically controlling
these systems is highly challenging due to their combinatorial complexity. Standard
single-agent reinforcement learning (RL) approaches often struggle with the curse
of dimensionality in such settings. In contrast, the multi-agent paradigm offers
a promising solution by distributing decision-making, thereby addressing both
algorithmic and combinatorial challenges. In this paper, we introduce COGNAC
(COoperative Graph-based Networked Agent Challenges), a collection of coop-
erative graph-structured environments designed to facilitate experiments across
different graph sizes and topologies. COGNAC bridges the gap between theoretical
research in network control and practical multi-agent RL. (MARL) applications by
offering a flexible, scalable platform with a suite of simple yet highly challenging
problems rooted in networked environments. Our benchmarks also support the
development and evaluation of decentralized and distributed learning algorithms,
motivated by the growing interest in more sustainable and frugal Al systems. Ex-
periments on COGNAC show that independent actor—critic learning (IPPO) yields
the highest-quality joint policies while scaling robustly to large network sizes
with minimal hyperparameter tuning. Value-based independent learning (IDQL)
typically needs substantially more training and is less reliable on combinatorial
tasks. In contrast, standard Centralized-Training Decentralized-Execution (CTDE)
methods and fully centralized training are slower to converge, less stable, and strug-
gle to generalize to larger, more interdependent networks. These results suggest
that CTDE approaches likely need extra information or inter-agent communication
to fully capture the underlying network structure of each problem.

1 Introduction

Many real-world systems exhibit an inherent graph structure or can be naturally modeled as networks.
These systems can be found in a wide variety of applications and theoretical fields: computer networks,
biological networks, social networks, power grids, or logistic networks. Graph-based problems are
widely studied from a theoretical point of view in the context of graph theory. However, applying
optimization and machine learning methods to networked real-life systems is often highly difficult.
Indeed, the size of networks and the complexity of control problems tend to make such problems
intractable for standard optimization or centralized machine learning algorithms. In this paper, we
deliver an intermediate platform with a collection of fully collaborative multi-agent environments
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with inherent network structure dedicated to reinforcement learning (RL). This work aims to foster
the development of scalable and frugal decentralized methods by introducing minimal yet challenging
benchmark environments tailored for multi-agent systems with a networked structure.

Multi-agent reinforcement learning (MARL) has emerged as a powerful framework for enabling
autonomous agents to make sequential decisions in complex, dynamic environments. At the core of
MARL lies the classical Markov Decision Process (MDP) framework, which provides a rigorous
mathematical basis for modeling decision-making in stochastic settings and optimizing long-term
cumulative rewards [1]]. However, in many real-world scenarios, agents operate under conditions of
uncertainty and partial observability, necessitating the use of Partially Observable MDPs (POMDPs)
to capture incomplete and noisy state information [2]]. Extending these frameworks to multi-agent
systems brings new challenges like coordination, decentralized information, and non-stationarity.
This has led to growing interest in decentralized POMDPs as a foundation for modeling cooperative
and competitive interactions [3].

1.1 Distributed Reinforcement Learning with Graph Structure

Reinforcement learning (RL) has proven to be highly efficient for many applications, such as robotics,
autonomous vehicles, video games, etc. Concurrently, the emergence of deep learning over the
last decade has allowed the development of model-free RL algorithms for many highly complex
tasks. Still, complex network systems control, that could use RL methods, struggle with the curse of
dimensionality. Hence, while standard centralized RL often works on small instances of problems,
the scalability of methods to larger systems, closer to the real ones, is often impossible [4]].

The main challenge in tackling DecPOMDP problems lies in the non-stationarity induced by the
presence of multiple agents that partially observe the system and act simultaneously [3]. Coordinated
collaborative MARL was first introduced as a paradigm aiming to leverage the inherent graph structure
of multi-agent problems to find an optimal joint policy. Initially, the main interest in decentralized
methods was to avoid exploring the complete joint state-action space, as it is intractable even for
small instances of simple problems [5]. Through the learning of a structured representation of the
policy or value function, leveraging directly the relationships between agents, it becomes possible
to approximate optimal policies. This is particularly useful in the case of Factored MDPs [6] and
Network-Distributed MDPs [7]]. More recent work on coordinated multi-agent systems has introduced
methods to tackle the exponentially growing state-action space by exploiting the network structure of
problems to learn policies locally [8 9.

More generally, the recent growing interest in distributed machine learning methods in a decentralized
paradigm offers many opportunities to tackle control problems for vital infrastructures of increasing
size and complexity in the fields of energy, telecommunication, and operational research [10]. Hence,
the development of a collection of benchmark environments with inherent network structures is
driven by the emergent need for evaluation tools to support the development of such distributed RL
methods for complex systems. In the context of control problems, one can leverage these paradigms
to transform large intractable instances of a problem into a smaller set of subproblems. In terms
of computation, these algorithms may be distributed, making them flexible and frugal solutions for
constrained hardware resources. In addition, they may offer more scalability for very large multi-
agent systems in the context of partially observable environments with constrained communication
(L1k 120

1.2 Review of Existing Benchmark Environments

Most of the available RL environments have historically focused on the centralized single-agent
paradigm, as it has been widely studied for decades and remains the standard approach to many
problems. Table|l|summarizes the most popular MARL benchmark environments that emphasize
either collaborative toy problems (i.e, that usually support theoretical work) or realistic network
control.

Many popular MARL suites (e.g., the Multi-Particle Environments, PySC2/SMAC, POGEMA)
emphasize navigation, communication, or coordination in toy problems and are not primarily de-
signed to evaluate distributed control on large networked systems. Conversely, realistic simulators
that model networks are often oriented towards single-agent formulations or provide limited scal-
ability/modularity for multi-agent experiments. To the best of our knowledge, there is currently



Benchmark Task type(s) Max # agents Modular Partial Obs.
Toy problems

Multi-Particle Env. [13]  Navigation / Communication 6 X v
Google Football [14] Navigation / Control 22 X v
LB-Foraging [15] Navigation ~10 4 X
SMACV2 [16] Navigation / Control ~100 X v
POGEMA [17] Navigation ~100 v v
MeltingPot [18] Various ~10 X v
Multi-Agent Atari [19] Various 4 X X
SISL [20] Navigation / Control ~8 X v
Overcooked [21] Navigation / Control 2 X X
COGNAC Network Control ~10000 v v
Realistic environments

Grid20p [22] Network Control ~100 X X
WEFCRL [23] Network Control ~30 v v
SUMO-RL [24] Network Control ~20 X v

Table 1: Comparison of some popular multi-agent benchmarks. “Realistic” indicates the use of a
physics-based or traffic-based simulator. Modular tasks indicate that the user has flexibility over the
choice of problem size/structure and/or scenarios to play; “Partial Obs.” denotes partial observability.

no benchmark environment suite dedicated to problems with network structure that emphasizes
the development of distributed methods in multi-agent settings and can support theoretical work
through modularity and simplicity of underlying dynamics. In addition, the work done on multi-agent
networked systems and their evaluation is often carried out on custom problems or environments
with no standard open-source implementation available [[7, 3]]. Therefore, COGNAC is designed as a
benchmark for network control that (i) targets genuinely large-scale multi-agent problems (on the
order of 10% to 10* agents), (ii) is modular so users can vary problem size and topology, and (iii)
natively supports partial observability.

1.3 Motivations

The development of COGNAC for COoperative Graph-based Networked Agent Challenges is mo-
tivated by the lack of available RL benchmark environments dedicated to simple fully cooperative
multi-agent problems with inherent graph structure. Specifically, the proposed package aims to
provide a very flexible and modular platform to test control methods on various cooperative tasks,
offering the possibility to run the environment on any graph size with any structure. This is
especially helpful for the development of decentralized, federated, and hierarchical RL methods for
problems that remain intractable with standard centralized methods.

The various environments proposed within the initial release of the package are designed to be as
simple as possible in their formulation and dynamics, yet offer challenging tasks for model-free
RL algorithms, even on smaller instances of problems. It can be used to evaluate the limitations of
standard centralized RL methods on combinatorial control problems with exploding state and action
space sizes. Overall, the lack of theoretical results in the literature is a primary concern motivating the
development of COGNAC. Hence, our package provides a platform to address a key open challenge
in this field: Identify special structures that make problems theoretically solvable. Therefore, we
aim at closing the gap between theoretical work on network-based cooperative control problems and
realistic simulation environments for real-life systems.

Contribution of the Paper

* We introduce COGNAC (COoperative Graph-based Networked Agents Challengesﬂ a
Python-based benchmark suite offering flexible, graph-structured, cooperative multi-
agent environments for MARL research.

"https://github.com/yojul/cognac
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* We provide the first standardized open-source implementations of several well-known
theoretical graph-based MARL problems taken from the literature, adapted for empirical
benchmarking with modern RL tooling.

¢ We offer a set of baseline experiments with state-of-the-art MARL algorithmsﬂ show-
casing scalability challenges and opportunities for future method development.

2 COGNAC : Cooperative Graph-based Networked Agent Challenges
We consider fully cooperative multi-agent tasks with partial observability of the environment.

MDPs and Decentralized Partially Observable MDPs The standard framework for reinforcement
learning problems is to consider optimal control of a Markov Decision Process (MDP). A Markov
Decision Process is defined by the tuple (S, A, P, R,), where S is the state space, A the action
space, P defines the transition kernel over the state and action space, R : S x A — R is the
reward, and v € [0, 1] is the discount factor of the problem. The standard objective in RL is to
maximize the expected discounted return by solving the Bellman equation [25, 26]. In the context
of MARL, this framework is extended to a Decentralized Partially Observable Markov Decision
Process (DecPOMDP). A DecPOMDP is typically defined by a tuple (N, S, A, P, Z,0,R,~),
where N = {0, 1, ..., N} is the set of IV agents. Each agent receives observations from its observation
space Z, which are generated according to an observation function or kernel O based on the
environment state. The global objective is to find the optimal joint policy. In the general case, finding
an optimal solution for a finite-horizon DecPOMDP is known to be NEXP-complete for N > 2 (i.e.,
two agents or more) [3].

2.1 Available Environments

The initial release of the package comes with 4 different problems: Firefighting graph, Binary
consensus, SysAdmin network, and Multi-commodity flow network. These environments are
inspired by classical pre-existing problems such as the SysAdmin network [27]] or Firefighting Graph
[6]]. These problems have been widely studied and used as benchmark problems to test distributed
multi-agent methods. However, to the best of our knowledge, there are no standard implementations
available, which makes algorithm comparison more difficult in the long run. The chosen problems
implemented in COGNAC are fully described in the following subsections. Some of them can be
instantiated with any graph structure defined by the user, and we provide a collection of standard
graph structures for benchmarking purposes with various sizes and properties: Directed Acyclic
Graph, Tree, Undirected, Dense or Sparse graph, etc.

2.1.1 Fire Fighting Graph

The Fire Fighting Graph problem was introduced by F. Oliehoek & C. Amato [6, 3] as a stylized
version of a simple instance of a Dec-POMDP with a Dynamic Bayesian Network (DBN) structure.
It can model various types of problems related to epidemic control [28]], communication networks
[29, 1301, or traffic control [31]. In the original description of the problem, N firemen are trying to
extinguish fire on a row of N + 1 houses. This problem has a particular structure which can be
modeled as a DBN. Specifically, it can be seen as a bipartite graph with N agent nodes (the firemen)
on the one hand and N + 1 environment nodes (the houses) on the other hand. This problem comes
in two different versions in our package: the first one is the original as described, and we propose an
extension of the problem to a grid problem with a (N + 1) x (M + 1) grid of houses controlled by
N x M firemen. The following description applies to the original 1-dimensional environment, which
is straightforward to extend to the 2-dimensional environment.

State and Observation: The state is described by the level of fire on each house as an integer with
sp(t) €10,0 — 1] and

S(t) = {sn(}3 M
The state is not directly observed by the agents. Each agent observes the fire at its location (i.e., one
of the houses it controls) with a specified probability that depends on the level of fire. This introduces
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noise between the observed state and the actual state of the system. Implicitly, the environment also
stores the location of the firemen to know which house each agent is observing.

Action Space: At each time step, agent ¢ can go to house 7 or 7 + 1 to extinguish the fire with a
certain probability. In the grid problem, an agent can go to one of the four houses around it.

Objective and Reward Function: An episode ends when the fire is fully extinguished in all houses,
ie, S(t) = {0}2’:01, or if it reaches the maximum horizon ¢t > T'. At each time step, the reward
signal is given by the level of fire at the observed house at ¢ + 1. Hence, the agents receive a reward
based on their location, and the reward is linked to the houses:

—s;(t if agent 7 is at house ¢

ri(t) = (1) ~ ifagentii : )
—s;+1(t) if agenti is at house 7 + 1

The detailed description of the dynamics of the 1-D problem, including default transition probabilities,

is given in [3]. The extension to the two-dimensional case is straightforward and fully described in

the supplementary material.

2.1.2 Binary Consensus

This problem is directly inspired by the voter model introduced by Richard A. Holley and Thomas M.
Liggett in 1975 as a simple model with a graph structure where each particle (or agent) can influence
the vote of its neighbors [32]. While this type of modeling has been largely studied, especially in
the field of statistical physics, there are very few adaptations of the voter model to Markov Decision
Processes and, to the best of our knowledge, no available minimal formulation for a decentralized
multi-agent setting with a fully cooperative objective. Therefore, we simply adapt this problem
to make it a Dec-POMDP where each agent can observe its state and its neighborhood and act by
either keeping its vote or changing it to the alternative value. In addition, the state of the agent
is stochastically influenced by its neighbors’ actions. Although very simple, this Dec-POMDP is
non-trivial to solve.

Formally, N agents vote simultaneously to keep or change their vote at each step and try to reach a
consensus within a time horizon 7. The graph structure of the problem describes the neighborhood
of agents and quantifies how agents influence each other with their actions. The main difficulty when
applying decentralized methods to this problem is that agents need to agree on a value by updating
their local policies simultaneously. Thus, for decentralized methods, it is not obvious that algorithms
can converge to a common value for consensus. Hence, we argue that this problem is interesting for
comparison purposes and can be used as an interesting benchmark for convergence speed study.

State and Observation: Each agent maintains a state represented by a single boolean variable
si(t) € {0, 1} corresponding to its vote at time ¢. The joint state at time ¢ is denoted

S(t) = {si(t)}iL, 3)

In the standard setting, each agent can observe its own vote as well as the votes of its neighbors as
defined by the graph structure.

Action Space: At each step, an agent can choose to keep its current vote or change to the other value.
Hence, we have

a;(t) € {0, 1}, )
with 0 representing keeping its current vote, and 1 switching to the opposite vote.

Objective: The objective is to drive the system towards a consensus on any of the two values within
the time horizon. Formally, let m; be the current majority vote at ¢ :

N

= 1]s;(t) = v|. 5
my argvggﬁ}iﬂ [s:(t) = v] 5)

A consensus is reached if all agents hold the same vote:
si(t)=my, Vie{l,...,N}. (6)

An episode ends when either a consensus is reached or ¢ > T'.



While this particular theoretical problem is not a direct representation of a real-world network system,
its very basic formulation is very convenient to evaluate and compare centralized, semi-centralized,
and decentralized methods with various network sizes and structures. It has a state space of size 2V
and an action space of the same size 2"V, making the problem quickly intractable as the number of
agents NV increases. This is particularly useful to assess the limitations of fully centralized methods.
Since any consensus is a solution, once all agents have learnt to align on a particular value, the game
is solved. An alternative setting for this problem is to make the agents aim at a particular consensus,
for example, corresponding to the initial majority value my. This problem is way more difficult to
solve in practice, but it is of interest.

2.1.3 Multi-agent SysAdmin

This particular problem was first introduced in 2002 by Guestrin et al. as a standard benchmark
problem to evaluate planning methods leveraging network structure in factored Markov Decision
Processes [27]. Initially defined as a single-agent problem, the multi-agent formulation was also
introduced later by Guestrin et al. [5]] to introduce coordinated RL methods in multi-agent settings.
It has been studied and often referred to as a standard benchmark problem to this day [33} [34]. It
has been treated in different settings and with some variations in the state space and definition of the
dynamics. Here, we propose the first modern open-source standard implementation of the problem
dedicated to MARL.

In this problem, a network of computers must achieve tasks, but each machine has a probability of
becoming faulty, making the task longer to achieve, or even dead, making the task impossible to finish.
When a computer encounters a fault, it has a probability of propagating the fault to its neighbors. At
each timestep, the SysAdmin can choose to reboot some of the computers on the network; this will
cause the loss of any progress on an ongoing task but will restore the computer to a working status
good with high probability. The multi-agent formulation of the problem helps in assessing how the
structure of the graph, and especially the relationship between neighbors, can be exploited to solve a
collaborative task in the context of Partially Observable Markov Decision Processes (Pom-MDPs).

As with the consensus environment, the graph structure gives the topology of the network, quantifying
how a fault of one agent can propagate to its neighbors.

State Space: Each agent maintains two features in its state: its working status as good, faulty, or
dead and its load status, which can be idle, loaded, or successful. Formally, the joint state space is:

S(t) € {good, faulty, dead}”¥ x {idle, loaded, successful}*" ™
This gives the state space of cardinality 9%

Action Space: At each time step, each agent can choose to do nothing or to reboot for the next
time step. Rebooting will cause the computer to lose progress on its current task, but will reset the
computer to the working status good with high probability.

Objective: The objective is to maximize the number of solved tasks. Theoretically, the problem can
be studied both as an infinite horizon problem and a finite horizon problem with horizon 7.

2.1.4 Multi-commodity Flow

Network flow problems are a class of combinatorial optimization problems defined on a graph, where
the goal is to optimize the distribution of flow along edges under specific constraints. Many variants
of these problems exist, as extensively covered in [35]. Here, we implement a specific version of the
multi-commodity flow problem in a multi-agent setting with partial observability. In this problem,
the objective is to minimize the total cost of flow circulation on the network, given that edges have
costs and capacities. Multi-commodity refers to multiple classes of flow available in the problem.
Even with only two commodities, finding an optimal integer flow that satisfies the constraints is
NP-complete.

Our implementation can handle both the flow problem involving sources and sink nodes and the
particular case of the circulation problem where the network is initialized with only circulation nodes
and initial flows on those nodes. During an episode, the flows must satisfy several constraints:

* Edge capacity: The total flow on an edge between nodes ¢ and j cannot exceed its capacity

pij- Let pras = ( rr;ax , Pij be the maximum capacity on the network.
i,j)EN



* Flow conservation: For any circulation node, the total incoming flow must equal the total
outgoing flow.

* Flow conservation at source and sink nodes: A commodity must fully exit its source and
fully enter its sink.

Here, we consider the multi-agent problem where each node of the network is an agent that needs to
handle how it dispatches the incoming flows to its outgoing edges. Thus, each agent observes the
flows arriving at its incoming edges and decides how to dispatch them to its outgoing edges. The
environment only allows flows with integer values, making the action space discrete by definition.

State Space: We consider a directed graph where each node has at least one incoming and one
outgoing edge. Let & be the number of commodities (flow classes), IV the number of controllable
circulation nodes (i.e., agents), and E the number of edges in the network. At each timestep, the
global state consists of the flow values on each edge. Each agent observes the flow values on its
incoming edges only.

Action Space: The individual action space of each agent is defined as a vector (or matrix) describing
the dispatch of flows to outgoing nodes. Hence, for each agent i, it has k x n! , elements. Flows are
integers; however, in practice, an agent’s policy predicts a distribution of flow along edges that is
mapped to an integer dispatch on outgoing edges.

Objective: Here, agents need to minimize the total cost of flows circulating on the network. Each
class of flow (commodity) and edge has an associated cost. The objective is then to minimize the
total circulation cost of flows on the network during an episode with horizon 7.

2.2 Multi-Agent Reinforcement Learning with COGNAC

We designed the COGNAC package to be as easy to use as possible. Each problem is implemented as a
self-contained PettingZoo environment, making it directly compatible with most existing imple-
mentations of MARL algorithms. The environments are easy to run, with clear and understandable
dynamics. A key feature of the package is its modularity. Users can easily customize environment
parameters to adjust the difficulty or explore different settings. All environments support variable
sizes, and Binary Consensus and SysAdmin are graph-agnostic, allowing them to be initialized with
any weighted adjacency matrix. Table[2]provides an overview of the joint state and action space sizes,
as well as the modular features of each environment.

Table 2: Features and size comparison of multi-agent environments available in COGNAC

Environment Modular Size  Graph Agnostic  Joint State Space Joint Act. Space
Firefighting Graph (1D) v X o~ 2N

Firefighting Graph 2D) v X N> M 4N

Binary Consensus v v oV 2N

SysAdmin v/ v/ 9N 2N
Multi-commodity Flow v X udobed udobd

The various benchmark environments provided offer increasing combinatorial complexity in terms
of joint action and state space sizes. The graph structure also differs from one problem to another,
especially in the way agents or the environment influence the dynamics. Thus, the implemented
environments offer a variety of network-based dynamics, which can be very convenient for comparing
the efficiency of multi-agent methods in various contexts. For example, in the Firefighting Graph
problems, the network structure determines the noisy observation and action space available to the
agent, and therefore creates indirect dependencies between neighboring agents. In addition, the
network structure of the environment is decorrelated from the relationship between agents. In the
Binary Consensus problem, the dependency is more direct, and there is a single graph structure
(i.e., the neighborhood relationship between agents), since the action of an agent will directly and
stochastically influence the state transitions. Overall, the environments offer different challenges:
Binary Consensus and Firefighting Graph are meant to be solved as fast as possible to maximize
reward, while SysAdmin and Multi-commodity Flow can be interpreted as infinite-horizon control
tasks in their default settings.



In addition, we provide some basic rendering functionalities in order to visualize the environments.
This is particularly helpful to qualitatively compare multi-agent policies or assess whether learned
policies act as expected. This can be used to identify unexpected behavior directly by observing some
trajectories.

3 A Benchmark Example

We propose a simple benchmark example of some standard decentralized learning algorithms on
COGNAC environments. We test two independent learning algorithms: Independent Deep Q-
Learning (IDQL) and Independent Proximal Policy Optimization (IPPO) [36]]. Independent learning
refers to algorithms where each agent learns its own policy independently, treating other agents as
part of the environment without explicit coordination [37]]. In addition, we implement their respective
adaptation in the paradigm of Centralized Training Decentralized Execution (CTDE): Q-Mix [38]]
and Multi-Agent Proximal Policy Optimization (MAPPO) [39]. For CTDE algorithms, policies are
not shared: each agent maintains its own policy. The results obtained are reported in Figure[T|and
compared with heuristic baselines. Our implementations of these algorithms are directly adapted
from the CleanRL implementations [40]].

Binary Consensus N = 10 agents

100 SysAdminNetwork N = 100 agents
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Figure 1: Training comparison on COGNAC’s environment with various sizes and heuristic baselines.
The shaded area corresponds respectively to the standard deviation of the return obtained on a large
number of episodes for heuristic policies (green) and to the standard deviation of the running average
of the return obtained for each algorithm. For the commodity circulation problem (Id), individual
action spaces are considered as continuous, hence IDQL is not suitable for this environment.

Despite the non-stationarity inherent to the Dec-POMDP formulation of these problems, the IPPO al-
gorithm consistently learns effective policies across all tested environments. In the Binary Consensus
environment, IDQL reaches comparable final performance but requires substantially more training
steps, while it performs worse in the other discrete tasks. In this same environment, centralized
training approaches (MAPPO and QMIX) eventually reach consensus, yet their convergence is slower
and less stable. Moreover, these CTDE-based methods fail to generalize effectively to larger or more
interdependent systems, indicating limited scalability.



In the SysAdmin environment with 100 agents, MAPPO and QMIX perform significantly below
independent methods, particularly IPPO, which rapidly converges to a near-optimal policy and clearly
outperforms the heuristic baseline. While extended training might allow CTDE methods to approach
the heuristic policy’s performance, the observed results emphasize their difficulty in scaling to large
agent populations with strong inter-agent dependencies.

For the Grid Firefighting task, IPPO achieves stable improvement and surpasses the random heuristic
baseline, while IDQL struggles with the combinatorial complexity. In the Multi-Commodity Flow
problem, where the action space is defined as continuous, we only apply an adapted version of IPPO,
and it successfully converges towards a high-performing policy that outperforms the centralized linear
program heuristic.

We use standard hyperparameter sets that can be found in the literature and perform minimal tuning,
with similar configurations used across all environments. The empirical evidence suggests that [IPPO
offers superior out-of-the-box performance for decentralized control problems. These findings align
with prior observations by [36} 23], reinforcing the idea that independent actor-critic methods can
provide a naive yet effective baseline for large-scale cooperative MARL tasks.

Decentralized algorithms appear to be a natural choice for this type of problem, but they have to
be compared against fully centralized methods, which are much more straightforward to apply and
have theoretical convergence guarantees. Figure[2]shows a comparison of a fully centralized PPO
algorithm against fully decentralized IPPO on two instances of the Binary Consensus environment
with size N = 10 and N = 100 agents. In the centralized setting, a global reward signal is computed
as the sum of local rewards.

Binary Consensus N = 10 agents Binary Consensus N = 100 agents
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Figure 2: Comparison of episodic return of learned policies for fully centralized PPO algorithm
against IPPO (fully decentralized) on two instances of size N = 10 and N = 100 (2b) on the
Binary Consensus environment. The episodic return is computed as a moving average, and the shaded
area corresponds to the standard deviation.

While centralized PPO is able to learn a good policy on a small instance of the problem with N = 10
agents, it fails when scaling up to NV = 100 agents. This can be explained by the combinatorial aspect
of the problem, as the action space is represented with a binary vector of size N. Even with complete
observation of the problem, the centralized model-free approach fails to learn a working policy within
reasonable learning times. Meanwhile, the IPPO algorithm scales successfully on larger instances
of the problem with N = 100 and learns faster on the smaller instance. Furthermore, we observe a
more stable learning curve on the small instance with N = 10 for IPPO.

Additional experiments We propose a set of additional results in Appendix [C|with experiments on
larger systems using independent learning methods, as well as a network density influence study and
an enhanced PPO-based methods comparison on the SysAdmin problem using shared actor-policy
and GNN-based aggregator (InforMARL algorithm [41]).



4 Limitations

As highlighted in the introduction section, COGNAC aims at bridging the gap between theoretical
results on distributed control in MARL settings and applied research on network systems. Indeed, the
implementation of environments is made as simple as possible without compromising the modularity
and flexibility needed for research purposes. All environments are scalable to any size, and Binary
Consensus and SysAdmin can be instantiated with any network structure, which makes them highly
suitable to study and compare methods against particular network structures and properties. Multi-
commodity flow remains the most difficult to solve as it has a very large combinatorial action space.
While these benchmark environments provide interesting challenges to test and compare algorithms,
it is generally difficult to compute theoretically optimal policies to compare with. This can be a
drawback from the theoretical perspective, as a heuristic-based policy might not be a sufficient
baseline. Furthermore, as the dynamics of environments are directly implemented in Python without
relying on any third-party backend (e.g., directly in C or C++), simulating very large systems can
become computationally expensive, especially without parallelization.

Regarding the benchmark example, the results highlight the efficiency of the IPPO algorithm in each
environment tested and suggest that IPPO might be a very versatile choice as a fully decentralized
independent learning method. Despite our best efforts in tuning CTDE algorithms and especially
MAPPO, we observe that standard versions of these methods struggle when scaling up problems
with strong inter-agent dependencies. This suggests that the CTDE paradigm might not be suitable
to tackle the complexity and non-stationarity of large-scale problems, and that having a centralized
component (here, the value function or critic) still faces the curse of dimensionality.

However, we recognize that methods with additional mechanisms that leverage communication and
structure between agents [42, 43] may be able to perform well. Especially, implementing GNN-based
methods such as the InfoMARL algorithm [41] is in line with future work and improvement of our
benchmark. An extended benchmark on the SysAdmin Network problem comparing InforMARL with
IPPO and standard MAPPO implementations with both independent and policy-sharing is available
in Appendix [C] This will be extended to other environments in future work. Recent developments
in RL with GNNs have shown promising results on a wide range of applications [44]]. There are
many possible approaches to network and graph-based problems. Hence, we argue that COGNAC
can stand as a solid benchmark platform for testing and comparing state-of-the-art methods, ranging
from centralized standard and advanced methods, such as GNNss, to fully distributed independent
learning methods.

5 Conclusion

We introduced COGNAC, the first collection of benchmark environments for MARL dedicated to
cooperative tasks with network structures. The collection comprises four distinct types of problems
directly taken from or inspired by theoretical benchmark problems from the literature. The envi-
ronments are implemented in a fully self-contained manner, with minimal structural complexity
and no reliance on external backend simulators. This makes the usage highly straightforward and
flexible for research purposes. In addition, all environments are built to be as modular as possible,
enabling the study of scalability with respect to problem size and graph structure. We provide a
benchmark example with four of the most popular MARL methods to demonstrate how it can be used
to compare algorithms in a simple and flexible way. In spite of their simplicity, we show empirically
that independent learning algorithms such as IDQL and IPPO can be very efficient, overcoming the
inherent non-stationarity induced by the DecPOMDP structure of the problem. COGNAC is released
as an open-source package, along with the benchmark algorithms and trained models. We argue that
COGNAC can be a valuable intermediate testbed platform for distributed MARL methods at the
frontier between theoretical work on DecPOMDPs and applications on network systems. We hope
that COGNAC will help advance research in distributed reinforcement learning by emphasizing the
role of network topology in learning dynamics.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce the benchmark package COGNAC in [2|as well as a benchmark
example on independent learning and CTDE algorithms [3]as mentioned within the abstract
and introduction.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 4]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide a detailed description of environments included in the package
(see[2) and provide additional details on algorithms used for the dynamics of environments
as supplementary material. Regarding the benchmark example experiments, we introduce
briefly the algorithms as well as parameters for environments used for the experiments (see[3).
Extensive details on hyperparameters used for experiments are disclosed as supplementary
material for reproducibility. In addition, the package introduced is available open-source
at https://github.com/yojul/cognac and the benchmark example scripts are available at
https://github.com/yojul/cognac-benchmark-example. These links are also included as
footnotes on pages 3 and 4.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: COGNAC package and the benchmark experiments are available as two
separate repository at: https://github.com/yojul/cognac|and https://github.com/yojul/cognac-+
benchmark-example. The COGNAC package includes full documentation available at
https://cognac-marl.readthedocs.io/en/latest/ that gives full instructions to install and use the
package (released on PyPi). The set of hyperparameters included in the appendix can be
used easily with the provided script from the benchmark example.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We refer to standard implementation with minimal parameter tuning in the
core of the paper and full details are included in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: Episodic return measures from experiments are computed with their standard
deviation to provide statistical significance to the results (see[3).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details are provided in the appendix. The package is available on any operating
system, and experiments have been run on a standard laptop within a reasonable computing
time (=~ a few minutes to a few hours per experiment) and memory. Hence, we choose not
to include extensive details regarding the computing resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully reviewed the NeurIPS Code of Ethics and confirm that our
research adheres to its principles, including fairness, transparency, and responsible use of
Al No ethical concerns were identified in the design, implementation, or evaluation of our
work.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

¢ The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We highlight in the abstract and introduction the importance of developing
distributed methods to tackle dimensionality problems towards more frugal and sustainable
Al systems. Indeed, the package COGNAC provides a platform for testing such methods
and fostering research for network system control, as argued in the conclusion. We did not
identify negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12.

13.

14.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Every pre-existing work used for the development of the package (including

dependency packages) as well as the implementation of experiments, is properly cited. No
existing dataset nor pre-trained models have been used.

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

 For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Package and benchmark codes are available at https://github.com/yojul/cognac
and |along with full documentation (in addition to what is already included as supplementary
material).

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: [NA]
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Practical Information on COGNAC Package

The code for the environment, as well as some utility functions used to manipulate the environment and
generate adjacency matrices and networks, is available at https://github.com/yojul/cognac.
Cognac is released as open-source under the Apache 2.0 license, available athttps://github.com/
yojul/cognac/blob/main/LICENSE. txtl The complete readable documentation of the package
can be found at https://cognac-marl.readthedocs.io/en/latest/. The environment code
is also released as a PyPI package at https://pypi.org/project/cognac/ and can be installed
as any standard package using pip install cognac.

B Details on Environment Dynamics

We provide detailed descriptions of the environment’s dynamics. In addition to the fully commented
open-source code, we also provide here the step-function algorithm for each environment in natural
language. This should help users understand the dynamics of each environment and make it easier to
modify.

Note: The algorithms described here may be improved through ongoing research on Decentralized
MARL, particularly by enhancing the dynamics and implementing additional mechanisms within the
open-source project COGNAC.

B.1 Firefighting Graph

Table [3] summarizes the different cases for fire dynamics for increasing and decreasing the fire level.
Table 4] gives the individual observation probabilities. Figure [3] shows an illustration of both the
1-dimensional and the 2-dimensional problems, where agents can respectively observe 2 and 4 houses.
The extension from the 1-dimensional problem with a row of houses and agents to the 2-dimensional
problem as a grid induces one main difference regarding the size of individual observation and action
spaces.

State and Observation: The state is described by the level of fire in each cell of a 2D grid as an
integer with s, ;(t) € [0, 6], and

S(t) = {si; () }o)To- (8)

Action Space: Each agent i can go to one of the four houses around him as represented in Figure 3]
It can reach houses h; j, b j+1, Rit1,5, hit1,;+1 and actions are encoded with an integer from 0 to 3
accordingly.

Objective and Reward function: The global objective remains the same, and the reward is still
computed based on the level of fire at the last visited house.

Category Case Visited? Burning Neighbors? Burning? Fire Level Default Probability

Increasing  Case 1 X v v +1 0.7
Case 2 X v X +1 0.3
Case 3 X X v +1 0.4
Decreasing Case4 /(> 2) - - — 0 1.0
Case5 V(=1 v v -1 0.6
Case6 V(=1) X v -1 1.0

Table 3: Fire level update rules in the Firefighting simulation environment. Default probabilities are
taken from [3]]. These can be easily modified to adjust the difficulty.
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Condition Default Observation Probability

The house is not burning fire_level = 0 0.2
The house is burning fire_level = 1 0.5
The house is burning fire_level > 1 0.8

Table 4: Observation probabilities of flames by agents. Default probabilities are taken from [3]].

Algorithm 1 Step Function of the FirefightingGraphEnvironment (1D Row and 2D Grid)

Require: Actions from all agents: actions: {0, 1}V (1D) or {0, 3} *M & For agent i, action a; is

10:
11:
12:

A A S e

encoded as an integer.
Update house visits based on actions.
for each case in Table3do
Filter houses matching the case conditions.
Apply the corresponding fire level change with the specified probability.
end for
Increment timestep: timestep <— timestep + 1
Determine termination condition:

done < (state = 0)
Determine truncation:
truncated « (timestep > max_steps)

Compute rewards:

rewards < reward(actions, state, done, truncated)

Generate new observations based on the current state, using the rules from Table E}
return observations, rewards, done, truncated, info
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B.2 Binary Consensus

The algorithm for the state update of the BinaryConsensus environment is fully described in
Algorithm[2] In addition, Figure [ gives an illustration of the dynamics. Finally, we provide some
details and insights on the environment dynamics as well as some suggestions on extended usage.

Algorithm 2 Step Function of the BinaryConsensusNetworkEnvironment

Require: Actions from all agents actions : {0, 1}V
1: Sample an influence activation matrix I € {0, 1} such that:

I; j ~ Bernoulli(P; ;) foralli,j

where P = |adjacency_matrix| is the matrix of influence probabilities.

2: for each agenti € {1,...,n} do
3: Let a; < actions|i]
4: Initialize influence counter: A + (—1)ifa; = 0, else A + 1
5: for each agent j € {1,...,n} suchthat ; ; = 1 do
6: if actions[j] = 1 then
7: A + A + sign(adjacency_matrix|i, j])
8: else
9: A + A — sign(adjacency_matrix|[i, j])
10: end if
11: end for
12: Update action a; based on influence:
random choice in {0,1} fA =0
a; <+ <1 ifA>0
0 ifA<O0
13: Update internal state:
state[i] + |state[i] — a;]
14: end for

15: Increment timestep: timestep <— timestep + 1
16: Determine if consensus is reached:

done (state = 60r state = f)

17: Determine if truncated:
truncated ¢ (timestep > max_steps)

18: Compute rewards via reward model:

19: rewards <+ reward(actions, state, done, truncated)
20: Generate new observations from the current state.

21: return Observations, Rewards, Terminations, Truncations, Info

Algorithm 2] shows that the state update of each agent is equally influenced by its own action as well
as the actions of each of its neighbors. Therefore, it suggests that a denser network with more edges
may make consensus more difficult to reach as the number of edges in the network increases. In
addition, note that the definition of the action as Keep or Change the vote implies that the state itself
is not directly considered, adding difficulty when there are strong interactions between agents.
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B.3 SysAdmin

Algorithm [3] describes the dynamics for the step method of the SysAdminNetwork environment.
This environment is arguably the easiest to solve in COGNAC, and it can be observed empirically.
This environment is very convenient to test the scalability of decentralized methods, and we were
able to scale up independent learning algorithms up to randomly generated graphs with 10,000 nodes

(i.e, agents) and up to ~ 10% edges. Results are reported in Figure 8]

Parameter Default Value | Description

adjacency_matrix — Graph structure defining agent connectivity
base_arrival_rate 0.5 Base rate for task arrivals
base_fail_rate 0.1 Base failure probability for agents
dead_rate_multiplier | 0.2 Multiplier for death rate when failing
base_success_rate 0.3 Probability of success for healthy agents
faulty_success_rate 0.1 Probability of success for faulty agents

Table 5: Default parameters for the SysAdmin environment.

Algorithm 3 Step Function of the SysAdminNetworkEnvironment

Require: Actions from all agents actions : {0,1}"

1:

o]

10:

11:
12:
13:
14:

Reboot machines: Set to working and idle where actions; = 1

state[i,0] < 0, state[i,1] <— 0 ifactions; =1

: Solve tasks for working machines with loaded jobs
state[i, 1] += Binomial(l, base_success_rate) if state[i,0] =0 A state[i,1] =1
: Solve tasks for faulty machines with loaded jobs
state[i, 1] += Binomial(l, faulty_success_rate) if state[i,0] =1 A state[i,1] =1

: Reset completed tasks

state[i, 1] «— 0 if task done at ¢

: Sample new jobs for available machines
state[i, 1] += Binomial(l,base_arrival_rate) if state[i,0] =0 A state[i,1] =0

: Induce failures on working machines via network influence

state[i,0] + 1 with prob. Z adj_matrix_probli, j|
J
Induce dead states on faulty machines via network influence
state[i,0] + 2 with prob. dead_rate_multiplier - Z adj_matrix_probli, j]
J

Increment timestep: timestep «— timestep + 1
Determine if consensus is reached:

done < ((state =0,Vi € {1,...,N})or (state = 1,Vi € {1,...,N}))
Determine if truncated:
truncated + (timestep > max_steps)

Compute rewards via reward model:

rewards < reward(actions, self, done, truncated)
Generate new observations based on current state.

return Observations, Rewards, Terminations, Truncations, Info
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B.4 Multi-commodity Flow Network

This environment is arguably the most difficult to solve.The original problem of multi-commodity
flow with integer flows is known to be NP-hard. Here, the multi-agent version of the problem aims at
solving the problem in a decentralized way. Figure[6]illustrates the environment from the perspective
of an agent within the network. Algorithm []describes the dynamics of the environment in the initial
release of the package. For convenience purposes, we choose to formulate the action as a distribution
of the dispatch for each commodity on each of its output edges. For simplicity, the environment
can be modified to process continuous flows but we aim at solving the integer flow problem. The
implementation and formulation of this environment might evolve in future work.

Algorithm 4 Step Function of the MultiCommodityFlowEnvironment

Require: Actions from all agents actions : R™*"" with m,; the number of outgoing edges from
agent ¢

1: Increment timestep: timestep < timestep + 1

2: for each agent i € actions do

3 if len(actions[i]) = O then

4: continue

5: end if

6: Normalize action into distribution: distribution < actions[i]/} actions[i]

7 Compute dispatchable stock: stock < min(max_capacity, commodities[i])

8 Update node stock: commodities[i] < commodities[i] — stock

9 Split stock across outgoing edges using distribution:

dispatch < split_integer_by_distribution(stock, distribution)

10: Set edge flows: flow;_,; < dispatch;

11: end for
12: for each agent ¢ do
13: Update commodities with incoming flows:
commodities[i] + commodities[i] + Z flow;;
j—i
14: end for

15: Generate new observations from updated state

16: Compute rewards:

17: rewards <+ reward(actions, env, False, False)
18: Initialize terminations and truncations:

19: terminations < False for all agents

20: truncations < False for all agents

21: if timestep > max_steps then

22: truncations < True for all agents

23: terminations <— True for all agents

24: rewards < reward(actions, env, True, True)
25: agents < []

26: end if

27: Verify total circulation is conserved:

Z commodities[i] = initial_total_circulation
i

28: return Observations, Rewards, Terminations, Truncations, Info
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B.5 Illustrations
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Figure 3: Illustration of the FirefightingGraph problem in 1-Dimension (left) and its natural extension
to the grid problem in 2D (right).
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Figure 4: Illustration of the Binary Consensus problem.
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C Additional results

C.1 Large systems

Binary Consensus N = 100 agents SysAdmin N = 1000 agents
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Figure 7: Comparison of independent learning algorithms on larger systems.

On Figure[7] we consider instances of Binary Consensus and SysAdmin ten times larger than the
results presented in the benchmark example of the main text of the paper (Figure[T] Here, we do not
consider CTDE algorithms (i.e MAPPO and Q-MIX) as these algorithms are much slower to run.
Therefore, we were unable to get convergence in a reasonable time. This is mainly because of the
centralized critic/value function. While we observe that these algorithms are still able to converge
towards a solution in binary consensus, the convergence is very slow due to the dimensionality of the
centralized view in these algorithms. These results on a larger system allow a broader comparison of
independent learning algorithms and showcase the superiority of IPPO on both problems in terms of
convergence speed and final decentralized joint-policy on the SysAdmin problem.

On Figure|[8] we try to learn a decentralized joint-policy with an independent learning algorithm on a
network with 10, 000 agents and 10° edges (i.e, strong and multiple dependencies).

?ysAdmin Network N = 1e4 agents, E = 1e6 edges

24 x10

2.2

- N
o O

Episodic Return
>

1.4
1.2
—— IDQN
1.0 IPPO
0 1 2 3 4 5 6
Step x10°

Figure 8: Example of training for independent learning algorithms on a large-scale instance of the
SysAdminNetwork problem. Here, the network has 10000 agents and ~ 10° edges. The graph
is generated randomly, with each potential edge between two nodes included independently with
probability 0.1. Edge weights are assigned independently from a uniform distribution. IDQL was
stopped early due to very slow convergence as compared to [PPO and heavy computation load.

On the one hand, we observe that the IPPO algorithm still manages to learn an efficient policy even

for a larger system without any hyperparameter tuning on this particular problem. On the other hand,
as observed in other experiments, the IDQL algorithm struggles with slow learning problems even
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with some standard hyperparameter tuning. We expect that more advanced Value-based methods
such as QMIX [38]] or Value-Decomposition-Network [45]], could reach or even be better than the
standard IPPO algorithm.

C.2 Network density

As one of the main objectives of our package is to study the influence of the network’s structure
and properties on the learning process, Figure 9] shows the evolution of the average final reward as a
function of the graph density. To do this, we generate Erd6s—Rényi graphs with increasing probability
(i.e., the probability that there is an edge with non-zero influence probability between two nodes).
We start from a graph with no edge and increase connectivity up to a fully connected graph. The
influence probabilities on the edges are drawn from a uniform distribution between 0 and 1.

Evolution of Average Final Reward vs Graph density

—— Avg. Final Reward
Std

Average Final Reward

0.0 0.2 0.4 0.6 0.8 1.0
Density of graph

Figure 9: Average final reward achieved by standard IDQL training as a function of the density of
randomly generated graph structures with N = 10 agents. For a given density, the average final
reward is computed over 100 Erd6s—Rényi graphs. For each structure, we evaluate the performance
of the trained policy over 100 episodes. The training process remains the same for all tested graphs.

The results suggest that denser networks make the environment more difficult to solve with standard
training procedures. The binary consensus environment is well-suited for this type of experiment,
as it features binary state and action spaces while remaining quite challenging due to the strong
interactions between agents. Indeed, it is worth noting that when interactions are made deterministic
(i.e., edge weights set to 1), the optimal policy is not trivial to find—even for a human player—and
some initial configurations cannot be solved. Moreover, this also depends on the time horizon of the
environment, as solving it may require a complex sequence of coordinated actions.

C.3 PPO-based methods and GNN extension

The SysAdmin problem has homogeneous agents, i.e, they all have the same observation and action
space. The interdependency between agents is implicit and not explicitly described in the agent’s
observation space. MAPPO algorithms usually have the best results using a policy sharing mechanism
across agents in homogeneous settings [39]]. In addition to being clearly faster, it also allows the use
of experience buffers from all agents to train the actor policy. In Figure[I0] we compare Independent
PPO, where each agent maintains its own actor-critic policy, to 2 standard MAPPO implementations
and the InfoMARL algorithm. InforMARL uses Graph Neural Networks to aggregate information
from each agent’s neighborhood. This allows an efficient use of the network structure of the problem
[41]. However, this also supposes additional information for each agent that uses its own observation
of the system and the output of the GNN aggregator. The aggregator takes into account neighborhood
information and allows for an efficient use of a shared actor policy across agents.
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Figure 10: Comparison of PPO-based methods on the SysAdmin Network problem. We compare
Independent PPO to three different versions of MAPPO: 2 standard implementations with shared
and independent actor-policy, and InforMARL algorithm that uses a GNN-based aggregator for both
actor and critic network. MAPPO with independent actor policies was removed due to a scalability
issue on (b) with 1000 agents.

We observe that IPPO is the best-performing algorithm along with InforMARL. Conversely, standard
implementations of MAPPO struggle to converge to an optimal policy. We observe that sharing
actor-policy across agents in MAPPO performs better than having independent actor networks for
each agent. This can be explained by the higher non-stationarity between agents with independent
policies. However, policy sharing does not allow here to take into account the specificity of each
agent’s dependencies within the network because the inter-dependency is implicit in this problem.
Hence, MAPPO with shared actor-policy converges towards a slightly sub-optimal policy while
InforMARL can tackle the issue by using the graph structure of the problem.

Overall, the IPPO algorithm is surprisingly effective without any additional information or centralized
component and aggregator. While slightly slower to converge, it reaches the best joint policy on
every instance of the problem tested and scales very well up to 10,000 agents (see Figure [g).
InforMARL also scales very well but requires the communication of additional information to the
agents and a centralized critic network with full knowledge of the state (or joint-observation). The
standard MAPPO implementation remains largely suboptimal and does not scale when maintaining
independent actor-policy networks. Policy sharing here helps with scalability and in converging
towards a better joint policy.

C.4 Open-source benchmark experiments

The code to reproduce all the experiments is available at https://github.com/yojul/
cognac-benchmark-example!l It contains all the training scripts for various algorithms, as well as
the adjacency matrix of networks used to instantiate the environments.

D Training Settings for Benchmark Experiments

D.1 Graph Structure

For simplicity, the network structure studied in the experiments for BinaryConsensus, SysAdmin,
and Multi-Commodity Flow is defined through an adjacency matrix in the form of a band ma-
trix, defining a directed graph where the number of outgoing edges for each node is fixed. The
weights on the edges are drawn from a uniform distribution w; € (0.25,1). All adjacency ma-
trices used in the experiments can be found along with the training scripts as .npy NumPy array
files athttps://github.com/yojul/cognac-benchmark-example/tree/main/algos/env_
assets. For example, the network for N = 10 agents has the following adjacency matrix (values
rounded to two decimals):
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Table 6: Comparison of hyperparameters used for MAPPO and IPPO training.

Hyperparameter MAPPO Value IPPO Value Tested Range Description

Learning rate (o) 3x 1074 5x 1074 [le-4, 1e-3] Learning rate of the optimizer
Discount factor () 0.99 0.99 - Discount factor

GAE )\ 0.90 0.95 {0.9,0.99} A for Generalized Advantage Estimation
Number of minibatches 1 4 [1, 8] Number of mini-batches per update
Update epochs (K) 3 4 [2,10] Number of policy update epochs
Clipping coefficient 0.1 0.2 [0.1,0.5] Surrogate clipping coefficient
Entropy coefficient 0.01 0.02 [0.01, 0.1] Entropy regularization coefficient
Value loss coefficient 0.5 0.5 - Value function loss coefficient
Max gradient norm 0.5 0.5 [0.5, 1.0] Maximum gradient clipping norm
Rollout buffer size 16 episodes 10 episodes [1,32] Rollout length (in episodes)

[0.00 0.71 0.35 0.29 0.00 0.00 0.00 0.00 0.00 0.007
0.30 0.00 0.78 0.98 0.51 0.00 0.00 0.00 0.00 0.00
0.33 058 0.00 099 0.74 0.74 0.00 0.00 0.00 0.00
098 089 0.81 0.00 028 0.64 074 0.00 0.00 0.00
0.00 0.50 0.85 0.73 0.00 0.89 097 0.25 0.00 0.00
0.00 0.00 0.76 0.36 0.61 0.00 0.55 0.51 0.73 0.00
0.00 0.00 0.00 0.43 046 0.59 0.00 0.76 0.37 0.89
0.00 0.00 0.00 0.00 038 089 090 0.00 0.71 0.95
0.00 0.00 0.00 0.00 0.00 0.33 064 044 0.00 0.41
010.00 0.00 0.00 0.00 0.00 0.00 0.83 0.98 0.65 0.00]

Note This setup can be easily extended to undirected settings by symmetrizing the matrix—i.e., by
adding non-zero values to ensure that each node is undirectly connected to some of its neighbors.

The interpretation of adjacency matrix weights varies across environments. In BinaryConsensus and
SysAdmin, the weights represent the probability that one agent influences another. In BinaryCon-
sensus, an agent is influenced by its neighbors with a probability equal to the corresponding edge
weight. Neighbors with incoming edges can affect the agent’s state update, making some agents more
influential than others, depending on their outgoing edge weights. In SysAdmin, agents in a faulty or
dead state can spread their state to neighbors based on edge weight probabilities. As a result, nodes
with high degrees and large edge weights play a more critical role in preventing the spread of failures.

In the Multi-Commodity Flow Network, edge weights represent flow costs. Minimizing flow along
these edges directly impacts the agents’ rewards. Importantly, in all environments, agents cannot
observe the edge weights—they are part of the environment’s internal dynamics.

We scaled down dependencies by a factor of 10 in our experiments with the Binary Consensus
environment in order to help convergence for MAPPO and Q-Mix methods. This suggests that these
kinds of methods struggle to capture strong dependency between agents using a centralized value
function.

D.2 Training Hyperparameters

For all experiments, we use a standard set of hyperparameters and perform minimal hyperparameter
tuning beforehand. On small instances of problems, we expect independent algorithms to perform
correctly. We tried to keep hyperparameters constant for all experiments for comparison purposes
between problem structures and sizes. We describe the main set of parameters comparing IPPO and
MAPPO in Table[6]and the set for IDQL in Table
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Table 7: Hyperparameters for Independent Q-Learning Experiments

Parameter Value / Description
Training

Total timesteps 5,000,000

Learning starts 10,000 steps
Training frequency Every 5 steps
Optimizer Adam

Learning rate 5x 1074
Exploration Schedule

Starting € 1.0

Final € 0.005

Exploration fraction 0.1 of total timesteps
Exploration decay Linear schedule
Replay Buffer

Buffer size 10,000

Batch size 256

Q-Learning Parameters

Discount factor () 0.95

Soft update coefficient (7) 0.5

Target network update frequency Every 100 steps

Neural Network Architecture

Hidden layers Two layers of 120 and 84 units.
Activation function ReLU
Output Q-values for each discrete action

All experiments have been run on an Apple M3 Pro laptop using a single thread, i.e., each agent’s
neural network policy is called and trained sequentially. In all our experiments with up to 1000 agents,
the time required to train working policies remains reasonable, from a few minutes to a few hours on
a laptop.

32



	Introduction
	Distributed Reinforcement Learning with Graph Structure
	Review of Existing Benchmark Environments
	Motivations

	COGNAC : Cooperative Graph-based Networked Agent Challenges
	Available Environments
	Fire Fighting Graph
	Binary Consensus
	Multi-agent SysAdmin
	Multi-commodity Flow

	Multi-Agent Reinforcement Learning with COGNAC

	A Benchmark Example
	Limitations
	Conclusion
	Practical Information on COGNAC Package
	Details on Environment Dynamics
	Firefighting Graph
	Binary Consensus
	SysAdmin
	Multi-commodity Flow Network
	Illustrations

	Additional results
	Large systems
	Network density
	PPO-based methods and GNN extension
	Open-source benchmark experiments

	Training Settings for Benchmark Experiments
	Graph Structure
	Training Hyperparameters


